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Abstract—The scope of this work is to test alternative al-
gorithmic schemes that could tackle a large stochastic capac-
ity expansion problem with specific constraints on expected
energy not served. The challenge lies in decoupling scenario-
specific variables, originally bundled by adequacy constraints,
so that scenario-specific problems can be solved in parallel.
The examined schemes include Benders’ decomposition, the
projected subgradient method, the level method and Dantzig-
Wolfe decomposition. Numerical experiments are conducted on
a small-scale problem of four countries and two scenarios, for
which we are able to calculate the extended form solution and
thus benchmark the effectiveness of the proposed decomposition
algorithms.

Index Terms—Capacity expansion planning, resource ade-
quacy, stochastic optimization, parallel algorithms

I. INTRODUCTION

Transmission System Operators (TSOs), as well as the
European Network of Transmission System Operators for
Electricity (ENTSOe), conduct resource adequacy studies on
a periodic basis [1]–[3]. These studies use various methodolo-
gies that differ in the scope of system considerations and as-
sumptions. However, they have a similar overarching structure;
they start with a capacity expansion plan that is considered
realistic for the future based on certain assumptions, and
they evaluate its ability to meet certain adequacy criteria,
more often in terms of loss of load expectation (LOLE),
but also in terms of expected energy not served (EENS).
Based on this evaluation, they identify areas of “adequacy
risk” and formulate assessments on the necessity of capacity
mechanisms.

The natural follow-up question is what is a cost-optimal
expansion plan that meets the adequacy criteria. The afore-
mentioned studies typically rely on heuristics to tackle this
question. Another approach is to solve for a cost-optimal
expansion plan with endogenous adequacy criteria, but this
is computationally challenging if we consider a pan-European
scale, and if we want to account systematically for uncertainty.
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Trying to address the problem in such a dimension is
justifiable. Power markets in Europe are integrated. Moreover,
the vast penetration of generation from renewable energy
sources (RES) dictates that uncertainty be systematically ac-
counted for. The European Resource Adequacy Assessment
(ERAA) [3] is an example of this problem in practice. With
59 zones and 35 climatic scenarios, the respective economic
dispatch problem is estimated to have approximately 181
million variables and 225 million constraints.

An overview of different approaches to solve a stochastic
capacity expansion model is provided in [4]. When the size
of the problem is manageable, a number of authors tackle
the extended formulation using a commercial solver. To solve
problems of higher dimensionality, two fronts have been ex-
plored; one front has focused on developing scenario selection
techniques to reduce the size of the uncertainty space, with
the hope of decreasing the size of the problem so that its
extended form becomes manageable. The other front, which
aligns with the scope of this paper to include a large number
of scenarios, is employing decomposition algorithms, which
split the problem into scenario-specific sub-problems.

However, the introduction of adequacy constraints renders
this scenario decomposition challenging. Adequacy constraints
are expressed as an expectation of load shedding across scenar-
ios of uncertainty, and therefore couple all scenarios together.
In the literature, the most common practice to address stochas-
tic capacity expansion problems with adequacy constraints
is to use methods based on Benders’ decomposition [5]–[7].
Nevertheless, it is well known that Benders’ decomposition,
can encounter scalability issues. For a discussion on the
drawbacks of cutting plane methods (which include Benders’
decomposition) we refer the reader to [8], as well as [9].
For a specific case where Benders’ decomposition encounters
scalability issues when applied to a pan-European problem,
we refer the reader to [4].

To the knowledge of the authors, the examination of
decomposition methods other than Benders’, specifically to
address a stochastic capacity expansion problem with ade-
quacy constraints, is thinly addressed in the literature. In
order to counter scalability challenges, we therefore focus on979-8-3315-1278-1/25/$31.00 ©2025 IEEE



comparing Benders’ decomposition to alternatives based on
dual decomposition, in particular the subgradient method and
the level method [10], [11]. We also consider two cases based
on the Dantzig-Wolfe decomposition [12]. While the ultimate
objective is to work on a large-scale setting, we devote this
paper to examining the alternative schemes on a small test
case, for which we are able to solve the problem directly in
its extended form and obtain a benchmark for their results.

The structure of the paper is as follows: in section II we
present the mathematical formulation of a stochastic capacity
expansion model with adequacy constraints. In section III
we discuss three different decomposition schemes to tackle
the model. In section IV we present the results from the
implementation of the examined schemes on a test system,
discuss their relative performance. Finally, we conclude with
a summary of the main findings of this work.

II. STOCHASTIC CAPACITY EXPANSION WITH ADEQUACY
CONSTRAINTS

In this section, we provide stylized formulations of stochas-
tic capacity expansion planning problems (SCEP) with ad-
equacy constraints, that are sufficient for demonstrating their
key features and the decomposition methods that we develop in
the subsequent sections. We begin with the SCEP formulation
without adequacy constraints. We then introduce adequacy
constraints, considering two cases, one with EENS limits and
one with LOLE limits, and discuss their relative features. We
use the following notation:

• Sets
Ω : uncertainty realizations (climatic conditions that

affect demand and RES generation)
G: generators
T : time horizon (we consider an annual time horizon

with hourly time steps)
• Parameters

ICg: annualized investment cost (C/MWh)
MCg: variable and fuel cost (C/MWh)
Xg: upper bound on investment (MW)
V OLL: Value of lost load (C/MWh)
LOLE: upper limit on LOLE (h)
EENS: upper limit on EENS (MWh)
Dt,ω: demand (MW)
Pω: probability of scenario realization ω

• Variables
xg: invested capacity (MW)
pg,t,ω: generation by capacities (MWh)
lst,ω: load shedding (MWh)
ut,ω: occurrence of load shedding (binary)

A. Formulation without adequacy constraints

Let us begin by introducing the stochastic capacity expan-
sion problem, ignoring the adequacy constraints:

min
x,p,ls≥0

∑
g∈G

Ig · xg+ (1)

+ Eω∈Ω

∑
g∈G

∑
t∈T

MCg · pt,g,ω

 (2)

+ V OLL · Eω∈Ω

[∑
t∈T

lst,ω

]
(3)

s.t. xg ≤ Xg ∀g ∈ G (4)
pg,t,ω ≤ xg ∀g ∈ G, t ∈ T, ω ∈ Ω (5)

Dt,ω −
∑
g∈G

pt,g,ω − lst,ω = 0 ∀t ∈ T, ω ∈ Ω (6)

(SCEP)

The objective function is the minimization of the sum of
investment cost (1), the expected cost of power generation
(2) and the expected cost of load shedding (3). Constraint (4)
imposes upper bounds on investment decisions. Constraint (5)
limits power generation to the level of installed capacity. Con-
straint (6) requires the balance between supply and demand,
for every scenario and time period. While there is no explicit
adequacy constraint, load shedding is limited by the respective
cost term (3) in the objective function.

This problem can be effectively solved using decomposition
methods. To realize why this is possible, the reader may notice
that, the scenario-dependent variables (pg,t,ω and lst,ω) and
expressions ((2), (3), (5), (6)) are not bundled explicitly to
each other.

B. Formulation with EENS constraints

Let us now rewrite the SCEP problem introducing EENS
constraints:

min
x,p,ls≥0

(1) + (2)

s.t. (4), (5), (6),

Eω∈Ω

[∑
t∈T

lst,ω

]
≤ EENS (7)

(SCEP-EENS)

With the inclusion of EENS constraint (7) the cost of load
shedding in the objective function (3) is no longer necessary, as
the two can serve the same purpose of limiting the amount of
load shedding. This intuition can be formalized with a strong
duality argument.

It becomes obvious from (7) that the EENS constraint
introduces an explicit bundling of all scenarios to the SCEP-
EENS problem. Therefore, the decomposition by scenario that
was possible for the SCEP problem is not a direct option. This
bundling is the main difficulty in tackling the SCEP-EENS
problem. The decomposition schemes presented in section III
are designed to address this issue.

C. Formulation with LOLE constraints

In order to formulate the SCEP problem with LOLE con-
straints, we introduce the binary variables ut,ω that reflect the



occurrence (or not) of load shedding at a specific time segment.
The model formulation is given by:

min
x,p,ls≥0,u∈{0,1}

(1) + (2) + (3)

s.t. (4), (5), (6),

lst,ω ≤ ut,ω ·Dt,ω ∀t ∈ T, ω ∈ Ω (8)

Eω∈Ω

[∑
t∈T

ut,ω

]
≤ LOLE (9)

(SCEP-LOLE)

Constraint (8) ensures that load shedding can take a non-
zero value (lst,ω > 0) only if we decide to shed load (ut,ω =
1) in the same period and same scenario. Constraint (9) is the
adequacy constraint and ensures that the expected total number
of periods that load is shed is lower than the LOLE limit. The
reader may notice that we have reintroduced the cost of load
shedding in the objective function. This is necessary, because
otherwise, load shedding in a period for which ut,ω > 0 could
be arbitrarily high. In fact, the model can shed load entirely
(lst,ω = Dt,ω) with no impact on the LOLE constraint.

The SCEP-LOLE model is far more complex computation-
ally than the SCEP-EENS model, because the inclusion of
the binary variables u renders the problem non-convex. The
schemes presented in this paper focus on the challenge of
decomposing the problem by scenario, where the resulting sub-
problems would each be a pan-European capacity expansion
problem with hourly resolution, thus a very large model.
Solving such large sub-problems is possible with a strong
computational system, if they are linear; on the other hand,
if they include binary variables, they become intractable even
for smaller cases (examples can be found in [13]), unless
additional temporal or spatial decomposition is implemented.
We thus focus the remainder of the paper on tackling the
SCEP-EENS problem.

III. DECOMPOSITION SCHEMES

In this section we present a suite of decomposition schemes
for tackling the SCEP-EENS problem. We begin with a formu-
lation based on Benders’ decomposition, which is a commonly
used technique in the literature on similar problems. We then
present two methods that both aim at solving the Lagrangian
dual problem of SCEP-EENS, namely the subgradient method
and the level method. Finally, we present two formulations
based on Dantzig-Wolfe decomposition. The challenge in all
cases is to break the scenario bundling of the EENS constraints
so that the second-stage problems can be solved in parallel.

A. Benders’ decomposition

The Benders’ decomposition of the SCEP-EENS problem
that we implement in this paper is based on the work of [13].
We introduce budget variables to the SCEP-EENS problem,
qω ∈ R≥0,∀ω ∈ Ω, which effectively measure the aggregate
load shedding in a given scenario over the time horizon.

This allows us to replace the EENS constraints (7) with the
following: ∑

t∈T

lst,ω ≤ qω ∀ω ∈ Ω (10)

Eω∈Ω [qω] = EENS (11)

A proof of equivalence between (7) and (10, 11) is provided
in [13] as Theorem 1.

What we have achieved with this formulation is for all ls
variables to appear in constraints that are scenario-specific.
We have, therefore, unbundled second-stage decisions and can
decompose by scenario. This comes at the cost of introduc-
ing new variables q, which are also scenario-specific. They,
nonetheless, can become meaningful first-stage decisions, and
allow us to maintain a structure on which we can apply
Benders’ decomposition.

In particular, in the implementation of Benders’ decompo-
sition, constraint (11) becomes part of the master problem,
therefore the variables q will be optimized along with x.
Constraints (10) become part of the operation sub-problems
(slaves) which are scenario-specific and unbundled, and can
therefore be solved in parallel. The formulations of the master
problem and the slave problems can be found in the Appendix.

B. Lagrange relaxation schemes
The subgradient and level method that we implement rely

on dual decomposition [10], [11] and focus on solving the
dual of the SCEP-EENS problem:

max
λ≥0

g(λ) (12)

where λ is the dual value of the EENS constraint (7) and g(λ)
is the Lagrange dual function. The reader is referred to [14],
section III-A for the complete definition of the Lagrange dual
function for the SCEP-EENS problem.

Both methods require computing g(λ) repeatedly until they
arrive at a λ∗ that maximizes g(λ). In practice, these methods
involve two procedures; the first procedure is to update the
values of λ at each iteration, and the second procedure is to
calculate g(λ) for the given λ. The two methods differ in
regard to determining the λ of each iteration (as discussed in
the following paragraphs), but employ the same method for
calculating g(λ).

It should be noted that, for a given λ, g(λ) is an optimization
problem equivalent to the SCEP problem, with the difference
that in (3) we price load shedding at λ instead of V OLL. As
such, it is a problem that can be tackled with a decomposition
scheme. The selection of the decomposition scheme to use for
g(λ) should be based on its potential to be implemented on
pan-European instances, otherwise it will not be aligned with
the purpose of this paper. With this consideration in mind, we
utilize the approach that is developed in [4], which has proven
to be superior to other methods in solving the SCEP problem
for a pan-European setting. A representation of this algorithm
is provided in [14], section 3.3.

We proceed with the presentation of the subgradient and the
level method.



1) The subgradient method: A detailed exposition of a
subgradient method for solving the SCEP-EENS problem
is presented in [14]. In particular, the reader is referred to
Algorithm 1 of section 3.1.

2) The level method: The implementation of the level
method is based on chapter 3.3.3 of [10]. The reader is further
referred to [9] for uses of the level method in power system
optimization problems.

According to the level method, the Lagrange dual function
g(λ) is outer approximated by a function ĝ(λ) ≥ g(λ):

ĝ(λ) = max
θ,λ≥0

θ (13)

s.t. θ ≤ g(λk) + (ρk)
T
(λ− λk), k = 1, ...,K (14)

The upper bound ĝ(λ) is defined by a set of cutting planes (14)
that are being built by computing g(λ) iteratively, for various
values of λ ∈

{
λk

}K

k=1
. In particular, for any given λk, the

cutting plane is built from the value of g(λk) itself, as well
as the value of the subgradient of g at λ, which is denoted
as ρk. As we obtain iteratively more solutions and thus more
cuts, ĝ(λ) approaches g(λ).

It remains to explain how we determine the λ values for
every iteration. If we are at iteration k, then λk+1 is derived
by solving the following problem:

min
λ≥0

∥λ− λk∥22 (15)

s.t. g(λi) + (ρi)T (λ− λi) ≥ Lk, i = 1, ..., k (16)

The Lk in (16) is calculated at every iteration using the
maximum g(λk) and the minimum θ obtained so far (denoted
as gkbest and θkbest respectively), weighted by a parameter β ∈
(0, 1), which we will refer to as the level parameter:

Lk = β · gkbest + (1− β) · θkbest (17)

C. Dantzig-Wolfe decomposition

The implementation of the Dantzig-Wolfe decomposition
algorithm is primarily based on the textbook of [15], chapter
6.4. For implementing the Dantzig-Wolfe decomposition, we
isolate the complicating constraint (7) and we represent the
polyhedron defined by the remaining constraints as a convex
combination of its extreme points. In particular, if we define
the polyhedron X = {(x, p, ls) ∈ Rn : (4), (5), (6)}, and the
set of extreme points of X , JX =

{
(x̂, p̂, l̂s)j , j ∈ IJ

}
, then

the SCEP-EENS problem is equivalent to:

min
z≥0

∑
j∈IJ

zj ·
∑
g∈G

ICg · x̂j
g

+
∑
j∈IJ

zj · Eω∈Ω

∑
g∈G

∑
t∈T

MCg · p̂jt,g,ω


s.t.

∑
j∈IJ

zj · Eω∈Ω

[∑
t∈T

l̂s
j

t,ω

]
≤ EENS

∑
j∈IJ

zj = 1

(SCEP-EENS-DW)

Since enumerating the full set of extreme points JX is
impossible, the Dantzig-Wolfe decomposition considers the
SCEP-EENS-DW problem for only a subset ĪJ ⊆ IJ ,
namely, the Dantzig-Wolfe ”restricted master problem”, and
then strategically adds new elements to ĪJ in an iterative man-
ner, employing the methodology of delayed column generation
(chapter 6.1 of [15]), until the optimal solution is reached.

The reader may notice that in SCEP-EENS-DW, variables z
are not indexed by scenario, which is owing to the fact that the
polyhedron X includes the first-stage constraints (4). Column
generation will thus involve a single optimization sub-problem.
This sub-problem is equivalent to the Lagrange dual function
(see also [16]), which, as already argued in section III-B,
can be solved effectively through decomposition. However,
solving a single sub-problem means that we only obtain a
single column at every iteration. Such an application of the
Dantzig-Wolfe decomposition is a trivial option (see [15] in
discussion of the ”Applicability of the method”), as the method
is generally intended to involve multiple sub-problems, that
produce multiple columns per iteration. Relevant implementa-
tions in power system optimization problems can be found in
[9], [17] and [18].

To attempt a reformulation of our problem that involves
multiple sub-problems, we inspire ourselves from the work
of [18]. In particular, we introduce scenario-specific variables
xwg,ω,∀g ∈ G,ω ∈ Ω to the SCEP-EENS problem and
we associate every xwg,ω to the corresponding xg though
non-anticipativity constraints [19]. With this ”split-variable”
reformulation [18], we can maintain constraints (4) and vari-
ables xg in the restricted master problem and introduce xwg,ω

to the column generation sub-problems, which can now be
solved in parallel. We will refer to this alternative formulation
as the Dantzig-Wolfe-NAC, where ”NAC” stands for non-
anticipativity constraints.

The detailed problem formulations of the Dantzig-Wolfe
decomposition schemes can be found in the Appendix.

IV. CASE STUDY

A. Description

The algorithms presented in section III are tested on a
capacity expansion model that is similar to the model of the
European Resource Adequacy Assessment (ERAA) analysis
of ENTSO-E in 2021 [20]. The reader may find the detailed
description of the test model in section II of [14]. Input data
for the model have been obtained from the ERAA website
[21]. We focus on an instance that includes 4 countries, namely
Germany, France, the Netherlands and Belgium, and 2 climatic
scenarios out of the 35 that are included in the ERAA 2021
analysis (those corresponding to climate years 1982 and 1983).
We refer to this case as the ”main test case”.

The EENS limits that we impose correspond to figures
reported in Table 8 of the ERAA 2021 report [22]. Additional



cases of EENS limits have also been tested, but their results
are not presented here, as the key observations regarding
the relative performance of the algorithms remain consistent
across cases.

The algorithms are implemented in Julia (version 1.11.1).
Optimization is performed with Gurobi (version 11.0.3), using
the optimization algorithm that demonstrated the best perfor-
mance in preliminary test runs, namely primal simplex for
the Benders’ decomposition sub-problems, and dual simplex
for the sub-problems of the Lagrange relaxation and Dantzig-
Wolfe schemes. The parametrization of the algorithms includes
the following:

• The level parameter β of the level method is set to 0.7, as
the algorithm demonstrated the best performance at this
value in preliminary runs.

• The initial value of λ for the subgradient and the level
method is set to 50 EUR/MWh for all countries. The
relative performance of the algorithms remained similar
with alternative initialization points.

• The Dantzig-Wolfe restricted master problems were ini-
tialized with a feasible solution to the SCEP-EENS
problem, obtained by fixing investments at their upper
limit and load shedding at zero.

B. Results

1) Evolution of the algorithms: In Fig. 1 the reader can
observe the evolution of the relative gap between the upper
and the lower bound of each algorithm with time. Some
key performance indicators are provided in Table II in the
Appendix.

The Benders’ and the level methods both demonstrate fast
convergence. They both require a relatively small number of
iterations to reach low gaps, and only a few seconds are
required to complete each iteration in this small-scale instance.

The subgradient method proceeds at a slower, but mainly
less steep pace (Fig. 1) relative to the other methods. The
evolution of the algorithm gap plateaus after the 30th iteration
(∼500 seconds), improving only marginally in the remaining
iterations, and not going below ∼0.15%.

The Dantzig-Wolfe decomposition algorithm required the
most time to arrive to low gaps, as it involved the slowest
iterations. This is a non-intuitive observation; the computation-
ally heaviest process of the Dantzig-Wolfe, as well as the level
and the subgradient methods, is the solution of the Lagrangian
dual function (g(λ) in (12)), and in all cases we are utilizing
the same methodology. However, we have observed that the
time required to solve the Lagrangian dual function varies
with different values of λ, and every method adopts different
strategies for selecting λ in each iteration.

The Dantzig-Wolfe decomposition algorithm with the
non-anticipativity constraints (Dantzig-Wolfe-NAC) evolved
slower than the other algorithms, and it will thus not be
discussed further. The reader may find a depiction of its
evolution in the Appendix.

Fig. 1. Convergence of the examined methods, excluding the Dantzig-Wolfe-
NAC method.

2) Quality of the solution: The deviation of the Benders’
final solution to the extended form solution is practically zero,
for both costs and retirement of capacities. The other cases also
approach very closely the extended form solution (respective
results are included in the Appendix). Some deviations are
observed in the distribution of retirements by country. If we
consider the aggregate results on retirements for all countries,
the total deviation is of the order of 1-3%. Nevertheless, these
deviations have a minor effect on total cost, with an impact
of less than 0.1%.

V. CONCLUSION

This paper investigates a variety of algorithmic schemes
to decompose a stochastic capacity expansion problem with
endogenous adequacy targets. These schemes could be rig-
orous alternatives to the heuristics that are being adopted in
real-world applications when the size of the problem does
not allow to optimize it without decomposition. The proposed
schemes are based on well-established methods, nevertheless
their implementation to the particular problem is non-trivial.

In a small-scale setup, the proposed schemes that are based
on Benders’ decomposition and the level method are both
able to solve the problem at a high speed. The proposed
subgradient method has the slowest convergence, and it can
not surpass a 0.1% optimality gap at a reasonable amount
of time in the examined case study; nevertheless, the best
solution obtained approximates very closely the extended form
solution. The Dantzig-Wolfe decomposition also demonstrates
relatively slow evolution. An alternative formulation of the
Dantzig-Wolfe scheme using non-anticipativity constraints did
not improve convergence time.

Immediate future work will involve the examination of the
scalability of the analyzed methods, and their potential to be
used in pan-European applications.
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APPENDIX

A1. PROBLEM FORMULATIONS

TABLE I
MATHEMATICAL NOTATION USED IN PROBLEM FORMULATIONS

Notation Meaning
Hat over variable
symbol (α̂)

Input from optimization at a previous step

Vω Set of iteration indices where the Benders’
slave problem for scenario ω is feasible

Rω Set of iteration indices where the Benders’
slave problem for scenario ω is infeasible

ϕ, σ, τ Extreme ray components corresponding to
the first, second, and last constraint respec-
tively of the Benders’ slave problem for
scenario ω, in case it is infeasible

Benders’ master problem:

min
θ,x,q≥0

∑
g∈G

Ig · xg + Eω∈Ω [θω]

s.t. θω ≥
∑
t∈T

ξ̂it,ω ·Dt,ω +
∑
g∈G

∑
t∈T

µ̂i
t,g,ω · xg+

+ ν̂iω · qω, ∀i ∈ Vω, ω ∈ Ω

0 ≥
∑
t∈T

ϕ̂i
t,ω ·Dt,ω +

∑
g∈G

∑
t∈T

σ̂i
t,g,ω · xg+

+ τ̂ iω · qω, ∀i ∈ Rω, ω ∈ Ω

xg ≤ Xg, ∀g ∈ G

Eω∈Ω [qω] = EENS

Benders’ slave problems, ∀ω ∈ Ω:

min
p,ls≥0

∑
g∈G

∑
t∈T

MCg · pt,g,ω

s.t.
∑
g∈G

pt,g,ω + lst,ω = Dt,ω, ∀t ∈ T [ξt,ω]

pt,g,ω ≤ x̂g, ∀g ∈ G, t ∈ T [µt,g,ω]∑
t∈T

lst,ω ≤ q̂ω [νω]

Dantzig-Wolfe restricted master problem:

min
z≥0

∑
j∈ĪJ

zj ·
∑
g∈G

ICg · x̂j
g+

+
∑
j∈ĪJ

zj · Eω∈Ω

∑
g∈G

∑
t∈T

MCg · p̂jt,g,ω


s.t.

∑
j∈ĪJ

zj · Eω∈Ω

[∑
t∈T

l̂s
j

t,ω

]
≤ EENS [λ]



∑
j∈ĪJ

zj = 1 [π]

Dantzig-Wolfe pricing problem:

min
x,p,ls≥0

∑
g∈G

ICg · xg + Eω

∑
t∈T

∑
g∈G

MCg · pt,g,ω

−

− λ̂ · Eω

[∑
t∈T

lst,ω

]
− π̂

s.t.
∑
g∈G

pt,g,ω + lst,ω = Dt,ω, ∀t ∈ T

pt,g,ω ≤ xg, ∀t ∈ T, ω ∈ Ω

xg ≤ Xg, ∀g ∈ G

Dantzig-Wolfe-NAC restricted master problem:

min
x,z≥0

∑
g∈G

ICg · xg+

+
∑
ω∈Ω

∑
j∈ĪJω

zjω · Pω ·
∑
t∈T

∑
g∈G

MCg · p̂jt,g,ω

s.t.
∑

j∈ĪJω

zjω · x̂wj
g,ω − xg = 0, ∀g ∈ G,ω ∈ Ω [κg,ω]

∑
ω∈Ω

∑
j∈ĪJω

zjω · Pω ·
∑
t∈T

l̂s
j

t,ω ≤ EENS [λ]

∑
j∈ĪJω

zjω = 1, ∀ω ∈ Ω [πω]

xg ≤ Xg, ∀g ∈ G

Dantzig-Wolfe-NAC pricing problem, ∀ω ∈ Ω:

min
xw,p,ls≥0

Pω ·
∑
t∈T

∑
g∈G

MCg · pt,g,ω −
∑
g∈G

κ̂g,ω · xwg,ω−

−
∑
g∈G

κ̂g,ω · xwg,ω − λ̂ · Pω ·
∑
t∈T

lst,ω − π̂ω

s.t.
∑
g∈G

pt,g,ω + lst,ω = Dt,ω, ∀t ∈ T, g ∈ G

pt,g,ω ≤ xwg,ω, ∀t ∈ T

xwg,ω ≤ Xg, ∀g ∈ G

A2. ADDITIONAL GRAPHS AND TABLES

TABLE II
PERFORMANCE INDICATORS

Algorithms
Indicators Benders’ Subgr. Level D-W

Time for 1% gapa (s) 221 375 105 716
Time for 0.01% gapa (s) 223 >1000 182 891

Average time per iteration (s) 5 10 6 20
Iterations for 1% gapa 37 22 9 22

Iterations for 0.01% gapa 39 >100 24 42
a Percentage difference of the lower bound relative to the upper bound of each algorithm.

Fig. 2. Convergence of the examined methods.

Fig. 3. Retirements in the solution of the examined methods. Investments
were zero in all cases.

Fig. 4. Evolution of the total cost in the examined methods.


