
nicolas stevens

P R I C E F O R M AT I O N W I T H N O N - C O N V E X I T I E S :
T H E O RY A N D A P P L I C AT I O N S F O R T H E E L E C T R I C I T Y

M A R K E T





Université catholique de Louvain

École Polytechnique de Louvain

Center for Operations Research and Econometrics

Price Formation with Non-Convexities:
Theory and Applications for the Electricity

Market

Nicolas Stevens

Thesis submitted in partial fulfillment of the requirements for the degree
of Docteur en sciences de l’ingénieur et technologie

Supervisor:
Anthony Papavasiliou
(NTUA, Greece)
Bert Willems
(UCLouvain, Belgium)

Jury:
Mette Bjørndal (NHH, Norway)
Philippe Chevalier (UCLouvain, Belgium)
Richard O’Neill (ARPA-E, United States of America)
Yves Smeers (UCLouvain, Belgium)

Chair:
Philippe Chevalier (UCLouvain, Belgium)



phd organization

Nicolas Stevens
UCLouvain
École Polytechnique de Louvain
Center for Operations Research and Econometrics

thesis supervisors

Anthony Papavasiliou
Assistant Professor, National Technical University of Athens
Department of Electrical and Computer Engineering

Bert Willems
Professor, UCLouvain
Louvain School of Management
Center for Operations Research and Econometrics

supervisory committee

Mette Bjørndal
Professor, Norwegian School of Economics (NHH)
Department of Business and Management Science

Alexandre Street
Professor, Pontifical Catholic University of Rio de Janeiro
Department of Electrical Engineering

Nicolas Stevens: Price Formation with Non-Convexities: Theory and Applications
for the Electricity Market, © 2024



“The old problem asks which unit should be committed; the new
problem asks what market design will best solve the old problem.”

(Stoft, 2002)





A B S T R A C T

Since the restructuring policies that led to the liberalization of the electricity sector
and to the existence of a market for power, electricity markets have been organised
in a highly centralized fashion, relying on uniform-price auctions. These auctions
typically include non-convex bids. The main implication of these non-convexities
is that they impede the existence of a uniform “market-clearing” price. Therefore,
what the electricity price should be under these settings is an open question, which
has attracted the interest of both academics and practitioners over the past thirty
years. This dissertation is composed of three main essays that study various aspects
of this question.

The first part of the dissertation studies some short-term impacts of the market
failure we are interested in, namely the non-convexities in the production processes.
We look first at the economic properties of various pricing solutions that have
been envisioned in the literature, or implemented by some auctioneers. We analyse
six different pricing methods and we establish several mathematical properties
for enabling their accurate comparison. The findings are illustrated on stylized
examples and numerical simulations that are performed on realistic auction datasets.
Both theoretical and numerical evidences that are gathered point towards the
advantages of the so-called “convex hull pricing” method. The dissertation then
goes on with the analysis of some computational challenges. If convex hull pricing is
proven to come with several advantages, it is also known for being computationally
difficult to calculate. In this chapter, we propose a dual decomposition algorithm
known as the “level method” and we adapt the basic algorithm to the specificities of
convex hull pricing. We provide empirical evidence about the favorable performance
of our algorithm on large test instances.

The second part of the dissertation studies some long-term impacts of non-
convexities. If the topic of pricing non-convexities in power markets has been
primarily focused on indivisibilities in short-term auctions, this second part analyses
a source of non-convexities that is not discussed as broadly: the indivisibilities in
investment decisions. The absence of equilibrium that we are concerned about is the
long-term equilibrium. We derive a capacity expansion model with indivisibilities
and we highlight the failure arising from it. We then investigate to what extent
a capacity market can mitigate the lumpiness problem. We illustrate the main
findings with a numerical experiment conducted on the capacity expansion model
used by ENTSO-E to assess the adequacy of the European system.
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1
I N T R O D U C T I O N

This thesis is composed of three main essays, all of them having in
common the study of one fundamental assumption across economics,
namely the convexity of the economy. In the idealized world of

microeconomic theory, consumers hold well-behaved convex preferences
over convex consumption sets, and the production processes of firms are
described by convex production sets. These assumptions are certainly
convenient for deriving a set of remarkable results of great generality.
However, they also fall short in accounting for certain aspects of reality.
This is obviously known by economists. For example, Debreu explicitly
emphasizes that “the inclusion of indivisible commodities” is one of the
“important and difficult questions [that] are not answered by the approach
taken” in his Theory of Value (Debreu, 1959, p. 36). Discussing the convexity
of consumer’s preferences, Starr ironically comments that “one may be
indifferent between an automobile and a boat, but in most cases one can
neither drive nor sail the combination of half boat, half car” (Starr, 1969).

Electricity markets turn out to be a domain of economic activity where
the defect of the convexity assumption has been particularly apparent.
Since the deregulation policies that led to the liberalization of power
systems and to the existence of a market for power, electricity markets
have typically been organised in a highly centralized fashion, relying on
sealed-bid uniform-price auctions. Most of these auctions—in particular
the one held in the day ahead—in the US as well as in Europe or in India,
include non-convex bids. Therefore, the rules and principles that should be
adopted by the auctioneer to clear the non-convex market and to compute
prices are not merely a theoretical issue but a very practical one. This
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2 introduction

pressing need to understand the relationship between the non-convexities
in the market and the possible price formation rules has put the topic
under the scrutiny of electricity economists and power system engineers,
feeding a vivid field of research for the past twenty years.

stylized example of the problem . The main challenge stemming
from non-convexities can be efficiently conveyed by examining the example
of Figure 1.1. Figure 1.1a presents a hypothetical elementary market with
two two demand bids, D1 and D2, as well as two supply offers S1 and S2. If
all these bids were convex, the surplus-maximizing allocation would be to
clear D1, to partially clear S1 up to Q(D1) and to reject the other bids. Under
this configuration, the market surplus is the area between bids D1 and S1,
and the price π = P(S1) clears the market: this price, together with the
aforementioned allocation, is a competitive equilibrium. The subject matter
of this thesis concerns what happens when, say S1, in this example, is
non-convex. If S1 is an “all-or-nothing” offer (either it is entirely cleared by
the auctioneer, or entirely rejected), then the surplus-maximizing allocation
is to clear S1, D1, as well as a share of D2 (Q(S1)− Q(D1)). The surplus
is the area between bids D1 and S1, minus the area between bids S1 and
D2. As we observe, in this example, the introduction of the indivisibility
constraint has only a mild effect on the total achievable surplus. But the
issue is that there exists no price that supports this allocation: there is no
competitive equilibrium in this non-convex market.

A straightforward way to view this is Figure 1.1b. This figure draws the
supply and demand correspondences of the market of Figure 1.1a with the
non-convex bid S1. As one may observe, these supply and demand curves
do not intersect. Another way to explain the inexistence of a competitive
equilibrium, a way that is useful when apprehending this problem as a
“two-step” process in which the auctioneer first selects the bids that are
cleared and then computes a price, is the following. Assuming the surplus-
maximizing allocation is selected, the auctioneer has to find a price that is
acceptable for all the market participants. If π = P(D2), then the demand
bids D1 and D2, as well as the supply bid S2, would have the incentive to
implement the cleared allocation. But the supply bid S1 has an incentive
to deviate: this supplier is losing money for each MWh that he produces
under this price. One may instead pick a price π = P(S1). Under this
choice, S1 has the incentive to implement the cleared allocation. But the
demand bid D2 now has incentives to deviate from the allocation instructed
by the auctioneer, as his willingness-to-pay for electricity consumption is
below the market price. Clearly, any price in the interval [P(D2), P(S1)]
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(b) Supply & demand correspondences.

Figure 1.1: Stylized electricity market with two demand bids (D1 and D2) and
two supply bids (S1 and S2) with one non-convexity: bid S1 is an
“all-or-nothing” offer.

would lead to a similar issue and be unsatisfactory for some of the market
participants, and the same is obviously true for prices out of this interval.

This type of analysis led Herbert Scarf to the following diagnosis:

“[...] in the presence of indivisibilities in production, prices
simply don’t do the jobs that they were meant to do.” (Scarf,
1994)

As far as electricity markets are concerned, this reasoning leaves us with
one question—at the end of the day, what should be the right price of electricity
under the settings of this example? The rest of the thesis studies several facets
of this question.

organisation of the material. The material of the thesis is or-
ganised as follows. Chapter 2 outlines the main concepts and building
blocks of an electricity market, and explains the paramount institutional
arrangements as we know them in Europe or in the US. Understanding
these arrangements is important for the next chapters of the thesis. Electric-
ity markets are indeed highly sophisticated institutions: trades do not take
place on an invisible “backstage”, but happen on regulated marketplaces
which have been designed for decades. As Hogan (2002) phrases it, “power
markets are made, they don’t just happen.” To say it differently, electricity
markets are organised in such a way that the “hand of the market” is rather
visible. The pricing principles that are going to be studied in the thesis are
not just theoretical objects that emulate what happens on the backstage,



4 introduction

but should be viewed as various possible “rules of the game” that could be
implemented in the actual organisation of the market.

The rest of the thesis studies price formation in presence of non-convexities
in the supply curve, as introduced above. According to Cramton (2017), the
implementation of a market for power had two main objectives: short-term
efficiency and long-term efficiency. The material of the thesis follows this
structure. The first part of the thesis studies some short-term impacts of
the market failure we are interested in, namely the non-convexities in the
production processes. This first part is further divided into chapters 3

and 4. The second part of the thesis studies some long-term impacts of
non-convexities. This corresponds to chapter 5.

Chapter 3 goes on with the analysis of multiple price formation rules
that have been advocated for electricity auctions in the presence of non-
convexities1. Although marginal pricing has traditionaly been contem-
plated as the Holy Grail of economic theory, its usage has occasionally been
challenged, at least since Coase (1946) discussed it in “the Marginal Cost
Controversy”, which studies a situation of increasing return to scale (see
also Coase (1970)). Coase’s analysis suggests that the defect of marginal
pricing in this situation could be solved by introducing some sort of dis-
crimination or “multi-part pricing”, as he names it. In spirit, this is similar
to what has been proposed in the past two decades for power auctions.
Returning to the example of Figure 1.1, the solution of Coase would imply
pricing electrical energy at the marginal cost of the cleared allocation. In
the example, this is π = P(D2). Then, as supplier S1 is facing a loss of
(P(S1)− π)Q(S1), the market operator would provide this supplier with
a discriminatory payment covering his losses. This multi-part pricing re-
stores the equilibrium: the market clears and each agent in the market has
the incentive to implement the cleared allocation. Nonetheless, one may
further point out that an alternative, in the same spirit, could be π = P(S1),
together with some—lesser—discriminatory payments to consumer D2.
Many other alternatives exist. Which one should be preferred? Chapter
3 reviews these alternatives and formalizes them on a general model of
an electricity market. Several mathematical properties of these pricing
schemes are established and illustrated numerically on auction datasets of
realistic size.

Chapter 4 proceeds with the analysis of some computational challenges
related to the pricing of non-convexities in electricity auctions2. One fea-
ture of the analysis of electricity markets—which, in my opinion, also

1 Chapter 3 reproduces the text, with minor changes, of the following published paper:
Nicolas Stevens, Anthony Papavasiliou and Yves Smeers. “On some advantages of convex
hull pricing for the European electricity auction.” Energy Economics 134 (2024): 107542.

2 Chapter 4 reproduces the text, with minor changes, of the following published paper:
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renders the field exciting and enjoyable—is that it lies at the intersection
of several disciplines, such as economics and power system engineering,
mathematical modelling and mathematical programming. The topic of
pricing non-convexities is no exception. Chapter 3 argues for some advan-
tages of one particular pricing approach, the so-called “convex hull pricing”
scheme. The principle of this approach is to compute the uniform price
of energy that minimizes the amount of discriminatory payments that are
implied. In the example of Figure 1.1, the computation of the convex hull
price is straightforward: it corresponds to π = P(S1). The approach boils
down to computing the convex hull of suppliers’ production sets which, in
the case of Figure 1.1, is immediate as it corresponds to its linear relaxation.
Whereas this is direct in our stylized example, in general, it is a com-
putationally challenging problem. Chapter 4 reviews several approaches
that have been proposed in the scientific literature and then develops an
algorithm, the so-called “level method”, to compute locational convex hull
prices. The algorithmic procedure is described and implemented on several
instances of auctions of realistic size.

With chapter 5, we move to the second part of the thesis that studies
long-term implications of non-convexities.3 Chapter 3 and 4 focus with the
functioning of short-term electricity auctions, considering both economic
and algorithmic stakes. Chapter 5 is concerned with an investment problem
in which the non-convexities stem from the indivisible nature of investment
decisions. The chapter builds on the seminal paper of Scarf (1994), who
highlighted some of the issues caused by the presence of indivisibilities
in investment decisions4. Because of economies of scale in production
processes, the electricity sector has been characterised by the promotion of
large and fundamentally indivisible assets. Since investment comes with
such large lumps of capacity, the optimal investment choices might lead
to slight “over-capacity” which, if economically efficient, may also in turn
pull down the electricity price, rendering the investment unprofitable in
the first place, thus preventing the entry of these capacities. In spirit, this
is similar to the case of Figure 1.1, where clearing supplier S1 leads to a
marginal price that does not cover production costs. Chapter 5 analyses

Nicolas Stevens and Anthony Papavasiliou. “Application of the level method for computing
locational convex hull prices.” IEEE Transactions on Power Systems 37.5 (2022): 3958-3968.

3 Chapter 5 reproduces the text, with minor changes, of the following published paper:
Nicolas Stevens, Yves Smeers and Anthony Papavasiliou. “Indivisibilities in investment and
the role of a capacity market.” Journal of Regulatory Economics (2024), 66:238–272.

4 See also the analysis of “peak-load pricing under indivisibility constraints” by Williamson
(1966) who stresses that in a system “with indivisible plant, the fully adjusted long-run static
equilibrium can be one in which either positive or negative net profits are realized despite
(discontinuously) constant returns to scale. Only accidentally will the enterprise earn zero
profits at the welfare maximum.”
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this problem by means of a capacity investment model with indivisibilities.
The approach that is followed is to leverage the tools and the analytical
framework developed in chapter 3 and to apply them to the investment
problem. The chapter formalizes the issues arising from such a problem
and then studies several possible solutions to it, focusing in particular on
the favourable role that a so-called “capacity market” could play in these
settings.

Each of the four chapters is written in such a way that it is self-contained.
From time to time, this leads to the repetition of certain concepts and ideas,
but hopefully to the benefit of the reader.



2
E L E C T R I C I T Y E C O N O M I C S

F U N D A M E N TA L S

This chapter introduces the main concepts and mathematical models
that are employed along this thesis. Since our work is about electricity
markets, the first two sections revisit the specificities of electricity as

a commodity and the steps that led to the existence of a market for power.
Sections 2.3 to 2.6 then outline the main building blocks of an electricity
market. Section 2.3 introduces the commodities traded in these markets.
Section 2.4 and 2.5 present the consumer model as well as several models
for producers that underlie the developments of chapters 3 to 5. Section
2.6 studies the main properties of the allocation and the price of the
aforementioned commodities when they are traded in a competitive market.
As the thesis will study one market failure, namely the non-convexities in
the market, these sections also provide the reader with a useful benchmark
to keep in mind when reading the subsequent analysis of the thesis. Finally,
as electricity markets turn out to be practically organised in a very specific
manner, section 2.7 summarizes the overall architecture of power markets.
This will also be of importance for the remainder of the thesis, since the
pricing rules that will be studied are employed in actual electricity auctions.

2.1 specificities of electricity as a commodity

Electricity is a peculiar commodity that involves several important and
often unique attributes. According to Joskow (2003), “the failure to care-
fully integrate these attributes into the design of regulatory and market
institutions has created market performance problems”. The paramount

7



8 electricity economics fundamentals

economical and physical features of the electricity sector are the follow-
ing, classified according to what are the three main economic activities:
consumption, production and exchange1.

demand-side specificities

• The demand of electrical energy is highly inelastic, especially when it
comes close to real-time. This results from the fact that electricity has
few substitutes besides temporal substitution. It is also a consequence
of electricity demand being, for the most part, disconnected from
the market: consumers either are not exposed to the wholesale price
of electricity (because retail pricing is flat), or could not be exposed
to it, as they might not be equipped with the metering technology
(hourly meters) that would enable measuring hourly consumption.
The inelasticity of electricity consumption is occasionally put for-
ward as one of the most severe flaws of electricity markets (Stoft,
2002). Indeed, increasing demand elasticity (mobilizing demand-side
flexibility) would come with multiple benefits, such as a possible
reduction in the need to invest in peaking units or the mitigation of
market power.

• The demand of electricity fluctuates significantly from hour to hour.
Figure 2.1 illustrates this fluctuating pattern with the Belgian load
in 2023. Hourly load in Belgium can be as high as 12,500MW and
as low as almost 5,500MW. As further illustrated in Figure 2.1b,
these fluctuations are not only seasonal, but there are also significant
variations within a single day—with a typical offpeak at night, a
morning peak coming with a steep ramp, and an evening peak.

supply-side specificities

• The supply merit order also becomes inelastic when approaching
the capacity constraint. The merit order curve of the market has a
“hockey stick” shape: it tends to become vertical at the end of the
merit order, exhibiting an infinite upward leap.2

• The production of electrical energy comes with stringent physical
constraints, linked to power plant operation, which translate to a
supply curve that does not respect the standard assumptions of
microeconomics. This feature will be important for our work that is
concerned with the non-convexities of the supply curve.

1 For a discussion of these attributes, see in particular Joskow (2003, 2008), Stoft (2002), Boren-
stein and Bushnell (2000) and Wilson (2002).

2 See (Stoft, 2002, chap. 1.6).
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Figure 2.1: Belgian load in 2023.

specificities of the exchange of electricity

• Electricity is exchanged through an electric grid: unlike most commodi-
ties, electricity cannot be exchanged through ships, roads or railways.
This electric grid comes with physical constraints that govern the flow
of electricity and so the exchange of electricity between locations.

• Electricity cannot be stored efficiently. To provide the reader with an
order of magnitude, a Tesla Powerwall 2 has a storage capacity of
13.5kWh. Assuming an average wholesale electricity price of 100

€/MWh, 13.5kWh translates into a value of 1.35€, approximately the
cost of 1kg of rice. The latter may conveniently be stored in a jar that
costs a few euros, while the Tesla Powerwall costs 7,000€.

• Demand must be met just-in-time by production. This results from the
physical laws governing the electrical grid: demand must be cleared
continuously at each location of the network, at any moment. Unlike
many other goods, a local shortage of power may not only result in a
local increase of electricity prices, but, in the worst case, it may result
in cascading outages, meaning the inability to serve the demand, not
only locally, but across the entire system.

• Power cannot be tracked: consumers can consume power in real time
without having an explicit contract to do so.

As we shall particularly study the price of electricity, let us notice that
these features translate into a highly volatile price. Table 2.1 presents the
statistics of the Belgian day-ahead market price for the years 2016 to 2023.
The average price of electricity was 44€/MWh during the years 2016 to
2019, although there have been occurrences of hourly prices as low as
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2016 2017 2018 2019 2020 2021 2022 2023

Hourly min −5 −41 −32 −500 −115 −70 −100 −120

Hourly max 696 331 499 121 200 620 871 330

Hourly mean 37 45 55 39 32 104 245 97

Hourly perc. 5% 15 22 26 18 9 23 56 6

Hourly perc. 95% 72 85 89 62 56 265 500 170

Daily min 8 11 5 −134 −18 −15 6 −2

Daily max 131 123 185 86 75 433 700 205

Table 2.1: Day-ahead electricity prices in Belgium. All figures are in €/MWh.
[Data source: ENTSO-E Transparency Platform]

−500€/MWh to as high as 696€/MWh. Moreover, in 2019 there was an
entire day with an average price of −134€/MWh, while in 2018 there was
a day with an average price of 185€/MWh. In 2022, during the gas crisis,
the price culminated at 871€/MWh, with one instance of an average daily
price of 700€/MWh!

2.2 markets for power : the deregulation of power systems

restructuring of the electricity sector . The supply chain of
electricity is made of four main components3 (i) power generation, (ii) trans-
mission and (iii) distribution grids, and (iv) retail (Joskow, 2008). These
components used to be organised all together in a vertically integrated
monopoly, called “utility”. Utilities were either privately owned and sub-
ject to the regulation by the State or, alternatively, publicly owned. This
is still the case in many regions of the world. However, since the 1990s,
liberalization policies took place in most western countries, moving from
centralized operations to decentralized market mechanisms. Alternatively
phrased, economic activities that used to be coordinated by a firm, where
the usage of resources essentially resulted from administrative decisions,
moved to coordination through market transactions which relies on the price
signal to allocate resources (Coase, 1937). This institutional change led in
particular to:4

• A “vertical” separation of the competitive segments—generation and
retail—from the natural monopoly segments—transmission and dis-

3 The topic of security of supply for fuels is out of the scope of the chapter.
4 See the analysis of Joskow (2003, 2008) and Borenstein and Bushnell (2015).
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tribution. Electricity networks indeed exhibit a “natural monopoly”
property: they are characterized by decreasing average cost, as well as
by ubiquitous externalities. For instance, due to the laws of physics,
the transport of energy on one line has a direct implication on what
is transported on another line (Borenstein and Bushnell, 2000), cf.
section 2.6.2.

More specifically, this “unbundling” involves three main restructuring
policies: the restructuring of the electrical grid (the independent
oversight of the network), the restructuring of generation ownership
(the divestiture of existing State-owned assets and the free entry of
unregulated plants) and the restructuring of retail. Although these
three reforms are in principle intertwined, they have not always come
together in practice.5

• A “horizontal” integration of networks, or a “coupling” between
regions. In Europe, this concretely translates into (roughly) one TSO
per country that monitors the entire transmission grid and a coupling
of these national networks through European-scale markets (an im-
portant piece being the day-ahead market also called “Price Coupling
of Regions”).

• The creation of electricity wholesale markets.

• The creation of independent regulatory agencies and regulatory mech-
anisms, an “underappreciated component of the successful reforms”
according to Joskow (2008).

goals of deregulation. Why deregulate?

“One might ask why bother with the difficult process of cre-
ating wholesale electricity markets with these attributes if we
are simply reproducing the central planning results for gener-
ator scheduling and dispatch? The answer is that the central
planning models for vertically integrated utilities are ‘idealized’
models that do not take into account the incentives faced by
the regulated vertically integrated monopoly and how these
incentives affect behaviour. It is generally thought that regu-
lated monopolies have poor incentives to control operating and
construction costs, to maintain generator availability at optimal
levels, to retire generators when the expected present value of
their costs exceeded the expected present value of continuing
operations, to overinvest in new generating capacity, to fail

5 See Borenstein and Bushnell (2015) for a discussion and for an analysis of the US.
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aggressively to seek out innovations, and other inefficiencies. In
short, the real world regulated monopoly does not perform as
the idealized model implies.” (Joskow, 2019)

In other words, there were inefficiencies in the “old regime” that the market
was meant to solve. In particular, the efficiency gains argued in favour of
deregulation are of two sorts: short-term efficiency and long-term efficiency
(Cramton, 2017). Promoting efficiency in short-term operations means pro-
viding incentives to producers to control their production cost. Long-term
efficiency means inducing efficient investments. This has often been argued
to be the main benefit from deregulation: “Most efficiency gains from
restructuring will be long-term resulting from better investment decisions”
(Oren, 2000). Aligned with these two objectives, deregulation also aimed at
promoting innovation and making sure that the prices that are observed
by consumers reflect the true cost of production, so as to accurately signal
scarcity and induce an efficient usage of factors by consumers.

The theoretical arguments supporting the alleged efficiency of competi-
tive markets for power are outlined in section 2.6. However, “deregulation is
not equivalent to perfect competition” (Stoft, 2002): merely deregulating does
not necessarily lead to the economic efficiency of a competitive market.
In practice, markets are imperfect. For example, there may be exertion of
market power. This might especially be a concern as several features of
electricity might exacerbate market power (Joskow, 2008; Borenstein and
Bushnell, 2000): inelasticity of demand ; the geographical limitation of com-
petition due to a tight network ; or the concentration of generation capacity
in the hands of a few firms (see, for instance, the concentration of plant
ownership in Belgium in Figure 2.2). Deregulation may also create new
challenges: if over-investment was a major concern in vertically integrated
monopolies with regulatory-driven investments—a concern that the market
was meant to solve—, inadequacy (or under-investment), has become the
new challenge with market-driven investments (Borenstein and Bushnell,
2000). Therefore, a more nuanced view of deregulation might be phrased
as follows: “the move to liberalizing the electricity sector in this way was
effectively a bet that the costs of any residual imperfections in competitive
wholesale markets are smaller than the costs of imperfections associated
with the behaviour of vertically integrated regulated monopolies.” (Joskow,
2019)

performance of deregulation. After more than twenty years, what
is the empirical evidence of the successes of deregulation policies? Some
early assessments were not necessarily optimistic. According to Borenstein
and Bushnell (2000), “Probably the two most salient lessons are that the
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Figure 2.2: Ownership of the generation mix in Belgium. [Data source: Elia website]

short-run benefits are likely to be small or nonexistent, and the long-run
benefits, while compellingly supported in theory, may be very difficult
to document in practice.” However, more recent evidence suggests cer-
tain significant efficiency improvements due to deregulation. Schmalensee
(2021) summarises the main data. Empirical evidence in the US highlights
that there were significant operating cost improvements in deregulated
areas, in particular for nuclear plants (Davis and Wolfram, 2012), but also
for a broader set of technologies (Fabrizio et al., 2007)6. Other evidence
highlights the significant efficiency gains resulting from increasing cross-
border trades and nodal pricing, permitted by the creation of organised
wholesale markets7. These savings in operating costs may however be
counterbalanced by the departure of price from marginal production cost,
due to the exercise of market power. Borenstein and Bushnell (2015) also
highlights that the exposure to gas prices is an unintended consequence
of deregulation. The price, in the vertically integrated arrangement, is the
average cost of electricity which is typically not highly correlated with gas
price as gas-fired power plants are not the dominant producing technology.
Instead, in a liberalized market, the price equals marginal cost, which is
highly correlated with the gas price—as Europe dramatically experienced
during the gas crisis in 2022. The overall appraisal of Schmalensee (2021) is
that the benefits of deregulation are positive, although not dramatic.

6 Davis and Wolfram (2012) find a 10% increase in operating performances, mainly driven by a
reduction of outage duration. Fabrizio et al. (2007) find an improvement of 6% (resp.12%) in
labor use (resp. non-fuel expenses) of restructured plants with respect to government-owned
plants.

7 This is also emphasized by Borenstein and Bushnell (2015): “The creation and expansion of
the RTO/ISO model may be the single most unambiguous success of the restructuring era
in the United States. [...] The evidence suggests that the lack of coordination across utility
control areas impeded Pareto-improving trades worth billions of dollars”.

https://www.elia.be/en/grid-data/power-generation/generating-facilities
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2.3 commodities

The ultimate goal, or the main service, delivered by the entire electricity
sector is the provision of electrical energy in real time to the end-consumer.
Achieving this goal, however, requires the exchange of several physical
commodities, as well as numerous financial products through which the
physical commodities are traded on different time horizons. These prac-
ticalities and institutional arrangements will be discussed in section 2.7
and will be ignored in the present section which focuses on the actual
physical commodities. The three main physical commodities exchanged
in the electricity sector are: (i) electrical energy, (ii) transmission capacity
and (iii) various ancillary services. These three commodities should further
be thought of as also being indexed by time and location: energy at time t
and in location i, etc.

Transmission capacity stand for the right to use the network in order to
transport electrical energy from producers to consumers: to buy energy
in A from B, one should buy both the energy produced in B as well as
the right to transport it on the grid from B to A. The various ancillary
services ensure power quality and contribute to the reliability of the system.
Their need is driven by the features of electricity developed in section 2.1:
because electricity demand is highly fluctuating, because energy cannot
be stored efficiently and because, despite this, consumption should equal
production at each and every instant, together with the stringent physical
constraints of the grid, this justifies the existence of these services. They
include various products such as frequency control, voltage control or
black-start services.8 Abstracting from some (important) subtleties, it is
convenient for the purpose of the present chapter to limit our analysis of
these services to an aggregate “reserve”, or a “real-time stock of power”:

8 (i) Frequency control and, more generally, balancing service is the service of balancing the
system, which translates into the continuous control of frequency at the customer endpoint. It
encompasses the variety of reserve products such as Frequency Curtailment reserve (FCR),
Automatic/Manual Frequency Restoration Reserve (aFRR and mFRR), etc. (ii) Voltage stability
is managed through the provision of reactive power which is typically an out-of-market
arrangement: since reactive power does not transport easily, a deregulated market would be
exposed to market power (Stoft, 2002, p. 21). (iii) Black-start capability is the service contracted
by the system operator in order to reactivate the system after a black-out, since most of the
units cannot start without a functioning system.
On top of these three services, for which the system operator is the buyer, Stoft (2002), chap. 3–
4, also includes the following services for which the system operator is the sole provider.
(iv) Trading enforcement which implies the metering of the injections and withdrawals, as
well as monitoring of the power flows. Since power cannot be tracked, an independent party
should measure the injections and withdrawals of power for contractual purposes. (v) Economic
dispatch. This service includes providing dispatch and (in day-ahead) commitment instructions
to the suppliers.
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Commodity Type of good Supply-side Demand-side

Electrical energy private good deregulated deregulated

Transmission capa. private good regulated deregulated

(SO is monopoly supplier)

Ancillary services public good deregulated regulated

(SO is monopsony buyer)

Table 2.2: The three main commodities exchanged in the electricity sector.

some “spare capacity” rg,t left available by the supplier g at time t in order
for the system operator to have the flexibility to cope with contingencies.

From an economic viewpoint, these three commodities hold very dif-
ferent properties. Electrical energy is a classic private good. Conversely,
ancillary services are typical examples of public goods: they are non-rival
(the consumption by one agent of the good—the “reliability” of the sys-
tem or “quality” of power, for instance—would not prevent another agent
from consuming it) and non-exclusive (an agent connected to the grid may
hardly be prevented to consume this good or be charged for it). They are
exposed to the classical free-riding problem which would lead to an under-
supply of these goods, were they not regulated. Transmission—the “roads”
of electricity—is a natural monopoly because of economies of scale. The
monopolist transmission operator then provides the market participants
with well-defined and enforceable rights of using the grid, making the
transmission capacity a private good (both rivalrous and exclusive).

These differences lead to heterogeneous market arrangements, which are
either deregulated or partially deregulated. The market for energy has both
a supply-side and a demand-side which are deregulated to some extent9.
The market for transmission capacities has a regulated supply-side—the
system operator is the monopoly seller of transmission capacity—while
the demand-side is deregulated. Finally, the market for reserve has a
deregulated supply-side—reserve is supplied by private power plants—
while it has a regulated demand-side: the system operator is the monopsony
buyer of these services. Table 2.2 summarizes the main features.

9 By “deregulated” we do not mean a complete laisser-faire but simply that the demand or
supply side rely on individual decisions, as opposed to a regulated regime which is driven by
administrative decisions.
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2.4 consumer theory

Throughout our work, we adopt a partial equilibrium analysis (Mas-Colell
et al., 1995, chap. 10). That is, we ignore cross-market effects. For the sup-
pliers, we assume that variable production costs and investment costs are
given: fuel prices—gas, oil, uranium, etc.— as well as input of investments
costs—steel and concrete prices, labour, etc.—are assumed to be unaffected
by electricity prices. For consumers, we assume that income (or wealth) is
given.

Let ((dl)l∈L, z) be a consumption bundle. (dl)l∈L is the set of commodi-
ties we are interested in: electricity consumption in l ∈ L (L should be
viewed as the Cartesian product of the sets of locations and time periods).
z is the numeraire—the “Hicksian composite commodity”: a composite
commodity standing for all the other commodities in the economy that
we do not study. The numeraire price is normalized to 1: it is the refer-
ence, or the “money value”, towards which the value of commodities dl is
measured. Each consumer j ∈ J is assumed to hold a preference relation
%j, defined on the commodity space, which is represented by a utility
function uj : RL+1 → R. We shall assume that the utility function takes a
quasi-linear form: uj(dj, zj) = vj(dj) + zj. Since the price of the numeraire
zj is normalized to 1, vj(dj) may be viewed as the monetary value that
consumer j assigns to bundle dj, or his willingness-to-pay for bundle dj
(recall that dj is a vector of L goods). The consumer’s decision problem is
then the following:

max
dj ,zj≥0

vj(dj) + zj

πTdj + zj ≤ wj

Here, wj is the wealth of consumer j and π is the vector of electricity prices.
Assuming locally non-satiated preferences, the wealth constraint is tight
and zj = wj − πTdj. The consumer decision problem then simplifies to:

u∗j = wj + max
dj≥0
{vj(dj)− πTdj} (2.1)

This is the consumer surplus maximization problem. As we may observe,
following our partial equilibrium assumptions, the problem is independent
of wealth distribution—there is no wealth effect: a change in the wealth
of consumer j does not change the consumption decision dj. This results
from the assumption of quasi-linearity of the utility function. In this model,
variations of consumer welfare, for example following a change in market
price, are measured in variations of consumer surplus in the electricity
market (equation (2.1)).
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dj(π), the solution of problem (2.1), is the demand correspondence of j and
d(π) = ∑j∈J dj(π) is the aggregated demand correspondence. In most of this
work, we assume that v(d) = ∑j∈J vj(dj) takes the following linear form:
d is valued at VOLL (the Value of Lost Load) from 0 to D (the total load),
and valued at 0 for d > D. That is, the aggregate decision problem is:

max
d

∑
l∈L

dlVOLL− πTd (2.2a)

0 ≤ dl ≤ Dl ∀l ∈ L (2.2b)

The VOLL, a concept broadly used in the electric industry, should be
viewed as the system-wide willingness-to-pay for electricity (or the system-
wide willingness-to-pay to avoid a power outage). This is obviously a
simplification of reality, in which the willingness-to-pay for electricity
depends on end-user (residential, industrial, a person in particular, etc.),
use-case (consumers typically do not value electricity directly, but the end-
usage whose electricity is an input: medical appliances, lightening, etc.)
and consumption context (outage duration, local or global outage, warning
message, etc.).10

All-in-all, model (2.2) is a stylized view of consumers. It is however a
commonly adopted model in electricity markets, justified by the inelastic
nature of electricity consumption. As this thesis will focus on the non-
convexities that are present on the supply curve, it is also convenient to
adopt such a stylized model for consumption. We shall occasionally adopt,
during the thesis, an even simpler model in which electricity demand is
fully inelastic.

2.5 producer theory

Let us consider a set of G suppliers. Each supplier is located at a certain
node of the grid and produces an amount qg,t of energy at time t. Its
production cost for a certain production plan qg,t over the time horizon T
under study is cg. The production set is denoted as (cg, qg,t) ∈ Xg. Each
supplier is assumed to maximize its profit given an electricity price πt, that
is:

max
(c,q)g∈Xg

∑
t∈T

πtqg,t − cg (2.3)

10 Furthermore, estimating the VOLL turns out to be complex. Many approaches exist such as
techo-engineering proxy, contingent valuation studies or revealed preference approaches. It
is worth stressing that differences of several orders of magnitude have been reported across
studies. The estimation of the VOLL is further complicated by the public good nature of
electric reliability. See Gorman (2022) for a detailed discussion.
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In most of this thesis, we remain general and simply denote the production
set by Xg, occasionally specifying whether Xg is convex (as problem (2.4)
below) or non-convex (as models (2.5) or (2.7) below). This section aims at
giving a sense to the reader of what is within this production set Xg.

convex production model (economic dispatch). The most ele-
mentary convex electricity production model is the following. The output
qg,t produced by a supplier of electricity g at time t is limited by the in-
stalled capacity of the power plant Qmax

g . It also comes with a production
cost function which is assumed to be linear: Cg(qg,t) = MCgqg,t. The model
of the production set Xg then corresponds to equations (2.4).

cg = ∑
t∈T

MCgqg,t (2.4a)

0 ≤ qg,t ≤ Qmax
g ∀t ∈ T (2.4b)

unit commitment model. Model (2.4) does not account for some
important features and constraints that are present in production processes.
In reality, power plants have to be operated between bounds, incur some
fixed costs when they are started up, are limited in their ramping capability,
or cannot be turned on and off too frequently. Therefore, the following
more comprehensive model called the “unit commitment model” is often
adopted to represent production more accurately.

cg = ∑
t∈T

(
MCgqg,t + NCgug,t + SCgvg,t

)
(2.5a)

Qmin
g ug,t ≤ qg,t ≤ Qmax

g ug,t ∀t ∈ T (2.5b)

ug,t = ug,t−1 + vg,t − zg,t ∀t ∈ T , t > 1 (2.5c)

qg,t ≤ qg,t−1 + R+
g − vg,t(R+

g − R+
SU) ∀t ∈ T , t > 1 (2.5d)

qg,t ≥ qg,t−1 − R−g + zg,t(R−g − R−SD) ∀t ∈ T , t > 1 (2.5e)
t

∑
i=t−UTg+1

vg,i ≤ ug,t ∀t = UTg, ..., T (2.5f)

t

∑
i=t−DTg+1

zg,i ≤ 1− ug,t ∀t = DTg, ..., T (2.5g)

ug,t, vg,t, zg,t ∈ {0, 1} ∀t ∈ T (2.5h)

Three new variables are introduced: ug,t, which is the commitment variable
indicating whether the supplier g is online or offline at period t; vg,t, which
is the start-up variable indicating whether g is switched on at time t and
zg,t, the shut-down variable, indicating whether g is switched off at time
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t. Constraint (2.5c) links these three variables logically. The main novelty
with respect to model (2.4) is the presence of non-convexities in the model.
These non-convexities materialise in the cost function (2.5a) through some
fixed production costs: a no-load cost NCg and a start-up cost11 SCg. They
also appear in the operating limits of the plants, in constraint (2.5b): the
plant either produces 0 or is contained between a minimum Qmin

g and
a maximum Qmax

g . The last two sets of constraints include the so-called
minimum up and down time constraints (2.5f)–(2.5g) and the ramping
constraints (2.5d)–(2.5e).

european market model . As it will be occasionally mentioned later
in this thesis, it is useful to introduce here a third model of supply that we
shall refer to as the “European market model”. A preliminary remark is
needed to avoid any confusion. It is important to distinguish two things
when analysing an electricity market: the conceptual models that can be
used to describe the functioning of the market and the models actually em-
ployed in the concrete organization of the marketplace. Electricity markets
are indeed very peculiar for the highly centralized way they are organised
as closed-gate auctions (this will be later explained in section 2.7). These
auctions typically involve solving highly complex optimization models.
The unit commitment model accurately describes the functioning of the
supply-side of an electricity market. This holds true in the United States,
but also in Europe. The unit commitment model also turns out to be a
widely employed model for the actual electricity auctions held in the US.
This is an important difference with Europe, in which the day-ahead auc-
tion employs an alternative model which relies on totally different bidding
products. It is the latter that we briefly describe here.

Ignoring the so-called “complex orders” and the specific Italian orders
called the “PUN” (for “Prezzo Unico Nazionale”)12, the bid constraints
in the European day-ahead market can be split in two categories (NEMO
Committee, 2020b): (i) convex orders that include hourly orders (stepwise

11 Start-up costs typically have two main sources: first, an extra fuel consumption that is incurred
to warm up the power plant and to switch it on; and second, the cost of an overhaul to be
performed whenever the power plant has been switched on a certain number of times.

12 We neglect these bidding products as they are planned to be discontinued (MCSC, 2023). The
overall idea of the PUN is as follows. Italy is represented in the European day-ahead auction
with multiple zones. Nonetheless, Italian stakeholders have expressed the following—highly
disputable, in my opinion—request: it is deemed acceptable for Italian suppliers to face
different prices across Italy, but the demand should face the same price everywhere in Italy.
Thus, the Italian demand orders—the so-called PUN orders—shall be cleared at the “PUN
price” (in Italian, the “Prezzo Unico Nazionale”) instead of the bidding zone price. The PUN
price should be such that the collected payments from the demand cover the expenses to
Italian suppliers that are subject to the regular bidding zone prices. Mathematically, if dz
denotes the cleared demand in Italian zone z, qz denotes the cleared production in zone z, πz
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and interpolated) and price-taking orders; and (ii) non-convex orders which
include families of block orders. Stepwise orders are similar to model
(2.4): for each time period, these orders specify a maximum amount of
production Qg,t at a given price Pg,t which may be continuously accepted,
so (cg, qg,t) ∈ Xg ≡ {(c, q) | cg = ∑t Pg,tqg,t, qg,t = xg,tQg,t, 0 ≤ xg,t ≤ 1}.
Variable xg,t stands for the continuous acceptance ratio of the bid quantity
Qg,t. Interpolated orders are similar in principle, except that the total cost
is quadratic instead of linear. The block order constraints Xg of a block g
can be described as follows:

cg = ∑
t∈T

Pgqg,t [block order price] (2.7a)

qg,t = Qg,txg ∀t ∈ T [production of the block] (2.7b)

0 ≤ xg ≤ 1 [block continuous acceptance] (2.7c)

ug ∈ {0, 1} [block discrete acceptance] (2.7d)

xg ≥ ugRg [block “fill” (min ratio) const.] (2.7e)

xg ≤ ug [block “kill” const.] (2.7f)

xg ≥ xg2 ∀g2 ∈ Child(g) [parent-child const.] (2.7g)

∑
g′∈Excl

xg′ ≤ 1 if g ∈ Excl [exclusive group const.] (2.7h)

Compared to the stepwise and interpolated orders, the block constraints
introduce an additional variable ug which stands for the binary acceptance
ratio of the block. Let us notice that constraints (2.7g)–(2.7h) link block g
with other blocks through “parent-child” (or linked block) relationships
(eq. (2.7g)) and exclusive group relationships13 (eq. (2.7h)). Let us also
notice that the acceptance of a block is not indexed by time: the profile
Qg,t (a parameter of the bid) spans over multiple periods, and the quantity

denotes the price in zone z and πPUN denotes the (unique) PUN price, then the following
relationship should hold:

πPUN
t ∑

z∈Italy
dz,t = ∑

z∈Italy
πz,tqz,t ∀t ∈ T (2.6)

Mathematically, expression (2.6) is a primal-dual constraint: it involves both primal variables q
and d as well as dual variables πz,t and πPUN

t . From an algorithmic standpoint, Euphemia, the
European market clearing algorithm, first solves the primal problem and finds a candidate
allocation q∗ and d∗. Then, it attempts to find prices πz,t and πPUN

t that satisfy constraint (2.6).
If no price can be found, the algorithm adds a cut in the primal model and repeats the process.
This primal-dual constraint turns out to be particularly challenging from a computational
standpoint.

13 Note that the exclusive group constraint is imposed on the continuous variable xg, which
means that, if the blocks have an acceptance ratio Rg smaller than 1, there could possibly be
multiple blocks accepted.
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offered may be different between periods, but the acceptance rate xg is
equal for all the time periods.

2.6 competitive analysis

This section outlines the fundamental notions of a competitive analysis
applied to electricity markets.14 This analysis is important to understand
why it could be true that using a market to coordinate the economic activities
of the electricity sector would lead to an allocation of resources that may be
regarded as “optimal” in a well-defined sense. Also, as Arrow and Hahn
emphasize in the introduction of their book “In attempting to answer the
question ‘could it be true’, we learn a good deal about why it might not
be true.” (Arrow and Hahn, 1971, p. vii) In other words, the competitive
analysis offers a useful benchmark from which inefficiencies due to market
failures—such as non-convexities—can be traced and eventually corrected
by regulatory intervention.

The subsequent analysis in chapter 3 could later fruitfully be read in
contrast with the analysis of this section. While the present section will
consider the consumer model (2.2) and the convex production model (2.4),
the analysis of chapter 3 will study what happens when, instead, non-convex
production models such as (2.5) or (2.7) are adopted.

2.6.1 Competitive equilibrium

The main value judgement we will employ along this thesis to evaluate
policies or outcomes of markets is the notion of economic efficiency. We are
interested to reach an allocation of resources that is economically efficient.
In certain cases, this will mean minimization of costs. In others, it will
mean maximization of the market surplus. But before examining such a
problem below (problem (2.9)), it is worth briefly recalling its connection
with the fundamental concept of Pareto optimality.

14 Throughout the thesis, our modelling methodology will mostly rely on competitive analysis.
That is, we will neglect strategic behaviors. There are two main motivations for this choice.
First, as we shall see, the issue of pricing non-convexities turns out to be challenging, even in
competitive settings. Thus, our work attempts to address this problem first in competitive
settings, while future works could extend it to include strategic behavior. Secondly, this choice
enables us to use tools from linear programming and mixed-integer programming, which
allow to model the complexity of electricity auctions in fine details (while relying on e.g. game
theory would likely require many simplifying assumptions regarding the bidding complexity,
the treatment of the network, etc.).
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Definition 2.1 (Pareto Optimality). A feasible allocation (d, z, q) is Pareto
optimal if there is no other feasible allocation (d′, z′, q′) such that uj(d′j, z′j) ≥
uj(dj, zj) ∀j ∈ J and ∃j : uj(d′j, z′j) > uj(dj, zj).

Pareto optimality formalizes the notion of an efficient usage of resources:
in a Pareto optimal allocation, it is impossible to use resources in a way
that makes someone better off without making someone else worse off.
In our partial equilibrium setting, under the assumption of quasi-linear
utility functions, if an allocation (d∗j , q∗) is Pareto efficient then other Pareto-
efficient allocations can be obtained by lump-sum redistribution of wealth
between agents. This means that the utility possibility set is defined as

{(u1...uJ) : ∑
j∈J

uj ≤ ∑
j∈J

vj(dj) + ∑
j∈J

wj − πT ∑
j∈J

dj︸ ︷︷ ︸
wealth left

} (2.8)

Since the short-term profit of producers may be non-negative, we need
to specify where these profits go. We assume a classic private owner-
ship economy in which the wealth of each individual consumer is wj =

ωj + ∑g∈G θjg(π
Tqg − cg) (an exogenous endowment ωj of numeraire plus

a share of profit θjg of supplier g, with ∑j∈J θjg = 1 ∀g). With these
assumptions, the “wealth left” of expression (2.8) simplifies as follows:

∑
j∈J

wj − πT ∑
j∈J

dj = ∑
j∈J

ωj + ∑
j∈J

∑
g∈G

θjg(π
Tqg − cg)− πT ∑

j∈J
dj

= ∑
j∈J

ωj − ∑
g∈G

cg

Then, simplifying expression (2.8), the allocation on the Pareto frontier can
be obtained from the following problem:

max
q,d≥0

∑
t∈T

dtVOLL− ∑
g∈G

∑
t∈T

MCgqg,t (2.9a)

(πt) dt ≤ ∑
g∈G

qg,t ∀t ∈ T (2.9b)

(µg,t) qg,t ≤ Qmax
g ∀g ∈ G, t ∈ T (2.9c)

(νt) dt ≤ Dt ∀t ∈ T (2.9d)

The objective function (2.9a) corresponds to the so-called Marshallian ag-
gregate surplus of the electricity market under study. Problem (2.9) aims
at finding a production plan q and a consumption plan d such that these
plans maximize the aggregate surplus (2.9a), while satisfying production
constraints (2.9c) and consumption constraints (2.9d), and such that the
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market clears (equation (2.9b)). Let us notice that we assume free disposal.
The optimality conditions of problem (2.9) are:

0 ≤ qg,t ⊥ MCg − πt + µg,t ≥ 0 ∀g ∈ G, t ∈ T (2.10a)

0 ≤ dt ⊥ πt −VOLL + νt ≥ 0 ∀t ∈ T (2.10b)

0 ≤ ∑
g∈G

qg,t − dt ⊥ πt ≥ 0 ∀t ∈ T (2.10c)

0 ≤ Qmax
g − qg,t ⊥ µg,t ≥ 0 ∀g ∈ G, t ∈ T (2.10d)

0 ≤ Dt − dt ⊥ νt ≥ 0 ∀t ∈ T (2.10e)

There are two paramount observations that can be made from equations
(2.10). Firstly, the reader may check that the optimality conditions (2.10) are
equivalent to the optimality conditions of problems (2.4) and (2.2) together
with the market-clearing condition (2.9b). This remarkable fact formalizes
the notion that a decentralized market economy in perfect competition
reproduces the outcome of a centralized problem maximizing the total
surplus of the agents in the market. In other words, the outcome of the
market that coordinates the agents by means of a price signal achieves
allocative efficiency, or Pareto efficiency. This is the first theorem of welfare
economics in a partial equilibrium setting.

Secondly, from the optimality conditions stated above, in order to achieve
this efficient allocation of resources, the marginal supplier sets the uniform
price of electricity. Indeed, let gm be the supplier such that, at time t,
0 < qgm ,t < Qmax

gm . Then πt = MCgm , which means marginal pricing prevails
in the market. Thus an efficient allocation of resources is achieved by a
market economy in which resources are priced at their marginal cost of
production. This concept of marginal pricing will be important for this
thesis as non-convexities will challenge its appropriateness in more general
settings.

2.6.2 Competitive equilibrium with a network

convex network model. An important feature of the exchange of
electricity is that it goes through an electrical grid which has stringent
physical constraints (cf. section 2.1). Each consumer and producer is located
on a certain node i ∈ N of the network. There is a flow fk on line k
connecting nodes i and j. These flows are restricted by network constraints:
f ∈ F . Along this thesis, we will remain general and refer to F as an
abstract set of constraints on the network, that we will however assume to
be convex. The present section aims at giving a sense to the reader of what
lies in the set F .
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The physical laws that govern the flows on an electrical network can be
expressed as the following so-called “AC power flow equations” (Taylor,
2015). These equations link the voltages at nodes i (vi) and j (vj) with the
active ( fk) and reactive ( f react

k ) power flows on line k connecting i and j (for
simplicity, we omit the time index t):

fk = gkv2
i − vivj(gk cos(θi − θj)− bk sin(θi − θj)) (2.11a)

f react
k = bkv2

i − vivj(gk sin(θi − θj) + bk cos(θi − θj)) (2.11b)

∀k ∈ K, i = or(k), j = dest(k)

with gk and bk being respectively the conductance and the susceptance, i.e. the
real and imaginary part of the admittance15 defined as yk = gk − ιbk where
ι2 = −1; or(k) and dest(k) denote the origin and destination nodes of line
k. The active and reactive power balance (or market clearing) constraints at
each node i are:

∑
g∈Gi

qg − di = ∑
k∈ f rom(i)

fk − ∑
k∈to(i)

fk ∀i ∈ N (2.12)

∑
g∈Gi

qreact
g − dreact

i = ∑
k∈ f rom(i)

f react
k − ∑

k∈to(i)
f react
k ∀i ∈ N (2.13)

with Gi being the set of suppliers in i, qreact
g and dreact

i denoting the supply
and demand of reactive power in i; f rom(i) and to(i) denoting respectively
the set of lines that flow from i and to i. Finally, the box constraints on the
voltage and on the apparent power flow are:

vi ≤ vi ≤ vi (2.14)

( fk)
2 + ( f react

k )2 ≤ fk
2

(2.15)

Constraints (2.11) introduce another source of non-convexities in the
electricity market. However, we shall neglect them in this thesis and adopt
instead a linear model of the network. This has three main motivations.
Firstly, we are mainly interested in the non-convexities on the supply-side
and how the electricity market can treat them. Therefore, it is convenient
to limit the complexity of the network model. Secondly, electricity auctions,
as they are implemented in the US and in Europe, typically assume linear
power flow equations. Thirdly, the linear power flow model is actually a
reasonable approximation for the high-voltage grid.

The linear power flow model can be constructed as follows. Let us assume
that (i) voltage magnitudes are close to 1 p.u., that (ii) gk << bk, and that (iii)

15 The admittance can be also be obtained from the line impedance zk = rk + ιxk , where the real
part is the resistance and the imaginary part the reactance, as yk = 1/zk .
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the voltage angle differences between the nodes are small, which implies
sin(θi− θj) ∼ (θi− θj). As a consequence of these assumptions, the reactive
power as well as the voltage terms may be neglected and constraints (2.11)–
(2.15) may be rewritten as the following linear constraints16

fk = bk(θi − θj) ∀k ∈ K, i = or(k), j = dest(k) (2.16)

− fk ≤ fk ≤ fk ∀k ∈ K (2.17)

Our network model is then:

f ∈ F ≡ { f |∃( f , θ) satisfying constraints (2.16)–(2.17)}.

economic implications. The analysis of the locational pricing of
electricity was pioneered by Bohn et al. (1984). The objective of this short
section is not to provide a comprehensive analysis of locational pricing, but
to highlight some of the fundamental properties that are good to bear in
mind for the next chapters (see Papavasiliou (2024) and Taylor (2015) for a
more extensive coverage of the topic). Let us assume a basic network with
two nodes N = {A, B} connected by a line, where the flow f is defined
as positive when energy moves from A to B. The linear network model
(equations (2.16)–(2.17)) then simplifies to the capacity constraints on the
line for this stylized two-nodes network17. For simplicity, we omit the time
index t again, although the analysis is straightforward to generalize to
multi-time market.

max
q,d≥0, f

∑
i∈N

diVOLL− ∑
g∈G

MCgqg (2.18a)

(πA) ∑
g∈GA

qg − dA = f (2.18b)

(πB) ∑
g∈GB

qg − dB = − f (2.18c)

(µg) qg ≤ Qmax
g ∀g ∈ G (2.18d)

(νi) di ≤ Di ∀i ∈ N (2.18e)

(κ) f ≤ f (2.18f)

(κ) f ≥ − f (2.18g)

The optimality conditions of the problem are:

0 ≤ qg ⊥ MCg − πi(g) + µg ≥ 0 ∀g ∈ G (2.19a)

16 Let us notice that variants of this linear model exist (e.g. adding bounds on the angle
differences). See Taylor (2015) for an extensive discussion of the topic.

17 More generally, this holds true for radial networks.
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0 ≤ di ⊥ πi −VOLL + νi ≥ 0 ∀i ∈ N (2.19b)

0 ≤ Qmax
g − qg ⊥ µg ≥ 0 ∀g ∈ G (2.19c)

0 ≤ Di − di ⊥ νi ≥ 0 ∀i ∈ N (2.19d)

0 = ∑
g∈Gi

qg − dA ± f , πi free ∀i ∈ N (2.19e)

f free , πB − πA − κ + κ = 0 (2.19f)

0 ≤ f − f ⊥ κ ≥ 0 (2.19g)

0 ≤ f + f ⊥ κ ≥ 0 (2.19h)

Let us emphasize three main conclusions from equations (2.19). Firstly,
the reader may check that these conditions are equivalent to the optimal-
ity conditions of consumers, suppliers, system operator and the market
clearing constraints. Therefore, the fundamental efficiency property of a
decentralized market discussed in the previous section still holds. The
main novelty with respect to the previous section is the presence of a
new agent, the system operator. In the model, this agent is assumed to
behave as price-taker and to maximize his profit18, the so-called conges-
tion revenue, which comes from the the transmission capacity that is sold
on the market. Mathematically, this is max{ f (πB − πA)| f ∈ F}, with
F = { f ∈ R| − f ≤ f ≤ f } in the case of model (2.18). Secondly, marginal
pricing still prevails in the market: at each node, the marginal supplier
sets the price. Thirdly and most importantly, the optimality conditions also
inform us on the relationship between locational prices. In case the line is
not congested (− f < f < f ), the prices in A and B are the same (πA = πB):
as the grid resource is not scarce, the price associated to its usage is zero. In
case the line is congested, say from A to B ( f = f ), then the prices between
A and B differ such that: πB = πA + κ ≥ πA. Thus, the energy flows from
less expensive to more expensive locations.

This fundamental behaviour is relevant for the discussion of chapter 3.
Indeed, we shall see that under non-convexities in the production processes,
although the network model remains linear, some of the pricing approaches
do not necessarily preserve this sound relationship between locational
prices: there may be—under some pricing rules—a price difference between
two nodes in a radial network, although there is no congestion on the line
connecting the two nodes19.

18 The system operator being a monopoly seller of transmission capacity, regulation is needed
to impede him from withholding capacity from the market.

19 Let us notice that, in general, this may also happen in a meshed network, even without
non-convexities. But this does not invalidate the point we make in this paragraph; simply, the
“sound relationship between locational prices” takes a slightly more sophisticated form in
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2.6.3 Competitive equilibrium with reserve

In our production model, the two main commodities sold by a producer
are energy and reserve. Since selling a MW of reserve prevents the pro-
ducer from selling it as energy, the two commodities are tightly linked by
arbitrage. The cost incurred by a supplier for providing an extra MWh of
energy is determined by its marginal cost. The cost of providing reserve, on
the other hand, is not linked to a direct operating cost, at least in our model.
Instead, the cost of reserve is an opportunity cost of not producing energy.
A unit that is out-of-the-money in the energy market would be ready to
reserve capacity for 0€/MWh while a unit that is in-the-money, earning a
profit of 10€/MWh in the energy market, would reserve its capacity for
10€/MWh.

Compared to model (2.9), the two modifications are the additional
market-clearing constraint for reserve (2.20a) and the amendment of con-
straint (2.9c) to (2.20b) to include the provision of reserve:

(πR
t ) ∑

g∈G
rg,t ≥ Rt ∀t ∈ T (2.20a)

(µg,t) qg,t + rg,t ≤ Qmax
g ∀g ∈ G, t ∈ T (2.20b)

The optimality conditions of the augmented problem are conditions (2.10)
with the modification of (2.10d) to (2.21a) and the addition of (2.21b)–
(2.21c). We assume here an inelastic demand of reserve Rt set by the system
operator.

0 ≤ Qmax
g − qg,t − rg,t ⊥ µg,t ≥ 0 ∀g ∈ G, t ∈ T (2.21a)

0 ≤ rg,t ⊥ µg,t − πR
t ≥ 0 ∀g ∈ G, t ∈ T (2.21b)

0 ≤ ∑
g∈G

rg,t − Rt ⊥ πR
t ≥ 0 ∀t ∈ T (2.21c)

The reader may check that the decentralized interpretation of this aug-
mented model still holds, as for model (2.9). The main conclusion regards
the linkage between energy and reserve prices. Consider the marginal
unit, that provides the system with both energy and reserve at time t
(qg,t, rg,t > 0). The optimality conditions 2.10a, 2.21a and 2.21b imply that
πR

t = πE
t −MCg. This is exactly the arbitrage condition described above

between selling energy or reserve.
This short analysis of reserve is introduced here for comprehensiveness

and to demonstrate how it can be included in the model for future work.

a meshed grid (Papavasiliou, 2024; Taylor, 2015), and, in presence of non-convexities, some
pricing rules may break this relationship.
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Nevertheless, let us emphasize that we will not consider reserve in the
remainder of this thesis. This is a limit of our analysis, although we do not
expect the introduction of reserve in the model to fundamentally change
the main conclusions and the results of the next chapters.

2.6.4 Long-term competitive equilibrium

long-term model. As chapter 5 of this thesis studies the long-term
effect of indivisibilities in investment decisions, it is worth outlining here
the analysis of a long-term competitive equilibrium. Compared to model
(2.9), which is a short-term model that assumes that suppliers operate
with a given investment, a long-term analysis considers all the production
factors as variable. Concretely, the capacity of the suppliers Qmax

g in model
(2.9) is replaced by decision variables xg that stand for the investment made
in technology g, which comes at a cost ICg. The model becomes:

max
q,x,d≥0

∑
t∈T

∆TtVOLLdt − ∑
g∈G

∑
t∈T

∆Tt MCgqg,t − ∑
g∈G

ICgxg (2.22a)

(∆Ttπt) dt ≤ ∑
g∈G

qg,t ∀t ∈ T (2.22b)

(∆Ttµg,t) qg,t ≤ xg ∀g ∈ G, t ∈ T (2.22c)

(∆Ttνt) dt ≤ Dt ∀t ∈ T (2.22d)

While the set T in model (2.9) stands for a short-term set of periods (e.g.
the set of hours of the next day), in model (2.22) T should be viewed as,
for instance, the periods of an entire year. ∆Tt stands for the duration of
period t. The optimality conditions of problem (2.22) are:

0 ≤ qg,t ⊥ MCg − πt + µg,t ≥ 0 ∀g ∈ G, t ∈ T (2.23a)

0 ≤ xg ⊥ ICg − ∑
t∈T

∆Ttµg,t ≥ 0 ∀g ∈ G (2.23b)

0 ≤ dt ⊥ −VOLL + πt + νt ≥ 0 ∀t ∈ T (2.23c)

0 ≤ xg − qg,t ⊥ µg,t ≥ 0 ∀g ∈ G, t ∈ T (2.23d)

0 ≤ Dt − dt ⊥ νt ≥ 0 ∀t ∈ T (2.23e)

0 ≤ ∑
g∈G

qg,t − dt ⊥ πt ≥ 0 ∀t ∈ T (2.23f)

These equations, which formalize the “peak-load pricing” analysis pio-
neered by Boiteux (1960), convey three important facts. Firstly, as previously,
model (2.22) admits a decentralized interpretation, so that marginal pricing
provides market agents with the right incentives to invest in the surplus-
maximizing generation mix. Secondly, if a technology is used (xg > 0), then
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Figure 2.3: Analysis of an investment problem with one technology and a uni-
form demand along the year.

the infra-marginal rents (∑t∈T ∆Ttµg,t) earned from the short-term market
prices πt by each technology exactly cover the investment cost ICg. This
means that long-term profits are zero. Thirdly, as highlighted by Boiteux,
in order for the peaking units (the technology g with the highest MCg) to
recover their fixed costs, there should be at least some hours during which
the demand sets the price higher than marginal cost (dt ≤ Dt and νt ≥ 0
such that πt = VOLL− νt > MCpeak).

graphical illustration. For the sake of illustration, let us consider
the case of a single technology and a demand that is uniform along the
year. Figure 2.3 illustrates this case. In the short-term, as in model (2.9),
the investment x is fixed and the investment cost IC is sunk. The market
clearing price reflects the short-term marginal cost of production. In case the
production in the short-term is such that q < x, as for the (sub-optimum)
investment x1 in Figure 2.3, then the market clearing price is πST = MC.
Under this configuration (over-investment), the supplier does not recover
its investment cost. Therefore, he would reduce his capacity x until the
investment is recovered. In case the production of the supplier is saturated
(q = x), the price is set by the demand such that πST = MC + µ for a
certain µ. Which value of µ would the investment x face in equilibrium? The
answer provided by model (2.22) is µ = IC such that πLT = MC + IC. At
the optimum investment x∗ on Figure 2.3, the market-clearing price equals
both the short-term and long-term marginal cost: πST = πLT = MC + IC.

relationship with network expansion. Chapter 5 discusses the
problem of optimal investment in power generation assets (in engineering
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term the “generation capacity expansion problem”). But it does not include
the second main problem of investment encountered in the electricity
market, namely investment in power lines (or the “transmission planning
problem”): the problem faced by the system operator who invests in new
line capacity. In other words, our analysis will focus on the generation
investment problem—and in particular the effect of lumpy investments—
assuming a fixed network topology. Although we do not further treat the
subject in the thesis, let us conclude this section by highlighting the linkage
between the two problems of transmission capacity investment and generation
capacity investment.

From an intuitive point of view, the value of an investment in a line
between two nodes is essentially the value of replacing a costly generation
source in one of the nodes by another cheaper one in the other node. Let
us consider again the two-node model (2.18) of section 2.6.2. Let us neglect
the multi-stage nature of the problem and assume convex investment
decisions in the line capacity simultaneously with convex investment in
generation assets. Compared to model (2.18), the novelty is the introduction
of investment variables for the suppliers (xg in place of Qmax

g ) and for the
network (y in place of f ). The investment in the line comes with a cost
LC · y that appears in the objective function. The investment in generation
asset g also appears in the objective function, as in model (2.22), with cost
xg ICg. Then, omitting consumer equations and market-clearing constraints,
the optimality conditions are:

0 ≤ qg ⊥ MCg − πi(g) + µg ≥ 0 ∀g ∈ G (2.24a)

0 ≤ xg − qg ⊥ µg ≥ 0 ∀g ∈ G (2.24b)

0 ≤ xg ⊥ ICg − µg ≥ 0 ∀g ∈ G (2.24c)

0 ≤ y ⊥ LC− κ − κ ≥ 0 (2.24d)

0 ≤ y− f ⊥ κ ≥ 0 (2.24e)

0 ≤ y + f ⊥ κ ≥ 0 (2.24f)

πA − πB + κ − κ = 0 (2.24g)

Let us assume that the generation assets are cheaper in node A such
that, at the optimum, energy flows from A to B (y = f > 0 and κ = 0).
Then LC = πB − πA, with πA = MCgA + ICgA (for a given marginal unit
gA ∈ GA) and πB = MCgB + ICgB (for a given marginal unit gB ∈ GB).
This says that, at the optimum, the extra cost of the investment in the
line capacity equals the value gained by supplanting production in B
by production in A. Suppose that this is not the case and that, instead
LC < πB − πA. Then, investing in one more MW of line capacity would
cost LC while it would save πB − πA to the consumers, who can buy one
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more MW from the cheaper generation in A. Since LC < πB − πA, this
would result in a net increase of total surplus, meaning that the solution
would not be optimal.

2.7 market organization and architecture

So far, the analysis has abstracted from the effective organization of the
marketplace. An exception has been the European market model of pro-
duction (2.7), which examined a concrete model used by the European
power exchanges in the actual day-ahead energy auction. Although the
theme of this thesis, the price formation in a non-convex market, addresses
a very theoretical and fundamental issue of how to determine a price in
a non-convex market, it also has a practical dimension, as pointed out
in the Introduction. Since electricity markets are typically organized as
closed-gate auctions involving non-convex bids, the rules that should be
adopted by the auctioneer to clear the market and to compute prices are
not merely a theoretical issue but a very practical one. This becomes a
market design issue, or a market architecture issue, in which one should define
what are the “rules of the game” (Stoft, 2002).

According to Coase, “markets are institutions that exist to facilitate
exchange” (Coase, 1988, p. 7). Acknowledging their institutional nature
means stressing the importance of defining rules and regulations that
permit these “market institutions” to work properly.

“All exchanges regulate in great detail the activities of those
who trade in these markets (the times at which transactions can
be made, what can be traded, the responsibilities of the parties,
the terms of settlement, etc.), and they all provide machinery
for the settlement of disputes and impose sanctions against
those who infringe the rules of the exchange. It is not without
significance that these exchanges, often used by economists
as examples of a perfect market and perfect competition, are
markets in which transactions are highly regulated (and this
quite apart from any government regulation that there may
be). It suggests, I think correctly, that for anything approaching
perfect competition to exist, an intricate system of rules and
regulations would normally be needed.” (Coase, 1988, p. 9)

This section outlines the “intricate system of rules and regulations” that
have been adopted in the electricity sector in the pursuit of “approaching
perfect competition”, the ideal described in section 2.6. Our discussion is
structured around three main characteristics, that could appear as peculiari-
ties of the electricity sector: (i) the highly centralized way in which electricity
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markets are organized, (ii) the multi-settlement nature of the market and
(iii) the multi-product nature of the market.

2.7.1 Centralized market

From the discussion of section 2.3, one may conclude that a minimum
level of centralization is needed in power markets. Even decentralized
bilateral trades of energy would ultimately need a central authority for the
auctioning of transmission capacity, to control the provision of ancillary
services, or to take care of measurements. Nonetheless, although it is
generally acknowledged that some centralization is needed, the questions
of how much the market should be centralized as well as the scope of the
system operator have been subject to debates.

market types. There are multiple ways to arrange electricity market
trades. From the least to the most centralized, these include (Stoft, 2002):
(i) bilateral market trade, only involving two parties or (ii) mediated market
trade, which involves a third party arranging the trade. This can be a dealer
(a third party holds the commodity before reselling it and takes the spread)
or exchanges and pools, typically organised as auctions. In the taxonomy
of Stoft, pools are distinct from exchanges essentially by the presence of
side-payments and complex bidding structure. More centralization implies
a less flexible market (or more standardized products) but faster—or less
costly—transactions and a higher level of coordination. The bilateral trade
minimizes the role of the system operator, while the pool maximizes it.
From the perspective of bidding complexity, if the model behind the the
pool is a unit commitment model, then it minimizes the bidding complexity
for the traders since they merely have to submit their cost structure. The
bilateral trade greatly increases the complexity since the traders would
have to trade with different locations and acquire explicit transmission
rights separately. The exchange may be viewed as a middle ground.

The discussion about the degree of centralization that should be adopted
in electricity markets has received various namings in the literature. The
distinction has sometimes being phrased as between “bilateral trade”,
“exchange” and “pool” (Stoft, 2002), or between “integrated’ vs “unbundled
system” (Wilson, 2002) or between “integrated market” and “exchange-
based market” (Cramton, 2017). I would rather emphasize multiple choices
that have to be made in the market, which are to some extend independent,
and characterize the degree of centralization of the market:

• Centralized vs decentralized market for energy: most US day-ahead mar-
kets today, as well as the EU day-ahead market, are centralized.
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California, in the early 2000s, used to rely on a decentralized market
for energy.20

• Integration of energy, transmission and reserve: to what extent does
the market integrate these three commodities and optimize their
allocation jointly.

– Nodal vs zonal: the US markets, organized by the different US
ISOs, are nodal while the European market is zonal. The fact
that EU is zonal means that a lot of transmission is not allocated
by market mechanisms but by out-of-market—administrative—
procedures.

– Co-optimization of reserve and energy: some US markets per-
form co-optimization, the European market does not (although
it cooptimizes to a certain extent energy and transmission, which
invites the natural question of why one leaves reserve out of the
picture).

• Convexity of the market model: non-convex markets permit a refined
scheduling model that accounts for inter-temporal constraints of oper-
ations, cost structure, and so on. That is, it enables the market to pro-
vide a higher degree of coordination between suppliers—coordination
that the main attributes of electricity, discussed in section 2.1, are call-
ing for. But it also creates new challenges, especially price formation
issues that are the subject matter of this thesis.

– Convex vs non-convex market: many US markets rely on a
unit commitment model which is non-convex. Although the
European day-ahead market does not rely on unit commitment,
it is a non-convex market. New-Zealand is an example of a
convex day-ahead auction for power (Bergheimer et al., 2023).

– Inclusion of side-payments: the US markets pay side payments
(the definition of side payments may in itself vary: some ISOs
pay “make-whole payments” while ISO-NE pays the so-called
“lost opportunity costs”, cf. chapter 3). The European market,
although it is non-convex, does not pay any side payments.

The chosen level of centralization may of course depend on the time
frame of the market. It is admitted that the real-time market for power

20 California then experienced one of the biggest failure in electricity markets history, which
arguably throw some doubts on the effectiveness of such a decentralized market design. As
Hogan puts it: “California built its market design on a flawed premise that the inescapable
reality of coordination requirements could be ignored or minimized in an effort to honor a
boundless faith in the ability of markets to solve all problems.” (Hogan, 2002)
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should be organised in a highly centralized fashion, since a high level
of coordination is required and has to be achieved in a few seconds. On
the other hand, a long-term forward market allows more room for the
possibility of more decentralized market types. The organization of the
day-ahead market has been more controversial. Stoft (2002) tends to argue
for a centralized nodal market on the ground that it does render the compu-
tations of the system operator harder while enhancing the optimization of
power flows. But he rather argues for simpler convex auction which avoid
the dilemma of side-payments. Cramton (2017) revisits this debate, and
rather argues for a more integrated model which is centralized, nodal and
relies on unit commitment in day-ahead and stochastic economic dispatch
in the real-time market. His arguments rely on the experience over the past
decades, the improvements in software and optimization algorithms and,
most importantly, the fact that centralized nodal and non-convex auctions
can ultimately do a better job in accounting for both power unit constraints
as well as transmission constraints, resulting in a more efficient usage
of resources and sound price formation that reflects more accurately the
scarcity of the system.

auction model. Centralized electricity markets are typically organ-
ised as closed-gate (one-sided or two-sided) sealed-bid uniform price
auctions. However, they differ greatly in their actual functioning rules.
These include:

• The bidding rules: the format of the bids accepted by the auction. These
may be “unit” types of bids as in the unit commitment model (2.5)
in which bidders submit plant technical characteristics, or European
“portfolio” types of bids as in model (2.7).

• The bid acceptance rules: the rules determining which bids are cleared.
This can be a surplus maximization model, or more complex rules as
in the European day-ahead market.

• The price formation rules, which are of particular importance for the
subject matter of this thesis. These rules vary largely in the presence
of non-convexities in the electricity auctions. These will be discussed
in detail in chapter 3.

• The settlement rules, mainly, whether the uniform price is comple-
mented by discriminatory side-payments or not, and if so, how these
payments are allocated (i.e. both payments to and payments from).

Let us notice that it is mainly the “bid acceptance rules” that play a key
role in determining the total surplus of the market. The price formation
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rules affect the split of this surplus between agents. Even in case the price
formation rules vary in the amount of side-payments that have to be paid,
to the extent that these side-payments are financed through the surplus
of other agents in the market, this again does not affect the total surplus
but merely its distribution (though it may affect incentives for bidding and
thus actual allocations).

pay-as-bid vs uniform price auction. An important notion for this
thesis is that of a uniform price auction, in which the cleared bids receive
the same price. An alternative is pay-as-bid auctions, in which the price
received by each cleared bid is its own bid price. Of course, a pay-as-bid
auction would render the issue of non-convexities less problematic, since
the auctioneer does not have to find a uniform price that is applied to all
transactions, but instead compensate each bid at the bid price. Nonetheless,
a pay-as-bid auction creates other inconveniences, which justify why most
day-ahead electricity auctions have adopted uniform pricing approaches21.

In a pay-as-bid setting, the consumer bill is expected to be reduced if
all agents bid truthfully. This was the naïve expectation advocated for pay-
as-bid in the California market (Kahn et al., 2001): the pay-as-bid scheme
would mitigate the frequent price spikes. Nonetheless, in the pay-as-bid
settings, producers have incentives to deviate from marginal cost bidding:
the approach is not incentive compatible. The outcome may be equivalent to
uniform-price auctions under certain idealized assumptions (cf. revenue
equivalence theorem). However, in practice the design can result in ineffi-
ciencies, due to the fact that bidders will tend not to bid truthfully: bidders
are incentivised to guess the uniform price outcome and forecasting errors
may lead to welfare-enhancing bids being rejected. Furthermore, bidders
would incur additional costs coming from their new pressing need to
forecast the market price. This may in turn alter competition: as profits
become related to the ability of a firm to forecast, small competitors can
be disadvantaged compared to bigger players. Ultimately, if pay-as-bid
were successful in holding the price below the competitive level, this would
distort long-term investment incentives, as the infra-marginal rents earned
by the suppliers in the market are needed to recover investment costs (cf.
section 2.6).

2.7.2 Multi-settlement market

spot and forward markets . Electricity is finally exchanged in real
time between producers and consumers through the electrical grid. How-

21 For a discussion on pay-as-bid, see Stoft (2002), and also Kahn et al. (2001).
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ever, in order for this to happen, there is a sequence of markets that take
place from far ahead in the past until the real-time market. More specifi-
cally, two cornerstones of an effective electricity market are the day-ahead
and the real-time markets. There also exist longer-term forward markets.

The real-time market is the spot—physical—market: a physical commod-
ity is sold “on the spot” and the trades correspond to true power exchanges.
All other markets, including the day-ahead market, are forward—financial—
markets: there is no delivery of a physical commodity but only trades of
financial contracts, which are derivatives of the real-time price of electricity.
A central notion to keep in mind when apprehending this sequence of
markets is the direction in which the sequence should be read (Hogan,
2022). Against the “engineering logic” which tends to move forward, start-
ing from a rough planning in weeks or days in advance towards the refined
scheduling in real-time operations, the “market logic” moves backward: it
starts from the real-time expected conditions and price, and the incentives
these imply for the the market participants, and it back-propagates to
forward markets. Therefore, as argued by Hogan, a sound market design
should start fixing the real-time spot price of power and work backward to
the forward markets, and not the other way around.

The separation of physical and financial markets is arguably a feature
of a successful electricity market.22 Acknowledging this distinction also
explains why several day-ahead markets, such as ERCOT, include financial
virtual bidding to foster price discovery—i.e. the convergence of real-time
and day-ahead prices (Hogan, 2016).

two-settlement principle. This sequence of markets implies a se-
quence of settlements. The two-settlement principle according to which the
day-ahead market and the real-time market are interconnected may be de-
scribed as follows. The day-ahead market trades forward contracts, in which
the seller is paid the day-ahead market for the quantity sold and commits
to deliver energy or to buy back his position at the real-time market price
when realized. Thus, if a seller sells qDA at the DA price πDA, and then
delivers qRT in real time, he is paid: qDAπDA + (qRT − qDA)πRT . This two-
settlement system preserves the incentives of the market participants in the
real-time market. The above seller bids in the real-time market as if nothing
has been sold in the day-ahead market. Indeed, his profit maximization
objective in real-time is: qDA(πDA − πRT) + qRTπRT − C(qRT). Assuming
the seller is a price-taker, the first term is a constant sunk cost, which im-
plies that the profit-maximizing solution in real time is independent of the

22 As Hogan (2016) phrases it: “An important feature of successful electricity market design is
the necessity to separate the financial role of contracts used to allocate risk and the physical
operation of the system.”
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day-ahead transactions. As far as the settlement is concerned, from the
above formula, the electricity delivered in real time can be split between the
share already sold under a forward market contract, paid at the forward
price, and the share sold in real time at the real-time price, which is the
so-called imbalance with respect to the position in the forward market.

the day-ahead market “The day-ahead market is the forward mar-
ket with the greatest physical implications” (Stoft, 2002, p. 243). Indeed,
although it is a financial market, it plays a crucial role in deciding the actual
operational schedule, and providing the unit commitment “service” to the
market players. This explains why the day-ahead market often includes
a complex bidding structure, in order to account for the many technical
constraints of the scheduling of power plants. This market will be central
for this thesis, as it turns out to be the power market par excellence that
includes non-convexities.

As mentioned earlier in section 2.7.1, the organization of the day-ahead
market has been particularly controversial, such that, in practice, there
exists a myriad of rules and specificities. A bilateral trade for power com-
bined with a centralized market for transmission rights would be a possible
option for the day-ahead market. This would minimize the role of the sys-
tem operator. However, reaching an efficient equilibrium may be difficult
because of the decentralized nature of the approach. In particular, the sepa-
ration of the transmission market and the energy market makes the bidding
task more complex for the traders. This may harm both the efficiency of
the allocation, as well as the reliability of the system. In practice, day-ahead
markets have adopted a more centralized organization. To leverage the
taxonomy introduced in section 2.7.1, the day-ahead markets we will study
in this thesis include non-convexities and coordinate the auctioning of
energy and transmission capacity. The US day-ahead market held by PJM,
ERCOT or NYISO relies on unit commitment models, similar—but more
sophisticated—than model (2.5). Instead, the European day-ahead market
relies on model (2.7).

This thesis starts from the presence of non-convexities in various day-
ahead electricity auctions and studies the problem of determining the price
in these circumstances. However, it is fair to mention here two arguments
against the mere idea of including non-convexities in the auction in the first
place. (i) First, while a unit commitment model theoretically minimizes
all the costs with a great level of technical detail, it assumes that agents
will reveal their costs and parameters truthfully. As Wilson (2002) puts
it: “absent regulatory enforcement, cost minimization is a fiction without
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2016 2017 2018 2019 2020 2021 2022 2023 2016–2023

DA av. price 36.6 44.6 55.3 39.3 31.9 104.1 244.5 97.3 81.7

DA std 23.5 21.6 23.5 18.0 16.5 79.4 134.7 45.9 89.7

RT av. price 34.9 42.2 53.4 39.1 33.8 100.3 233.6 96.7 79.2

RT std 46.9 56.3 66.4 51.0 54.2 129.8 222.4 143.2 129.6

Abs. difference −1.7 −2.4 −1.9 −0.2 1.9 −3.8 −10.9 −0.6 −2.4

Rel. difference −5% −6% −4% −1% 6% −4% −5% −1% −3%

Table 2.3: Price convergence between day-ahead and real-time markets in Bel-
gium. All figures are in €/MWh. [Data source: ENTSO-E Transparency
Platform (DA price) & Elia website (RT price, i.e. 15-min imbalance price)]

stronger incentives to ensure that bids reflect actual costs.”23 (ii) Second,
the day-ahead prices are forwards of the expected real-time prices. Table
2.3 illustrates the convergence of day-ahead and real-time prices in Belgium
over the last years24. The day-ahead market is a forward market, but it is
special since the price is not the result of an arbitrage by the agents but
of a computation made by the auctioneer. Yet, since the day-ahead market
has fixed rules and variable inputs, it may be that the inputs are actually
determined by the market participants as expressing an arbitrage with
the expected real-time price. If this were the case, the complex bidding
rules and price formation rules would not increase coordination but simply
render the arbitrage more complicated (Stoft, 2002).

the real-time market The real-time market is operated in a highly
centralized fashion, essentially because time is an issue: the system operator
needs to balance the system continuously, to ensure security of transmission
and system reliability, and this could not be achieved by a decentralized
market. The real-time market is often even more than a “centralized market”
that relies on the price signal to coordinate resources: it typically involves
direct interventions and activations of resources by the system operator, as
“quicker coordination than the market provides” is needed (Wilson, 2002).
This explains why this market is often termed a “balancing market”, at
least in Europe. In Belgium, these so-called “balancing activations” are
not based on a centralized market clearing tool or auction, as in the day-
ahead market, but are performed by the system operator, and follows some

23 Let us notice that US ISOs typically implement some market power mitigation measures in
the auction, such as caps on the bid’s price.

24 As a point of comparison, the difference between the average real-time and day-ahead prices
in PJM was -0.06 and 0.06$/MWh in 2017 and 2018 respectively (Hogan, 2021).
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approximative merit-order rule, but without the non-convexities and subtle
price formation rules that exist in the day-ahead market. This is however
evolving towards a more market logic with the creation of pan-European
balancing platforms.

2.7.3 Multi-product market with multi-part bids

As discussed in section 2.3, the delivery of electrical energy in real time
to consumers requires the trading of multiple associated commodities.
Therefore, an electricity market is often a multi-product market: not only
does it trade energy on multiple periods and locations at the same time,
but it also includes the auctioning of transmission rights, and sometimes
reserve. As discussed in section 2.7.2, the focus of this thesis will be the
day-ahead market, which typically includes at least energy for the 24 hours
of the next day (in 1-hour or 15-minute resolution) as well as transmission
rights. The price formation rules are therefore a multi-dimensional problem,
involving the computation of tens, hundreds or even thousands of prices
in a single market session (as an example, the biggest market session that
is solved in chapter 4 involves the computation of more than 5500 prices).
The prices of these various products are therefore tightly linked within one
market. These linkages have been highlighted in section 2.6. The objective
of this section is to comment on their explicit or implicit existence in the
actual organisation of the market. In particular:

• Temporal linkage. The electricity auctions we will be studying, such as
the day-ahead market, are multi-period auctions. Therefore, there is
an explicit linkage of the prices of energy between the periods which
results from inter-temporal constraints in the bids submitted to the
market, as well as, occasionally, operational constraints of the network
(such as ramp constraints on the lines, which are implemented in
the European DA market (NEMO Committee, 2020b)). A temporal
linkage also exists between different auctions that trade products
for the same delivery period, although it remains implicit: a forward
market price, such as the day-ahead market price, for tomorrow at
noon would approximate the spot price of tomorrow at noon (cf.
Table 2.3, although the real-time prices are typically much more
volatile).

• Spatial linkage. The electricity auctions analysed in this thesis also
include explicit spatial linkages between locations. This results from
the simultaneous auctioning of energy and transmission capacity.
However, the granularity of this spatial linkage varies. For instance,
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the price in France and the price in Germany are explicitly linked in
the day-ahead EU market. Some other spatial linkages (for example
between north and south Germany), although they exist, are ignored
by the market. Since the EU market does not provide locational
nodal price signals down to the level of a substation but merely a
regional zonal price signal at the level of a country, some of the
existing spatial linkages are ignored. Ignoring these linkages within
the market creates, on the long-term, poor incentives for investing
in intra-zonal lines, distortion of generation investments and, in the
short-term, the activation of bids that violate the grid constraints. This
in turn necessitate out-of-market intervention, such as redispatch25,
which in turns creates gaming opportunities that are foreseen in
theory and observed in practice—that continues to plague Europe,
and that contributed to the collapse of the California market in 2001.

• Reserve–Energy linkage. This linkage is explicit in some US auctions
that co-optimize energy and reserve. In Europe, this linkage remains
implicit, as the reserve and energy markets are separated. In this
thesis, we do not model this linkage.

25 Multiple European initiatives try to solve this problem indirectly. Local energy markets that
include intra-zonal grid constraints can be viewed as a way to overcome the challenges that a
zonal market artificially creates. See for instance the discussion in Mezghani et al. (2023).
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abstract. Since the liberalization of the power sector and the creation of
wholesale electricity markets, the question of how to price the non-convexities
that are present in the market has attracted the interest of both academics and
practitioners. Over the years, US markets have studied and adopted different
and evolving pricing rules. Since the “Trilateral Market Coupling” (2006), the
European day-ahead market has opted for a notably different pricing rule. Recently,
EU stakeholders have undertaken research to reform it, and have indicated an
interest for some approaches that are discussed in the other side of the Atlantic.
This chapter aims at contributing to the debate. We analyse six different pricing
methods. We establish several mathematical properties for enabling their accurate
comparison. Our findings are illustrated on stylized examples and numerical
simulations that are performed on realistic datasets. Both theoretical and numerical
evidences that are gathered in this chapter point towards the advantages of convex
hull pricing*.
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3.1 introduction

Power auctions are notably characterized by the presence of non-
convexities. In the US, these non-convexities emerge from the so-
called unit commitment model, which has been run in control rooms

since before the liberalization of the power sector took place1. Although
some economists have argued for simpler—convex—market models (cf.
the arguments covered by Stoft (2002), outlined in section 2.7.2), unit
commitment has prevailed in many US auctions. In Europe, despite the fact
that the market model is different, it also includes non-convex bids, the so-
called “block orders” being the simplest example.1 Although the European
market does not rely on physical unit commitment models, the non-convex
orders also aim—indirectly at least—at providing the suppliers with the
flexibility of representing the complex constraints of power generation into
the auction. Non-convex multi-parts bids are a bet that the efficiency gained
by a refined scheduling model (and the improved coordination2 between
suppliers that this enables), are higher than the inefficiencies resulting
from the increase in complexity. In particular, the main drawback of non-
convexities is that they impede the existence of a competitive equilibrium.
The “classical” marginal prices fail to support the efficient allocation of
goods. The absence of equilibrium prices has resulted in various and
evolving pricing practises among the US and EU markets.

The liberalization of the power sector in the US started in the 90s, en-
couraged by the government through the Energy Policy Act of 1992. The
creation of the Independent System Operators (ISOs), that have assumed
the role of operating the market, followed in the late 90s and early 2000s.
Locational marginal pricing (LMP) has traditionally been adopted by many
ISOs to clear the market, cf. Stoft (2002) and the historical account provided
by EPRI (2019). Experience revealed several drawbacks of marginal pricing,
especially the fact that short-term fixed costs are not reflected in the price
signal which therefore does not provide adequate incentives to market
participants. The inadequacy of marginal pricing has stimulated research
about the right way to price non-convex power auctions. Convex hull pric-
ing (CHP) (Hogan and Ring, 2003) has emerged as a promising—although
contested (Schiro et al., 2015)—way to price energy in the presence of
non-convex bids. Acknowledging these issues, several ISOs started mov-
ing away from marginal pricing. In 2014, the US Regulatory Commission
launched a consultation about price formation in power auctions (FERC,

1 cf. section 2.5.
2 The need for coordination in power systems is justified by the main attributes of electricity,

described in section 2.1.
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2014). In 2015, MISO implemented “Extended LMP” (ELMP, an approxi-
mation of convex hull pricing) and a similar proposal followed by PJM in
2017 (PJM, 2017). Other ISOs have implemented various “fast-start pricing”
approaches (EPRI, 2019), which are variants of ELMP. They typically share
the property of including, to some extent, fixed costs in the price and
resorting to some sort of linear relaxation of the problem for computing
market clearing prices. One example is the “hybrid pricing” approach, or
“Fixed Block Unit Pricing”, implemented by NYISO (2016) since the early
2000s. That being said, up to recently, some ISOs such as CAISO or SPP
still rely on marginal pricing (CAISO, 2020; EPRI, 2019).

The restructuring of the power sector in Europe went down a similar
path, notwithstanding its peculiarities, cf. the historical account by Meeus
(2020). Following the creation of the European Single Market in 1993,
the First Energy Package initiated the liberalization of the power sector
in 1996. The actual unbundling of competitive (supply and retail) and
regulated (TSO and DSO) segments effectively took place between 2003

and 2009 (the Second and Third Energy Packages), along with the creation
of national Regulatory Authorities. The implementation of power markets
followed, with a different institutional arrangement than in the US: instead
of the US ISOs (private, non-profit), the EU market is operated by the
Nominated Electricity Market Operator (NEMO, private and for-profit).
The first centralized—and non-convex—auction, coupling parts of central-
western European countries, went live in 2006 (the so-called “Trilateral
Market Coupling”). This auction has been progressively extended to more
member states and in 2014 it became the Single Day-Ahead Coupling
(SDAC) that still prevails today. SDAC currently couples 27 countries (62

bidding zones, 30 TSOs and 16 NEMOs) with an average daily traded
volume of 4.62 TWh for a market surplus of 9.9B€ per session (NEMO
Committee, 2023).

The pricing approach adopted early on by SDAC (NEMO Committee,
2020b), inherited from the design of the Trilateral Market Coupling (Belpex
et al., 2006), significantly differs from those encountered across the US.
A central difference in the design is the introduction of side-payments.
Because an equilibrium does not exist with a uniform energy price, the US
ISOs resort to discriminatory side-payments that complement the uniform
price of energy. In contrast with this—so-called in EU parlance—“non-
uniform pricing”, the EU stakeholders have opted for a uniform pricing
rule. This is anchored in the regulation: the Market Codes emphasize
the importance for the payments to be non-discriminatory (CACM GL,
Art. 38, 1.b, cf. Commission Regulation (EU) (2015)). According to Meeus
(2020), this implies that the introduction of “non-uniform pricing” (i.e. the



46 on some advantages of convex hull pricing

usage of side payments) would require to change the regulation. This has
motivated market clearing rules that are notably different from those in
the US. The general principle of the EU pricing approach can be described
as follows. It is deemed unacceptable for a non-convex bid, such as block
orders, to be cleared while it is out of the money (a so-called “paradoxically
accepted block”, or PAB). Since the market principles reject the usage of
side payments, the market may not clear PABs. Thus, the auction first solves
the dispatch problem by aiming at maximizing the welfare. Then, if no
price can be found that respects the no-PAB requirement, some constraints
are added to the dispatch problem which is solved again. This process
repeats until the set of allocation and price satisfies all the requirements3.

There are three main issues with this pricing approach (Van Vyve, 2011).
Firstly, as opposed to US auctions that clear the welfare-maximizing alloca-
tion, the EU market clearing rules can result in rejecting welfare-enhancing
bids in order to satisfy the no-PAB requirement. From an economic view-
point, this welfare loss is critical since efficiency (maximization of the total
surplus) is the main justification for the market to exist4. From a regulatory
standpoint, the CACM GL market codes (Art. 38, 1.a, cf. Commission
Regulation (EU) (2015)) specifically emphasise that the EU pricing algo-
rithm should “aim at maximising economic surplus for single day-ahead
coupling”, which is, strictly speaking, currently not the case. Secondly,
although the EU pricing rule ensures no PAB orders, the outcome is not a
competitive equilibrium. There are market participants that are not cleared
while they would be profitable: the so-called “paradoxically rejected blocks”
(PRB). In 2022, there was an average volume of 12GWh of PRBs per bidding
zone per day, which amounted to a total profit loss of 129 thousand euros
per day (NEMO Committee, 2023). From a regulatory viewpoint, using the
previously cited Art. 38 1.b of CACM GL, one could argue that the current
pricing rule already entails discrimination of market players through the
PRBs. Thirdly, the complexity of the clearing rules creates computational
challenges. This is problematic, since the current algorithm is granted 17

3 To simplify the exposition, we only describe the PAB requirement. As a matter of fact, there
are additional “primal-dual” constraints in the market rules, that an interested reader can
find in NEMO Committee (2020b).
To provide the reader with more intuition, this pricing rule could be further illustrated with
the stylized example of Figure 1.1, developed in the introduction of the thesis. The European
pricing rule implies rejecting supply bid S1, and, instead, clears bids S2 and D1. Assuming
Q(D1) > Q(S2), the price would be P(D1). As one may observe, the welfare loss implied by
this rule is critical in this example.

4 Unfortunately, there is no public figure regarding the welfare loss in the European day-ahead
auction, although it is a key indicator. ACER is the institution that defines the KPIs that
are reported in the annual CACM reports. It would arguably make sense to include this
additional KPI: the difference of welfare between the “root node” of the market clearing
algorithm and the final solution.
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minutes to compute the market clearing allocation and price for the entire
European continent. This limit increased from 12 to 17 minutes between
2019 and 2022—and there are discussions to further extend it to 30 minutes
or more (MCSC, 2023)—, reflecting the computational stress caused by this
pricing requirement. The Market Codes also emphasize the importance
of “scalability”, cf. CACM GL, Art. 38, 1.e in Commission Regulation (EU)
(2015).

For these reasons, SDAC is undertaking research to reform the current
pricing rule (SDAC, 2023). Initial EU stakeholder discussions on “non-
uniform prices” identified convex hull pricing as one possible option
for the EU market (NEMO Committee, 2020a). More recent discussions
have rather focused on marginal pricing (MCSC, 2022), although nothing
is decided yet (SDAC, 2023). This chapter aims at contributing to these
discussions relative to the reform of the European pricing rules, although
our analysis also applies to US auctions. Our discussion focuses on possible
alternatives to the current pricing rule, i.e. we discuss the advantages of
these alternatives between them and not over the SDAC pricing rule. In
particular, the contributions of this chapter are threefold.

Firstly, we perform a cross-comparison of four different pricing ap-
proaches. Several properties are formalized mathematically on the same
model, in order to allow for a rigorous comparison of the alternative prices.
This chapter focuses on the short-term properties of the prices. The long-term
properties—the effect of pricing on investment incentives—have notably
been studied in other recent works (Mays et al., 2021; Byers and Hug,
2023). Our endeavor aims at addressing the urge for a better understanding
of various pricing candidates, as called upon by EPRI (2019). To some
extent, we follow up on the pioneering works of Schiro et al. (2015) and
Liberopoulos and Andrianesis (2016). While Schiro et al. (2015) focus solely
on Convex Hull Pricing, we discuss the later in comparison with other
approaches to better grasp their relative benefits and drawbacks. We also
critically review some of the arguments provided by Schiro et al. (2015).
While Liberopoulos and Andrianesis (2016) study some properties on a
“two-suppliers” model, we rather analyse other properties on a general
market model.

Secondly, the theoretical properties are supported by numerical simula-
tions on realistic systems. This is a novelty compared to both Schiro et al.
(2015) and Liberopoulos and Andrianesis (2016). In particular, studying
convex hull pricing on realistic instances is an effort that has not been
widely undertaken in the literature. Thanks to recent algorithmic pro-
gresses (Stevens and Papavasiliou, 2022; Andrianesis et al., 2021) we are
able to compute exact CHP on realistic instances. This enables an accu-
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rate numerical comparison. More specifically, we illustrate and study the
properties of the four pricing approaches on two different datasets: the
“FERC dataset” (public data, but without a network) and the “CWE dataset”
(non-public data, but including a network).

Finally, we particularly include the pricing method proposed by Madani
and Papavasiliou (2022) referred to as “Minimal Make-Whole Payment”
(MMWP) pricing in our comparison. This novel approach is representative
of various recent proposals that have appeared in the literature, which have
not been critically assessed so far. We notably implement three alternative
versions of MMWP, and we discuss their relative advantages.

The material of the chapter is organized as follows. Sections 3.2 and
3.3 introduce the model, the main concepts and the four pricing schemes.
Sections 3.4 to 3.8 then study their properties, and provide results from
numerical simulations. To some extent, sections 3.5, 3.6 and 3.7-3.8 focus
respectively on the comparison between CHP vs MMWP, CHP vs ELMP
and CHP vs marginal pricing.

3.2 market model and distance to equilibrium

Throughout this chapter, we consider the following auction model, which
can accommodate the settings of both the EU day-ahead market5 as well
as most US auctions.

z∗ = min
c,q,x, f

∑
g∈G

cg (3.1a)

∑
g∈Gi

qg,t − Di
t = ∑

l∈
f rom(i)

fl,t − ∑
l∈

to(i)

fl,t ∀i ∈ N , t ∈ T (3.1b)

(c, q, x)g ∈ Xg ∀g ∈ G (3.1c)

f ∈ F (3.1d)

The auction model (3.1) aims at minimizing the cost of satisfying the load
Di

t for each time period t ∈ T and each bidding zone i ∈ N . To simplify the
exposition of the chapter, demand is assumed to be inelastic6. The market
includes a set of Gi suppliers (or market offers) at each node i. Each offer is

5 This has one exception: the so-called PUN orders (the “Prezzo Unico Nazionale” requirement
in Italy, cf. NEMO Committee (2020b)) and complex orders are not compatible with the
pricing approaches considered in this chapter as they include primal-dual constraints. We
point out that both the PUN and complex orders are planned to be discontinued (MCSC,
2023). See also the discussion in section 2.5.

6 All the pricing schemes and results of this chapter can be extended straightforwardly to a
model with elastic loads, for example a model similar to what is developed in section 2.4.
With elastic load, the objective of the auction is welfare maximization (cf. section 2.6).
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modelled with a total cost variable cg, a power output qg,t at time t and a
set of possibly non-convex constraints Xg. The variables xg stand for all the
binary variables encountered in the supplier model. In a US auction, which
typically relies on a unit commitment model, Xg should be understood as a
detailed representation of the technical constraints of the power plant g. In
the EU day-ahead auction, which relies on portfolio bidding instead of unit
bidding, Xg should be understood as the constraints of the market order g
(blocks, linked blocks, stepwise curves, etc.).7 Equation (3.1b) represents the
market clearing constraints. Finally, the auction model (3.1) also includes
a network. The variable fl,t represents the flow on line l, while f rom(i) is
the set of lines originating from i and to(i) the ones directed towards i.
No assumption is made on the network constraints F , except that it is a
convex set. All suppliers are assumed to be price-takers and to act so as to
maximize their private profit. We now proceed with some definitions.

Definition 3.1 (Supplier Profit Maximization). The agent g is assumed to
maximize its selfish profit function Pg, under market price π, defined as follows:

max
(c,q,x)g∈Xg

Pg(c, q, x, π) ≡ max
(c,q,x)g∈Xg

∑
t∈T

qg,tπi(g),t − cg. (3.2)

Definition 3.2 (Network Profit Maximization). The network is assumed to
maximize its profit function PN (the “congestion rent”), under market price π,
defined as follows:

max
f∈F
PN( f , π) ≡ max

f∈F ∑
i∈N ,t∈T

−πi,t

 ∑
l∈

f rom(i)

fl,t − ∑
l∈

to(i)

fl,t

 . (3.3)

Definition 3.3 (Competitive Walrasian Equilibrium). The allocation (c∗, q∗,
x∗, f ∗) together with the market price π constitute a competitive Walrasian
equilibrium if

(i) for each supplier g, (c∗, q∗, x∗)g optimizes the profit problem (3.2) under
price π ; f ∗ optimizes the network profit problem (3.3) under price π, and

(ii) the market clears (constraint (3.1b)).

A paramount desideratum for an auction is to reach economic efficiency:
the allocation of goods resulting from the market should be welfare-
maximizing (cost-minimizing under inelastic load). All the pricing schemes
considered in this chapter assume a welfare-maximizing allocation: they

7 Cf. the developement of section 2.5.
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assume that the auctioneer solves problem (3.1) and selects the welfare-
maximizing allocation. An example of a pricing scheme that departs from
welfare maximization is the current European pricing rule (cf. section
3.1). In the remainder of this chapter, (c∗, q∗, x∗, f ∗) refers to the optimal
solution of problem (3.1). Since the market is non-convex, a competitive
equilibrium is not guaranteed to exist (i.e. the concern is about the existence
of an equilibrium rather than its efficiency: the First Theorem of Welfare
Economics does not require convexity, so if an equilibrium exists in a
non-convex market, it will be efficient, cf. Debreu (1959)). By assumption,
the allocation (c∗, q∗, x∗, f ∗) satisfies condition (ii) in Definition 3.3. The
issue is that there may be no price π that fulfils condition (i), provided
this allocation. Assuming that the market agents maximize their profit
(Definition 3.1 and 3.2), the violation of condition (i) is measured by the
lost opportunity cost (LOC).

Definition 3.4 (Lost Opportunity Cost). The lost opportunity cost is the dif-
ference between the maximum profit and the as-cleared profit under price π. It is
defined hereafter for each supplier g (eq. (3.4)), for the network (eq. (3.5)) and in
total (eq. (3.6)).

LOCgen
g (π) = max

(c,q,x)g∈Xg
Pg(c, q, x, π)−Pg(c∗, q∗, x∗, π) (3.4)

LOCnet(π) = max
f∈F
PN( f , π)−PN( f ∗, π) (3.5)

LOC(π) = ∑
g∈G

LOCgen
g (π) + LOCnet(π) (3.6)

The lost opportunity cost measures the financial incentives that each
profit-maximizing agent has for deviating from the allocation decided by
the auctioneer. Having a price that is incentive compatible is important to
ensure that the participants would follow the dispatch instructions after
the market has cleared. Concretely, incentive compatibility is related to
the notion of self-scheduling: a positive LOC means that the price does not
support the dispatch, thereby implying an opportunity for the concerned
agents to self-schedule, thus deviating from the dispatch (c∗, q∗, x∗) that is
cleared in the auction. As far as the network LOC is concerned, Garcia et al.
(2020) interpret it as a potential congestion revenue shortfall, meaning a
possible inadequacy between the FTR payments and the congestion revenue
that the system operator collects. More generally, it can be interpreted as
an incentive for the grid operator, given the market prices, to organise the
flows on the network in a manner that deviates from its efficient usage.
For example, let us consider two nodes connected by a line. The two nodes
receive different prices, but the line is not congested. This could arguably
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be contemplated as an undesirable configuration (to be contrasted with
the ideal situation described in section 2.6.2). Formally, there is a network
LOC: the cleared flows do not maximize the value of the network.

Certain researchers and practitioners have advocated that the price
should not only aim at being incentive-compatible, as measured by the
LOC, but that it should also ensure a non-confiscatory outcome: the price
should at least enable the cleared bids to recover their costs (such non-
confiscatory pricing schemes are presented in Madani and Papavasiliou
(2022); Bichler et al. (2022); EPRI (2019)). The later is measured by revenue
shortfall.

Definition 3.5 (Revenue Shortfall). The revenue shortfall (RS) corresponds to
the payments that are required in order to ensure a non-negative profit. It is defined
for each supplier (eq. (3.7)), for the network (eq. (3.8)) and in total (eq. (3.9)).

RSgen
g (π) = −min

(
0, Pg(c∗, q∗, x∗, π)

)
(3.7)

RSnet(π) = −min (0, PN( f ∗, π)) (3.8)

RS(π) = ∑
g∈G

RSgen
g (π) + RSnet(π) (3.9)

Needless to say that the LOC and RS are non-negative numbers. Let
us notice that lost opportunity cost and revenue shortfall are sometimes
referred to, respectively, as “uplift payments” and “make-whole payments”
in the literature. However, this terminology is misleading. Because of the
absence of a competitive equilibrium, the auctioneer may indeed resort
to some sort of out-of-market discriminatory payments that complement
the uniform energy price. For example, several US ISOs pay make-whole
payments, while ISO-NE pays lost opportunity costs for committed units
(EPRI, 2019). Nonetheless, denoting the LOC as “uplift payment” suggests
that the LOC only matters for the markets that are actually paying them.
Instead, the LOC is a crucial indicator (reflecting the opportunities of self-
scheduling), independently from the actual payments that are paid by a
particular auctioneer. Thus, in this chapter, we do not take a stance on
what are the side payments that the auctioneer should pay, i.e. whether the
auctioneer should pay LOC or only RS (“make-whole payments”), whether
off-line resources should be compensated for their lost opportunities, etc.
These are important questions, which we nevertheless leave outside the
scope of our discussion.8

8 Although important, these issues are partly independent of the choice of the uniform market
price: there would be no logical contradiction in having an auctioneer using convex hull
pricing (see infra: the price that minimizes LOC) but who pays RS.
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3.3 pricing scheme proposals

There is no straightforward solution to the absence of competitive prices.
We consider hereafter four pricing mechanisms that are proposed in the
literature. They all correspond to a certain convex reformulation (either a
relaxation or a restriction) of the non-convex problem (3.1), cf. the discussion
in Madani and Papavasiliou (2022). A first option is to rely on marginal
pricing (O’Neill et al., 2005), also called Integer Programming (IP) pricing.
This pricing scheme is theoretically meaningful to study since it is widely
used in economics. It is also practically relevant, given its historical usage in
US power auctions, and considering that it is a serious candidate currently
on the table for the EU market.

Definition 3.6 (Marginal Pricing). The marginal (IP) prices are the dual vari-
ables π IP associated with the market clearing constraint in problem (3.1) in which
the binary variables x have been fixed to their optimal value x∗.

It effectively corresponds to taking the price as the subgradient of the
total cost curve with binary variables fixed.

A second approach—central for this chapter and for the remainder of
the thesis—is Convex Hull Pricing (CHP), which has been proposed in
Hogan and Ring (2003) and Gribik et al. (2007). We adopt here the primal
formulation of CHP (Hua and Baldick, 2017).

Definition 3.7 (Convex Hull Pricing). The convex hull prices are the dual
variables πCH that are associated to the market clearing constraints in problem
(3.1), in which the sets Xg are replaced by conv(Xg).

It is worth noting—besides the peculiar name—the natural interpretation
of this pricing approach. The very problem of non-convexities is the inexis-
tence of a competitive equilibrium. The logic of this approach is to compute
the prices of the closest convex economy, in which a competitive equilib-
rium exists. Remarkably, although most of the economic theory neglects
non-convexities, Starr (1969) and Arrow and Hahn (1971), who studied
non-convexities in the theory of general equilibrium, adopted convex hull
pricing—albeit they do not use this term. The main property of CHP which
has justified its interest in power auctions is that it minimizes the LOC
(Gribik et al., 2007): they are the prices that are “as incentive-compatible as
possible”, i.e. that are as close as possible to a competitive equilibrium.

Proposition 3.1 (CHP). CH prices minimize the total lost opportunity costs, as
defined in (3.6).

All the proofs are in the appendix 3.A of this chapter. From Lagrangian
duality theory, one can observe that the LOC corresponds to the duality
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gap between the primal solution z∗ and the Lagrangian dual function in
which the market-clearing constraint (3.1b) is relaxed. Proposition 3.1 then
states that CHP is the price (the Lagrangian multiplier) that minimizes the
duality gap.

Convex hull prices are notably difficult to compute (Schiro et al., 2015).
Therefore, an approximation of CHP, called ELMP, has been proposed and
is already implemented by several ISOs, as explained in section 3.1.

Definition 3.8 (Extended Locational Marginal Pricing). The extended loca-
tional marginal prices are the dual variables πELMP that are associated to the
market clearing constraints in problem (3.1), in which the sets Xg are replaced by

X [0,1]
g , i.e. the binary constraints on x are relaxed to [0, 1].

In case X [0,1]
g = conv(Xg), ELMP would correspond to the exact CHP

approach. This is the main justification for ELMP: it is viewed as a tractable
approximation of CHP. Nonetheless, even though the above equality, X [0,1]

g =
conv(Xg), can be guaranteed in certain simple cases, there are some con-
straints, such as ramp constraints, for which the equality is not straightfor-
ward to obtain, and reaching a tight formulation in these cases may require
the introduction of a substantial number of valid inequalities (Hua and
Baldick, 2017).

In a similar spirit as CHP, which minimizes the LOC, a number of
researchers have advocated for a price that minimizes the revenue shortfall.
In multiple works, O’Neill has proposed the Average Incremental Cost
(AIC) pricing (Chen et al., 2020; O’Neill et al., 2023), which aims at finding
a “zero make-whole payment price” for the suppliers. However, this is
not an achievable target for both the suppliers and the loads if the latter
are elastic. Indeed, it cannot be guaranteed that we can find a uniform
price that ensures zero revenue shortfall for all the market participants in a
two-sided auction.

Example 3.1 (Impossibility of Zero RS with Elastic Load). Let us consider
an hourly market with a non-convex supplier producing at maximum 200MW for
50€/MWh, and at minimum 100MW. Let us also consider two convex and elastic
loads: one is willing to consume 90MW for 10,000€/MWh, the other is willing
to consume 20MW for 20€/MWh. Because of the minimum output constraint of
the supplier (the non-convexity of the present example), the optimum solution
is to produce 100MW and to clear respectively 90 and 10MW of the loads. Any
price π would result in either a RS for the loads or for the supplier. Indeed, the
non-negative as-cleared profit condition implies π ≥ 50 for the supplier and
π ≤ 20 for the load, so the set of prices ensuring zero RS is empty9. We notice

9 The European SDAC clearing rule achieves zero revenue shortfall in a two-sided auction. The
difference with Example 3.1 is that the SDAC rule does not fix the optimal dispatch: it allows
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that, in this example, CHP, ELMP, MMWP or AIC pricing all result in a market
clearing price of 50€/MWh, which implies a RS of 300€ for the second load.

Instead of AIC pricing, we shall consider, as the fourth pricing scheme
of this chapter, a method that aims at minimal make-whole payments
(MMWP), proposed by Madani and Papavasiliou (2022), that works with
both elastic and inelastic loads10. Two variants of MMWP will later be
discussed in section 3.5.

Definition 3.9 (Minimal Make-Whole Payments Pricing). The minimal make-
whole payments prices are the dual variables πMMWP associated to the market
clearing constraints in the following problem:

min
kgen

g ,k f
∑
g∈G

kgen
g c∗g (3.10a)

(πMMWP
i,t ) ∑

g∈Gi

kgen
g q∗g,t − Di

t = (3.10b)

k f ( ∑
l∈ f rom(i)

f ∗l,t − ∑
l∈to(i)

f ∗l,t) ∀i ∈ N , t ∈ T (3.10c)

0 ≤ kgen
g , k f ≤ 1 (3.10d)

Proposition 3.2 (MMWP). MMWP prices minimize the total revenue shortfall,
as defined in eq. (3.9).

Given Problem (3.1) assumes inelastic load, MMWP will in fact lead to
zero revenue shortfall.

We conclude the section with three general remarks. Firstly, among
the four pricing approaches, IP, ELMP and MMWP are computationally
straightforward to obtain, while CHP is notably more challenging to com-
pute. In this chapter, we calculate it using the Level Algorithm which has
demonstrated its ability to compute exact CHPs for realistic market sizes
(Stevens, 2016; Stevens and Papavasiliou, 2022). This will be the subject mat-
ter of chapter 4. Secondly, CHP, IP and MMWP are formulation-independent,
while ELMP is formulation-dependent. Two equivalent formulations of the
sets Xg could result in different ELMPs11. Thirdly, we notice that both
CHP and ELMP keep primal and dual computations distinct, while IP and

a change in the dispatch, and tolerates a possible loss of social welfare, in order to find a price
that ensures zero RS. cf. footnote 3 of this chapter.

10 The original presentation of the method by Madani and Papavasiliou (2022) includes elastic
loads. We extend the approach to include a network and inelastic loads.

11 Zhao et al. (2021) have challenged the “formulation-independence” of CHP. However, their
usage of the term “formulation” departs from ours. By “formulation”, we mean here the
textbook definition (Wolsey, 1998): let Xg ⊆ Rn ×Zm, then P1 and P2 are two formulations of
Xg (e.g. two ways to write ramp constraints) if Xg = P1 ∩ (Rn ×Zm) = P2 ∩ (Rn ×Zm).
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MMWP do not. As highlighted by Schiro et al. (2015), this implies that
an off-line unit could set the price under CHP or ELMP. It is, nonetheless,
unclear to what extent this is an undesirable feature. For example, the
principle of a second-price auction, which is contemplated in economics as
a sound manner to clear an auction, is that the first losing bid sets the price.

3.4 agents’ incentives: distributional analysis

The main property of CHP (Proposition 3.1) informs us on the total LOC,
which is guaranteed to be lower under CHP than under any alternative
price. But it says nothing about how the total LOC is distributed among
the market participants. This section studies the main properties that can
be established mathematically and observed in the numerical simulations.
In general, nothing can be said a priori about how each agent will be
affected individually, depending on the pricing scheme: although the total
LOCs are lower under CHP, a supplier may have a higher LOC under
CHP than under the other prices. Nonetheless, some properties can be
established about the split of LOC among the three following categories of
market participants: the network, the convex suppliers (g ∈ GC) and the
non-convex suppliers (g ∈ GNC, with G = GC ∪ GNC). Let us notice that
both the European auction and the US markets include a convex network
and convex suppliers.

Proposition 3.3 (LOC of Convex Agents in IP). Under IP pricing, all the
convex market participants (the convex suppliers g ∈ GC and the network) have a
zero LOC.

Proposition 3.4 (RS of Convex Agents in IP). Assuming 0 ∈ Xg ∀g ∈ GC

and 0 ∈ F , then both the convex suppliers and the network have a zero revenue
shortfall under IP pricing.

These properties follow from the fact that IP prices reflect the marginal
cost of on-line units. Since a convex supplier is always on-line and does
not bear fixed costs, its LOCs are null under marginal prices. Furthermore,
since the primal and the IP pricing problems are coupled so that the flows
are equal in both problems, the (convex) network does not bear a LOC.
These properties are not shared with the other pricing rules.

Proposition 3.5 (Non-Zero LOC of Convex Agents). Under CHP, ELMP
or MMWP, the convex market participants (both the convex suppliers and the
network) may have a positive LOC.

For the sake of completeness, the following result can also be deduced
from Propositions 3.1 and 3.3.
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Proposition 3.6 (LOC of Non-Convex Agents). Under CHP, the total lost
opportunity cost of the non-convex suppliers (∑g∈GNC LOCgen

g (π)) is lower than
under IP prices.

Intuitively, CHP permits to increase the LOC of the network and the
convex generators in order to reduce the total LOC12. We shall discuss these
Propositions in parallel with the results of the numerical simulations. As
announced in the introduction of this chapter, we use two different datasets,
each having their merits for the properties we seek to illustrate. The first,
later denoted as “FERC dataset”, is based on public data (Knueven et al.,
2020; Krall et al., 2012). The underlying unit commitment model includes
minimum up and down time constraints, ramp constraints (including
start-up and shut-down ramps), time-dependant start-up costs, no-load
costs, and piecewise linear production costs. The model gathers almost
1000 power units, but has no network. This is a market of realistic size,
except for the absence of the network. We conduct our analysis over 11

net-load scenarios of 24 periods each, with hourly time step. The “net-load”
is the load net of renewable production, which is given exogenously. The
second dataset, later denoted as “CWE dataset”, is based on non-public
data assembled by our team (Aravena and Papavasiliou, 2016; Stevens
and Papavasiliou, 2022). It includes a network of 30 bidding zones and 74

power units. The suppliers are modelled using a simpler unit commitment
model than the FERC dataset (essentially simplifying the cost structure).
We simulate 12 different load profiles (half of which correspond to 24

periods and the other half correspond to 96 periods). Tables 3.1 and 3.2
report the average results of the FERC and CWE simulations respectively.
The detailed results per load scenario are available in appendix 3.C. We
will focus on IP, CHP and ELMP, and delay the analysis of MMWP until
the next section.

As far as the suppliers are concerned, the FERC data include both a
share of convex (14%) and non-convex (86%) suppliers. The CWE data only
include non-convex suppliers. We observe that the convex suppliers in the
FERC case as well as the network in the CWE case have zero LOC under
IP pricing (Proposition 3.3). They also have a null RS (Proposition 3.4).
We also observe that CHP outperforms the other prices on the total LOC
(Proposition 3.1) as well as on RS, although the latter is not guaranteed
by the theory. Tables 3.1 and 3.2 also report the proportion of suppliers
impacted by LOC as well as the average LOC carried by these suppliers.

12 Similarly, in case all the suppliers are convex and the network is non-convex, then IP pricing
guarantees zero LOC for the suppliers, while CHP transfers some of the LOC from the
network to the convex generators, in order to ensure a minimum total LOC (Garcia et al.,
2020).
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Figure 3.1: Distribution of the LOC across suppliers for IP, CHP and ELMP
(aggregate of all the CWE cases).

On the FERC data, we observe that CHP reduces both figures. On the CWE
case, the share of suppliers impacted by LOC is similar between CHP and
IP pricing, but CHP significantly reduces the the average LOC carried by
each supplier (see also Figure 3.1). Interestingly, in both the FERC and CWE
datasets, ELMP tends to spread the LOC over a higher share of suppliers.

As far as the network is concerned, we stress two observations. Firstly,
Zhao et al. (2021) questions the validity of CHP on the basis that minimizing
the network LOC does not make sense. As Propositions 3.3 and 3.5 indicate,
it could be argued that CHP minimizes the network LOC to a smaller extent
than IP pricing. Secondly, if the concept of network LOC has already been
analysed in the literature (Garcia et al., 2020), the concept of network RS
has been less discussed. Under some prices, not only could the network
bear an LOC (a potential FTR shortfall), but it could also have a shortfall of
revenue, i.e. a negative congestion rent. The following example illustrates
this possibility, although it does not materialize in our simulations. Indeed,
Table 3.2 shows that the system operator has positive LOC under CHP,
ELMP and MMWP. But the network RS is null under all prices.

Example 3.2 (Network RS). Let us consider a simple network with two nodes (A
and B) connected by a line with a capacity of 100MW. There is an hourly demand
of 200MW at 100€/MWh in both nodes as well as a flexible supplier of 400MW
at 50€/MWh in node A and an inflexible supplier of 1000MW (all-or-nothing) at
10€/MWh in node B. The welfare-maximizing allocation is to produce 300MWh
in node A: 200MWh is consumed in A while 100MWh is consumed in B and
the line is congested. Under IP pricing, the prices (π IP) at A and B are 50 and
100€/MWh, respectively and the congestion rent is 5,000€. Under CHP or ELMP,
the prices (πCHP = πELMP) at A and B are 50 and 10€/MWh and the congestion
rent is -4,000€.
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3.5 loc vs make-whole payments controversy

As mentioned in section 3.2, some advocate that incentive-compatibility
(measured by LOC) is not the adequate target for a price, that should
instead aim at being non-confiscatory (measured by RS). Schiro et al. (2015)
particularly stress that, in some cases, the revenue shortfall may be lower
with IP pricing than with CHP, casting some doubt about the validity
of the latter. Although CHP reduces the RS on average in our numerical
simulations (Tables 3.1 and 3.2), there are indeed instances in both datasets
where CHP turns out to modestly increase the RS, cf. appendix 3.C. In
order to discuss rigorously the controversy “LOC vs RS”, it is first worth
clarifying the relationship between LOC and RS.

Proposition 3.7 (Relationship between RS and LOC). If all the market agents
have the possibility of inaction (0 ∈ Xg ∀g ∈ G, 0 ∈ F ), then RSgen

g (π) ≤
LOCgen

g (π) ∀g and RSnet(π) ≤ LOCnet(π).

Which is to say that, given the possibility of inaction13, the lost oppor-
tunity costs can be viewed as the sum of the revenue shortfall and the
foregone opportunities (FO):

LOCgen
g (π) = RSgen

g (π) + FOgen
g (π) ∀g ∈ G

LOCnet(π) = RSnet(π) + FOnet(π)

The RS is a certain type of LOC in which the cleared profit is negative
and the opportunity is to self-schedule at 0, while the FO denotes the
remaining “lost opportunities”. If the as-cleared profit is zero (as for a unit
that is not operating), or positive, the RS is null and the LOC equals the FO,
which corresponds to the additional profit that the supplier could gain by
deviating from the cleared volumes. If the as-cleared profit is negative, the
foregone opportunities are the maximal profit above zero that the supplier
could earn.

Although the possibility of inaction is a standard assumption in eco-
nomics, there are cases when it does not hold. This happens when there are
barriers of exit, for instance, in the presence of must-run constraints (this is
the case in Example 7 presented by Schiro et al. (2015)), or in case a sup-
plier that is initially on-line faces a binding “minimum up time” or a ramp
constraint that prevents it of being switched off. In these circumstances,
Proposition 3.7 does not hold: a unit could produce at a loss (RSgen

g > 0)
without having any opportunity to act differently (LOCgen

g = 0). More
specifically, the revenue shortfall could be further dissected into two quan-
tities: RS∈LOC

g (the part of RS which can be expressed as an LOC) and

13 This is the case for all suppliers in the European DA market.
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RS/∈LOC
g (the part which cannot be expressed as an LOC, roughly speaking

the revenue shortfall due to a barrier of exit). For example, a supplier having
an as-cleared profit of −200€ and a maximum profit of 100€, has an LOC
of 300€. The latter corresponds to an RS of 200€ as well as an FO of 100€.
Alternatively, a supplier which does not have possibility of inaction and
which has an as-cleared profit of −200€ and a maximum profit of −100€,
has an LOC of 100€ with RS = RS∈LOC + RS/∈LOC = 100 + 100 = 200€.

Definition 3.10 (RS & FO). The revenue shortfall (Definition 3.5) and the
foregone opportunities can be further characterised as follows14:

RS/∈LOC
g (π) = max(0, RSgen

g (π)− LOCgen
g (π))

RSgen
g (π) = RS∈LOC

g (π) + RS/∈LOC
g (π)

FOgen
g (π) = LOCgen

g (π)− RS∈LOC
g (π)

Under possibility of inaction, RS/∈LOC
g (π) = 0

CHP minimizes the total lost opportunity costs. Under the possibility of
inaction, this means that CHP minimizes the revenue shortfall as long as it
does not exacerbate the foregone opportunities. In case the possibility of
inaction does not hold, some of the revenue shortfalls (RS/∈LOC

g (π)) would
not enter into what is minimized by CHP. Following those remarks, the
LOC-RS controversy, as raised by Schiro et al. (2015), could be formulated
as follows:

• Under the possibility of inaction, is it desirable to minimize the RS at
all cost?

• In case the possibility of inaction does not hold, is it desirable to
minimize RS/∈LOC

g (π)?

We shall present several arguments against both. To address both questions,
we rely on the comparison of CHP with MMWP, which is precisely the
price that minimizes the RS.

Firstly, is it desirable to minimize the revenue shortfall? A major concern
when dealing with MMWP is price indeterminacy: the MMWP prices are
typically not unique. This also happens for CHP or IP pricing, as well as
for a convex case in which multiple prices could support a competitive
equilibrium. Nonetheless, the indeterminacy is expected to be more severe
under MMWP than for the other pricing rules. Indeed, minimizing the
revenue shortfall is a mild requirement: in a load-inelastic case, any price

14 Although we define them for the suppliers, these concepts could also be transposed to the
network.
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that is high enough would guarantee zero revenue shortfall—e.g. fixing
the price at the market price cap would certainly make each cleared bid
whole. Mathematically, in problem (3.10), πMMWP belongs to a set that
ranges from the smallest price ensuring profitability for all the committed
units to infinity.

This indeterminacy is observed in our numerical results. In Table 3.1,
the MMWP prices meet their objective of zero revenue shortfall. But this
is achieved with prices that are excessively high—two times the CHP on
average—which, in turn, leads to extravagant LOC—four times the total
system cost. This makes the “vanilla” version of MMWP (Definition 3.9)
impracticable. Load elasticity would certainly mitigate the indeterminacy,
but it would likely not solve it entirely. If one chooses to proceed with
MMWP prices, this then raises the question of how to choose the right
price among the many MMWP prices. We shall consider two possibilities.
The first one, that we shall denote as MMWP*, is to select the smallest price
that minimizes the revenue shortfall.

Definition 3.11 (MMWP*). The MMWP* prices are the optimal variables π of
the following problem:

min
π
‖π‖2 (3.11a)

Pg(c∗, q∗, x∗, π) ≥ 0 ∀g ∈ G (3.11b)

PN( f ∗, π) ≥ 0 (3.11c)

Constraints (3.11b)-(3.11c) require that the price π results in zero revenue
shortfall, while the objective (3.11a) resolves the eventual indeterminacy
over π by selecting the smallest price that satisfies the required constraints.
This method is akin to average cost pricing, at least when the load is
inelastic, since the smallest price that ensures zero RS is essentially the
highest average cost among the committed units. A similar proposal is
described by Liberopoulos and Andrianesis (2016).

Bichler et al. (2022) propose another formulation, which we refer to later
in the chapter as MMWP**, in which, among the possible MMWP prices,
the one that minimizes the LOC is selected. Their model relies on a bi-level
optimization problem which is intractable. Consequently, they introduce
an approximation of this bi-level model, which consists of finding a price
that is as close as possible to ELMP while minimizing the RS15.

15 The actual model of Bichler et al. (2022) slightly differs from ours: they compute the price
that minimizes the RS for every hour, as opposed to our model, that minimizes the RS over the
entire market horizon.
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Definition 3.12 (MMWP**). The MMWP** prices are the optimal variables
π of problem (3.11) in which the objective function (eq. (3.11a)) is replaced by
‖π − πELMP‖2.

Concretely, MMWP* and MMWP** are linked with MMWP as follows.
If ΠMMWP = {π solving (3.10)}, then πMMWP∗, πMMWP∗∗ ∈ ΠMMWP.
Finally, we notice that the two previous models are straightforward to
extend to a configuration that includes elastic loads, by relying on slack
variables in constraints (3.11b)-(3.11c), cf. Bichler et al. (2022).

As far as the numerical results are concerned, we observe in Table 3.1
that, as expected, both MMWP* and MMWP** prices reach zero revenue
shortfall. They also both significantly improve the LOC as compared to
the vanilla MMWP. Nonetheless, MMWP* is still widely outperformed
by the alternative pricing methods. It illustrates that resolving the price
indeterminacy that is inherent in MMWP is by no means obvious. This
leaves MMWP** as the only serious competitor for IP, CHP and ELMP. We
shall nonetheless see later in this section some shortcomings of MMWP**
in the CWE case. The question remains: is it desirable to minimize the
revenue shortfall at all cost? On the FERC simulations, the average total
RS under CHP is 19$16. Under MMWP**, it drops to zero, but the total
LOC increases from 323$ with CHP to 14,217$ with MMWP**. Are the
19$ savings in RS worth the loss of ∼14,000$ in LOC? More generally, in
the hypothetical case that lowering the RS of 1€ would induce an LOC
of 1M€, should we take the stance that minimizes RS? In contrast with
MMWP which minimizes the RS at all cost, convex hull pricing offers an
appealing trade-off: it minimizes the revenue shortfall as long as it does
not exacerbate more the foregone opportunities. This is not to say that
RS are irrelevant, but since they are unavoidable in two-sided auctions
(cf. Example 3.1), considering the above discussion, it may appear more
appropriate to handle them through side-payments instead of through
the uniform price (as demonstrated by Madani and Papavasiliou (2022),
there always exist “zero-sum transfers” that can finance the make-whole
payments while guaranteeing revenue-adequacy for the auctioneer).

Secondly, is it desirable to implement a price that aims at minimizing
the RS including RS/∈LOC

g (π)? As a reminder, the three MMWP approaches
described so far minimize the total RS, including RS/∈LOC

g (π). Let us first
look at the question from the viewpoint of a convex market. Actually, having
RS/∈LOC

g (π) > 0 is not specific to non-convexities. Indeed, while LOC = 0

16 This small number is due to the fact that the FERC dataset does not include network
constraints. Including network constraints would likely increase this number, as we observe
in the CWE dataset, since the market is “more fragmented”, which exacerbates the impact of
non-convexities.
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is guaranteed in a convex market, it is straightforward to design an instance
of a convex market (e.g. with a must-run constraint) with a competitive
equilibrium, in which some agents have RS/∈LOC

g (π) > 0. Remarkably, CHP,
IP and ELMP would boil down to the classic competitive prices in a convex
market, while MMWP would not. Then, the numerical results also highlight
another shortcoming of MMWP prices. In the FERC case, all suppliers have
the possibility of inaction, and therefore RS/∈LOC

g (π) = 0. In the CWE case,
36% of the suppliers do not have possibility of inaction because of binding
constraints. Consequently, we observe positive RS/∈LOC

g (π) in Table 3.2 for
all the pricing methods except the three MMWP approaches. We observe
that mitigating the RS/∈LOC

g (π) through the uniform price of energy comes
with a substantial effect on the lost opportunity costs. Intuitively, in order
to ensure zero revenue shortfall for suppliers which are in any case not
willing to deviate from the market schedule, MMWP raises the prices,
which in turn exacerbates the foregone opportunities of the other suppliers.
MMWP** which, although disputable, is still competitive in the FERC cases,
is simply impracticable in the CWE cases. Again, we are not arguing that
the RS/∈LOC

g (π) are irrelevant, but according to the evidences of this section,
they are not specific to the topic of pricing non-convexities and it is not clear
that they should be settled through the uniform price of energy, as MMWP
does.

3.6 the limits of approximating chp

The previous section has focused on MMWP. In the present section, we
turn to ELMP. As outlined in section 3.3, the main economic justification for
ELMP is that it is viewed as a scalable approximation of CHP which comes
with the remarkable Proposition 3.1 (Chao, 2019). This analogy with CHP
suggests that ELMP would achieve a lower lost opportunity cost than IP
pricing, as it “approximately minimizes LOC”. Tables 3.1 and 3.2 confirm
this intuition. On average, ELMP roughly cuts by ten (resp. two) the lost
opportunity costs in the FERC dataset (resp. CWE dataset) as compared
with IP pricing. This is also observed in other works (PJM, 2017; Hua and
Baldick, 2017; Yu et al., 2020). Nonetheless, if empirical evidence shows that
ELMP reduces the LOC as compared to IP pricing, it is worth noting that,
in general, there is no theoretical guarantee that this will be the case.

Proposition 3.8 (ELMP vs IP LOC). Given a feasible primal solution of problem
(3.1), ELMP does not guarantee a lower total LOC than IP pricing.

Example 3.3 (LOC ELMP vs IP). Designing a stylized example with LOC(π IP) <
LOC(πELMP) is not trivial, since it firstly requires that ELMP differs from CHP.



3.6 the limits of approximating chp 65

Suppliers x0 NLC MC Qmax Ramp

G1 1 0 80 500 500

G2 0 1950 78 600 300

G3 0 5920 74 600 100

G4 0 0 130 500 105

Table 3.3: Supplier data in Example 3.3. The columns stand for the initial com-
mitment, the no-load cost (€/h), the marginal cost (€/MWh), the
production limits (MW) and the ramp limits (MW).

D G1 G2 G4 IP ELMP CHP

350 1/350 1/0 0/0 80 80 80

500 1/200 1/300 1/0 80 80 80

950 1/255 1/600 1/95 80 82.5 82.5

1300 1/500 1/600 1/200 180 95.1 145.27

Table 3.4: Hourly demand (MW), commitments/schedules (MW) and prices
(€/MWh) in Example 3.3.

Let us consider a market with four suppliers (Table 3.3) and four hourly periods
with an inelastic load (Table 3.4). The suppliers do not have a minimal production
limit, but they have a no-load cost and a ramp constraint (the detailed model is in
appendix 3.B). The optimal schedule is reported in Table 3.4. The cheapest way to
meet the load in t = 2 is using G1. Nonetheless, due to binding ramp constraints,
G2 has to be started in t = 1, and to produce in t = 2 in order to meet the ramp
from period 2 to 3. Similarly, the cheapest way to satisfy the load in t = 3 is using
G1 and G2. Because of the ramp from period 3 to 4, G4 produces in t = 3. The total
production cost is 267,550€. The binding ramp constraints make ELMP different
from CHP. The crux of the example is that G4 has zero no-load cost, as opposed to
G3. The optimal schedule commits G4, which has a higher MC, implying a high
IP price. In the ELMP pricing problem, since integers are relaxed, the no-load
cost of G3 does not have to be borne entirely in periods 2, 3 and 4, rendering it
economically more attractive than G4. This drives the ELMP price downward,
resulting in a significant revenue shortfall for G4. The prices are reported in Table
3.4 (the intuition about these prices is discussed in appendix 3.B). They lead to a
total LOC of 10,670, 12,105 and 3,675€ for IP, ELMP and CHP respectively.
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This is not merely a phenomenon that occurs in a pathological exam-
ple. In our simulations, there are instances in both datasets where ELMP
induces a higher LOC than IP pricing (one instance in both datasets, cf.
appendix 3.C). As discussed in section 3.3, ELMP is formulation-dependent.
If the formulation of ELMP is tight, then πCH = πELMP, which implies
from Proposition 3.1 that LOC(πELMP) ≤ LOC(π IP). The above discussion
highlights that the previous inequality is not guaranteed in general for any
ELMP, regardless of the tightness of the formulation. This highlights the
advantage of exact CHP over ELMP, not only for the average reduction
of LOC, but also for the theoretical guarantees surrounding CHP. Let us
stress that, according to the evidence from Stevens and Papavasiliou (2022),
computing exact CHP is expected to be feasible for the European market,
although this should be confirmed by simulation on the actual order book.

3.7 minimizing the costs or the loc

The last two sections focus on a comparison of IP pricing with CHP,
and stress two properties. Again, IP pricing is the candidate currently
envisioned by SDAC for the European day-ahead market (MCSC, 2022).
Firstly, convex hull pricing minimizes the LOC, not only for the optimal
allocation (c∗, q∗, x∗, f ∗) of problem (3.1), but for any feasible allocation.
In this section, we briefly revisit the interplay between primal and dual
(pricing) results, also studied in previous works (Sioshansi et al., 2008;
Eldridge et al., 2019; Byers and Hug, 2022).

Proposition 3.9 (LOC-Primal Relationship 1). Under CHP or ELMP, the
total LOC decreases monotonically with the optimality gap of the primal solution.
More specifically, let (c, q, x, f )1 and (c, q, x, f )2 denote two feasible solutions
of problem (3.1), with objectives z1 and z2 and lost opportunity cost LOC1 and
LOC2, respectively. Then:

LOC1(π)− LOC2(π) = z1 − z2

This result immediately follows from the interpretation of the LOC
as the duality gap, explained in section 3.3. Under convex hull pricing,
the objective of minimizing the primal optimality gap is consistent with
both the minimization of the total costs and the minimization of the lost
opportunity costs. Let us notice that Proposition 3.9 holds even if the
computation of CHP is not exact. Proposition 3.9 also implies that there is
no other allocation that could make the agents better off than the welfare-
maximizing allocation. This is notably different under IP or MMWP.
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Proposition 3.10 (LOC-Primal Relationship 2). Under IP or MMWP, the
total LOC does not decrease monotonically with the optimality gap of the primal
solution.

Intuitively, as far as IP pricing is concerned, a suboptimal solution
commits costlier suppliers which, if entailing higher variable production
cost, pulls the IP price upward, which in turn might reduce the LOC. We
want to emphasize the dilemma that this might create when it comes to
picking the “best” solution among a set of feasible solutions. The dilemma
is illustrated on the numerical results of Table 3.517. Here, one instance
of the CWE dataset is solved for various optimality gaps. As expected
from Proposition 3.9, the LOC associated with CHP and ELMP diminishes
monotonically with the primal optimality gap: the improvement in LOC
corresponds exactly to the improvement in total cost. Under IP prices, a
suboptimal solution (optimality gap of 0.09%) achieves the best LOC. This
creates inconsistent incentives for the primal and the pricing problems:
going from an optimality gap of 0.09% to 0.01% reduces the total cost
by 2,262€ while it increases the lost opportunity cost by 18,139€. Which
solution should be preferred? More radically: going from the gap 0.09% to
0.08% reduces the total cost by 826€ while it increases the lost opportunity
cost by 93,309€. CHP makes such dilemmas irrelevant.

Another fruitful way of looking at Propositions 3.9 and 3.10 is the follow-
ing. Economically, in this chapter, we deal with three main requirements:
the efficiency of the allocation of resources, the lost-opportunity costs and
the revenue shortfalls. We further assume a two-step process in which the
auctioneer first selects the optimal allocation of resources (that is, he fully
optimizes the efficiency requirement) and he then seeks to find a price that
optimizes either the LOC or the RS. One might ask whether there are any
losses of generality in this two-step process. For instance, could the LOC be
improved by relaxing the efficiency requirement? Propositions 3.9 and 3.10

provide a firm answer to this question: relaxing the efficiency requirement
would not improve the LOC, under CHP or ELMP. However, this is not
true for IP or MMWP pricing, which creates the dilemma discussed above.

3.8 the curse or blessing of market size

Convex hull pricing does not only minimize the lost opportunity cost, it
is also guaranteed to remain bounded, so that it does not grow with the
market size. This remarkable property, which builds on works from the

17 Since the comparison of this section focuses on CHP and IP pricing, we omit the three MMWP
schemes from Table 3.5. Nonetheless, the reader may find the related results for MMWP in
appendix 3.A (Table 3.7).
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Opt. gap Tot. Cost IP LOC ELMP LOC CHP LOC

0.1% 5,213,357 115,043 43,346 12,611

0.09% 5,212,947 101,212 42,937 12,201

0.08% 5,212,121 194,521 42,111 11,375

0.07% 5,212,121 194,521 42,111 11,375

0.06% 5,211,690 129,455 41,680 10,944

0.05% 5,211,057 119,929 41,047 10,312

0.04% 5,210,885 119,579 40,875 10,140

0.03% 5,210,743 119,360 40,733 9,997

0.02% 5,210,685 119,351 40,675 9,940

0.01% 5,210,685 119,351 40,675 9,940

Table 3.5: Sensitivity of lost opportunity cost to the primal optimality gap, de-
pending on the price. The simulations are performed on CWE dataset
(Spring WD 24). All figures are in €.

theory of general equilibrium (Starr, 1969; Arrow and Hahn, 1971), can
be expressed for the market model (3.1), in order to derive a theoretical
bound on the LOC (Chao, 2019).

Proposition 3.11 (LOC Bound 1). Under CHP or ELMP, the total LOC is
bounded. The bound depends on the shape of Xg, but is independent of |G|:
lim|G|→∞ LOC(π) < Γ.

The surprising feature of Proposition 3.11 is that the LOC does not
depend on the market size: if the market grows (increasing the number of
suppliers as well as load), given that the LOC remains bounded, its relative
importance shrinks (LOC(πCH)/z∗ → 0). The strength of Proposition
3.11 is better captured when contrasted to alternative prices (see also the
discussion in Stevens et al. (2024b), reproduced in chapter 5 of this thesis).

Proposition 3.12 (LOC Bound 2). Under IP or MMWP pricing, the total LOC
is not necessarily bounded: it could be that lim|G|→∞ LOC(π)→ ∞.

Propositions 3.11 and 3.12 highlight the theoretically sound behaviour
of CHP, as opposed to IP pricing. Stylized examples as well as numerical
illustrations of these Propositions have nonetheless been scarce in the
literature. Example 3.4 aims at providing intuition about the Propositions,
while the subsequent numerical simulations and the related discussion
explore their practical implications.
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Market Size Convex Hull Pricing Marginal Pricing

Number
of Plants

Av. Hourly
Load (MW)

Tot. Cost
($)

LOC
($)

LOC (%
Tot. Cost)

LOC
($)

LOC (%
Tot. Cost)

50 4,900 1,820,308 11,222 0.62% 276,383 15.18%

100 9,800 3,631,286 13,114 0.36% 538,713 14.84%

150 14,700 5,444,099 16,841 0.31% 805,370 14.79%

200 19,600 7,245,546 9,202 0.13% 1,060,574 14.64%

250 24,500 9,052,185 6,756 0.07% 1,320,763 14.59%

300 29,400 10,857,007 2,492 0.02% 1,579,297 14.55%

350 34,300 12,666,418 2,817 0.02% 1,842,613 14.55%

400 39,200 14,475,824 3,136 0.02% 2,105,629 14.55%

450 44,100 16,290,191 8,417 0.05% 2,373,870 14.57%

500 49,000 18,099,571 8,711 0.05% 2,636,708 14.57%

1000 98,000 36,183,999 2,280 0.01% 5,258,840 14.53%

Table 3.6: Results of CHP and IP pricing on FERC datasets (load profile
2015-08-01_lw) depending on the market size. The initial 50-unit
market is multiplied by a factor ranging from 2 to 20.

Example 3.4 (LOC Bounded or Unbounded). Consider a session of the Euro-
pean day-ahead market with one hourly period and the following supply orders:
one divisible stepwise curve of 100MW at 50€/MWh and a set of N fully indivisi-
ble block orders of 100MW at 100€/MWh. Let us assume a divisible demand of
250MW at 1000€/MWh. The welfare maximizing allocation is to clear 2 blocks
and 50MW of the stepwise curve. Under IP pricing, the price is 50€/MWh and
the two cleared blocks have a revenue shortfall of 10,000€. Let us now assume that
the demand grows to 550MW. The IP price remains the same while the revenue
shortfall is now 25,000€. This quantity will keep growing with the demand. Under
CHP, the price is 100€/MWh. Only the stepwise supply curve has an LOC (in this
case, a foregone opportunity) of 50× 50 = 2, 500€, whether the demand is 250 or
550MW. This shall remain bounded if the demand keeps growing.

In order to further illustrate the theoretical Propositions, we conduct
the following experiment on the FERC dataset over one load profile (2015-
08-01_lw). First, we randomly select 50 power units out of the 1000. Then,
we adapt the load profile accordingly, in order to make the problem feasi-
ble. Under these settings, we compute the welfare maximizing allocation
as well as the marginal prices and the convex hull prices together with
their associated lost opportunity costs. Finally, we gradually increase the
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market size by duplicating x times the 50 units and multiplying the load
accordingly. The results are reported in Table 3.6. We proceed with cer-
tain observations. Proposition 3.11 establishes that, when the market size
increases, the LOC under convex hull pricing remains bounded and the
bound is not affected by the number of plants. Thus, the ratio of the LOC
relative to some measure of the market size (e.g. the relative duality gap) is
expected to shrink with the market size. This is what we observe in Table
3.6 where the ratio of the LOC relative to the total system cost ranges from
0.62% to 0.01% while the number of power plants grows from 50 to 1000.
On the other hand, Proposition 3.12 establishes that the LOC under IP
pricing is not subject to such a bound and could therefore increase with
the market size so that the relative importance of LOC remains largely
unaffected. Concretely, what we observe in Table 3.6 (last column), is that
the ratio of LOC relative to the total system cost remains around 15%,
regardless of the market size.

We make two more remarks on the Propositions and the numerical
results: the first concerns the mathematical bound in Proposition 3.11, the
second concerns the practical implications of the propositions. As far as
the bound is concerned, the mathematical expression of Γ is provided in
appendix 3.A. This expression can be used to calculate the bound on the
FERC dataset: Γ = 21.9M$. From Table 3.6, we observe that this bound is
far from tight, since the actual LOC amounts to a few thousand dollars
per day. Although the trend expected from Propositions 3.11 and 3.12

materializes in the numerical results, the practical usefulness of the bound
itself appears to be limited.

As far as the practical implications are concerned, it is of course unrealis-
tic to expect the market to grow by a factor of ten in most US markets or in
Europe. We nevertheless stress that the variations of volume traded in the
market do not necessarily represent a physical change of generation. In a
country such as India, in which the day-ahead market has been created in
2008, and which has recently adopted a similar pricing rule as in Europe
(N-SIDE, 2021), such an increase is not far from reality. Indeed, since its
creation, the market daily average traded volume has increased by a factor
of ten (IEX, 2020). Similarly, in Japan, the traded volume in the day-ahead
market was multiplied by more than ten since the implementation of lib-
eralization policies in 2016 (JPEX, 2023). In Europe, if the growth of the
day-ahead market is more modest (+1.5% of daily traded volume between
2018 and 2021, with a notable increase of +7% in the number of non-convex
block orders over the same period, cf. NEMO Committee (2022)), the traded
volume in a market session can vary significantly. As an example, the daily
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average traded volume in 2020 ranges from 3.83 to 5.82 TWh (NEMO
Committee, 2022).

3.9 conclusion

We have reviewed and analysed six pricing methods from the literature.
They are all potential candidates for reforming the current European pricing
rule. Marginal pricing could be an upgrade as compared to the current
SDAC pricing rule, given the likely improvement in both welfare and
scalability. Nonetheless, the fact that many US markets have exhibited the
tendency to move away from marginal pricing during the last ten years is
something that stakeholders may wish to pay attention to in Europe, given
the favourable alternatives that are on the table.

In the chapter, we have attempted to highlight some of the advantages of
convex hull pricing over several dimensions. With respect to IP pricing, the
fact that CHP incorporates the lumpy costs in the price signal significantly
improves the incentives faced by the market agents (section 3.4). CHP is
also accompanied by appealing theoretical guarantees, both in terms of
consistency between cost and LOC minimization (section 3.7) as well as
in terms of the bound on the LOC (section 3.8). While ELMP would be a
significant first step in the direction of CHP—a step that several US ISO
have made—we have tried to highlight some limits of this approximation.
In particular, ELMP does not safeguard all the theoretical guarantees of
CHP (section 3.6), nor does it achieve the same performance in terms of
LOC minimization. Finally, while minimizing the revenue shortfall—or
“make-whole payments”—may appear as a reasonable target, we have
shown that it may also result in unbearable (and unbounded, cf. section
3.8) lost opportunity costs (section 3.5).

Throughout this chapter, we have assumed that the market participants
would bid truthfully in the auction. This is of course a significant simpli-
fication that neglects all the strategic behaviors. A future line of inquiry
could be the study of the same problem under strategic settings, leveraging
tools from game theory and mechanism design.



72 on some advantages of convex hull pricing

appendices

3.a proofs of the propositions

Proof of Proposition 3.1. Building on Lagrangian duality theory (Wolsey,
1998), CHP as defined in Definition 3.7 is equivalent to solving the following
Lagrangian relaxation (Hua and Baldick, 2017).

L(π) = min
(c,q,x)g∈Xg
∀g∈G, f∈F

∑
g∈G

cg − ∑
i∈N
t∈T

πi,t( ∑
g∈Gi

qg,t (3.12a)

− Di
t − ∑

l∈ f rom(i)
fl,t + ∑

l∈to(i)
fl,t)

πCH = arg max
π

L(π) (3.12b)

Hence πCH minimizes the following duality gap:

∑
g∈G

c∗g −max
π

L(π) = ∑
g∈G

c∗g −max
π

[
∑

i∈N ,t∈T
πi,tDi

t

− ∑
g∈G

max
(c,q,x)g∈Xg

{
∑
t∈T

qg,tπi(g),t − cg

}

−max
f∈F

 ∑
i∈N ,t∈T

−πi,t

 ∑
l∈ f rom(i)

fl,t − ∑
l∈to(i)

fl,t




Replacing Di
t by ∑g∈Gi

q∗g,t −∑l∈ f rom(i) f ∗l,t + ∑l∈to(i) f ∗l,t (using (3.1b)) and
rearranging terms, the previous expression is equivalent to

min
π

{
∑
g∈G

LOCgen(π) + LOCnet(π)

}
.

Proof of Proposition 3.2. Using a similar result from Lagrangian duality the-
ory as in the CHP approach, computing the prices πMMWP from prob-
lem (3.10) is equivalent to solving the Lagrangian relaxation of prob-
lem (3.1) in which the sets of constraints are changed from Xg to X̂g =

{(0, 0, 0), (c∗, q∗, x∗)g} and from F to F̂ = {0, f ∗}. Indeed, the previously
defined sets can be modelled with binary variables k. Since solving the La-
grangian relaxation amounts to finding the convex hull of the non-relaxed
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constraints, and since conv({0, 1}) = [0, 1], this leads to problem (3.10).
The Lagrangian relaxation is expressed as follows:

min
π

max
f∈F̂

∑
i∈N

∑
t∈T
−πi,t

 ∑
l∈ f rom(i)

fl,t − ∑
l∈to(i)

fl,t


+ ∑

g∈G
max

(c,q,x)g∈X̂g

{
∑
t∈T

πi(g),tqg,t − cg

}
− ∑

i∈N
∑
t∈T

πi,tDi
t

}

Let us replace Di
t = ∑g∈Gi

q∗g,t − (∑l∈ f rom(i) f ∗l,t −∑l∈to(i) f ∗l,t) into the pre-
vious expression and let us add the constant ∑g∈G c∗g. The Lagrangian
relaxation then corresponds to:

min
π

{
∑
g∈G

(
max

(c,q,x)g∈X̂g

Pg(c, q, x, π)−Pg(c∗, q∗, x∗, π)

)

+max
f∈F̂
PN( f , π)−PN( f ∗, π)

}
which, from the definition of the modified sets, corresponds to the total
revenue shortfall (Definition 3.5).

Proof of Proposition 3.3. Let us consider the Lagrangian relaxation LIP(π)
of the problem of Definition 3.6 in which the market clearing constraint
is relaxed. Since the problem is convex, the duality gap is zero and π IP =
arg maxπ LIP(π). Furthermore, the optimal dispatch of both the primal
problem (3.1) (z∗) and the IP problem of Definition 3.6 (z∗IP) is the same:
∑g∈G c∗g = z∗ = z∗IP. We then write:

0 = ∑
g∈G

c∗g −max
π

LIP(π) = ∑
g∈G

c∗g − LIP(π IP)

= ∑
g∈GC

max
(c,q,x∗)g∈Xg

Pg(c, q, x, π IP)−Pg(c∗, q∗, x∗, π IP)︸ ︷︷ ︸
=LOCgen

g ≥0

+ ∑
g∈GNC

max
(c,q,x∗)g∈Xg

Pg(c, q, x, π IP)−Pg(c∗, q∗, x∗, π IP)︸ ︷︷ ︸
≥0, but 6=LOCgen

g

+ max
f∈F
PN( f , π IP)−PN( f ∗, π IP)︸ ︷︷ ︸

=LOCnet≥0

From which we conclude that LOCnet = 0 and LOCgen
g = 0 ∀g ∈ GC.
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Proof of Proposition 3.4. The result follows from Propositions 3.3 and 3.7.

Proof of Proposition 3.7. Let us consider the case where RSg > 0 (the unit
g faces a revenue shortfall—the case for which RSg = 0 is trivial since
LOCg ≥ 0):

LOCgen
g =

≥0 by assumption of possibility of inaction︷ ︸︸ ︷
max

(c,q,x)g∈Xg

{
∑
t∈T

qg,tπi(g),t − cg

}
−(∑

t∈T
q∗g,tπi(g),t − c∗g)

≥ −(∑
t∈T

q∗g,tπi(g),t − c∗g) = RSgen
g

The same reasoning applies to the network.

Proof of Proposition 3.9. This follows the interpretation of the LOC as the
duality gap (cf. Proposition 3.1):

LOC1(π)− LOC2(π) = ∑
g∈G

c1
g − L(π)− ∑

g∈G
c2

g + L(π) = z1 − z2

where L(π) is the Lagrangian function defined in (3.12a). The equality
follows from the fact that CHP and ELMP prices are not affected by a
change of primal solution, so the L(π) cancel out.

Proof of Proposition 3.10. The poof for IP pricing derives from the mere
observation of Table 3.5. The proof for the three MMWP pricing schemes
is straightforward from the observation of Table 3.7, which reports the
results of MMWP for the same experience as in Table 3.5. In Table 3.7, we
observe that the LOC under MMWP pricing evolves non-monotonically
with respect to the primal optimality gap.

Proof of Proposition 3.11. Ignoring the network, the bound takes the follow-
ing form:

∑
g∈G

LOCg(π
CH) ≤ ρ|T |

with ρ = maxg∈G ρg and ρg defined as follows:

ρg = max
(ĉ,q̂,x̂)g∈conv(Xg)

{
c̃g(q̂, x̂)− ĉg)

}
c̃g(q̂, x̂) = min

(c,q,x)g∈Xg
qg,t≥q̂g,t

cg
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Opt. Gap MMWP LOC MMWP* LOC MMWP** LOC

0.1% 127,174,509 46,374,970 25,487,688

0.09% 128,078,572 46,380,214 25,477,625

0.08% 128,503,837 46,534,306 25,374,010

0.07% 128,503,837 46,534,306 25,374,010

0.06% 129,671,679 46,505,121 25,366,511

0.05% 129,665,324 46,286,384 25,414,900

0.04% 129,855,305 46,366,246 25,411,805

0.03% 127,937,157 46,371,886 25,411,662

0.02% 127,677,227 46,360,290 25,411,605

0.01% 127,677,227 46,360,290 25,411,605

Table 3.7: Sensitivity of the LOC under MMWP pricing with respect to the
primal optimality gap. The simulations are performed on CWE dataset
(Spring WD 24). All figures are in €.

The proof, deriving from an application of the Shapley-Folkman theorem,
can be found in Chao (2019) or in Stevens et al. (2024b), cf. appendix 5.A
of chapter 5.

Proof of Proposition 3.12. The proof for IP pricing follows from Example 3.4.
A similar stylized example can prove the Proposition for MMWP. Let us
consider an hourly market with one fully indivisible block order A of 50MW
at 100€/MWh and N = 3 block orders Bi of 100MW at 75€/MWh with a
minimum acceptance of 90MW. The demand is 240MW at 1,000€/MWh.
The welfare maximizing allocation (with or without free disposal) is to
clear A as well as two blocks B (one produces 100MW, the other 90MW). In
order to ensure zero revenue shortfall, πMMWP = 100€/MWh. At this price,
the blocks B which are not cleared have a foregone opportunity. Clearly, if
N → ∞, LOC(πMMWP)→ ∞.
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3.b model of example 3.3

The model is the following:

min
q,x,v,w ∑

g∈G,t∈T
MCgqg,t + NLCgxg,t

∑
g∈G

qg,t = Dt ∀t ∈ T

0 ≤ qg,t ≤ Qmax
g (xg,t − vg,t) ∀g ∈ G, t ∈ T

qg,t+1 ≤ qg,t + Rampg ∀g ∈ G, t < |T |
qg,t+1 ≥ qg,t − Rampg ∀g ∈ G, t < |T |
vg,t − wg,t = xg,t − xg,t−1 ∀g ∈ G, t > 1

vg,1 − wg,1 = xg,1 − x0
g ∀g ∈ G

xg,t, vg,t, wg,t ∈ {0, 1} ∀g ∈ G, t ∈ T

where x, v and w stand respectively for the commitment, the start-up and
shut-down decision variables. We notice that IP prices (Table 3.4) can be
interpreted as follows. G1 is marginal in t ∈ {1, 2, 3}, so π IP=80€/MWh.
Increasing the demand of ε in t = 4 requires increasing the production
of G4 in t = 4 as well as substituting production of G1 by G4 in t = 3,
because of the ramp. So π IP

4 = 130 + (130− 80) = 180€/MWh. ELMP
prices (Table 3.4) are less straightforward to interpret, as it is necessary
to resort to the KKT conditions of the ELMP problem. To provide some
intuition, we look at the price of the third period. The average cost of
G2 is MC + NLC/Qmax = 81.25€/MWh. Increasing the demand of ε in
t = 3 requires to increase the production and commitment of G2 in t = 3
as well as to substitute production from G1 by G2 in t = 2, so πELMP

3 =
81.25 + (81.25− 80) = 82.5€/MWh.

3.c detailed numerical results

Tables 3.8 and 3.9 provide the detailed results (per load scenario) of Tables
3.1 and 3.2.
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IP CHP ELMP MMWP MMWP* MMWP**

2
0

1
5

-0
2
-0

1
-h

w

Av. Price 23.1 23.7 23.1 247 20.3 23.2

Num. Suppl. 7.4% 3.3% 7.2% 99.9% 17.2% 9.1%

Av. LOC/Suppl. 476 22 53 623,873 8,853 52

LOC 32,858 673 3,522 582,073,937 1,425,275 4,421

RS (in LOC) 0 41 88 0 0 0

FO 32,858 633 3,434 582,073,937 1,425,275 4,421

2
0

1
5

-0
4
-0

1
-h

w

Av. Price 19.3 18.9 19.2 27.1 17.3 19.3

Num. Suppl. 3.4% 1.2% 8.4% 51.7% 16.7% 8.7%

Av. LOC/Suppl. 265 18 74 41,666 1,546 75

LOC 8,734 229 6,084 21,082,899 252,047 6,360

RS (in LOC) 2,426 0 831 0 0 0

FO 6,307 229 5,253 21,082,899 252,047 6,360

2
0

1
5

-0
5
-0

1
-h

w

Av. Price 24.8 24.7 24.8 23.1 23.1 24.8

Num. Suppl. 1.3% 1.3% 4.1% 60.4% 17.9% 4.1%

Av. LOC/Suppl. 68 4 12 40,060 1,488 12

LOC 888 60 471 23,675,307 260,410 471

RS (in LOC) 499 0 0 0 0 0

FO 389 60 471 23,675,307 260,410 471

2
0

1
5

-0
6
-0

1
-h

w

Av. Price 27.2 27.4 27.1 23.1 23.1 27.2

Num. Suppl. 2.4% 1.8% 5.3% 64.5% 19.9% 5.2%

Av. LOC/Suppl. 344 15 20 43,962 6,790 18

LOC 7,906 271 1,026 27,739,814 1,323,996 923

RS (in LOC) 0 5 32 0 0 0

FO 7,906 265 995 27,739,814 1,323,996 923

2
0

1
5

-0
7
-0

1
-l

w

Av. Price 32.8 32.9 32.8 49.6 32.8 32.9

Num. Suppl. 1.2% 1.1% 4.4% 83.7% 31.6% 5.1%

Av. LOC/Suppl. 231 21 29 38,983 4,543 35

LOC 2,772 241 1,273 31,926,833 1,403,848 1,733

RS (in LOC) 21 0 5 0 0 0

FO 2,751 241 1,268 31,926,833 1,403,848 1,733
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2
0

1
5

-0
7
-0

1
-h

w
Av. Price 28.6 27.8 28.7 26.4 27.1 28.7

Num. Suppl. 2.4% 3.3% 8.8% 60.4% 23.8% 8.8%

Av. LOC/Suppl. 608 13 42 36,043 2,611 42

LOC 13,978 427 3,583 21,301,239 608,479 3,583

RS (in LOC) 3,922 0 0 0 0 0

FO 10,056 427 3,583 21,301,239 608,479 3,583

2
0

1
5

-0
8
-0

1
-h

w

Av. Price 28 27.2 28.1 23.1 26.4 28.1

Num. Suppl. 3.2% 1.4% 11.0% 81.3% 31.8% 11.1%

Av. LOC/Suppl. 749 24 31 75,557 2,156 30

LOC 23,217 336 3,341 60,067,559 670,588 3,327

RS (in LOC) 229 12 38 0 0 0

FO 22,988 324 3,303 60,067,559 670,588 3,327

2
0

1
5

-0
9
-0

1
-l

w

Av. Price 43.3 43 43.4 34.3 41 43.6

Num. Suppl. 4.1% 2.7% 9.6% 83.1% 44.7% 14.9%

Av. LOC/Suppl. 168 18 26 49,988 7,778 99

LOC 6,719 468 2,461 40,640,061 3,399,179 14,509

RS (in LOC) 233 0 82 0 0 0

FO 6,486 468 2,379 40,640,061 3,399,179 14,509

2
0

1
5

-0
9
-0

1
-h

w

Av. Price 35.2 36.9 35.3 78.6 33.2 35.8

Num. Suppl. 8.8% 1.3% 12.7% 99.2% 33.7% 21.9%

Av. LOC/Suppl. 3,579 29 35 241,607 5,830 511

LOC 307,764 383 4,318 234,358,740 1,923,877 109,366

RS (in LOC) 0 71 435 0 0 0

FO 307,764 313 3,883 234,358,740 1,923,877 109,366

2
0

1
5

-1
0
-0

1
-l

w

Av. Price 30 30.3 30 61 27.4 30.2

Num. Suppl. 2.4% 1.4% 4.6% 90.8% 22.1% 6.4%

Av. LOC/Suppl. 366 26 46 105,984 7,301 57

LOC 8,053 341 1,973 89,874,328 1,503,907 3,403

RS (in LOC) 0 0 91 0 0 0

FO 8,053 341 1,882 89,874,328 1,503,907 3,403

2
0

1
5

-1
2
-0

1
-h

w

Av. Price 23.8 23.8 23.8 26.1 23.2 23.9

Num. Suppl. 1.0% 1.0% 6.9% 96.1% 12.2% 9.0%

Av. LOC/Suppl. 50 14 43 332,826 1,447 99

LOC 447 128 2,763 298,877,534 164,941 8,286

RS (in LOC) 26 85 660 0 0 0
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FO 421 43 2,104 298,877,534 164,941 8,286

Table 3.8: Incentives of market agents on the FERC dataset depending on the
pricing scheme (detailed figures per scenario).

IP CHP ELMP MMWP MMWP* MMWP**

Sp
ri

ng
W

E-
2

4

Av. Price 35.6 36.4 43.8 25.3 24.2 50.3

Num. Suppl. 28.4% 25.7% 37.8% 78.4% 60.8% 60.8%

Av. LOC/Suppl. 4,047 278 2,631 137,534 36,071 38,786

LOC 84,978 7,189 75,852 95,284,255 45,775,853 27,790,203

RS (in LOC) 1,207 1,145 15,035 0 0 0

FO 83,771 6,043 60,816 95,284,255 45,775,853 27,790,203

RS (not in LOC) 1,241,106 1,262,137 937,572 0 0 0

A
ut

um
nW

E-
2

4

Av. Price 38 38.6 45.2 30.8 24.4 51.1

Num. Suppl. 29.7% 23.0% 36.5% 78.4% 55.4% 56.8%

Av. LOC/Suppl. 4,245 195 2,164 228,052 36,306 36,682

LOC 93,398 4,814 61,033 134,946,41745,300,887 25,886,284

RS (in LOC) 9,812 1,364 10,898 0 0 0

FO 83,586 3,450 50,135 134,946,41745,300,887 25,886,284

RS (not in LOC) 1,165,408 1,177,396 880,050 0 0 0

Su
m

m
er

W
E-

2
4

Av. Price 34.5 34.5 42.4 25.1 23.9 49.6

Num. Suppl. 29.7% 23.0% 37.8% 78.4% 63.5% 63.5%

Av. LOC/Suppl. 5,549 621 2,861 115,019 36,695 40,142

LOC 122,078 12,606 82,506 88,196,688 46,897,168 29,419,777

RS (in LOC) 6,111 4,985 23,074 0 0 0

FO 115,967 7,621 59,431 88,196,688 46,897,168 29,419,777

RS (not in LOC) 1,231,897 1,312,780 997,636 0 0 0

Su
m

m
er

W
E-

9
6

Av. Price 44.3 44.4 46.8 24.9 21.1 51.4

Num. Suppl. 41.9% 36.5% 52.7% 81.1% 70.3% 71.6%

Av. LOC/Suppl. 2,286 212 627 99,952 22,600 17,941

LOC 70,879 6,406 25,444 76,307,676 35,056,506 15,473,856

RS (in LOC) 3,814 2,858 7,065 0 0 0

FO 67,065 3,547 18,379 76,307,676 35,056,506 15,473,856

RS (not in LOC) 634,481 654,700 577,425 0 0 0
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Su
m

m
er

W
D

-2
4

Av. Price 35.3 34.2 42.9 23.2 24.2 49.9

Num. Suppl. 25.7% 25.7% 39.2% 79.7% 60.8% 63.5%

Av. LOC/Suppl. 3,612 357 2,450 106,374 37,784 39,207

LOC 68,620 7,707 73,911 86,363,710 46,951,981 29,096,219

RS (in LOC) 7,190 3,832 21,504 0 0 0

FO 61,430 3,875 52,408 86,363,710 46,951,981 29,096,219

RS (not in LOC) 1,319,226 1,288,743 984,371 0 0 0

A
ut

um
nW

D
-2

4

Av. Price 47.9 43.4 49.6 33.6 26.7 55

Num. Suppl. 32.4% 40.5% 41.9% 81.1% 58.1% 56.8%

Av. LOC/Suppl. 4,839 464 817 198,139 32,992 33,969

LOC 116,130 18,723 42,626 134,179,37845,844,078 23,812,415

RS (in LOC) 67,061 649 1,025 0 0 0

FO 49,070 18,074 41,601 134,179,37845,844,078 23,812,415

RS (not in LOC) 1,048,066 888,203 832,867 0 0 0

A
ut

um
nW

D
-9

6

Av. Price 53 52.6 54 30.1 25.8 58.1

Num. Suppl. 35.1% 55.4% 58.1% 94.6% 70.3% 71.6%

Av. LOC/Suppl. 1,999 152 388 126,419 20,139 14,407

LOC 51,962 6,625 21,179 90,412,716 39,833,338 13,737,122

RS (in LOC) 7,886 1,194 1,146 0 0 0

FO 44,076 5,430 20,033 90,412,716 39,833,338 13,737,122

RS (not in LOC) 538,906 532,300 507,761 0 0 0

Sp
ri

ng
W

E-
9

6

Av. Price 44.8 45.3 47.3 25.7 21.1 51.7

Num. Suppl. 37.8% 44.6% 50.0% 86.5% 67.6% 68.9%

Av. LOC/Suppl. 2,841 131 626 198,060 22,316 17,651

LOC 79,560 5,196 24,688 94,436,434 35,076,443 15,125,326

RS (in LOC) 7,511 633 4,893 0 0 0

FO 72,049 4,563 19,795 94,436,434 35,076,443 15,125,326

RS (not in LOC) 627,309 640,835 561,709 0 0 0

Su
m

m
er

W
D

-9
6

Av. Price 46.7 46.1 49.1 25.7 23.2 53.5

Num. Suppl. 36.5% 43.2% 55.4% 83.8% 71.6% 73.0%

Av. LOC/Suppl. 2,238 165 556 90,557 22,047 15,174

LOC 60,430 5,989 24,358 80,534,617 38,674,968 14,967,433

RS (in LOC) 3,356 1,339 4,493 0 0 0

FO 57,074 4,650 19,865 80,534,617 38,674,968 14,967,433

RS (not in LOC) 645,930 629,168 556,458 0 0 0
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Sp

ri
ng

W
D

-2
4

Av. Price 44.5 42.9 47.4 30.4 25 53.3

Num. Suppl. 28.4% 32.4% 37.8% 82.4% 52.7% 54.1%

Av. LOC/Suppl. 5,683 400 1,185 182,800 37,165 36,427

LOC 119,351 9,940 40,675 127,677,22746,360,290 25,411,605

RS (in LOC) 6,463 3,829 8,973 0 0 0

FO 112,889 6,111 31,702 127,677,22746,360,290 25,411,605

RS (not in LOC) 1,110,721 969,030 859,078 0 0 0

A
ut

um
nW

E-
9

6

Av. Price 46 45.2 48.3 25.4 21.6 52.6

Num. Suppl. 39.2% 39.2% 45.9% 83.8% 63.5% 64.9%

Av. LOC/Suppl. 2,581 167 643 88,274 25,366 18,805

LOC 74,843 5,591 23,722 82,089,816 36,154,282 14,545,232

RS (in LOC) 5,296 1,116 2,911 0 0 0

FO 69,546 4,475 20,811 82,089,816 36,154,282 14,545,232

RS (not in LOC) 625,250 614,743 543,490 0 0 0

Sp
ri

ng
W

D
-9

6

Av. Price 50 49.6 51 32.2 24.2 55.1

Num. Suppl. 33.8% 41.9% 50.0% 94.6% 66.2% 66.2%

Av. LOC/Suppl. 2,412 189 467 130,828 22,438 15,598

LOC 60,292 6,328 19,382 93,752,601 39,772,253 14,203,481

RS (in LOC) 895 898 1,079 0 0 0

FO 59,397 5,430 18,303 93,752,601 39,772,253 14,203,481

RS (not in LOC) 583,540 554,445 524,396 0 0 0

Table 3.9: Incentives of market agents on the CWE dataset depending on the
pricing scheme (detailed figures per scenario).
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C O M P U TAT I O N A L M E T H O D S F O R C O N V E X

H U L L P R I C I N G

abstract. Convex hull pricing is a well-documented method for coping with
the non-existence of uniform clearing prices in electricity markets with non-convex
costs and constraints. We revisit primal and dual methods for computing convex
hull prices, and discuss the positioning of existing approximation methods in
this taxonomy. We propose a dual decomposition algorithm known as the Level
Method and we adapt the basic algorithm to the specificities of convex hull pricing.
We benchmark its performance against a column generation algorithm that has
recently been proposed in the literature. We provide empirical evidence about the
favorable performance of our algorithm on large test instances based on PJM and
Central Europe markets.*

keywords . Convex hull pricing · Non-uniform pricing · Level method ·
Bundle methods

jel classification. C61 · C63 · C68 · D47 · Q41

* The chapter reproduces, with minor changes, the content of Stevens and Papavasiliou (2022).
The most significant changes include a reworking of the introduction, changes in the usage
of some concepts and notations to improve the consistency with chapter 3, as well as the
addition of an appendix, section 4.A, which provides the reader with an illustration of the
algorithms discussed in the chapter on a 2-D example.
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4.1 introduction

The classical analysis of an economic dispatch problem, together with
its dual, provides a fundamental argument for uniform pricing in elec-
tricity markets (cf. section 2.6): an optimal dispatch can be supported

by a set of competitive equilibrium prices. In other words, even if a central
authority cannot effectively control the dispatch of the assets itself, it can
provide prices that align the behaviour of selfish profit maximizing agents
with social welfare maximization. However, as the argument assumes con-
vexity of the dispatch problem, a fundamental challenge is non-convexity,
as the latter implies that it is not guaranteed that a competitive market
equilibrium exists.

Non-convexities are at the heart of power system operations, in terms
of both the network model as well as in the market orders (Taylor, 2015):
(i) they are present in the alternating current (AC) power flow equations
which characterize the physics of the grid and (ii) in the mixed integer
programming (MIP) constraints that describe the market offers. As the
day-ahead (DA) markets in Europe and in the US rely on a linear direct
current (DC) power flow model of the grid, point (i) is not encountered in
these markets1. On the other hand, point (ii) is a reality in both US markets
that rely on solving a unit commitment (UC) problem, as well as in the EU
market which includes integer market orders, such as the so-called “block
orders”2. Throughout this chapter, we neglect (i) and rather focus on (ii).

The inexistence of equilibrium prices in electricity auctions has triggered
a long-lasting debate on the choice of an appropriate pricing scheme in
the presence of non-convexities. Convex hull pricing (CHP) has arisen
as one promising alternative: while being so far mainly debated in the
US, it has also recently emerged as a possible option for the EU market
(NEMO Committee, 2020a). Chapter 3 has undertaken a broad economic
analysis of the different pricing proposals that have been made in the
literature. This analysis has highlighted several advantages of convex hull
pricing. In this chapter, we turn to the computational aspects of convex
hull pricing. Indeed, a practical concern of CHP is that its computation
can be challenging, as often ackowledged in the literature (e.g. Issue 7 in
Schiro et al. (2015)). This chapter aims at addressing these computational
challenges by putting forward a workable algorithm—the Level Method—for
realistic instances subject to network constraints. In the remainder of this
section, we repeat the main background concepts related to CHP, covered

1 Note, nevertheless, that the debate on TSO/ISO-DSO integration has recently motivated the
consideration of more advanced models for the representation of network constraints in
market-clearing platforms (Garcia et al., 2020).

2 Cf. section 2.5.
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in chapter 3, as well as the context of non-uniform pricing discussions in
the EU. Insofar as the EU market is concerned, we focus the discussion on
computational issues, which motivate our choice of test instances.

non-uniform pricing schemes. The most widely debated “non-
uniform pricing schemes” in the literature, reviewed in chapter 3, include
integer programming (IP) pricing (O’Neill et al., 2005), convex hull pricing
(Hogan and Ring, 2003; Gribik et al., 2007), and “extended LMP” (ELMP)
pricing which has been applied early on in the PJM market (PJM, 2017;
Federal Energy Regulatory Commission, 2019). They all amount to a convex
reformulation of the market clearing problem. These strategies consist of
combining a uniform electricity price with discriminatory payments, called
uplift payments, which aim at restoring the incentives of market participants
for following the market matches. In this framework, the overall market
clearing procedure can be described in three steps, which are also followed
by our simulations:

1. Solve the primal problem, in order to establish the dispatch and com-
mitment instructions ;

2. Solve a pricing problem in order to compute uniform electricity prices ;

3. Solve the independent profit maximization problems of all market agents
(generators and the network operator) in order to establish uplift
payments.

Regarding step 3, although the definition of uplift payments is contro-
versial and varies across ISOs3, we shall focus in this chapter on the lost
opportunity costs (LOC). The main justification for this choice is computa-
tional rather than economical. Indeed, this chapter studies the computation
of convex hull pricing, which minimizes the LOC. Therefore, the LOC
turns out to be a convenient indicator for measuring the convergence of the
algorithms computing the convex hull prices. As discussed in chapter 3,
the lost opportunity costs can be split between network LOC, and suppliers’
LOC, each defined as the difference between the maximum profit achieved
by self-scheduling given the market prices and the as-cleared profit. The
total LOC is the sum of these two quantities4.

Regarding the above step 2, IP pricing is a common choice in non-convex
settings (cf. the historical account covered in chapter 3). We also use it
as a benchmark for our simulations. However, it does not attempt to
minimize lost opportunity costs, and can therefore possibly lead to high

3 Cf. chapter 3.
4 Cf. Definition 3.4.
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side payments. The lost opportunity costs are undesirable, as they can
distort the incentives of bidders or create revenue adequacy problems for
the market operator that needs to finance them (Van Vyve, 2011). These
concerns—together with other appealing properties advocated in chapter
3—motivate Convex Hull Pricing (CHP), the main property of which is to
minimize lost opportunity costs5. Because it is computationally challenging,
PJM (and other US ISOs) has recently implemented a new pricing scheme,
referred to as “extended LMP” which is more tractable computationally
than CHP. For certain forms of simple market orders, it can also be shown
to be a reasonable approximation of CHP (PJM, 2017). We expand on how it
relates to the computation of CHP in section 4.2.

uniform pricing in the eu. The EU market landscape presents a
number of major institutional differences compared to US markets6. One
such notable difference is that day-ahead energy auctions are operated
by for-profit Nominated Electricity Market Operators (NEMOs) while, in the
US, it is the (typically non-profit) ISO that operates both the market and
the network. One implication of this difference relates to the ability of the
market operator to socialize uplift payments. This difference may, in part,
justify the currently employed “uniform” pricing scheme that is adopted
in Europe, as implemented in Euphemia, the algorithm that clears the
pan-European day-ahead auction (NEMO Committee, 2020b).

In Euphemia parlance, the aforementioned generator lost opportunity
costs can be related to: (i) paradoxically accepted blocks (PAB)—cleared bids
actually facing losses, i.e. requiring make-whole payments (cf. section 3.2)—
and (ii) paradoxically rejected blocks (PRB)—a rejected bid that would have
been profitable, i.e. facing a foregone opportunity. The EU day-ahead market
“avoids” uplift payments by (i) constraining the problem by not allowing
the acceptance of PABs while (ii) allowing PRBs, but not paying their
lost opportunity costs. Ultimately, it does not effectively reduce the lost
opportunity costs to zero, but it guarantees zero make-whole payments, while
increasing the total lost opportunity cost and not paying it—which creates
self-scheduling opportunities for the market participants. Consequently,
this pricing scheme only outputs uniform prices while it does not provide
the market participants with any discriminatory payments. This justifies
why, in EU NEMO parlance, it is referred to as uniform, in contrast to the
three non-uniform pricing schemes that are discussed previously.

This uniform pricing scheme involves “primal-dual” constraints that
implicate dispatch and price decisions in a single market clearing model.

5 cf. Proposition 3.1
6 cf. the discussion in section 3.1
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The solution implemented in Euphemia amounts to an iterative algorithm
that matches market orders while aiming to find a feasible price (without
PAB). If this is not possible, the algorithm generates a cut in the primal
model and repeats the process. In contrast to the non-uniform pricing
schemes that work in three steps (dispatch, price, uplifts), the EU “uniform”
pricing scheme works as a single—but iterative—step, and couples dispatch
and price problems together.

This makes the problem that Euphemia is called to solve (a mixed integer
quadratic program subject to complementarity constraints) computationally
challenging. Moreover, the approach deteriorates market welfare, since
welfare-enhancing orders can be discarded if no market clearing price can
be found to support the aforementioned clearing rule. For these reasons,
non-uniform pricing schemes, and in particular convex hull pricing, have
recently received consideration by the European NEMOs as a possible
option for the European DA energy auction (NEMO Committee, 2020a).
Considering the aforementioned institutional EU structure, as well as the
algorithm implemented in Euphemia, this would constitute a disruptive
market design evolution.

Computationally speaking, implementing CHP in Europe comes with
three paramount requirements (NEMO Committee, 2020b,a):

• Euphemia is afforded 12 minutes of run time7.

• The market model includes a network of ∼ 40 bidding zones, and its
geographic footprint is expected to be further enlarged.

• The market model is expected to move towards 15-minute granularity
in the near future (a horizon of 96 periods).

Forty bidding zones for ninety-six periods implies a 3,840-dimensional
price space. These requirements motivate the considered use cases in
section 4.4.

contributions and structure of the chapter. The contribu-
tion of the chapter is twofold:

1. We propose the Level Method (Nesterov, 2004) for computing CHP and
adapting it to the specificities of our problem. We specifically adapt
the algorithm in order to exploit the convexity of the network model.
We further introduce a “multi-cut” variant of the Level Method in
order to leverage the separability of the sub-problems. Note that

7 This held true when the corresponding paper of this chapter was written. As noted in chapter
3, the runtime limit is now 17 minutes. This change neither affects the discussion nor the
conclusions of this chapter.
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two types of approaches have been envisioned in the literature for
solving CHP: dual approaches and the primal approaches (we define
these in section 4.2). The Level Method belongs to the former. Primal
approaches, and their drawbacks which motivate our choice for a
dual approach, are presented in section 4.2. The review of alternative
(tested) dual approaches comes in section 4.3 and motivates our
choice of the Level Method.

2. We efficiently solve CHP, using the Level Method, for large instances
including a network and a horizon of 96 periods, which anticipates the
evolution of the EU market. We conduct a critical comparison of our
approach against both primal and dual decomposition approaches. In
particular, we compare it to a notable recent publication by Andriane-
sis et al. (2021), which proposes a Dantzig-Wolfe (D-W) algorithm for
computing CHP. The D-W algorithm exhibits favorable performance
on a test case without a network and with 24 time periods, as con-
sidered in Andrianesis et al. (2021). Given our preoccupation with a
market clearing model at the scale of the EU market, the question be-
comes how the method scales when moving from a 24-dimensional to
a 3,840-dimensional price space. When increasing the dimension, the
Level Method is empirically shown to attain favorable performance
relative to Andrianesis et al. (2021).

Our chapter is inspired by an older unpublished work (Stevens, 2016),
and is further motivated by Andrianesis et al. (2021). We describe the
mathematical formulation of CHP in section 4.2. We then introduce the
Level Method in section 4.3. In section 4.4, we test the algorithm on multiple
large instances and compare the results with D-W. Section 4.5 concludes
and discusses areas of future research.

4.2 mathematical formulation

convex hull pricing program. We define the dispatch problem
subject to network constraints as follows:

min
c,q,x, f

∑
g∈G

cg (4.1a)

(πi
t) ∑

g∈Gi

qg,t − Di
t = ∑

l∈
f rom(i)

fl,t − ∑
l∈

to(i)

fl,t ∀i, t (4.1b)

(cg, qg,t, xg,t) ∈ Xg ∀g ∈ G (4.1c)

f ∈ F (4.1d)
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Here, Gi denotes the set of generators (or market offers) at node i. Each
offer is modelled with a total cost cg, a power output qg,t at time t and a
set of non-convex constraints Xg. The generic variables xg stand for all the
binary variables encountered in the generator model. The demand at time
t and node i, Di

t, appears in the market clearing (MC) constraints (4.1b).
Regarding the network, fl,t stands for the flow on line l, while f rom(i) is
the set of lines originating from i and to(i) the ones directed towards i. No
assumption is made on the network constraints F , except that it is a convex
set.

Each generator g is assumed to be a selfish agent that maximizes profit,
i.e. solves the following program:

max
c,q,x ∑

t
qg,tπ

i(g)
t − cg (4.2a)

(cg, qg,t, xg,t) ∈ Xg (4.2b)

Here, i(g) stands for the node of generator g, while π
i(g)
t represents the

market price of node i(g) at time t.
A fundamental result on CHP establishes that minimizing lost oppor-

tunity costs amounts to solving the following problem (Hogan and Ring,
2003; Gribik et al., 2007):

πCHP = arg max
π

L(π) (4.3)

Here, L(π) denotes the Lagrangian dual function, obtained by relaxing
constraints (4.1b) of problem (4.1):

L(π) = ∑
i,t

πi
tD

i
t (4.4a)

− ∑
g∈G

max
(c,q,x)g∈Xg

{
∑

t
qg,tπ

i(g)
t − cg

}
(4.4b)

+ min
f∈F

∑
i,t

πi
t

 ∑
l∈

f rom(i)

fl,t − ∑
l∈to(i)

fl,t


 (4.4c)

We recognize in (4.4b) the profit maximization problems (4.2) of the
generators. As established in Gribik et al. (2007), using the optimal primal
dispatch solution of (4.1) and injecting it into (4.4) clarifies why the previous
Lagrangian problem does indeed minimize the LOC8. As also pointed out

8 Cf. the develomements of chapter 3 and in particular Proposition 3.1.
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in the literature, the definition (4.3) of CHP also indicates that the LOC can
be interpreted as the duality gap between (4.1) and (4.4).

us versus eu models . In addition to institutional differences between
US and EU markets, another major difference relates to the definition of
market products. The US markets follow a unit-bidding model, where
each unit is represented explicitly in the market, along with its technical
characteristics. On the other hand, the EU day-ahead market follows a
portfolio-bidding model (which cannot be subsumed in the unit commitment
formulation), where each agent submits multiple generic market orders
that represent the portfolio of its assets in an aggregated way. These market
orders include convex hourly orders—stepwise and interpolated curves—as
well as non-convex orders—mainly the family of block orders9 (NEMO
Committee, 2020b). The latter is a financial order spanning over multiple
periods and involving a binary acceptance variable.

Model (4.1) remains general regarding the bid (generator) constraints
(4.1c), which are simply represented as the non-convex set Xg. This implies
that the approach outlined in this chapter can accommodate all the flavours
of unit commitment models as well as the EU-like auctions. This exceeds
what a “primal CHP approach” can model.

Finally, model (4.1) considers a general (but convex) set of network con-
straints F . Our approach can in fact accommodate any convex representa-
tion of the network. In both the US and EU market, F would amount to a
set of linear constraints, the main difference being that certain US markets
are nodal (larger number of nodes) while the EU market is zonal (roughly
one zone per country). We remark in section 4.3 on the specific treatment
of the network in our proposed Level Method.

primal and dual approaches for computing chp. In this sec-
tion, we locate the Level Method in the perspective of the landscape of all
the alternative of approaches for solving CHP and we motivate the choice
of a dual approach in light of the limitations of the primal approaches.

As noted in section 4.1, there are two main approaches envisioned for
computing convex hull prices—i.e. solving problem (4.3): (i) the Lagrangian
dual approaches, which directly attempt to maximize function L(π) using an
iterative algorithm, and (ii) the primal approaches, understood as methods
that seek to describe the CH of the non-relaxed constraints (4.1c)-(4.1d)
by developing tight formulations. Figure 4.1 outlines the landscape of

9 Note that other non-convex (and less standard) products in Euphemia such as the Italian
unique national price (PUN) or complex orders NEMO Committee (2020b), are not directly
compatible with CHP, because they implicate primal and dual variables in their definition. Cf.
section 2.5 for a discussion.



4.2 mathematical formulation 91
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Figure 4.1: Landscape of problems for computing or estimating convex hull
prices.

approaches for computing convex hull prices. The top problem (A) corre-
sponds to the dispatch problem (4.1). Below, on the left, we find primal
relaxations of (A) while, on the right, we find Lagrangian relaxations of
(A)—Lagrangians are indeed a widely employed method for deriving con-
vex relaxations of non-convex programs (Lemaréchal, 2001). The problem
(Γ) corresponds to the CHP definition (4.3), which can be solved by dual
decomposition approaches such as the Level Method. Problem (Γ) maps to
its primal equivalent in (C). The underlying idea of the primal formulation
is that computing the CHP as the Lagrangian multipliers of (4.3) is equiv-
alent to computing the dual variable π associated to the market clearing
constraint (4.1b) in the primal problem (4.1), if the latter is expressed on the
convex hull of its domain—i.e. conv(Xg) ∀g ∈ G (see Wolsey (1998) and
Lemaréchal (2001) for the general result in Lagrangian relaxation theory,
and Hua and Baldick (2017) for the specific result related to CHP).

Although (C) is the tightest primal relaxation of (A), there exist looser re-
laxations, such as (D), which amounts to relaxing the integrality constraints
xg,t ∈ {0, 1} to xg,t ∈ [0, 1]. This corresponds to ELMP pricing, discussed in
the introduction. ELMP pricing can be interpreted as a computationally
efficient approximation of CHP10. In certain cases, relaxing the integrality
constraints in Xg may provide conv(Xg). In this case, problems (C) and

10 See PJM (2017) as well as the discussion of chapter 3.
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(D) are equivalent and ELMP pricing effectively corresponds to convex
hull pricing. The fact that relaxation (D) is looser than (C) implies that
the duality gap between (A)–(D) will be greater than or equal to the one
between (A)–(C).

Interestingly, one can also relate the primal relaxed problem (D) to
its Lagrangian dual counterpart (∆). While CHP is solving the partial
Lagrangian dual relaxation (Γ), ELMP pricing corresponds to solving the
full (looser) Lagrangian dual relaxation (∆), where all the constraints—and
not only the market clearing constraints—are dualized11.

Regarding the primal CHP problem (C), a way to approach it is to
develop a tight—but custom—formulation, specific to the targeted problem
(A). Recent researches have embraced this idea: Hua and Baldick (2017)
proposes an explicit formulation for the primal model of CHP for classical
UC constraints. Madani et al. (2018) analyses primal CHP formulations for
the constraints of the European day-ahead market clearing model12. More
recent research further elaborates on the idea, developing tight (custom)
formulations for MISO (Yu et al., 2020) or proposing a network flow
model of unit commitment, in order to compute CHP for a broader set of
constraints (Álvarez et al., 2019). One value of the primal CHP approaches
is to establish the link between CHP theory and the literature dedicated
to tight formulations of UC polytopes13. Similarly, when including a non-
convex network model, the primal CHP approach also establishes the
connection between CHP theory and SDP–SOCP relaxations of AC power
flow (Garcia et al., 2020).

Nevertheless, as also voiced in Andrianesis et al. (2021), there are certain
constraints for which the convex hull is not tractable in the sense that it
may not be possible to characterize the convex hull with a scalable number
of constraints. This already holds for simple ramp constraints (Hua and
Baldick, 2017). This is also acknowledged by Álvarez et al. (2019), where
the authors do not account for these ramp constraints in their network

11 Taylor (2015) proposes an interesting interpretation of CHP by relating it to the semi-definite
programming (SDP) relaxation of problem (4.1). The proposition is motivated by the well-
known SDP relaxation of a non-convex quadratically constrained program (QCP) (Vanden-
berghe and Boyd, 1996; Boyd and Vandenberghe, 1997; Lemaréchal and Oustry, 2001) and
the fact that a MIP can be expressed as a QCP. However, the above taxonomy reveals an
inaccuracy in the reasoning: it mixes (∆) and (Γ), as it omits the fact that CHP relies on a
partial (and not complete) Lagrangian relaxation, where only the market clearing constraints
are relaxed (i.e. dualizing fewer constraints can only improve the duality gap (Lemaréchal
and Renaud, 2001)).

12 Note however that Madani et al. (2018) focuses on a subset of the market constraints, ignoring
e.g. linked blocks and exclusive groups NEMO Committee (2020b).

13 See (Morales-España et al., 2013, 2015; Gentile et al., 2017; Rajan and Takriti, 2005; Damcı-Kurt
et al., 2013; Queyranne and Wolsey, 2017; Silbernagl et al., 2015; Knueven et al., 2020; Sridhar
et al., 2013). See also chapter 2 in Stevens (2016) for a critical discussion of this literature.
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flow model. Instead, Yu et al. (2020) needs to combine the proposed tight
formulation with an iterative algorithm in order to account for the ramp
constraints in a scalable way. It goes without saying that these modelling
limitations also hold for more advanced constraints such as multimode
CCGT units, detailed battery models, and so on. Thus, since the pricing
mechanism becomes dependent on the quality of the primal formulation,
the primal approach can be ruined by adding a new constraint—which
is particularly concerning, since electricity market models are constantly
subject to changes. These modelling limitations imply that, if the repre-
sentation of the convex hull is not tractable, the primal approaches are
irremediably left with an approximation of convex hull prices, such as the
ELMP pricing model (D). This is illustrated in our numerical results of
section 4.4, where the primal method benchmark of Hua and Baldick (2017)
is included. This motivates our choice for a dual approach.

4.3 the level method

4.3.1 Review of existing algorithms

The appropriate algorithmic scheme for solving (4.3) is related to the type
of function L(π).

Proposition 4.1 (Concave). Function L(π) is concave in π.

Proposition 4.2 (Non-smooth). Function L(π) is a non-smooth (piecewise
linear) function, where each facet can be seen as corresponding to a set of binary
(commitment) decisions xg.

Proposition 4.3 (First-order oracle). A first-order oracle is available, i.e. given
a price π, both the function value L(π) as well as its supergradient s ∈ ∂̂L(π)
can be evaluated.

Proposition 4.4 (Supergradient). Let (c∗, q∗, x∗, f ∗) be the optimal reactions
to π (solving respectively (4.4b) and (4.4c)). Then

s = Di
t − ∑

g∈G
q∗g,t + ∑

l∈ f rom(i)
f ∗l,t − ∑

l∈to(i)
f ∗l,t

is a supergradient of L in π; i.e. s ∈ ∂̂L(π).

Each call to the oracle implies solving MIP profit maximization programs
(4.4b) for each generator as well as for the network program (4.4c)—these
are thus slave problems. We propose later a special treatment of the network
and leverage the separability of the profit maximization problems in order
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to substantially improve the formulation. Any algorithm tackling this
problem would work in three steps:

1. Given a price πk, evaluate L(πk) and ∂̂L(πk) ;

2. Given this information, generate a new price πk+1 ;

3. If the stopping criterion is met, stop. Else, go to step 1.

The main difference between dual decomposition algorithms is in the way
that they construct the sequence of iterates {πk}∞

k=0: (i) some algorithms
simply update the prices based on the latest supergradient information—
they are memoryless—; (ii) while other algorithms will keep memory of the
sequence of iterates. We briefly summarize three approaches, which were
tested and compared to the Level Method by Stevens (2016).

A well-known scheme belonging to category (i) is the subgradient scheme.
Perhaps surprisingly, it is proven to be optimal for general convex non-
smooth optimization with arbitrarily high dimension (Nesterov, 2004).
However, when dealing with problems of “moderate” dimension such as
the one presented in our context, there exist more optimistic alternatives.

Indeed, the subgradient scheme for piecewise-linear functions, such as
our problem (4.3), tends to oscillate between the facets of the Lagrangian
dual function, around an edge. Therefore, one idea is to “catch the edge”
and follow it until the optimum, instead of oscillating from one facet to
another, as the subgradient method does. This intuitive reasoning leads to
the Extreme-Point Subdifferential (EPSD) algorithm, which has been specif-
ically applied to the CHP problem (Wang et al., 2013a,b). However, our
experiments in Stevens (2016) reveal that each iterate of the algorithm is
costly, as it requires not only to solve the problems (4.2) for each generator
to optimality, but to enumerate all the optimal solutions14.

Unlike these two memoryless schemes, the Analytic Center Cutting Plane
Method15 (ACCPM) is based on the principle of iteratively reducing the
search domain: the price domain is initially limited to a box and, at each
iterate, the supergradient is used for generating a cut, which shrinks the
search domain. The next testing point is chosen as the analytical center of
the updated domain.

Our original investigation of these alternative dual approaches (subgradi-
ent, EPSD and ACCPM) concluded that none of them were competitive
with the Level Method for computing CHPs (Stevens, 2016).

14 Some illustrations of these algorithms are provided in the appendix 4.A of this chapter.
15 See Nesterov (2004) and Boyd et al. (2008) for the theory and Wang et al. (2013b, 2009) for its

application to CHPs.
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4.3.2 Kelley’s approach

The Kelley algorithm forms the basis for the proposed Level Method (Nes-
terov, 2004). It is based on the idea of iteratively constructing a model (an
upper approximation) of the Lagrangian function L(π), using its supergra-
dients.

Definition 4.1 (Model Function). Let Q be the initial domain of our problem
(i.e. a box limiting the prices, which can be economically interpreted as price
caps) and let {πk}∞

k=0 be a sequence in Q. Let sk be the supergradient at iterate
πk. Then

L̂(π, k) = min
j=0..k
{〈sj, π − πj〉+ L(πj)} (4.5)

is a model for the Lagrangian function L(π), such that L̂(π, k) ≥ L(π).

In order words, the piecewise linear function L(π) is upper-approximated
at each iterate by a model function L̂(π, k) consisting of supporting hy-
perplanes. At iteration 0, this is a single hyperplane. Then, as the iterate
count k is increasing, the model function L̂(π, k) is becoming increasingly
accurate.

Definition 4.2 (Master Program). The maximization of the model function
yields the master program at iterate k:

max
π∈Q, θ

θ

s.t. θ ≤ 〈sj, π〉+ bj ∀j = 0..k
(4.6)

Here, sj are the “cut coefficients” (as defined in Property 4.4) and bj = L(πj)−
〈sj, πj〉 are the “cut constants”. This is a computationally tractable linear program.

Having the upper-approximation function L̂(π, k) at hand, one needs
to decide the rule for building the sequence of iterates {πk}∞

k=0. The more
intuitive way to pick the next iterate is:

πk+1 = arg max
π

L̂(π, k). (4.7)

i.e. the solution of the master program (4.6). This defines Kelley’s cutting
plane method. One of its benefits is that it explicitly provides an upper
bound as well as a lower bound at each iterate k: a lower bound is defined
as LBk = maxj=0..k L(πj), while an upper bound is UBk = maxπ L̂(π, k).
Note that the sequence of upper bounds {UBj}k

j=0 is decreasing, as the

definition of the model function implies that L̂(π, k + 1) ≤ L̂(π, k). The
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upper and lower bounds can be combined to define the relative gap, which
is used as a stopping criterion for the Kelley (and Level) Method:

UBk − LBk
|UBk|

≤ ε (4.8)

4.3.3 Level stabilization

Kelley’s algorithm is finite, because each iterate adds a new hyperplane and
the number of hyperplanes supporting the function is finite. Nevertheless,
despite its simplicity and its good behaviour in low dimension, it tends to
be unstable in higher dimension16. This is due to the unstable nature of
piecewise linear functions: adding a new supporting hyperplane can move
the optimum far from the previous point (i.e. to a corner of the box Q).
This well-known drawback justifies why multiple stabilization approaches
have been proposed in the literature, including the Level Method (Nesterov,
2004; Frangioni, 2020).

The underlying idea of the Level Method is to update prices more
smoothly: instead of using the optimum of the model function as the next
iterate, the algorithm chooses πk+1 such that it is “better” than πk, as
evaluated by the model function L̂(πk+1, k), without being optimal at all
costs. We observe in section 4.4 that this stabilization has a major influence
on the practical performance of the algorithm.

A graphical illustration in 1-D is presented in Figure 4.2. The cuts, the
LB and the UB are obtained as in Kelley’s method, by solving the master
program (4.6). However, unlike in Kelley’s method, the next price candidate
is selected by solving a projection program.

Definition 4.3 (Projection Program). The iterate πk+1 is chosen as the projec-
tion of πk on the “level set” L̂(π, k) ≥ αUBk + (1− α)LBk, which amounts to
solving:

min
π∈Q

||π − πk||22

s.t. 〈sj, π〉+ bj ≥ αUBk + (1− α)LBk ∀j = 0..k
(4.9)

Here, α ∈ [0, 1] is the projection parameter. This is a computationally tractable
quadratic program.

Regarding the calibration of α, α = 1 corresponds to the classic Kelley
method, while α = 0 implies that the iterate simply does not move. We
note that a theoretically optimal α exists for general convex non-smooth
functions (Nesterov, 2004), but that a calibration to the specific problem can

16 This is illustrated in appendix 4.A.
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Figure 4.2: Illustration of projection on the level set.

still be meaningful. Our empirical tests on the CHP problem reveal that, for
the high-dimensional instances that we are interested in, the approach is
largely insensitive to the choice of α. This is shown later in Table 4.3, where
any value of α between 0.2 and 0.7 exhibits similar performances. Following
Stevens (2016), the value α = 0.2 is chosen for all of our experiments in the
present work.

Regarding the choice of the box Q, experimental evidences show that the
Level Method is not too sensitive to its exact value, although it impacts the
quality of the UB estimate. In all of our experiments, Q is initially set to
±300$/MWh and is then progressively shrunk after 10, 20 and 30 iterates
to ±25$/MWh around the latest price candidate. This is justified by an
analysis of the volatility of the price iterates, which rapidly reach a price
close to the CHP.

4.3.4 Refinements of the Level Method in the context of CHP

We now propose adjustments to the basic algorithm which exploit the
structure of our problem. We specifically leverage the fact that: (i) the
network model is convex and (ii) the profit maximization programs of the
generators are separable.

In our development so far, we have been treating the convex network term
(4.4c) identically to the non-convex generators, i.e. by solving the network
profit maximization given a price π, and generating a supergradient. We
illustrate below the treatment of the convex parts of the primal program by
focusing our discussion on the network. The idea applies identically to con-
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vex generators (e.g. the convex orders in Euphemia, which are numerous),
a convex pumped-storage model, etc.17

For the sake of illustration, let us assume that the network constraints F
correspond to the DC (voltage angle) power flow. Term (4.4c) then reads as
follows:

min
f ,ψ

∑
i,t

πi
t

 ∑
l∈ f rom(i)

fl,t − ∑
l∈to(i)

fl,t

 (4.10a)

(µl,t) fl,t ≤ Fl ∀l, t (4.10b)

(νl,t) fl,t ≥ Fl ∀l, t (4.10c)

(λl,t) fl,t = Bl(ψor(l),t − ψdest(l),t) ∀l, t (4.10d)

Here, Bl stands for the susceptance of line l, and Fl and Fl are its max
and min capacity, while or(l) and dest(l) denote the origin and destination
nodes of line l. The dual of (4.10) can be expressed as:

max
µ≥0,ν≥0,λ

∑
l,t

νl,tFl − µl,tFl (4.11a)

π
or(l)
t − π

dest(l)
t + µl,t − νl,t + λl,t = 0 ∀l, t (4.11b)

∑
l∈to(i)

λl,tBl − ∑
l∈ f rom(i)

λl,tBl = 0 ∀i, t (4.11c)

Problem (4.11) can now be injected into (4.4) as a substitute for (4.4c), mean-
ing that the network dual variables (µ, ν, λ) would explicitly be variables
of the master (and projection) program. This process allows to provide
more information directly into the master program, hence improving the
available model L̂(π, k) of function L(π).

Secondly, the classical Kelley and Level Methods add a single cut at each
iterate, namely one single cut for all the generators. Nevertheless, the dual
function is separable with respect to the generators. We therefore propose a
multi-cut Level Method, whereby we compute one cut (one lower approxima-
tion) for each generator profit maximization subproblem. Our experiments
reveal that this adaptation can deliver substantial computational benefits.
Generating more cuts makes the model function more accurate, which en-
ables the algorithm to converge faster. Note that multi-cut versions of other
approaches have been applied successfully in different contexts, such as
for two-stage stochastic programs (Birge and Louveaux, 1988, 2011).

17 See section 3.6 and appendix A in Stevens (2016) for a treatment of these cases.
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To summarise, after the inclusion of both the network dual and the
multi-cut approach, the master program (4.6) at iterate k becomes:

max
µ≥0,ν≥0,
λ,π∈Q,θ

∑
i,t

πi
tD

i
t + ∑

l,t

(
νl,tFl − µl,tFl

)
− ∑

g∈G
θg (4.12a)

θg ≥ 〈qj
g,·, πi(g)〉 − cj

g ∀g, j = 0..k (4.12b)

π
or(l)
t − π

dest(l)
t + µl,t − νl,t + λl,t = 0 ∀l, t (4.12c)

∑
l∈to(i)

λl,tBl − ∑
l∈ f rom(i)

λl,tBl = 0 ∀i, t (4.12d)

Here, {qj
g}k

j=0, corresponds to the sequence of generator g power output for
iterates j = 0..k. These parameters are also cut coefficients for generator g. On
the other hand, {cj

g}k
j=0, which corresponds to the sequence of generator

g cost for iterates j = 0..k, are the cut constants. The translation of the
projection program (4.9) is applied as discussed previously.

In the classical Kelley or Level Methods, estimating the lower bound
(evaluating (4.4) at a given π) follows directly from the resolution of the
slave subproblems. The inclusion of the network into the master program,
as described above, complicates the process. Indeed, the network contribu-
tion in the dual function (4.4c) is not solved explicitly anymore, but now
comes in the master objective (4.12a), together with constraints (4.12c) and
(4.12d) that should not be violated. Therefore, estimating the value of L(π)
after having retrieved the cuts from the slaves (for the same π) amounts to
solving the master (linear) program (4.12) with the variables π fixed. The
overall procedure is described schematically in Figure 4.3. Note that the
resolution of the two master programs (with π fixed and variable) can be
parallelized.

4.4 simulation results

This section presents the numerical results of the (multi-cut) Level Method
on instances of realistic scale. The Level Method has been benchmarked
against other dual approaches in earlier work by the authors (Stevens, 2016).
It is chosen as the most promising method for computing CHPs among
all tested alternatives. In the present section, we therefore focus on its
comparison with a recent work by Andrianesis et al. (2021), which employs
a D-W column generation algorithm (i.e. the dual of Kelley, cf. Vanderbeck
and Wolsey (2010)) for iteratively building the convex hull of the dispatch
problem, i.e. D-W gradually discovers the corners of the primal formu-
lation. As in the case of the Level Method, it can be applied to any UC
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Figure 4.3: Our implementation of the Level Method for the computation of
CHP.

formulation. We use it as a performance benchmark in our analysis, due to
its favourable empirical performance. We also include IP pricing, discussed
in the introduction, as another benchmark in our analysis, as well as ELMP
pricing (discussed in section 4.2) as a primal method benchmark.

Unlike other computational researches on CHP which are mainly con-
cerned about the number of generators in the problem (Andrianesis et al.,
2021; Wang et al., 2013b), we rather focus our investigations on the sensi-
tivity of the algorithms with respect to the dimension of the price space.
Indeed, although the number of generators is surely relevant, since the
ultimate goal is to compute prices by optimizing L(π), the price-space
dimension is expected to have a significant impact on the performance of
any tested method. Therefore, we first present results without a network,
with a horizon of 24 periods, and then introduce network constraints and
extend the time horizon to 96 periods.

For all our test cases, the comprehensive market procedure for computing
the prices and measuring lost opportunity costs follows the steps that are
described in section 4.1. Concretely, there are three steps: dispatch, price,
and lost opportunity costs computation. The Level Method and D-W differ
with respect to the second step. Both approaches have been implemented
in Julia (JuMP) and all the tests are run on a personal computer (Intel Core
i5, 2.6 GHz with 8 GB of RAM) using Gurobi 9.1.1.
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Economic results Computational results

Dispatch Cost [$] 29,791,214 Level iter 19

IP LOC [$] 652,263 Level av. time/itera[s] 8.2 (0.36)

Primal LOC [$] 11,400 D-W iter 29

CHP LOC [$] 9,746 D-W av. time/itera[s] 8.9 (0.34)
a (·) denotes the average time per iterate for solving the “master programs” (i.e. master
plus projection in the case of the Level Method).

Table 4.1: Results of the Level Method and the Dantzig-Wolfe algorithm on
FERC datasets (average over 11 instances).

4.4.1 FERC (US) test cases

The first test cases in our analysis are based on FERC datasets (Knueven
et al., 2020; Krall et al., 2012)18. The test sets are publicly available, together
with the associated UC model, and are also used by Andrianesis et al.
(2021), which permits a sound comparison. These test cases consist of a
detailed UC model. The only adaptations in our work are the removal
of reserve and the netting out of renewable supply from the load. The
UC model includes, among others, min up and down time constraints,
ramp constraints (including start-up and shut-down ramp rates), variable
start-up costs which depend on how long a unit has been off, no-load
costs, and piecewise linear production costs. The model has no network, but
gathers > 930 generators. This corresponds to an instance of realistic size,
barring for the absence of the network. As in Andrianesis et al. (2021), we
conduct our analysis on a 24-period horizon with hourly time step.

Table 4.1 presents the average results over 11 FERC instances, while
Figure 4.4 illustrates the convergence behaviour of both approaches on one
of the instances. The 11 instances essentially correspond to 11 different
load profiles, with slight changes in the production fleet, which varies
from 934 to 978 generators. The stopping criterion of the Level Method
(equation (4.8)) is set to 0.01%. The number of iterates reported in Table
4.1 for D-W corresponds to the iterations that are required for reaching the
same amount of LOC as the Level Method. Both algorithms are initialized
at a uniform price of 20$/MWh.

The results already show the attractive performance of the Level Method,
both (i) in terms of iteration count and (ii) in terms of robustness. Indeed,
there is an average improvement of 34% compared to D-W in terms of

18 These are the same as the so-called “FERC dataset” used in chapter 3.
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Figure 4.4: Convergence of the Level Method and the Dantzig-Wolfe algorithm,
measured by the lost opportunity costs (IP pricing and the primal
method are used as benchmark thresholds), on the FERC 2015-07-01

high wind instance. Both axes are in logarithmic scale.

number of iterates (Table 4.1). It should be noted that this number of
iterates is a reasonable measure for comparing the performance of both
approaches. Concretely, both methods have to solve the same subproblems
and mainly differ in the other computations that they are required to
perform. Whereas the Level Method has to solve both a linear master and
a quadratic projection, D-W is only required to solve the linear (master)
extended formulation. On the other hand, the extended formulation solved
by D-W is larger than the Level master program, as illustrated in Figure
4.5. Overall, this results in a similar run time per iterate, as reported in
Table 4.1 which shows both the average run time per iterate as well as,
between parentheses, the average run time spent in the master programs
(master plus projection programs for the Level Method). This implies that
the number of iterations (the analytical complexity: the number of calls of the
oracle to reach a reliability target) is a reasonable measure for comparing
performance. It also has the benefit of being less dependent on the specific
machine or on the implementation details. Note that, for both approaches,
the slave subproblems can be parallelized.

Furthermore, there is a gain in robustness: the Level Method exhibits a
more stable performance, as observed in Figure 4.4. Indeed, Figure 4.4
suggests that it does not seem possible to stop the D-W algorithm long
before its termination, since LOC remains high for a large number of
iterations (we also refer the reader to Figure 4.7 of the next use case,
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Figure 4.5: Size of the master programs of both the Level Method and the
Dantzig-Wolfe algorithm on the FERC 2015-07-01 high wind in-
stance. The Level Method adds cuts, which implies that the number
of constraints is growing. On the other hand, D-W adds columns,
which implies that the number of variables is growing. The robust-
ness of the Level Method translates into a master program that grows
less rapidly than D-W.

which shows how the convergence of LOC over iterates translates to the
distance of prices from CHPs). Instead, the Level Method reaches near-
optimal prices in fewer iterations. This is an inherent advantage of the
Level Method, which is by design a stabilization approach.

Finally, we comment on the primal method benchmark. The FERC model
exceeds what a primal CHP approach such as Hua and Baldick (2017) can
model, since it includes ramp constraints and time-dependent startup costs.
The integer relaxation is therefore expected to lead to an approximation of
CHP. The quality of the primal method largely depends on the tightness
of the formulation. In this respect, the FERC model is derived from a
careful review of the literature dedicated to tight formulations of the unit
commitment model (Morales-España et al., 2013; Sridhar et al., 2013). The
quality of the model is discussed in details in Knueven et al. (2020), where it
is accompanied by computational experiments of its tightness. As observed
in Table 4.1, the primal method turns out to provide a close approximation
of CHP on these FERC instances. Nonetheless, this is not always guaranteed,
as we observe in the next test case (Table 4.4), where the primal method
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leads to an average lost opportunity costs which is ∼ 60, 000€ higher than
CHP, for a market of comparable dispatch cost19.

The test cases analysed so far suggest a promising performance for the
Level Method. Nevertheless, even if these FERC instances are of realistic
scale insofar as the number of power plants are concerned, we are interested
in computing prices. This suggests that it is the dimension of the price space
that matters the most. There are essentially two ways20 to increase the
price dimension: (i) augmenting the time horizon—the horizon of future
EU markets will be 96 periods of 15 minutes—and (ii) adding a network—
which is unavoidable in both the EU and the US markets. This motivates
the next test cases.

4.4.2 EU test cases

We now extend our analysis to use cases with a network. The EU dataset that
we utilize is the one used in Aravena and Papavasiliou (2016). The network
data is based on Hutcheon and Bialek (2013), and is constructed among
others from an ENTSO-E database21. The market suppliers are modelled
as a slightly simpler version of the UC model than the FERC test case,
essentially simplifying the cost structure: there is a single start-up cost,
instead of the variable start-up costs of FERC, and the marginal production
cost is constant. All the cases are simulated over 6 different load profiles. As
we are interested in studying the scalability of the Level Method and D-W
algorithm with respect to the network and the time horizon, the data has been
aggregated into two test cases: BE and BE-NL, which are described in Table
4.2. As detailed in section 4.1, Euphemia, the EU market clearing algorithm,
currently computes prices for ∼ 40 bidding zones, and is expected to move
to 15-minute granularity (96 time periods) in the near future. This makes
our two tests cases with 96 periods very relevant proxies of the evolving
EU context with respect to price dimensionality.

The final results are obtained with the stopping criterion set to 0.01%, as
for the FERC cases. Table 4.3 shows the sensitivity of the Level Method to-
wards parameter α, previously discussed in section 4.3.3. Table 4.4 presents
results for the BE test case with multiple time horizons. Figs. 4.6 and 4.7
illustrate the convergence of the BE test case with 96 periods. Table 4.5
presents a comparison for different network sizes. It is worth noting that,

19 We refer the reader to chapter 3 for a more extensive comparison of CHP with ELMP.
20 A third way would be the introduction of reserve. The current EU DA market does not co-

optimize energy and reserve, which is why it is not considered in our analysis. Nevertheless,
art. 40 of EGBL guidelines indicates that this could constitute a future evolution of the EU
market.

21 This is the same as the so-called “ CWE dataset” used in chapter 3.
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Test case Bidding Zones Lines Generators

BE 30 30 74

BE-NL 59 63 145

Table 4.2: Description of the size of the EU instances.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Level iter 54 44 45 43 41 43 45 48 60

Table 4.3: Sensitivity of the Level Method with respect to parameter α on the BE
96-period case (average over 6 instances).

in all the test cases (except the 12-period BE test case, which is however
less relevant for practical applications), the Level Method turns out to
be superior to D-W in terms of iteration count. Furthermore, we observe
that the benefits of the Level Method are magnified when increasing the
dimension of the price space.

More specifically, insofar as sensitivity with respect to the time horizon
is concerned, Table 4.4 demonstrates that the Level Method scales well
with respect to the horizon of the problem as it increases from 19 to 44

iterates as the horizon grows from 12 to 96 periods. On the other hand, the
performance of D-W is seriously harmed by the increase of the horizon:
the number of iterates increases from 19 to 236. The stable behavior of the
Level Method is corroborated by Fig. 4.6. We observe that, within 6 iterates,
it already reaches a price that achieves lower LOC than IP pricing. Fig. 4.7
also presents the convergence of both algorithms on the same instance in
terms of the price distance to the optimum. Being capable to reach quickly
decent price candidates is an attractive feature for the EU implementation
of CHP, recalling from section 4.1 that Euphemia is currently granted 12

minutes for computing the EU day-ahead market matchings and prices.
As far as the network size is concerned, Table 4.5 presents the sensitivity

with respect to the two use cases. Perhaps surprisingly, neither of the
methods is strongly affected by the size of the network, rather the contrary.
On the instance with 24 periods, the benefits of the Level Method are
similar as in the FERC cases. On the 96-period instances, the Level Method
moves from five to four times faster than D-W on the BE and BE-NL cases,
in terms of iteration count. Overall, D-W seems much more affected by the
increase in the time horizon rather than the presence of a network, to which
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horizon 12 24 48 96

Dispatch Cost [€] 2,759,706 4,956,513 11,328,351 24,097,373

IP LOC [€] 377,528 146,167 281,649 2,617,852

Primal LOC [€] 50,871 64,323 83,172 98,391

CHP LOC [€] 7,237 11,905 21,745 31,403

Level iter 19 26 32 44

Level av. time/itera[s] 0.5 (0.05) 0.8 (0.1) 2.0 (0.4) 5.8 (1.6)

Level total run time [s] 10 21 65 255

D-W iter 19 40 77 236

D-W av. time/itera[s] 0.4 (0.02) 0.7 (0.1) 1.9 (0.3) 6.9 (2.1)

D-W total run time [s] 7 27 146 1622

a (·) denotes the average time per iterate for solving the “master programs” (i.e. master plus
projection in the case of the Level Method).

Table 4.4: Results of the Level Method and the Dantzig-Wolfe algorithm on the
BE test case (average over 6 instances).

horizon 24 96

test case BE BE-NL BE BE-NL

Level iter 26 21 44 42

Level av. time/itera[s] 0.8 (0.1) 1.5 (0.3) 5.8 (1.6) 12.3 (4.8)

Level total run time [s] 21 31 255 514

D-W iter 40 32 236 156

D-W av. time/itera[s] 0.7 (0.1) 1.3 (0.2) 6.9 (2.1) 12.7 (3.7)

D-W total run time [s] 27 42 1622 1976

a (·) denotes the average time per iterate for solving the “master programs” (i.e. master
plus projection in the case of the Level Method).

Table 4.5: Results of Level Method and the Dantzig-Wolfe algorithm for different
network sizes (average over 6 instances).
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Figure 4.6: Convergence of the Level Method and the Dantzig-Wolfe algorithm,
measured by the lost opportunity costs (IP pricing and the primal
method are used as benchmark thresholds), on the BE summer
weekday 96-periods instance. Both axes are in logarithmic scale.

Figure 4.7: Convergence of the Level Method and the Dantzig-Wolfe algorithm,
measured by the price relative distance to CHP, on the BE summer
weekday 96-periods instance.
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the test cases suggest D-W is rather robust. This is possibly due to the
fact that D-W is required to explore in the space of promising power plant
schedules—and these schedules become more and more numerous when
increasing the horizon—while the network size does not affect immediately
the number of schedules.

It should be stressed that the aforementioned computational gains can
make a difference for the practical implementation of CHP, keeping in
mind the 12-minute run time limit of Euphemia22. From Table 4.4, we
observe that the Level Method requires less than 5 minutes on average for
solving a 96-period instance. The D-W algorithm requires 27 minutes.

The computational times reported in our results may of course not be
representative of the implementation of the EU NEMOs, as solving the
slaves in parallel and increasing the computational power would reduce
the run time. Assuming an idealized parallelization of the slaves—which
is very optimistic considering the NEMOs currently run Euphemia on 8

threads (NEMO Committee, 2019)—, the run time per iterate would be
lower-bounded by the time for solving the master programs (master plus
projection programs for the Level Method, as reported between brackets in
the tables). As an example, the “most difficult” BE-instance was solved in
266 iterates by D-W, with 2.3 sec/iter for solving the master program. This
implies a lower bound of more than 10 minutes for obtaining the CHP. On
the same instance, the Level Method required 37 iterates, with 1.4 sec/iter
for solving the masters, which amounts to a total of less than 1 minute.
Furthermore, whereas the price dimension of our test cases has been
selected so as to be comparable to the EU market, the number of generators
(or market bids) is well below the value that occurs in practice. As an
order of magnitude, Euphemia currently solves instances with around
160,000 hourly orders (convex) and 4,000 block orders (non-convex) (NEMO
Committee, 2020a). This suggests that the time for solving the master
programs would likely be higher on the real instances of Euphemia.

4.5 conclusion

This chapter proposes a bundle stabilization approach for efficiently solv-
ing convex hull pricing. We demonstrate that the Level Method is able
to converge within a few iterations to a certain target gap, while exhibit-
ing a stable behaviour, on large instances which, in terms of price space
dimension, are comparable to the size of the EU day-ahead auction.

It is likely that the choice of the best algorithm for solving CHP will
depend on the specific use-case: the dimension of the network, the time

22 See footnote 7.
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horizon, the complexity of the unit commitment or market orders, the run
time that is afforded to the algorithm, etc. Although no method can con-
ceivably provide an ultimate solution for computing CHP in an arbitrarily
complex setting, the Level Method indicates the promising behaviour of a
family of “bundle approaches”. This suggests areas of future research on
alternative bundle approaches, such as the Proximal Stabilization method,
the Doubly-Stabilized Bundle Method (Frangioni, 2020) or the Boxstep method
(Marsten et al., 1975), which appear to be well suited for solving the CHP
Lagrangian relaxation.

Another question for future research relates to how the proposed ap-
proach can be adapted in case one of the following assumptions is relaxed:
the convexity of the grid model and the separability of the suppliers’ profit
maximization problems.

Having scalable algorithms capable to compute CHP on large instances
also enables more extensive quantitative analysis of its economical be-
haviour, as exemplified by the developments of chapter 3. As far as the EU
market is concerned, future works could (i) expand the tests on realistic
instances of Euphemia—our preliminary tests show that the Level Method
can solve the 4MMC23 run of Euphemia in ∼ 1 minute—, (ii) examine the
effects of non-uniform pricing on enhancing welfare in the EU day-ahead
market, and (iii) understand distributional effects of non-uniform pricing
as well as gaming effects.

23 The so-called “4MMC region” refers to a relatively small region (Czech Republic, Slovakia,
Hungary and Romania) that Euphemia used to solve in a separate run from the rest of Europe,
although it was later merged in 2022 with the rest of Europe in a single run.
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Technology N MCg [€/MWh] SCg [€] Qmin
g [MW] Qmax

g [MW]

Smokestack 3 3 53 0 16

High Tech 2 2 30 0 7

Med Tech 1 7 0 2 6

Table 4.6: Data for the stylized example with 6 suppliers (3 “Smokestack” plants,
2 “High Tech” plants and 1 “Med Tech” plant). The data include the
number of units, the marginal production cost, the start-up cost, the
minumum and maximum output of the plant. It is a modified version
of an example proposed by Scarf (1994).

4.a appendix: illustration on a 2-d example

Section 4.3 discusses, among others, four main algorithms to solve the
Lagrangian relaxation implied by convex hull pricing: the subgradient
method, the EPSD, the Kelley algorithm and the Level Method. These
algorithms have been implemented in an earlier version of the work of this
chapter (Stevens, 2016). Some of the trade-offs, observations and conclu-
sions that we have reached when implementing these various approaches,
and that led us towards the Level Method, are summarised in section 4.3.
The objective of this appendix is to provide the reader with a numerical ex-
ample in two dimensions, which can fruitfully be read in parallel with the
discussion of section 4.3 in order to illustrate the “trade-offs, observations
and conclusions” that are more extensively covered in Stevens (2016).

The aforementioned four algorithms have been implemented on an
example with a single node, two hourly periods and an inelastic demand
D of, respectively, 30 and 40 MW in periods 1 and 2. There are six suppliers
described in Table 4.6. Since there are two periods, the Lagrangian function
has two dimensions, that correspond to the prices of periods 1 and 2.
Figure 4.8 compares the sequence of iterates generated by each of the
four algorithms on this example. The x- and y-axis correspond to the
prices in period 1 and 2 (π1 and π2). The figures presents the map of the
Lagrangian function. The initial price iterate is marked as 0 on each figure.
The subsequent numbers correspond to the next iterates computed by each
algorithm. The domain is bounded such that 1.5 ≤ πt ≤ 7 (i.e. the box Q
described in section 4.3). As observed on the figure, the Lagrangian function
is piecewise linear with an optimum marked by a star, corresponding to
the convex hull prices π = (3, 6.3).

As explained in section 4.3, we observe in Figure 4.8a the typical oscilla-
tion behaviour of a subgradient algorithm on a piecewise linear function.
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Figure 4.8: Iterates sequence of the four algorithms on the modified Scarf exam-
ple. x- and y-axis correspond to the prices π1 and π2.

The algorithm tends to oscillate between two facets of the Lagrangian
function, around an edge.

The idea of the EPSD algorithm, summarized in section 4.3, is to “catch
the edge” and to follow it, as illustrated on Figure 4.8b. As noticed earlier,
the EPSD algorithm can lead to numerical issues since “following an
edge” implies to evaluate whether an iterate is still on the edge or not (for
instance, determining whether point 5 of Figure 4.8b is still on the edge)
which can be numerically challenging. More importantly, we also observe
that, as discussed in Wang et al. (2013a,b), computing the direction of the
new iteration which is implied by the existing edge requires to retrieve
all the optimum integer solutions of each supplier profit maximization
problem. This can be done using the populate routine in cplex. However,
this requires to explore the whole the branch and bound tree of each profit
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maximization, in order to retrieve not one but all the optimum dispatches
given a price, thus implying a significant computational burden.

As observed in Figure 4.8c, Kelley’s algorithm permits a significant
improvement. However, we noted in section 4.3 that the algorithm tends
to become unstable in higher dimension, arguing that “this is due to the
unstable nature of piecewise linear functions: adding a new supporting
hyperplane can move the optimum far from the previous point (i.e. to
a corner of the box Q).” This is apparent in Figure 4.8c: the sequence of
iterates performs large swings between the corners of the box Q. If this has
a mild effect in low dimension, it gives a glimpse to the reader of what
may happen if the dimension of the box Q increases to more than 5000,
instead of 2, as in the BE-NL 96 periods case of section 4.4.2.

Finally, Figure 4.8d shows how the Level Method tends to stabilize the it-
erate sequence generated by Kelley, significantly mitigating the oscillations.
This asset is what makes the Level Method superior in higher dimension.



Part II

Non-Convexities in the Long-Term
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T H E R O L E O F A C A PA C I T Y M A R K E T

abstract. The topic of pricing non-convexities in power markets has been
explored vividly in the literature and among practitioners for the past twenty
years. The debate has been focused on indivisibilities in short-term auctions, the
computational tractability of some pricing proposals, and the economic analysis of
their behavior. In this chapter, we analyse a source of non-convexities that is not
discussed as broadly: the indivisibilities in investment decisions. The absence of
equilibrium that we are primarily concerned about is the long-term equilibrium. We
derive a capacity expansion model with indivisibilities and we highlight the issues
arising from it. We discuss its relevance and address one particular argument for
neglecting indivisibilities in investment, namely market size. We investigate to
what extent a capacity market that clears discrete offers can mitigate the lumpiness
problem. We particularly introduce the novel concept of convex hull pricing for
capacity auctions. We illustrate the main findings with a numerical experiment
conducted on the capacity expansion model used by ENTSO-E to assess the
adequacy of the entire European system.*.

keywords . Pricing indivisibilities · Investment problem · Capacity mar-
ket · Convex hull pricing

jel classification. C61 · D41 · D44 · D47 · D50 · L51 · Q41

* The chapter reproduces, with minor changes, the content of Stevens et al. (2024b).
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5.1 introduction

The restructuring of the electricity industry is work in progress for
more than 25 years. Early discussions mainly concentrated on decen-
tralized versus centralized organizations of the market (Stoft, 2002).

The latter system emerged, and with it the idea of a centralized market
clearing, and a dispatch associated to the so-called merit order of plants
that reflects fuel costs. It was quickly recognized that generation plants are
also characterized by “indivisibilities”, such as start-up cost or minimum
time between shutdown and startup. Accounting for these aspects required
replacing the merit order-based dispatch by a unit commitment. This in-
validated the clean neoclassical interpretation of electricity prices that,
according to the doxa, supports competition in the industry. This made the
market design more complex and generated a lot of implementation and
methodological work, including a vivid debate in the literature and among
practitioners about the right way to price in power auctions (O’Neill et al.,
2005; Hogan and Ring, 2003).

Indivisibilities also have a long-term dimension. In the same way that
plants go through short-run cycles where they are started, operated for
some hours, and shut down, they also go through a long-term cycle where
they are built, operated over several years, and are eventually dismantled.
Each of these stages implies costs that, once incurred, become stranded,
hence constituting indivisibilities. In contrast with the short-run market,
long-run indivisibilities did not receive much attention, whether in the liter-
ature or in practice, so far. A notable exception is Scarf’s ground-breaking
paper, which recognizes the indivisibilities in the choice of technologies as
an issue (Scarf, 1994).

The apparent neglect of indivisibilities in long-term electricity markets
contrasts with the attention given to market failures and how these interact
with investment incentives. The notion of “missing money” has been
central in these discussions since Joskow (2007) enlightened the debate on
the subject. The author relies on a stylized capacity expansion model to
show that long-term elements are missing in the short-run market, which
makes it unable to send adequate investment signals. The missing money
debate generated considerable but often inconclusive discussions on the
respective merits of different market designs such as energy-only markets
and capacity markets. The energy transition in Europe and its implication
of fully restructuring the capital stock of the generation system gave a new
impetus to the subject. It was recognized that the insufficient incentive to
invest was rooted not only in “missing money” but also in missing and
incomplete financial markets, which are more difficult issues to explore



5.1 introduction 117

and remedy. Considerable work has been undertaken in the UK since at
least 2013 (UK Department of Energy & Climate Change, 2013; Grubb and
Newbery, 2018; Helm, 2017). This led to the idea of using instruments such
as contracts for differences (CfDs), power purchase agreements (PPAs) and
capacity auctions (CRM) to mitigate this missing incentive for investment
(De Maere d’Aertrycke et al., 2017). The general principle of this approach
is that existing markets should be complemented by additional market
instruments targeted at the incentive to invest. The war in Ukraine and the
new European policy of moving away from Russian gas supplies reinforced
the sense of urgency of the investment problem. This led to an explosion
of papers to remedy not only the impact of high gas prices on the power
market but also the possibly insufficient incentives to invest. It reinforced
the push for the already mentioned market instruments (CfDs, PPAs, CRM).

This chapter aims at contributing to this literature on investment in-
centives, but focusing on the—much less discussed—problem of non-
convexities in investment. Some papers have focused on the effect of the
short-run non-convexities on the investment incentives (Mays et al., 2021;
Byers and Hug, 2023). Instead, our work focuses on the non-convexities
in the investment itself. The goal of an investor to maximize profits still
remains the same in the presence of indivisibilities, but these indivisibilities
can distort the capacity mix that results from existing incentives. As in
Joskow’s initial analysis of missing money (Joskow, 2007), we examine the
problem through a deterministic capacity expansion model. This corre-
sponds to a complete market (no uncertainty or missing market) and thus
makes it possible to focus on the sole effect of indivisibilities. We analyse
the possibility that, very much like indivisibilities in the short-run market
required a regulatory authority to clear the short-term market, long-term
indivisibilities may also require such an authority to coordinate investment.
Our formal analysis leads to ideas related to the work of French economists
Finon and Roques who claim that there exist fundamental difficulties
for coordinating investment in the restructured power market, with the
conclusion that direct regulated public intervention should be introduced
for that purpose (Roques and Finon, 2017; Finon and Beeker, 2022). The
authors refer to this mix of market and public coordination as the “hybrid
market”—a notion also supported by Joskow (2022).

In sections 5.2 and 5.3, we introduce a long-term investment model,
and we analyse the effects of the market imperfection at work, namely
indivisibilities or non-convexities in investment decisions. We show that
indivisibilities in investment result in a distortion of incentives for the
individual market agents—a long-term lost opportunity cost, similarly to
what happens in a short-term market with indivisibilities. Is this long-term
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lost opportunity cost important? In section 5.4, we derive one theoretical
argument, inspired from the theory of general equilibrium, for neglecting
indivisibilities in general, and then discuss its relevance to the investment
problem. We show that the issue stemming from discrete investment,
under certain pricing approaches, may be arbitrarily large. In principle,
the discussion of the first part of the chapter (sections 5.2 to 5.4) applies to
any industry. In practice, however, one may expect the problem to be more
severe in the electricity sector. Because there are important technical barriers
to the storage and transportation of electricity, a shortfall of generation
capacity in a given location may not be compensated either by a stock
of energy or by raising imports. Unlike many industries, electricity has
hardly any means to react to a local shortage of production capacity.
These supply and transportation rigidities, combined with an electricity
demand which has to be met just in time by production, and which is
notably inelastic, especially in the short run, may exacerbate the impact
of investment indivisibilities on energy prices—therefore on investment
incentives.

The second part of the chapter focuses on the interplay between capacity
markets and investment indivisibilities. In section 5.5, we analyse to what
extent the long-term lost opportunity cost can be corrected by market
mechanisms. Capacity markets are one way to coordinate long-term in-
vestments. Some existing capacity markets acknowledge, in their design,
the indivisible nature of investment decisions. For example, the Belgian
capacity market only includes indivisible bids (Elia (2022) art. 235, sec.
6.2). But if the benefits of a capacity market as an instrument to hedge
investment risk (De Maere d’Aertrycke et al., 2017) or to mitigate market
power in the energy market (Fabra, 2018) have been well analysed (see also
Stoft (2002); Cramton and Stoft (2005); Cramton et al. (2013)), little has been
said about the effect of the capacity market on the incentives of the agents
to invest in a market with long-term indivisibilities. Indeed, if lumpiness of
investment has sporadically been mentioned to justify CRMs (Mastropietro
et al., 2017), no formal discussion of the argument has been provided so far
to the best of our knowledge. We analyse to what extent a capacity market
could turn out to be a tool that mitigates the long-term lost opportunity
costs stemming from indivisibilities, or if it alternatively exacerbates them.
We particularly discuss the design of a CRM under discrete offers and we
introduce the concept of convex hull pricing for capacity auctions. Finally,
section 5.6 illustrates our findings with a model of the European system.
We perform our simulations with the European Resource Adequacy As-
sessment (ERAA) model used by ENTSO-E (2021) to estimate the need for
investments in Europe.
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5.2 the continuous investment problem

The continuous investment problem provides us with a useful benchmark1.
Its analysis was pioneered by Boiteux (1960), who showed that marginal
pricing provides market agents with the right incentives to invest in the
welfare-maximizing generation mix. The analysis resolves the fallacy ac-
cording to which a peaking unit could not possibly cover its fixed cost
by solely relying on market payments. The analysis of Boiteux can be
illustrated by considering the following long-term continuous investment
model (which admits a decentralized interpretation):

max
q,x,d≥0

∑
t∈T

∆TtVtdt − ∑
g∈G

∑
t∈T

∆Tt MCgqg,t − ∑
g∈G

ICgxg (5.1a)

(∆Ttπt) dt ≤ ∑
g∈G

qg,t ∀t ∈ T (5.1b)

(∆Ttµg,t) qg,t ≤ xg ∀g ∈ G, t ∈ T (5.1c)

(∆Ttηt) dt ≤ Dt ∀t ∈ T (5.1d)

The variables xg, qg,t and dt stand respectively for the investment in
technology g ∈ G, the actual production from technology g at period t ∈ T ,
and the consumption of energy at period t. Investment cost is indicated as
ICg, while marginal cost is indicated as MCg. The total served demand at
period t, dt, is valued at Vt, which is assumed to be the right value of lost
load2 (VOLL). Dt is the observed load while ∆Tt stands for the duration of
period t. As indicated by the inequality in the market clearing constraint
(5.1b), we assume free disposal. The optimality conditions of problem (5.1)
are:

0 ≤ qg,t ⊥ MCg − πt + µg,t ≥ 0 ∀g ∈ G, t ∈ T (5.2a)

0 ≤ xg ⊥ ICg − ∑
t∈T

∆Ttµg,t ≥ 0 ∀g ∈ G (5.2b)

0 ≤ dt ⊥ −Vt + πt + ηt ≥ 0 ∀t ∈ T (5.2c)

0 ≤ xg − qg,t ⊥ µg,t ≥ 0 ∀g ∈ G, t ∈ T (5.2d)

0 ≤ Dt − dt ⊥ ηt ≥ 0 ∀t ∈ T (5.2e)

0 ≤ ∑
g∈G

qg,t − dt ⊥ πt ≥ 0 ∀t ∈ T (5.2f)

These equations convey three important facts. (i) If a technology is used
(xg > 0), then the infra-marginal rents (∑t∈T ∆Ttµg,t) earned from the short-
term market prices πt by each technology exactly cover the investment cost

1 We repeat here for convenience the classic long-term competitive analysis explained in section
2.6.4.

2 cf. discussion in section 2.4.
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ICg. (ii) This means that long-term profits are zero. (iii) Furthermore, as
highlighted by Boiteux, in order for the peaking units (the technology g
with the highest MCg) to recover their fixed costs, there should be at least
some hours during which the system is scarce, meaning that the demand
sets the price (dt < Dt, such that πt = Vt > MCpeak).

5.3 the discrete investment problem and the long-term lost op-
portunity cost

We now turn to the discrete version of model (5.1) that accounts for the
lumpiness of investment. Indivisibilities in investment decisions (commis-
sioning or decommissioning) arise naturally from the fact that power plants
are large indivisible assets (Williamson, 1966), e.g. nuclear or CCGT plants
as well as an offshore wind park are straightforward examples. Indivisibili-
ties also arise indirectly from economies of scale as well as learning effects
(Arrow, 1962). “Learning by doing” can be represented as a particular
model with indivisibilities (Heuberger et al., 2017) that appears to be of
particular interest in certain policy design discussions (Newbery, 2021).
The discrete investment model is as follows:

z∗P = max
q,x,d

∑
t∈T

∆TtVtdt − ∑
g∈G

∑
t∈T

∆Tt MCgqg,t + ∑
i∈Ig

xg,i ICg,i

 (5.3a)

dt ≤ ∑
g∈G

qg,t ∀t ∈ T (5.3b)

0 ≤ qg,t ≤ ∑
i∈Ig

Pmax
g,i xg,i ∀g ∈ G, t ∈ T (5.3c)

xg,i ∈ {0, 1} ∀g ∈ G, i ∈ Ig (5.3d)

0 ≤ dt ≤ Dt ∀t ∈ T (5.3e)

The investment decisions are modelled with the binary variables xg,i. These
stand for investment into lumps of capacity Pmax

g,i at investment cost ICg,i,
so that each market agent (or technology) g comes with the set of invest-
ment projects i ∈ Ig. The real-time operations are assumed to be convex3.
This formulation of the discrete investment problem is similar to the one
considered by Scarf (1994) or O’Neill et al. (2005). To ease notation, we

3 The model neglects the non-convexities of short-term production costs, such as start-up
or no-load costs, i.e. the short-term variable production cost is thus MCg. That is, we do
not account for the (difficult) problem, tackled in chapters 3 and 4, of how the short-term
non-convexities should be accounted for in the price signal. Instead, the model of this chapter
focuses on the long-term non-convexities.
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shall denote the total cost of each agent for performing the production plan
(q, x)g as the linear function cg((q, x)g) in the remainder of this chapter.
Thus, cg((q, x)g) = ∑t∈T ∆Tt MCgqg,t + ∑i∈Ig xg,i ICg,i. The (non-convex)
production sets defined by constraints (5.3c)-(5.3d) are denoted as Xg,
while the (convex) consumption set defined by constraint (5.3e) is denoted
as Xd.

The short-term marginal prices—or merit order prices—are the ones stem-
ming from the market when the investment decisions are fixed. In this
chapter, we are particularly interested in finding prices that support the
welfare-maximizing investment4. We therefore assume throughout this
chapter that the installed mix is the optimal investment x∗∗g,i, as if a central
planner were solving problem (5.3).

Definition 5.1 (Marginal Pricing). Let x∗∗ be the values of the binary variables
optimizing problem (5.3). The marginal prices are defined as the dual variables
πM obtained from solving the following (convex) problem, in which the variables
x of problem (5.3) are fixed to x∗∗:

max
d,q

∑
t∈T

∆TtVtdt − ∑
g∈G

cg((q, x∗∗)g) (5.4a)

(∆Ttπ
M
t ) ∑

g∈G
qg,t ≥ dt ∀t ∈ T (5.4b)

(q, x∗∗)g ∈ Xg ∀g ∈ G (5.4c)

d ∈ Xd (5.4d)

The marginal pricing approach captures the two-stage nature of an
investment cycle. The supplier first decides on the discrete decision (e.g.
investing in a new power unit). The associated fixed cost is then considered
as sunk. Thus, the price reflects the cost of operating the plant given the
fixed discrete decisions (i.e. the short-term so-called merit order).

The concern with these marginal prices, compared to marginal pricing in
the continuous investment problem, is that in general they do not support
the optimal investment. This price alone does not support an equilibrium:
at the socially optimal investment plan, some agents will have incentives
to enter or to leave the market. Intuitively, the lumpiness of investment can
make it socially optimal to over-dimension the investments, which in turn
keeps the prices too low to render the investment profitable in the first
place5. This fundamental problem of the discrete investment problem was

4 In other words, the dynamics that take us from a sub-optimal mix to this optimal investment
are out of scope for this chapter.

5 A recent example is Finland. In April 2023 Olkiluoto-3, which is a 1,600MW nuclear unit,
entered into operation and led to a significant price drop.
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highlighted by Scarf (1994) (see also the analysis by Williamson (1966)).
Before illustrating it in Example 5.1, we proceed with some definitions
that characterise the incentives of the market agents. All suppliers and
consumers are assumed to be price-takers and to act so as to maximize
their selfish profit.

Definition 5.2 (Supplier Profit). Agent g is assumed to maximize its selfish
profit function Pg, under market price π, which is defined as follows:

max
(q,x)g∈Xg

Pg(q, x, π) ≡ ∑
t∈T

πt∆Ttqg,t − cg((q, x)g) (5.5)

Definition 5.3 (Demand Surplus). The load is assumed to maximize its selfish
surplus function U , under market price π, defined as follows:

max
d∈Xd
U (d, π) ≡ ∑

t∈T
∆Tt(Vt − πt)dt (5.6)

Definition 5.4 (Competitive Walrasian Equilibrium). The allocation (q∗, x∗, d∗)
together with the market price π constitute a competitive Walrasian equilibrium if

(i) for each supplier g, (q∗, x∗)g optimizes its profit maximization problem (5.5)
under price π ; d∗ optimizes the load surplus maximization problem (5.6)
under price π ;

(ii) the market clears (∑g∈G q∗g,t ≥ d∗t ∀t ∈ T ).

Since the market is non-convex, a competitive equilibrium is not guaran-
teed to exist. Under a centralized production and consumption plan (q∗, x∗)
and d∗, chosen so that condition (ii) of Definition 5.4 is met, there may
be no price that satisfies condition (i). Assuming that the private agents
maximize their profit (Definition 5.2 and 5.3), the violation of condition (i)
is measured by the long-term lost opportunity cost.

Definition 5.5 (Long-term Lost Opportunity Cost). The lost opportunity cost
(LOC) is the difference between the selfish maximum profit if self-scheduling and
the as-cleared profit (with allocation (q∗, x∗, d∗)) under price π. For each supplier
g, it is expressed as:

0 ≤ LOCg(π) =

selfish maximum profit︷ ︸︸ ︷
max

(q,x)g∈Xg
Pg(q, x, π)−

as-cleared profit︷ ︸︸ ︷
Pg(q∗, x∗, π) (5.7)

For the demand, it is expressed as:

0 ≤ LOCd(π) = max
d∈Xd
U (d, π)−U (d∗, π)
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This concept has been widely used in the context of pricing non-convexities
in power auctions6. In an investment context, the long-term lost oppor-
tunity cost measures the financial incentives that each profit-maximizing
agent has to commission or decommission power plants in a way that
deviates from the efficient capacity mix (the one solving problem (5.3)).
The LOC could fruitfully be viewed as the sum of two quantities. In some
cases, an LOC corresponds to a shortfall of revenue. For instance, a new
investment that would be socially efficient, while it is unprofitable, implies
that the investor would bear a shortfall of revenue. Alternatively, an in-
stalled plant that, from a social efficiency viewpoint, should stay in the
market although it is unprofitable, would also face a shortfall of revenue. In
a capital-intensive industry such as power production7, a revenue shortfall
stands for a threat of not recovering investment cost. In other cases, LOC
corresponds to a foregone opportunity. For instance, an investor who, from
a social efficiency viewpoint, should restrain from investing, while his
investment project is profitable, would forego an opportunity. Alternatively,
if it would be socially efficient to retire an existing plant, although it is
profitable, then the owner would also forego an opportunity. Mathemati-
cally, the revenue shortfall (RSg) and the foregone opportunity (FOg) can
be related as follows to the definition of LOC (cf. Figure 5.1). Looking
at the two terms of expression (5.7), there are three cases (by definition,
max(q,x)g∈Xg Pg(q, x, π) ≥ Pg(q∗, x∗, π)):

(A) Either Pg(q∗, x∗, π) ≥ 0, in which case there is no revenue shortfall,
and the LOC is a “foregone opportunity” (LOCg = FOg), i.e. the
investor does not loose money, but he could gain more by deviating
from the socially efficient plan;

(B) Or Pg(q∗, x∗, π) < 0. In this case, there are two alternatives: (B1)
Either max(q,x)g∈Xg Pg(q, x, π) ≤ 0, then the LOC is a revenue short-
fall (LOCg = RSg); (B2) Or max(q,x)g∈Xg Pg(q, x, π) > 0. In this
case, the LOC can be equivalently written as the following sum:
LOCg(π) = [max(q,x)g∈Xg Pg(q, x, π) − Pg(0, 0, π)] + [Pg(0, 0, π) −
Pg(q∗, x∗, π)] = FOg + RSg.

As highlighted in case (B2), the revenue shortfall may fruitfully be viewed
as a specific “lost opportunity”, in which the as-cleared profit is negative

6 Cf. chapter 3.
7 For a peaking unit operating a few hours per year, or for an offshore wind park, the investment

cost stands for most of the total cost of the asset. For a mid-load gas-fired CCGT plant with
an annualized investment cost of ∼ 80, 000€/MW/y and a production cost of ∼ 50€/MWh
with a capacity factor of ∼40%, the investment cost would stand for ∼30% of its total cost.
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Figure 5.1: Graphical illustration of the relationship between LOC, RS and FO.
P∗g and maxPg denote, respectively, the as-cleared profit and the
maximum profit.

Capacity Investment Cost Marginal Cost

Technologies [MW] (Pmax) [€/unit] (IC) [€/MWh] (MC)

Smokestack 16 53 3

High Tech 7 30 2

Table 5.1: Power plant data in Scarf’s example (Scarf, 1994).

and the “opportunity” is not to invest (x∗ = 0 and Pg(0, 0, π) = 0)8. We
shall reuse the notions of RSg and FOg in the sequel, especially in section
5.6.

Example 5.1. Consider the classic example proposed by Scarf (1994). This can be
described as a discrete investment problem into two different technologies (Table
5.1). One technological option is Smokestack, the other is High Tech plants. A
central planner solves problem (5.3) in order to determine the cost-minimizing
number of power plants of each technology to install so as to meet the perfectly
inelastic demand D. Figure 5.2a reports the cost-minimizing investment choices as
a function of load. The lumpiness of investment translates into highly fluctuating
investment decisions, depending on market demand. For the sake of comparison,
Figure 5.2b illustrates what would be the optimal expansion if the investment
decisions were continuous. Since the average cost of the Smokestack plant is
6.3125€/MWh, while it is 6.2857€/MWh for the High Tech plant, only High

8 In case (B1), max(q,x)g∈Xg Pg(q, x, π) < 0 may happen if possibility of inaction does not hold,
i.e. if there are barriers of exit. In this case, an investor may have a shortfall of revenue, without
having the possibility to act differently (LOCg = 0). Accounting for this subtlety requires to
introduce a distinction between a “revenue shortfall that expresses a lost opportunity” (RSg)
and a “revenue shortfall that is due to a barrier of exit” (RSother

g ).
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(a) Discrete investment

(b) Continuous investment

Figure 5.2: Welfare maximizing investment decisions under discrete and contin-
uous investment as a function of the load.
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Tech plants would have been built, so as to precisely meet demand (recall that
the example assumes a constant uniform demand D). Let us now consider the
case in which the demand equals 60MWh. The optimal investment is to build 2
Smokestack plants and 4 High Tech plants. Under this allocation, the marginal
price is 3€/MWh, which corresponds to the marginal cost of the Smokestack plants.
The two suppliers face a lost opportunity cost (in this case, a revenue shortfall)
of 106€ for the Smokestack plants and 92€ for the High Tech plants. By contrast,
under continuous investment, the LOCs are zero for both technologies.

5.4 the theoretical magnitude of lost opportunity costs

Indivisibilities in investment have sometimes been overlooked on the basis
that, when the market size increases, “inefficiency caused by the lumpiness
of generators is negligible”. As Stoft argues: “this impact of lumpiness
is dramatic, but it occurs in an unrealistically small market. [...] This
inefficiency declines in proportion to the size of the market.” (Stoft, 2002,
pp. 130–131). In other words, the effect of indivisibilities may be dramatic
in Example 5.1, but it tends to vanish when the size of the system increases.
The same reasoning is supported by Byers and Hug (2023). In this section,
we assess whether this might be theoretically true. The intuition that non-
convexities would smooth out when the market size increases rests on solid
theoretical foundations. A strong result was provided in the late sixties,
in the theory of general equilibrium, by Arrow and Starr9, in order to
justify the crucial assumption of convexity that is needed for ensuring the
existence of a competitive equilibrium. We briefly state the result of Arrow
and Starr, before showing how it can be adapted to our problem statement.
We then use this result in order to first derive a positive result, and then a
more negative result. The settings considered by Arrow and Starr differ in
two manners from our settings of section 5.3: (i) their pricing rule differs
from marginal pricing, and (ii) the metric that they use for measuring the
distance from competitive equilibrium differs from LOC.

As far as the pricing scheme is concerned, in the absence of competitive
prices, the question of what will be the price that prevails in the non-convex
market remains open. An alternative to marginal pricing (Definition 5.1),
consists of computing the prices from the closest convex economy in which a
competitive equilibrium exists. Mathematically, the closest convex economy
means the convex relaxation of problem (5.3) in which the production sets
(Xg) are replaced by their convex hull (conv(Xg)).

9 Starr (1969) shows the result for a pure exchange economy, while Arrow and Hahn (1971)
show it for a more general case of an economy that includes non-convex production.
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Definition 5.6 (Convex Hull Pricing). The convex hull prices πCH are defined
as the dual variables obtained from solving the following convex problem:

z∗D = max
d,q,x

∑
t∈T

∆TtdtVt − ∑
g∈G

cg((q, x)g) (5.8a)

(∆Ttπ
CH
t ) ∑

g∈G
qg,t ≥ dt ∀t ∈ T (5.8b)

(q, x)g ∈ conv(Xg) ∀g ∈ G (5.8c)

d ∈ Xd (5.8d)

Although they do not use this nomenclature, this is the pricing approach
assumed by Arrow and Starr10. Let us notice that the investment costs
ICg,i appear in problem (5.8) through the function cg((q, x)g), while they
are not present in the marginal pricing problem (5.4), since the investment
decisions are fixed.

Regarding the metric used for measuring the distance to an equilibrium,
there are two options that are worth examining: either condition (ii) of
Definition 5.4 holds—or is enforced—and (i) is violated; or condition (i)
holds, in which case (ii) is violated. The first case corresponds to what has
been considered in section 5.3, in which distance to the equilibrium is mea-
sured by the LOC. The setting analysed by Arrow and Starr corresponds
to the second case. It can be viewed as a purely decentralized setting: the
producers and consumers leave or enter the market depending on the price
they observe, in a manner that satisfies (i). Then, the discrepancy between
demand and production—the violation of condition (ii)—is measured by
the social excess demand.

Definition 5.7 (Social Excess Demand). Let q†
g,t and d†

t be decentralized pro-
duction and consumption plans of the private agents under price π, respecting
condition (i) of Definition 5.4. The social excess demand (SED) is defined as:

SED(q†, d†) = d† − ∑
g∈G

q†
g. (5.9)

5.4.1 Convex hull pricing with decentralized decisions

We first consider the same setting as that assumed in the work of Arrow and
Starr. Let ((q∗, x∗, d∗), πCH) be the equilibrium in the closest convex economy,

10 This happens to also be a pricing proposal that has been advocated—for other reasons—by
Hogan and Ring (2003) for pricing in non-convex power auctions under the name Convex
Hull (CH) Pricing. Taking the convex hull of the constraints (5.3c)-(5.3d) amounts to solving
the Lagrangian relaxation of the problem in which constraint (5.3b) is relaxed. The convex
hull prices then correspond to the associated Lagrangian multipliers. This connection with
the Lagrangian dual problem justifies the label zD , for denoting the dual objective value.
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i.e. the solution of problem (5.8). The allocation (q∗, x∗, d∗) can, in general,
be infeasible. Therefore, we shall seek an allocation (q†, x†, d†) that solves
problems (5.5) and (5.6) under price πCH (condition (i) in Definition 5.4 is
met), even if it does not clear the market (condition (ii) in Definition 5.4
can be violated). How would this mismatch between supply and demand
grow with the market size?

Example 5.2. Consider an investment problem with one single power plant
technology with the following characteristics: the investment cost is 50€/MWh, the
production cost is 10€/MWh and the indivisible size of the power plant is 100MW
(i.e. investing in one plant costs 100MW×50€/MWh= 5, 000€/h). Let us assume
that one can invest in any non-negative integer number of power plants. We also
assume that there is a single period and that the VOLL is equal to 1,000€/MWh.
If the demand is D = 250MWh, the optimal allocation in the convex hull of
this economy is x = 2.5 and q = D = 250, for which the convex hull price is
πCH = 60€/MWh. At this price, each plant is indifferent between either producing
(and investing) zero, or producing at 100MWh (both production plans lead to a
zero profit). There exists a decentralized decision to construct two power plants so
as to produce 200MWh. On the other hand, at this price, the demand is willing to
consume 250MWh. Thus, the social excess demand is 50MWh.

Intuitively, if the market grows (the demand D increases), the social
excess demand will always be bounded by 50 MWh (which can be viewed
as a measure of the non-convexity of the production set). This intuition
is formally stated and proven to hold for a general case in Proposition
5.1, which is the translation of the Theorem of Starr and Arrow to our
problem11.

Proposition 5.1. Let πCH denote the convex hull prices and (q∗, x∗, d∗) the
associated allocation in the convex problem, where both are obtained from solving
problem (5.8). Then, there exists an allocation (q†, x†, d†) such that

(i) (q†, x†) solve problem (5.5) under price πCH

(ii) d† solves problem (5.6) under price πCH

(iii) The difference of social excess demand is bounded12

|SED(q†, d†)−SED(q∗, d∗)| = |(d†−∑
g

q†
g)− (d∗−∑

g
q∗g)| ≤

√
|T |A

11 Note that r(·) denotes the inner radius of a set (the definition is recalled in Appendix 5.A). To
provide an intuition to the reader, in the previous example, r(Xg) = 50. Indeed, the set of
possible investments is {0, 100}, meaning a ball of radius 50 MW spans any x ∈ [0, 100].

12 Note that if πt > 0 ∀t ∈ T , then we deduce that d∗ = ∑g q∗g and the expression becomes
|d† −∑g q†

g| ≤
√
|T |A.
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with A ≥ r(Xg) ∀g.

The proof, largely inspired from the one of Arrow and Hahn (1971) that
we adapt to our problem statement, is provided in the appendix 5.A of
this chapter (which also contains all the other proofs of the chapter). The
Proposition shows that, under these assumptions of price and metric, the
discrepancy between supply and demand, caused by the indivisibilities,
is bounded. The bound depends upon the number of commodities that are
exchanged as well as the measure of non-convexity of each production set,
but it is independent of the size of the market. If the number of consumers and
suppliers is multiplied, while keeping similar production sets, the bound
remains unchanged, meaning that its ratio relative to the size of the market
tends to zero.

5.4.2 Convex hull pricing with centralized decisions

Let us now assume that the production and the consumption plans are
decided by a central planner so that the market clears and the solution
maximizes social welfare. Let (q∗∗, x∗∗, d∗∗) be the welfare-maximizing
allocation, obtained from solving problem (5.3). The market price is again
assumed to be the convex hull price πCH . Under this setup, condition (ii)
in Definition 5.4 is met, while condition (i) is violated (the violation being
measured by the LOC).

Example 5.3. We consider the same data as in Example 5.2. If D = 250MWh, the
welfare maximizing allocation is x = 3 so that q = D = 250 MWh. The convex
hull price is πCH = 60€/MWh. At this price, the non-constructed power plants
face an LOC of 0€. Two of the constructed power plants—the ones producing 100
MWh each—face an LOC of 0€. The plant at the margin, producing 50 MWh,
faces a loss of 2,500€.

Intuitively, if the market grows (D increases), there will always be one
single frustrated plant at the margin, which faces a revenue shortfall of at
most 5,000€. This intuition is formally stated and proven for a general case
in the following Proposition13.

Proposition 5.2. Let (q∗∗, x∗∗, d∗∗) be the welfare maximizing allocation, ob-
tained from solving problem (5.3). Let πCH denote the convex hull prices, obtained
from solving problem (5.8). Then, the total lost opportunity cost is bounded:

∑
g∈G

LOCg(π
CH) + LOCd(π

CH) ≤ ρ|T | (5.10)

13 A similar proposition is also provided by Chao (2019), although the proof proposed in
Appendix 5.A is different.



130 indivisibilities in investment...

with ρ = maxg∈G ρg and ρg defined as follows:

ρg = max
(q̂,x̂)g∈conv(Xg)

{
ĉg(q̂, x̂)− cg(q̂, x̂)

}
(5.11)

ĉg(q̂, x̂) = min
(q,x)g∈Xg
qg,t≥q̂g,t

cg((q, x)g) (5.12)

Let us notice that, in Example 5.3, ρg = 5, 000€. Indeed, |T | = 1 and a
worst cost increment of 5,000€ could occur if a plant is asked to produce ε
(the convex hull allocation is x∗g = ε/100 ≈ 0, while a feasible allocation
requires to build an entire power plant, xg = 1, which comes at a cost of
5,000€). Similarly to Proposition 5.1, the bound does not depend on the market
size. If the market grows (increasing the load and the number of suppliers
with similar production sets Xg) in such a way that z∗P → ∞, since the total
LOC remains bounded, its ratio with respect to the market size tends to
zero, i.e. LOC(πCH)/z∗P → 0. In other words, under convex hull prices, the
lost opportunity costs do not spread over the entire market but remain
contained to a small number of plants at the margin.

5.4.3 Marginal pricing with centralized decisions

We now turn to the configuration considered in section 5.3. The production
and the consumption plans are decided by a central planner but the mar-
ket prices are the marginal—merit-order—prices πM, as computed from
problem (5.4).

Example 5.4. We consider once more the same data as in Example 5.2. For
D = 250 MWh, the social welfare maximizing allocation is x = 3, so that
q = D = 250 MWh. πM =10€/MWh. Under this price, all the plants that are
not constructed are in equilibrium. But each of the three constructed plants faces a
revenue shortfall of 5,000€—and not only the plant at the margin—for a total of
15,000€.

Intuitively, on this stylised example, when the demand D increases, the
number of new plants constructed at a loss increases, and so does the lost
opportunity cost which does grow with the size of the economy14.

14 The reader may also want to consider these results the other way around. Let us assume
that, in the same stylized example, due to some technological improvements, the plants are
now available in lumps of 30 MW instead of 100 MW. The non-convex suppliers have been
cut into smaller pieces so that the production sets are “less non-convex” than they used to
be (as measured with the inner radius). How does the technological change affect the LOC?
The reader can verify that, for D = 250 MWh, under convex hull pricing, the LOC is almost
divided by three: 1,000€ (compared to the 2,500€ before the technological change). Instead,
under marginal pricing, the LOC is 13,500€. This point becomes relevant as we consider
distributed resources with smaller capacities in future power grids.
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Proposition 5.3. Let N be the number of times that the input of the market
defined in problem (5.3) is duplicated, i.e. duplicating N times the set of suppliers
G and the load. Let (q∗∗, x∗∗, d∗∗) be the associated welfare-maximizing allocation
and let πM be the associated marginal prices. Then, in general, the lost opportunity
cost is not guaranteed to be bounded, i.e. it may be that limN→∞ LOC(πM) = ∞.

Under marginal pricing, the market failure originating from indivisi-
bilities could be arbitrarily large. We stress that Proposition 5.3 does not
establish that the LOC grows to infinity in all cases, but simply that, in
general, it is not guaranteed to be bounded, as opposed to Proposition 5.2.
This result highlights that Propositions 5.1 and 5.2 are highly dependent
on the pricing scheme that is assumed to hold in the non-convex market.
Thus, under alternative prices, indivisibilities do not smoothen out and
may have a significant impact, even in a large market. In the context of
discrete investment, convex hull pricing receives a less intuitive explanation
than does marginal pricing. If marginal pricing can indeed be viewed as
the classic merit order pricing that prevails, then the LOC stemming from
indivisibilities is not necessarily expected to vanish when considering a
larger market size. The impact described in Proposition 5.3 is arguably
exacerbated in Example 5.4 by the fact that there is a single peaking tech-
nology. The magnitude of the LOC under merit-order pricing will however
be studied in a larger system in section 5.6. In the meantime, we turn
once again to the two-technology example of Scarf, Example 5.1, which
illustrates Propositions 5.2 and 5.3, before discussing a possible solution to
these lost opportunity costs in section 5.5.

Example 5.5. We have shown in Example 5.1 that the marginal price is 3€/MWh
for a load of D = 60 MWh, leading to a total lost opportunity cost of 198 €.
Instead, for the same load, the convex hull price is 6.2857 €/MWh. At this price, the
Smokestack and High Tech technologies face an LOC of 0.857€ and 0€ respectively.
As far as the results of this section are concerned, the key observation is Figure 5.3,
which reports the total LOC under both pricing schemes for various load scenarios.
As expected from Propositions 5.2 and 5.3, the lost opportunity cost grows with
the market size under marginal pricing, while it remains bounded under convex
hull pricing. The bound, computed using Proposition 5.2, is 53€.

5.5 capacity markets

What is broken by the presence of indivisibilities in the investment decisions
is the possibility to achieve a perfect coordination of private agents solely
by means of a uniform energy price signal (Scarf, 1994). A decentralized
energy-only market does not guarantee a welfare-maximizing investment.
This motivates a policy intervention for coordinating investments.
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Figure 5.3: Lost opportunity costs under discrete investment, for both marginal
pricing and convex hull pricing, as a function of the load.

O’Neill et al. (2005) suggest viewing the issue of indivisibilities as one of
market incompleteness. One commodity is energy, which is sold at the merit
order energy price (indexed by time and location). Another commodity—
that should also be priced—is capacity (the discrete investment decisions).
In the approach of O’Neill et al. (2005), energy receives a uniform price,
while capacity is remunerated using discriminatory payments. O’Neill et al.
(2005) show that there exists a set of prices (πM

t , πC
i,g) (remunerating energy

and capacities) associated to the allocation (q∗∗g,t, x∗∗g,i) (solving problem (5.3))
that is a competitive equilibrium. There are two issues with this approach.
Firstly, from a practical point of view, it is unclear which actual market
mechanism is supposed to output these discriminatory prices15. Secondly,
from a theoretical point of view, the presumed price-taking behaviour of
the suppliers seems to be contradicted by the mere fact that the capacity
prices are discriminatory. There is essentially one single supplier for each
“investment commodity”, and therefore price-taking behaviour seems like
wishful thinking16.

15 The analysis of this chapter has obviously some similarities with the ones of chapter 3,
although this chapter studies a long-term problem. The point of the sentence in the text is that,
if in the short-term, it is clear how an auctioneer could compute the discriminatory payments
based on the bids that are submitted to the auction, it is less clear how such a procedure
could be transposed to a long-term context.

16 This puzzling methodological aspect connects to the well-known Lindahl equilibrium in public
goods (Mas-Colell et al., 1995). The latter also relies on the use of discriminatory prices while
assuming price-taking behaviour, and has been subject to the same criticisms from economists.
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In this section, we are instead interested in studying the effect of a
uniform capacity remuneration mechanism (CRM). A capacity market is
one form of long-term centralized coordination of investment decisions.
The classic arguments in favour of a capacity market rest on its ability
to reduce the exercise of market power and its usage as an instrument
for hedging investment risk. Instead, this section investigates to what
extent it could also turn out to be a means to mitigate the LOC caused
by lumpy investments. As in the approach of O’Neill et al. (2005), the
set of commodities is extended to include a remuneration for capacity.
Nonetheless, the capacity auction that is considered outputs a uniform
price17. Concretely, the profit maximization problem of the market agents
is now assumed to be the following:

Definition 5.8 (Supplier Profit Under Energy and Capacity Prices). The
agent g is assumed to maximize its selfish profit function Pg, defined as follows:

max
(q,x)g∈Xg

Pg(q, x, πM, πC) ≡ ∑
t∈T

πM
t ∆Ttqg,t − cg((q, x)g)

+ πC ∑
i∈Ig

Pmax
g,i xg,i

(5.13)

The suppliers have two streams of revenue. One comes from selling
energy at the marginal energy prices πM

t under fixed investment. Another
comes from the uniform capacity price πC, which remunerates their in-
stalled capacity. The capacity price comes from a capacity auction. Various
designs of CRM have been considered in the literature and among practi-
tioners, such as descending clock auctions. Both theory and experience have
highlighted the advantages of sealed-bid uniform price auctions (Harbord
and Pagnozzi, 2014). Our auction model can be described as follows. The
suppliers submit bids that correspond to their investment costs ∑i xg,i ICg,i,
discounted by the anticipated short-term surplus from the energy market,
∑i Pmax

g,i xg,i ∑t∈Tg(π
M
t −MCg). Here, Tg are the periods for which the pro-

duction of plant g is profitable, πM
t > MCg. The system operator is the

single buyer for the capacity target Cmin, which is assumed to be inelastic.

17 A natural extension of the ideas developed in this section would be to consider several capacity
targets that depend on the technology (as opposed to a single aggregated capacity target).
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Definition 5.9 (Discrete Capacity Auction). The capacity auction minimizes
the cost of satisfying the inelastic capacity demand Cmin:

min
x ∑

g∈G

∑
i∈Ig

xg,i ICg,i − ∑
i∈Ig

Pmax
g,i xg,i ∑

t∈Tg

∆Tt(π
M
t −MCg)

 (5.14a)

(πC) ∑
g∈G

∑
i∈Ig

Pmax
g,i xg,i ≥ Cmin (5.14b)

xg,i ∈ {0, 1} ∀g ∈ G, i ∈ Ig (5.14c)

The literature on CRMs typically focuses on continuous investment
settings18. This contrasts with how the CRM is implemented in certain
countries, such as Belgium, where the auction accepts only indivisible bids.
In the case of a discrete capacity auction, as in model (5.14), two questions
arise: (i) how do we select the bids that are cleared? and (ii) how do we
derive the capacity price? Harbord and Pagnozzi (2014) acknowledge these
dilemmas in CRMs with indivisibilities. As far as bid selection is con-
cerned, a natural option is to select the cost-minimizing bids, as in model
(5.14). Proposition 5.4 establishes the general validity of this approach in
continuous settings, while Proposition 5.5 indicates certain limits that are
encountered under discrete settings.

Proposition 5.4. Under a continuous investment model (problem (5.1)), with a
classical “missing money” problem originating from an energy price cap, there
exists a well-calibrated capacity target Cmin such that the optimal expansion plan
x∗∗ is also a solution of the capacity auction (i.e. a continuous version of model
(5.14)).

Proposition 5.5. Under a discrete investment model (problem (5.3)) with long-
term LOC, in some cases, the capacity cleared by the auction (i.e. solving model
(5.14)) may differ from the optimal expansion plan x∗∗ even with a well-calibrated
capacity target Cmin.

For example, considering Scarf’s Example 5.1, for D = Cmin = 60MW,
solving the auction of model (5.14) would lead to xSmokestack = 2 and
xHighTech = 4, which corresponds to the optimal mix (cf. Figure 5.2a). On
the other hand, solving the same auction for D = 40MW would lead
to xSmokestack = 3 and xHighTech = 0, which differs from the optimal mix.
This puzzling phenomenon raises the question of how a discrete capacity
market should select the bids that are cleared. In practice, alternative

18 This is true for all the previously cited works on CRM (Fabra, 2018; Stoft, 2002; Cramton and
Stoft, 2005; Cramton et al., 2013; De Maere d’Aertrycke et al., 2017) that analyze a continuous
capacity auction.



5.5 capacity markets 135

clearing rules have been used. For instance, according to Elia (2019), the
Belgian TSO uses a “heuristic” rule to clear the CRM that even differs from
cost-minimization. Moreover, system operators typically perform certain
prequalification processes before solving the CRM. In Ontario and certain
other systems, the system operator even solves a comprehensive capacity
expansion model in order to determine the allocation of the capacity
payments (Spees et al., 2013; IESO, 2023). As Proposition 5.5 indicates, this
can be justified in certain cases.

As far as the pricing scheme is concerned, Harbord and Pagnozzi (2014)
discuss various options, acknowledging the “flexibility in the definition
of a market-clearing price” in a discrete capacity auction. They essentially
focus on alternatives between the highest winning bid and the lowest losing
bid. Instead, we will consider that the capacity auction relies on convex
hull pricing (Definition 5.10). As highlighted in Proposition 5.6, this pricing
scheme has the property of mitigating the long-term LOC.

Definition 5.10 (Convex Hull Pricing for Capacity Auctions). The capacity
price πC is defined as the optimal Lagrangian multiplier19 associated with the
market clearing constraint in problem (5.14).

Proposition 5.6. The uniform capacity price πC, as defined in Definition 5.10,
minimizes the following lost opportunity costs:

πC∗ = arg min
πC≥0


πC( ∑

g∈G
∑

i∈Ig

Pmax
g,i x∗∗g,i − Cmin)


+ ∑

g∈G

 max
(q,x)g∈Xg

∑
t∈T

πM
t ∆Ttqg,t + πC ∑

i∈Ig

Pmax
g,i xg,i − cg((q, x)g)


−

∑
t∈T

πM
t ∆Ttq∗∗g,t + πC ∑

i∈Ig

Pmax
g,i x∗∗g,i − cg((q∗∗, x∗∗)g)


(5.15)

Here, (x∗∗, q∗∗) denotes a solution to problem (5.3).

A major question in the capacity auction regards the choice made
by the system operator of the capacity target Cmin. Assuming Cmin =

∑g ∑i Pmax
g,i x∗∗g,i (the optimum of the long term expansion problem (5.3)),

then expression (5.15) corresponds to the long-term lost opportunity cost
of the suppliers. More generally, as far as the first term (under bracket) in
equation (5.15) is concerned, the following result can be established.

19 Considering our simple set of constraints Xg, in our case, computing πC is equivalent to
taking the linear programming relaxation of problem (5.14).
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Proposition 5.7. If Cmin ≤ ∑g∈G ∑i∈Ig Pmax
g,i x∗∗g,i, then the total LOC of the

suppliers under both energy and capacity prices (πM, πC) is lower than the LOC
under the sole energy price πM.

Convex hull pricing in short-term auctions is known to mitigate the
short-term LOC (Hogan and Ring, 2003). Similarly, Proposition 5.6 shows
that CHP in a capacity auction mitigates the long-term LOC. However,
this positive result has three limits. Firstly, although the capacity price
πC mitigates the LOC, we emphasize that it does not reduce it to zero,
thus it does not entirely solve the lumpiness problem. This is, to some
extent, expected. While a price cap is a distortion of the energy price
that homogeneously affects all the suppliers, and may therefore be solved
in theory by a uniform capacity price (Cramton et al., 2013), investment
indivisibilities distort the energy price in a manner that affects suppliers
heterogeneously. This implies that it cannot be solved by a single instrument
such as a uniform capacity price. Secondly, Proposition 5.6 is conditional
to the fact that the bids that are cleared in the CRM are coherent with
the x∗∗. As highlighted in Proposition 5.5, this may not always be the
case. There is no straightforward solution to this problem. In Example 5.6,
over the 50 load scenarios, the capacity mix cleared by the CRM does not
equal the optimal mix in 11 scenarios (22% of the cases). This also happens
in the numerical results of section 5.6, although infrequently. Thirdly—
and most importantly—, Proposition 5.6 is also conditional to the right
calibration of the capacity targets Cmin. For instance, as Proposition 5.7
emphasizes, an over-dimensioned capacity target could lead to a capacity
price that exacerbates the LOC, as compared to the energy-only market,
instead of mitigating it. On the other hand, a capacity target which is too
low could drive the CRM price πC to zero, thereby making the capacity
auction pointless. This sensitivity of the success of a capacity auction to
the calibration of the capacity target is known. De Maere d’Aertrycke et al.
(2017) observe such a sensitivity in a risky environment. We consistently
observe it in an environment characterised by the presence of indivisibilities.
This sensitivity is revisited in the next section. To sum up, if the results of
this section highlight how a CRM may partially resolve the incentives to
invest in the context of lumpy investments, one has to be careful with the
design of the capacity demand curve as well as with the capacity market
clearing rule. The following example illustrates the theory that is presented
in this section.

Example 5.6. We consider once again Scarf’s Example 5.1. The capacity demand
Cmin is set equal to the optimal capacity mix ∑g ∑i x∗∗g,iP

max
g,i . So far, we have

considered three settlement schemes: marginal pricing (Definition 5.1), convex
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Energy Capacity LOC [€]

Settlement Schemes Price [€/MWh] Price [€/MWh] Smokestack High Tech Total

Marginal Pricing 3 / 106 92 198

Convex Hull Pricing 6.2857 / 0.857 0 0.857

Marg. Price + Cap. Price 3 3.2857 0.857 0 0.857

Table 5.2: Comparison of the pricing schemes for a demand of 60 MW.

hull pricing (Definition 5.6) and marginal pricing complemented with a uniform
capacity price. Table 5.2 presents the prices and LOC results for the three settlement
schemes, assuming a market demand of 60 MW. Figure 5.4 reports the lost
opportunity costs under these three settlement schemes, for various loads. The
red stars in Figure 5.4 flag the load scenarios for which the bids cleared from the
capacity auction differ from the optimal solution of the capacity expansion (cf.
Proposition 5.5). In these cases, the LOC reported for the CRM assumes that the
system operator intervenes for selecting the optimal bids. This could be seen as
the most optimistic outcome of a uniform capacity market and is consistent with
the separation of primal and dual computations in various short-term auctions,
including the EU and US markets. As anticipated from Proposition 5.6, the
addition of a capacity payment decreases the total LOC.

Figure 5.4: Lost opportunity costs as a function of the load, for three settlement
schemes: (a) marginal pricing (Definition 5.1), (b) convex hull pricing
(Definition 5.6) and (c) marginal pricing complemented with an
uniform capacity price (Definition 5.10).
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5.6 numerical simulations : the european capacity expansion

problem

We now turn to the quantification of the inefficiencies resulting from the
lumpiness of investment in realistic settings. We conduct our analysis on an
investment model derived from the ENTSO-E capacity expansion model
which covers the entire European system.

5.6.1 The European resource adequacy assessment

ENTSO-E publishes the European Resource Adequacy Assessment (ERAA)
annually. This is an analysis of the adequacy of the pan-European system
which assesses European TSOs’ ability to ensure security of supply under
various scenarios, for a given target year.20 In the 2021 ERAA study that
we consider (ENTSO-E, 2021), the main target year is 2025. The ERAA
has two main objectives. The first one is to assess the expected adequacy
(measured with the “Loss of Load Expectation” (LOLE) [h/year]), and
to compare it to the target LOLE defined by each national TSO for its
country. These simulations are performed with fixed expected capacity, as
foreseen by each national TSO. More related to the current investigation,
the second objective is to undertake an Economic Viability Assessment
(EVA). This is an adequacy assessment that is based on the capacity mix
that results from an economically viable investment in power plants. Here, a
capacity expansion model is solved, which includes commissioning and
decommissioning decisions from the mix that is expected by the national
TSOs. In our simulations, we reproduce the model of ERAA (EVA) and
use its data to simulate the capacity expansion of the European system21.
Since the ERAA does not consider integer investment decisions, we slightly
adapt the model of ERAA to turn it into a discrete investment model. With
this exercise, we are particularly interested in addressing the following
questions:

1. How does the introduction of lumpy investment affect the outcome
of ERAA? In particular, what would be the magnitude of the LOC in

20 Some more caveats are needed here. It is worth highlighting that “electricity reliability is a
function of much more than just adequate investment in generation capacity” (Borenstein
et al., 2023). A lot of forced outages are driven not by unreliable power generation assets, but
by extreme weather events, transmission or distribution line failures, system operation errors,
etc. For instance, a large share of outages in the US “stem from issues related to the delivery,
rather than the production, of electricity” (Borenstein et al., 2023). In this chapter, as in ERAA,
we neglect these important drivers of system reliability (which would tend to qualify the
usage of capacity markets), and we focus instead on the sole issue of resource adequacy.

21 The data can be retrieved from the website of ERAA.
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such a large discrete investment model, that includes many technolo-
gies and nodes? This aims at illustrating numerically the importance
of lumpiness of investment advocated in sections 5.3 and 5.4.

2. How would a discrete CRM affect the incentives of agents to invest
in such a realistic case study? This aims at illustrating numerically
the theory of section 5.5.

We notice that ERAA also includes an analysis of the impact of a CRM.
However, our analysis fundamentally differs from ERAA. Under the contin-
uous setting considered by ENTSO-E, the CRM is used to solve the missing
money problem. Indeed, the study of ENTSO-E shows that, when running
the capacity expansion model (EVA) without a capacity market but with a
price cap in the energy market at 15k€/MWh, the new mix of capacities
results in a slight under-investment. Concretely, the energy market alone
does not lead to the “optimal” investment, as defined by the LOLE targets.
In this continuous case, the capacity market is needed because of the flawed
price cap, which is not consistent with the LOLE target22. In our discrete
case, we assume that the price cap of 15k€/MWh reflects the right VOLL,
such that there is no classical “missing money”. Instead, as we work with
discrete investments, the CRM plays a role of mitigating the long-term lost
opportunity cost.

5.6.2 The ERAA model

The detailed mathematical model of EVA is provided in appendix 5.B. In
a nutshell, the EVA model includes 37 countries modelled as 59 bidding
zones. The power grid is composed of HVAC and HVDC lines, although in
the EVA the network constraints are represented using an ATC model. The
model considers various climate years, that can be viewed as a set of 31

22 The price cap is a key driver of the investment decisions in an energy-only market. It reflects
the value at which the “lost load” is priced in the energy market (the VOLL). It should be
aligned with the LOLE targets in order for the market to induce the right level of investment.
Indeed, there is a strong connection between the VOLL and the LOLE (Stoft, 2002; Cramton
and Stoft, 2005). Concretely, the invested capacity will be optimal if it is such that the marginal
cost of an additional MW of peaking capacity (the investment cost of a peaker, ICpeak) equals
the cost of one more MW of blackout (VOLL × LOLE). This can be summarized by the
following equation: ICpeak = VOLL× LOLE. Note that this relationship can be derived from
the KKT conditions (5.2) of the continuous investment problem (5.1), with Vt = VOLL. Indeed,
considering the peaking units, we deduce from equation (5.2b) that ICpeak = ∑t∈T ∆Ttµpeak,t.
Either the peaker sets the price and µpeak,t = 0, or demand sets the price. In the latter case,
neglecting the unlikely situation in which there is a price indeterminacy, the energy price will
soar up to the VOLL, so that µpeak,t = VOLL−MCpeak ≈ VOLL. From which we conclude
that ICg ≈ VOLL× LOLE. See also Papavasiliou (2024).
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scenarios23 of load and renewable production. Not serving the load (load
curtailment) is priced at VOLL. Production curtailment is not penalized
in the objective function (the model assumes free disposal). The operational
constraints are convex, and so are the investment decisions, which are all
continuous. All the power plants of the same technology in a bidding zone
are aggregated into one large virtual power plant. There are six main types
of generation assets. (i) Existing plants can be partially retired, leading to a
fixed cost reduction (such as yearly maintenance costs). (ii) New plants can
be constructed with a fixed cost. These are the two investment decisions:
continuous variables xnew

g (commissioning) that come with an investment
cost ICnew

g and xexist
g (decommissioning) that save an investment cost ICexist

g .
(iii) Renewable assets are exogenous and therefore directly integrated in
the net load. (iv) Demand response, essentially an elastic load (or “load
shedding”), is modelled as an additional convex generator at a given price.
(v) Batteries are essentially a load shifting asset, and are modelled as a
unique battery per node. (vi) There are four different types of hydro plants
(all convex, described in appendix 5.B).

Figure 5.5 provides an overview of the merit order of the entire ENTSO-E
system (i.e. the operational cost MCg). As far as the investment decisions
are concerned, each of the technologies of Figure 5.5 could be decommis-
sioned, while the commissioning decisions are limited to two technolo-
gies, CCGT and OCGT plants. To provide an order of magnitude, their
investment costs are respectively 143,000 and 95,000 €/MW/y. The decom-
missioning of generation assets of technology g is limited by a parameter
RCapamax

g that is provided by ENTSO-E. This parameter is either set to the
installed capacity (meaning that the technology could be entirely decom-
missioned) or to a lower limit in case ENTSO-E considers it unrealistic to
decommission entirely the technology (e.g. nuclear plants in France are not
allowed to be decommissioned). The commissioning of new OCGT and
CCGT plants is limited by a parameter Capamax

g .
For our experiments, we have modified the ERAA model in two ways

(the detailed models are in appendix 5.B):

• Since we are interested in the discrete investment model, the con-
tinuous investment decisions of ERAA are converted to integers.
Concretely, investments are now the variables xnew

g , xexist
g ∈N which

stand for investments in integer numbers of capacity lumps, mod-
elled by parameters Cnew

g and Cexist
g , which are technology specific

(for example, a CCGT unit is 500 MW, an OCGT unit is 300 MW...
e.g. xnew

CCGT = 3 means the entrance of 3 CCGT units of 500 MW each).

23 ENTSO-E provides 35 scenarios (climate years). As we were not computationally able to solve
4 of them (the climate years 1988, 2000, 2005, 2006), we only use 31 scenarios in our analysis.
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Figure 5.5: Merit order of the EVA model for the entire ENTSO-E region. Note
that the model also includes a carbon tax of 40€ per ton of CO2
which is directly included in the operating cost of the plants.

The comprehensive data for parameters Cnew
g , Cexist

g is provided in
Table 5.8 of appendix 5.B. The energy prices πM

i,t in this model are
assumed to be the merit order prices of Definition 5.1.

• In the same spirit as section 5.5, a capacity market is introduced. The
capacity market is assumed to remunerate the capacity of flexible
generation units only (xnew

g , xexist
g ), i.e. the capacity auction is limited

to the thermal units (DSR, renewable or hydro plants cannot partici-
pate). As compared to section 5.5, the capacity targets Cmin

i defined
by the system operator are now indexed by the bidding zone i.

The model is implemented in Julia (JuMP) and is solved with Gurobi. The
computations are performed on the Lemaitre3 cluster (80 nodes with two
12-core Intel SkyLake 5118 processors at 2.3 GHz and 95 GB of RAM),
which is hosted at the Consortium des Equipements de Calcul Intensif
(CECI).

5.6.3 Numerical results

We simulate three models: the continuous “vanilla” version of ERAA,
the discrete version, and the latter complemented by capacity payments.
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Total Cost Commissioning Decommissioning LOC

Scenarios Cont. Disc. Inc. Cont. Disc. Cont. Disc. Disc.

...

2025/7 7.385e10 7.409e10 0.3% 4745 3800 37790 33000 4.91e8

...

2025/29 7.228e10 7.258e10 0.4% 3690 3300 46929 43100 4.254e8

...

Average 7.614e10 7.634e10 0.3% 7554 7048 29560 25920 1.139e9

Table 5.3: Comparison of the discrete and continuous results of ERAA (the full
results are in appendix 5.C).

The simulations are performed over 31 scenarios24 (historical load and
climate years projected to 2025 market conditions). Tables 5.3 and 5.4
report the average results of 31 scenarios as well as the detailed results for
two scenarios, 2025/7 and 2025/29. The full results are in appendix 5.C.
We highlight three main sets of observations relative to the comparison
of discrete versus continuous investment settings, the magnitude of the
long-term lost opportunity cost, and the effect of a CRM.

Firstly, as far as the comparison of the discrete and continuous model
is concerned, Table 5.3 summarizes the main results from the simulations.
We observe that both models can lead to fairly different results of com-
missioning and decommissioning decisions. Figure 5.6a illustrates these
differences on scenario 2025/29. We observe that the commissioning of
new capacities output by the continuous version of the model is reallocated
across the bidding zones because of the lumpiness of the capacity. More
importantly, Table 5.3 also reports the total cost under both continuous and
discrete models. We observe that the total costs are strikingly similar. The
lumpiness of investment decisions marginally affects the total system costs,
which increase by a mere 0.3% on average.

Secondly, if the lumpiness of investment has a minor effect on costs, it
can however significantly affect the incentives of the market agents. Indeed,
in the continuous case, the lost opportunity cost of all the new and existing
units is zero. This is anticipated from the theory. Under a convex model, the
uniform energy prices together with the allocation of resources (investment
and dispatch) form a competitive equilibrium. Instead, in the discrete case,
the market agents are not in equilibrium. This is quantified in Table 5.3: on

24 This is consistent with the methodology of ENTSO-E (2021): ENTSO-E performs the simula-
tions separately on multiple years (scenarios) and then averages the expansion plans.
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(a) Continuous model

(b) Discrete model

Figure 5.6: Commissioning decisions under the continuous and discrete model
for scenario 2025/29.

average, the total LOC stands for 1.5% of the total system cost. Both the
new and existing power plants face incentives to deviate from the welfare
maximizing allocation. We further focus on scenario 2025/29. Among all
the possible comissioning (resp. decomissioning) decisions, 11% (resp. 10%)
face a positive LOC. These figures show that the LOC is not contained to a
few plants at the margin, but it affects the investors more broadly. At the
same time, this LOC—the “burden” of investments’ indivisibilities—is not
split uniformly over the entire system, but it rests on the shoulder of some
private investors. For example, the revenue shortfall faced by the OCGT
plant installed in ITSA (Table 5.5) stands for 63% of its investment cost.
More generally, 67% of the effective commissioning decisions come with a
revenue shortfall. On average, this revenue shortfall corresponds to 22% of
the investment cost.

The lost opportunity costs are further decomposed into revenue shortfall
and foregone opportunities in Table 5.4. A revenue shortfall should be read
as follows. For a new plant, it means that it is asked to be constructed while
not covering its investment cost. For an existing plant, it means that it is
asked to not be decommissioned despite facing damages. This is further
illustrated in Tables 5.5 and 5.6 which report a sample of the financial
standing of various technologies per bidding zone for scenario 2025/29. In
Table 5.5, we observe various new plants that are commissioned (the CCGT
units in zones DKE1, AL00 and RO00 as well as the OCGT in zone ITSA)
while suffering losses. As far as the existing plants are concerned, in Table
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Without capacity market With capacity market

Scenarios New units Exist units Total Inelastic Elastic No Coord.

...

LOC 3.534e8 1.376e8 4.91e8 4.863e8 6.354e8 1.144e9

2025/7 RS 1.802e7 0.0 1.802e7 1.335e7 4.154e7 3.244e7

FO 3.354e8 1.376e8 4.73e8 4.73e8 5.939e8 1.111e9

...

LOC 1.052e8 3.202e8 4.254e8 5.447e7 2.678e8 1.328e9

2025/29 RS 6.925e7 3.171e8 3.864e8 1.312e7 4.362e7 3.012e7

FO 3.599e7 3.061e6 3.905e7 4.135e7 2.242e8 1.297e9

...

LOC 6.7e8 4.692e8 1.139e9 7.192e8 9.044e8 1.429e9

Average RS 9.805e7 3.376e8 4.356e8 1.477e7 2.364e7 2.429e7

FO 5.72e8 1.316e8 7.037e8 7.045e8 8.808e8 1.405e9

Table 5.4: Analysis of investor incentives decomposed into lost opportunity costs
(LOC), revenue shortfall (RS) and foregone opportunity (FO), for the
two cases including or not a capacity payment. The results report
three CRM settings: the inelastic capacity target, the elastic capacity
demand curve and the inelastic capacity target computed without
European coordination (the full results are in appendix 5.C).

5.6 we observe many technologies (the table only shows a sample) that
are required to stay in the market while they suffer losses (e.g. some oil
plants in zone GR03 as well as CCGT units in FR00, BE00, HU00 or PT00,
or some lignite plants in RS00). Similarly, twelve CCGT units in ES00 leave
the market while even more units would prefer to leave the market due to
the fact that they are not profitable.

A foregone opportunity should be understood as follows. For a new tech-
nology, it means that there is an incentive to invest more than what is
socially optimal. Some technologies are not investing at all, while they
would be profitable. Others are investing, but less than what they would
given the energy price signal. For example, in Table 5.5, we observe that
no CCGT plants in zone SE04 are commissioned while they would be
profitable. In zones LT00 and SE03, one CCGT is commissioned while it
is profitable and would therefore have incentives to expand. The last case
means that certain new CCGT plants not only have incentives to deviate
from the welfare-maximising allocation but they also earn a non-zero profit
for a resource that is not scarce. They earn a “discreteness rent” of 3740
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Zone Technology Investment Profit LOC RS FO

SE04 CCGT new 0 × 500 0.0 3.05e6 0.0 3.05e6

DKE1 CCGT new 1 × 500 −1.871e6 1.871e6 1.871e6 0.0

LT00 CCGT new 1 × 500 2.007e6 2.007e6 0.0 2.007e6

AL00 CCGT new 1 × 500 −1.626e7 1.626e7 1.626e7 0.0

FI00 CCGT new 0 × 500 0.0 1.164e7 0.0 1.164e7

EE00 CCGT new 0 × 500 0.0 7.328e6 0.0 7.328e6

RO00 CCGT new 2 × 500 −3.284e7 3.284e7 3.284e7 0.0

SE02 CCGT new 0 × 500 0.0 3.468e6 0.0 3.468e6

SE01 CCGT new 0 × 500 0.0 2.199e6 0.0 2.199e6

SE03 CCGT new 1 × 500 1.733e6 3.466e6 0.0 3.466e6

ITSA OCGT new 1 × 300 −1.828e7 1.828e7 1.828e7 0.0

LV00 CCGT new 0 × 500 0.0 2.829e6 0.0 2.829e6

Table 5.5: Detailed analysis of agent incentives for the new plants (commission-
ing) for scenario 2025/29.

€/MW/year (for a 500MW CCGT it means 1.87 M€/year). For an existing
plant, a foregone opportunity means that it is asked to retire while the
plant is profitable. In Table 5.6, several CCGT plants in zone UK00 are
asked to retire while they are profitable.

These results confirm the theoretical findings from section 5.4: in an in-
vestment problem, the LOC resulting from indivisibilities can be significant,
even in large systems. Certain market agents face incentives to invest more
than what is socially optimal. In practice, they may not invest but they will
then collect a positive rent for a resource that is not scarce. Other agents
cannot cover both their operational and capital costs. The energy price
does not play well the coordination role that it fulfils in convex settings,
nor does it convey the information properly. Indeed, in the discrete case,
some technologies end up with positive (or negative) profits. But, as Scarf
emphasises, and unlike what would happen in the continuous case, the fact
that a technology faces a positive (negative) profit does not indicate that
the entire system welfare could be improved by increasing (decreasing)
the investment in that technology—in fact, it would not. There is no easy
solution to this issue, and as we observe later, the introduction of a capacity
market can make matters worse if not properly calibrated.

The third and last aspect of our analysis regards the impact of a uniform
capacity remuneration. We test three shapes of capacity demand curve:
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Zone Technology In Place Investment Profit LOC RS FO

DKE1 Light oil 529 −2 × 100 −2.871e6 2.618e6 2.618e6 0.0

GR03 Light oil 277 0 × 100 −3.632e6 2.622e6 2.622e6 0.0

PT00 CCGT present 1 990 0 × 450 −1.367e6 1.243e6 1.243e6 0.0

HU00 CCGT old 2 976 0 × 400 −1.726e7 6.407e6 6.407e6 0.0

BE00 CCGT present 2 3550 0 × 450 −6.709e6 5.953e6 5.953e6 0.0

FR00 CCGT present 2 5148 0 × 450 −7.521e7 7.231e7 7.231e7 0.0

UK00 CCGT old 2 15010 −3 × 400 3.173e7 2.757e6 0.0 2.757e6

UK00 CCGT old 1 593 −1 × 400 146800.0 303600.0 0.0 303600.0

RS00 Lignite new 1106 0 × 300 −2.863e7 2.33e7 2.33e7 0.0

ES00 CCGT present 1 24499 −12 × 450 −1.492e8 5.452e7 5.452e7 0.0

Table 5.6: Detailed analysis of agent incentives for existing plants (decommis-
sioning) for scenario 2025/29 (sample).

(A) An inelastic capacity demand with the national capacity targets
Cmin

i set to the optimal investment target with European coordi-
nation (i.e. solving the expansion problem), as in Proposition 5.6:
Cmin

i = ∑g∈Gnew
i

xnew∗∗
g Cnew

g −∑g∈Gexist
i

xexist∗∗
g Cexist

g , where xnew∗∗
g and

xexist∗∗
g are the optimal investment decisions derived from solving the

discrete investment problem. An example is provided in Figure 5.7.

(B) An elastic capacity demand which follows the design proposals in
the literature (Cramton and Stoft, 2005; Cramton et al., 2013) as well
as practical applications (see the survey of Papavasiliou (2021)). An
illustration is provided in Figure 5.7. The demand for capacity is
worth two times the entry cost of a peaker (here, an OCGT unit) up
to Cmin

i (the optimal investment target) minus 5%. Then the valuation
for capacity decreases sharply to one times the entry cost of a peaker
at Cmin

i , and finally becomes zero at Cmin
i plus 15%.

(C) An inelastic capacity demand, but with the Cmin
i targets computed

without European coordination. In this case, each country computes
the target capacity independently, instead of solving the European in-
vestment problem. Concretely, in order to compute Cmin

i , we simulate
an adapted version of the capacity expansion problem of ENTSO-E,
where each country i is treated as an island, having to meet its na-
tional load only with domestic capacity. An illustration is provided
in Figure 5.7.

The right half of Table 5.4 presents how the lost opportunity costs are
affected by the addition of a capacity market. Under CRM model (A),
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Figure 5.7: Illustration of the capacity demand curve for scenario 2025/29 in
Ireland for models (A) (inelastic demand), (B) (elastic demand) and
(C) (no EU-coordination). In these models, the Irish capacity price
is, respectively, 0, ∼60,000 and ∼13,000 €/MW/y. As a point of
comparison, the capacity price of the Belgian CRM in 2022 was
∼50,000 €/MW/y.

and as expected from Proposition 5.6, the capacity payments improve the
overall incentives of the market agents. On average, the long-term lost
opportunity costs decrease by 40% following the inclusion of a CRM, while
the revenue shortfalls drop by 97%. Nonetheless, the magnitude of the
impact of the CRM is heterogeneous across scenarios: for example, if the
effect is significant in scenario 2025/29, it is less so in scenario 2025/7. We
notice that, in our computations, the capacity price remunerates the optimal
capacity mix. This could be regarded as the most optimistic result that can
be achieved by a uniform price CRM. Indeed, as highlighted in Proposition
5.5, it may happen that the bids cleared by the CRM (as problem (5.14))
differ from the capacity mix optimizing problem (5.3). For example, in
scenario 2025/29, 20 zones out of the 59 have a positive capacity price.
Among these 20 zones, discrepancies between the CRM results and the
optimal expansion plan occur in 15% of the cases.

The two other CRM designs stand for plausible cases of an over dimen-
sioned target Cmin

i . They aim at evaluating the impact of a capacity price
as soon as the capacity demand curve departs from the idealized settings
of Proposition 5.6. As indicated by Proposition 5.7, an over-dimensioned
capacity target can exacerbate the LOC. Under CRM model (B), we observe
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that, on average, the addition of a capacity payment still improves the
incentives of market agents compared to the sole energy remuneration.
In scenario 2025/29, the CRM model (A) allows to cut by ten the total
lost opportunity costs. Model (B) does not perform as well, nevertheless
it still lowers by 40% the total LOC compared to an energy-only settle-
ment. However, scenario 2025/7 also highlights how model (B) can not
only fail to achieve the same performance as model (A), but also perform
worse than an energy-only market. In this case, the addition of a capacity
payment makes the lost opportunity costs worse than they are under the
sole marginal energy price. As shown in Table 5.4, CRM model (C) has a
more disruptive effect on agents’ incentives. Since it neglects international
coordination, this model tends to increase the capacity demanded in each
country, thereby amplifying foregone opportunities. This highlights the
benefits of having a European coordination in defining the national CRM
targets, in the spirit of ERAA.

5.7 conclusion

In this chapter, we analyse the problem of indivisibilities in investment
decisions and their impact on the ability of a decentralized energy market
to support efficient investments. We analyse the market failure that occurs
under indivisible investment. This failure can be measured by the concept
of long-term lost opportunity cost, which is introduced in the chapter. This
lost opportunity cost prevents a purely decentralized energy market to
lead to a long-term equilibrium. Indivisibilities in investment have often
been overlooked in the literature. A persistent argument for neglecting
indivisibilities is that they supposedly vanish when the market size in-
creases. We accurately reconstruct the underlying theoretical argument, by
reviewing a classical result from the theory of general equilibrium, that we
transpose to the context of power markets. We highlight that this result is
only valid under specific pricing assumptions. We show that, as far as the
investment problem is concerned, under the classic “merit order pricing”,
the long-term lost opportunity costs can be arbitrary large. This theoretical
argument is confirmed by our numerical simulations.

In order to address this market failure, we analyse the effect of introduc-
ing a CRM. We show that investment indivisibilities cast a new light on
the role played by a CRM. We particularly propose the novel concept of
convex hull pricing (CHP) for capacity auctions. We show that, similarly
to CHP in short-term auctions, it can mitigate long-term lost opportunity
costs. Nevertheless, we also stress the limits of a CRM: we highlight that
its effect can be inconclusive—and even counter-productive—when the
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CRM is ill-designed. We illustrate these findings on the realistic capacity
expansion model used by ENTSO-E for assessing the capacity adequacy of
the European system.

As future work, we envision three possible directions. From a theoretical
perspective, this work treats indivisibilities in isolation from other imperfec-
tions such as market power or risk. One theoretical inquiry is to what extent
these imperfections, when combined, reinforce or mitigate each other. From
a computational perspective, we have introduced indivisibilities in the ca-
pacity expansion model of ENTSO-E. This model has been work in progress
for several years. A recent upgrade is the introduction of uncertainty in
the model (Ávila et al., 2023). Future work could focus on combining the
two features (uncertainty and indivisibility) in one model. Finally, from
a policy perspective, our work focused on the interplay between invest-
ment indivisibilities and capacity markets. We have highlighted two main
problems that could be explored in future works. One further development
could attempt to find bounds on the capacity demand Cmin, as safeguards
against over-dimensioning. Another development could explore whether
some heuristics could guide the capacity market towards the optimal mix
x∗∗, without having to rely on a comprehensive capacity expansion model.
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rad
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X X

x
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Y

Figure 5.8: Illustration of the concepts of radius (left figure) and inner radius
(right figure) of a non-convex set X (here, X is a polytope with a
hole).

appendices

5.a proofs of the propositions

Before establishing the proof of Proposition 5.1, we recall the concept of
the inner radius of a non-convex set.

Definition 5.11. Let X ⊂ Rn be a compact non-convex set. The radius of this
set is the radius of the smallest ball containing the set:

rad(X ) = min
x∈Rn

max
y∈X
|x− y|

For any x ∈ conv(X ), there is a set Y spanning x (i.e. x = ∑y∈Y λ(y)y, with
λ(y) ≥ 0 and ∑y∈Y λ(y) = 1). The inner radius of X is the radius of the smallest
ball including the smallest set Y spanning x, for any x ∈ conv(X ):

r(X ) = max
x∈conv(X )

min
Y⊂X
spans x

rad(Y)

Both concepts are illustrated in Figure 5.8. Note that, if the production
set is convex, its inner radius is clearly 0.

Proof of Proposition 5.1. Let πCH denote the convex hull prices and (q∗, x∗, d∗)
the associated allocation in the relaxed problem, i.e. (q∗, x∗)g ∈ conv(Xg) ∀g.
Since we assume that the consumption set Xd is convex, we can set
d† = d∗ ∈ Xd, which indeed solves problem (5.6) under price πCH .

Regarding the production plan, by definition of the convex hull, (q∗, x∗)g =

∑i αg,i(q†, x†)g,i with ∑i αg,i = 1, αg,i > 0, for some (q†, x†)g,i ∈ Xg. We de-
note Yg ⊂ Xg as the smallest set of those (q†, x†)g,i. Clearly, all the points
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(q†, x†)g,i ∈ Yg solve problems (5.5) under the price πCH (by optimality of
the allocation (q∗, x∗) in the relaxed problem).

We define Ŷg = {q|(q, x) ∈ Yg} (the projections of the previously defined
sets Yg over the space of variables q), and z∗ ∈ R|T | : z∗t = ∑g q∗g,t ∈
∑g conv(Ŷg). By Starr’s Theorem25, there exists a z† ∈ ∑g Ŷg such that
|z∗ − z†| ≤

√
|T |A.

Proof of Proposition 5.2. The proof proceeds in two steps. Firstly, from the
central result of convex hull pricing theory (Gribik et al., 2007), the total
lost opportunity cost corresponds to the duality gap:

∑
g∈G

LOCg(π
CH) + LOCd(π

CH) = z∗D − z∗P

To see this, it suffices to write the Lagrangian relaxation corresponding
to z∗D and to rearrange the terms. Secondly, this duality gap is bounded26.
Indeed, using Minkowski’s extended formulation, problem (5.8) can be
written as the following linear program:

z∗D = max
dt ,λk

g
∑
t∈T

∆TtdtVt − ∑
g∈G

∑
k∈Kg

λk
g ĉk

g (5.16a)

∑
g∈G

∑
k∈Kg

λk
g q̂k

g,t ≥ dt ∀t ∈ T (5.16b)

0 ≤ dt ≤ Dt ∀t ∈ T (5.16c)

∑
k∈Kg

λk
g = 1 ∀g ∈ G (5.16d)

λk
g ≥ 0 ∀g ∈ G, k ∈ Kg (5.16e)

The set Kg denotes the number of extreme points of Xg (which is assumed
to be a compact set). Parameters q̂k

g,t and ĉk
g denote the production schedule

and cost associated to each extreme point k of Xg. There are |T | variables dt

and |Kg| variables λk
g for each of the |G| suppliers. From constraint (5.16d),

there is at least one non-zero λk
g per supplier g. If there is exactly one, the

25 (Starr (1969), a corollary of the Shapley-Folkman Theorem) Let Xi ⊂ Rn be m non-convex
sets such that r(Xi) ≤ A ∀i = 1...m, and let x ∈ conv(∑i=1...m Xi) ⊂ Rn. Then, there exists a
y ∈ ∑i=1...m Xi such that |x− y| ≤

√
nA.

26 There are two ways to derive this bound. One immediately relies on the Shapley-Folkman
theorem (which is also the crux of the Arrow-Starr proofs). See, for instance, Bertsekas and
Sandell (1982) for the application of the Shapley-Folkman theorem to the estimation of the
duality gap of a separable non-convex optimization problem. Another way relies on basic
linear programming theory, that we use here. Our reasoning is adapted from Bertsekas et al.
(1983).
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solution of the relaxed problem is feasible. From the fundamental theorem
of linear programming theory, there is an optimal solution that has at least
as many constraints as variables that are tight. Therefore, we know there
are at most |T | additional non-zero λk

g, meaning that at most |T | suppliers
have more than one λk

g > 0 (a production plan that is infeasible). Starting
from the production plan that solves the convex relaxation, at most |T |
production plans should be modified in order to obtain a feasible primal
solution (under-approximating z∗P). This modification costs at most ρg,
which is the maximum cost resulting from turning an infeasible production
plan (q̂, x̂)g ∈ conv(Xg) to a feasible production plan that supplies at least
as much power. We conclude that z∗D − z∗P ≤ ρ|T |.

From the proof, it is obvious that an alternative bound (tighter in case
the ρg vary significantly between the power units) is z∗D − z∗P ≤ ∑g∈Gmax ρg,
with Gmax being the set of |T | generators with the highest ρg. Furthermore,
for a convex production set Xg, clearly ρg = 0.

Proof of Proposition 5.3. The Proposition follows immediately from Example
5.4.

The next proof is adapted from Theorem 1 in Papavasiliou (2021).

Proof of Proposition 5.4. In convex settings, the classical “missing money”,
which motivates the use of a capacity market, arises because of a price cap
in the energy market. Let us assume that πM

t = PC when the system is
short (load is curtailed). The continuous capacity market is:

min
q,x ∑

g∈G

(
xg ICg − ∑

t∈T
∆Tt(π

M
t −MCg)qg,t

)
(5.17a)

(πC) ∑
g∈G

xg ≥ Cmin (5.17b)

0 ≤ qg,t ≤ xg ∀g ∈ G, t ∈ T (5.17c)

xg ≥ 0 ∀g ∈ G (5.17d)

We show that there is a well-calibrated Cmin such that the optimal solution
x∗ of problem (5.1) is also a solution of auction (5.17). The KKT conditions
of problem (5.17) are:

0 ≤ qg,t ⊥ MCg − πM
t + µg,t ≥ 0 ∀g ∈ G, t ∈ T (5.18a)

0 ≤ xg ⊥ ICg − πC − ∑
t∈T

∆Ttµg,t ≥ 0 ∀g ∈ G (5.18b)

0 ≤ xg − qg,t ⊥ µg,t ≥ 0 ∀g ∈ G, t ∈ T (5.18c)
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0 ≤ ∑
g∈G

xg − Cmin ⊥ πC ≥ 0 (5.18d)

Let x∗ be the solution of problem (5.1). We want to show that it satisfies
(5.18). The energy price only differs between problems (5.1) (where it is
called πt) and (5.18) (πM

t ) during the scarcity periods ST , i.e. for t ∈ ST ,
πM

t = PC while πt = Vt. We denote by µ∗g,t the scarcity rents µ solving (5.2).
Outside the scarcity periods, equations (5.18a) are equivalent to (5.2a) and
µg,t = µ∗g,t. During the scarcity periods µ∗g,t = Vt −MCg while equations
(5.18a) can be written as µg,t = PC − MCg = µ∗g,t − Vt + PC. Equations
(5.2b) can then be written equivalently as:

0 ≤ xg ⊥ ICg − πC − ∑
t∈T

∆Ttµ
∗
g,t

+ ∑
t∈T S

∆Tt(Vt − PC) ≥ 0 ∀g ∈ G
(5.19)

Defining Cmin = ∑g∈G x∗g, equation (5.18d) implies πC ≥ 0. Fixing πC =

∑t∈T S ∆Tt(Vt − PC), equation (5.19) is then equivalent to (5.2b).

Proof of Proposition 5.5. The Proposition follows immediately from Example
5.6.

Proof of Proposition 5.6. Capacity market (5.14) can be written equivalently
as follows:

min
q,x ∑

g∈G

∑
i∈Ig

xg,i ICg,i − ∑
t∈T

∆Tt(π
M
t −MCg)qg,t

 (5.20a)

(πC) ∑
g∈G

∑
i∈Ig

Pmax
g,i xg,i ≥ Cmin (5.20b)

0 ≤ qg,t ≤ ∑
i∈Ig

Pmax
g,i xg,i ∀g ∈ G, t ∈ T (5.20c)

xg,i ∈ {0, 1} ∀g ∈ G, i ∈ Ig (5.20d)

The Lagrangian dual problem is then (rearranging the terms):

min
πC≥0

{
−CminπC + ∑

g∈G
max

(q,x)g∈Xg

∑
t∈T

∆Ttπ
M
t qg,t + πC ∑

i∈Ig

Pmax
g,i xg,i

− ∑
i∈Ig

xg,i ICg,i − ∑
t∈T

∆Tt MCgqg,t
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Adding the constants 0 = πC(∑g∈G ∑i∈Ig Pmax
g,i x∗∗g,i − ∑g∈G ∑i∈Ig Pmax

g,i x∗∗g,i)

and ∑g∈G(−∑t∈T ∆Ttπ
M
t q∗∗g,t +∑i∈Ig x∗∗g,i ICg,i +∑t∈T ∆Tt MCgq∗∗g,t) leads to

equation (5.15).

Proof of Proposition 5.7. We denote by LOCg(πC, πM) the lost opportunity
cost of g under both energy and capacity prices. LOCg(0, πM) then cor-
responds to the LOC in the energy-only market. Denoting the optimal
objective function of equation (5.15) by ξ, since πC = 0 is a feasible so-
lution of the optimization problem (5.15), we conclude that: ξ ≤ 0 ×
(∑g ∑i Pmax

g,i x∗∗g,i−Cmin) +∑g LOCgen
g (0, πM) = ∑g LOCgen

g (0, πM). Further-

more, if Cmin ≤ ∑g ∑i Pmax
g,i x∗g,i then πC∗(∑g ∑i Pmax

g,i x∗∗g,i − Cmin) ≥ 0, from

which we can write ∑g LOCgen
g (πC∗, πM) ≤ ξ. We conclude that

∑
g

LOCgen
g (πC∗, πM) ≤∑

g
LOCgen

g (0, πM)

5.b comprehensive eraa mathematical model

continuous vanilla eraa model. In this section we present the
complete model of ERAA (see also Ávila et al. (2023)). The objective is to
minimize the total cost:

min ∑
g∈Gnew

xnew
g ICnew

g − ∑
g∈Gexist

xexist
g ICexist

g + ∆T

∑
i∈N
t∈T

ξ+i,tVOLL

+ ∑
t∈T

g∈Gnew

MCnew
g qnew

g,t + ∑
t∈T

g∈Gexist

MCexist
g qexist

g,t

+ ∑
t∈T

g∈GDSR

MCDSR
g,t qDSR

g,t + ∑
t∈T ,i∈N
j∈ f rom(i)

| fi,j,t|WCi,j + ∑
h∈H
t∈T

sh,tSPh


(5.21)

The market clearing condition is expressed as follows:

∑
g∈Gnew

i

qnew
g,t + ∑

g∈Gexist
i

qexist
g,t + ∑

g∈GDSR
i

qDSR
g,t + ∑

g∈GBAT
i

(bdg,t − bcg,t)

+ ξ+i,t − ξ−i,t + ∑
h∈Hi

qturb
h,t − ∑

h∈HPS
i

qpump
h,t

= Di,t + ∑
j∈ f rom(i)

fi,j,t − ∑
j∈to(i)

f j,i,t ∀i ∈ N , ∀t ∈ T

(5.22)
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The operational constraints of the assets are as follows:

0 ≤ xnew
g ≤ Capamax

g ∀g ∈ Gnew (5.23a)

0 ≤ xexist
g ≤ RCapamax

g ∀g ∈ Gexist (5.23b)

0 ≤ qnew
g,t ≤ xnew

g ∀g ∈ Gnew, t ∈ T (5.23c)

Pmin,exist
g,t ≤ qexist

g,t ∀g ∈ Gexist, t ∈ T (5.23d)

qexist
g,t ≤ Pmax,exist

g,t − xexist
g

Pmax,exist
g,t

max(Pmax,exist
g,t )

∀g ∈ Gexist, t ∈ T (5.23e)

0 ≤ qDSR
g,t ≤ Pmax,DSR

g,t ∀g ∈ GDSR, t ∈ T (5.23f)

Fmin
i,j,t ≤ fi,j,t ≤ Fmax

i,j,t ∀i ∈ N , j ∈ f rom(i), t ∈ T (5.23g)

0 ≤ bdg,t, bcg,t ≤ Bmax
g ∀g ∈ GBAT , t ∈ T (5.23h)

0 ≤ bvg,t ≤ Bcapa
g ∀g ∈ GBAT , t ∈ T (5.23i)

bvg,t = bvg,t−1 + ∆T(Be f f
g bcg,t − bdg,t) ∀g ∈ GBAT , t ∈ T 1 (5.23j)

bvg,1 = Binit
g + ∆T(Be f f

g bcg,1 − bdg,1) ∀g ∈ GBAT (5.23k)

0 ≤ vhead
h,t ≤ Vmax

h ∀h ∈ Hres ∪HPSC ∪HPSO, t ∈ T (5.23l)

0 ≤ qturb
h,t ≤ Pmax,turb

h,t ∀h ∈ Hres ∪HPSC ∪HPSO, t ∈ T (5.23m)

vhead
h,t = vhead

h,t−1 + ∆T(IFh,t − qturb
h,t − sh,t) ∀h ∈ Hres, t ∈ T 1 (5.23n)

vhead
h,1 = V0,head

h + ∆T(IFh,1 − qturb
h,1 − sh,1) ∀h ∈ Hres (5.23o)

vhead
h,t = vhead

h,t−1 + ∆T(He f f
h qpump

h,t − qturb
h,t − sh,t) ∀h ∈ HPSC, t ∈ T 1 (5.23p)

vhead
h,1 = V0,head

h + ∆T(He f f
h qpump

h,1 − qturb
h,1 − sh,1) ∀h ∈ HPSC (5.23q)

vhead
h,t = vhead

h,t−1 + ∆T(IFh,t + He f f
h qpump

h,t

− qturb
h,t − sh,t) ∀h ∈ HPSO, t ∈ T 1 (5.23r)

vhead
h,1 = V0,head

h + ∆T(IFh,1 + He f f
h qpump

h,1 − qturb
h,1 − sh,1) ∀h ∈ HPSO (5.23s)

vtail
h,t = vtail

h,t−1 + ∆T(−He f f
h qpump

h,t + qturb
h,t ) ∀h ∈ HPS, t ∈ T 1 (5.23t)

vtail
h,1 = V0,tail

h + ∆T(−He f f
h qpump

h,1 + qturb
h,1 ) ∀h ∈ HPS (5.23u)

0 ≤ qpump
h,t ≤ Pmax,pump

h,t ∀h ∈ HPS, t ∈ T (5.23v)

ξ+i,t, ξ−i,t ≥ 0 ∀i ∈ N , t ∈ T (5.23w)

The hydro technologies are of four types:

• Run-of-River: a turbine without any storage, i.e. essentially a natural
inflow, which is directly accounted for in the net load.
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• Reservoir: a turbine with a reservoir, fed with inflows, that enables to
choose the turbine power at each hour.

• PS Closed: a first pumped-storage technology, composed of two reser-
voirs (head and tail) with pumps and turbines. The head reservoir
is fed by pumped water. The tail reservoir is fed by turbine water.
There are no natural inflows.

• PS Open: a second pumped-storage technology, which is the same
as PS Closed, except that there are natural inflows feeding the head
reservoir.

The model, although slightly more compact than the actual EVA model
of ENTSO-E, includes all the features of the ENTSO-E model27. Table
5.7 provides the comprehensive nomenclature. We remark that Dt is the
load net of RES production and run-of-river production. The parameter
ICnew

g includes both annualized capital cost as well as fixed maintenance
cost. The parameter ICexist

g essentially includes fixed maintenance cost. The
parameters MCexist

g and MCnew
g include variable operation and maintenance

cost, fuel cost as well as a CO2 tax.

27 The main “simplifications” compared to the original EVA model are the following. (i) The
HVDC and HVAC lines are merged together. This is justified by the fact that the network is
represented as an ATC model. (ii) Certain parameters (such as IC or MC) are pre-processed
in order to make the model more compact. (iii) Finally, the data in the Turkish zone leads to
outlier results of investment in Turkey. This is also acknowledged by ENTSO-E (2021). Thus,
we remove Turkey from the model. This is aligned with ENTSO-E’s assumption in the 2022

study.
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Sets

T , T 1 set of periods and T 1 = T \ {1}
N set of nodes

Gnew, Gnew
i set of new plants, set of new plants in node i

Gexist, Gexist
i set of existing plants, set of existing plants in node i

GDSR, GDSR
i set of DSR units, set of DSR units in node i

GBAT , GBAT
i set of batteries, set of batteries in node i

Hres, HPSC, HPSO set of hydro units of type Reservoir, PS Closed & PS Open

H, HPS set of all the hydro and HPS = HPSC ∪HPSO

Parameters

∆T duration of a time period

Dt net load

Capamax
g max capacity that can be built

RCapamax
g max capacity that can be retired

ICnew
g investment cost of a new plant

ICexist
g investment cost of an existing plant

MCnew
g operating cost of a new plant

MCexist
g operating cost of an existing plant

MCDSR
g,t price for the demand response

Pmin,exist
g,t min production of an existing plant

Pmax,exist
g,t max production of an existing plant

Pmax,DSR
g,t max production of a DSR plant

Fmax
i,j,t max flow of line from i to j

Fmin
i,j,t min flow of line from i to j

WCi,j cost of flowing power from i to j

Be f f
g charging/discharging efficiency of the battery

Bcapa
g , Bmax

g battery volume capacity, charging/discharging capacity

Binit
g battery initial volume (in t = 0)

SPh “spill penalty” for spilling water out of the reservoir

IFh,t natural inflows of water (Reservoir and PS Open)

Vmax
h max volume of the head reservoir

Vhead,0
h initial volume of the head reservoir

Vtail,0
h initial volume of the tail reservoir

Pmax,turb
h,t max power for turbine
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Pmax,pump
h,t max power for pump (PS Open/Closed)

He f f
h efficiency of pumping (PS Open/Closed)

Variables

xnew
g new capacity built

xexist
g capacity being retired

qnew
g,t production of a new plant

qexist
g,t production of an existing plant

qDSR
g,t production of the demand response

fi,j,t flow of the line from i to j

bvg,t, bcg,t, bdg,t battery volume, charge and discharge

qturb
h,t , qpump

h,t turbine and pump power

vhead
h,t stored volume of water in head reservoir

vtail
h,t stored volume of water in tail reservoir

sh,t spilled volume

ξ+i,t, ξ−i,t load and production shedding

Table 5.7: Nomenclature of problem (5.23).

discrete investment model. The previous model is adapted as
follows. Variables xnew

g and xexist
g are non-negative integers: xnew

g , xexist
g ∈N.

The lumps of capacity—or power plant sizes—are modelled by parameters
Cnew

g and Cexist
g . The data for these parameters is provided in Table 5.8.

The sole changes with respect to the comprehensive model (5.23) are the
constraints on investment limits (equations (5.23a)-(5.23b)), the constraints
on production limits (equations (5.23c)-(5.23e)) as well as the fixed cost
term in the objective (5.21). The investment and production constraints are
now expressed as follows:

0 ≤ Cnew
g xnew

g ≤ Capamax
g ∀g ∈ Gnew (5.24a)

0 ≤ Cexist
g xexist

g ≤ RCapamax
g ∀g ∈ Gexist (5.24b)

0 ≤ qnew
g,t ≤ Cnew

g xnew
g ∀g ∈ Gnew, t ∈ T (5.24c)

Pmin,exist
g,t ≤ qexist

g,t ∀g ∈ Gexist, t ∈ T (5.24d)

qexist
g,t ≤ Pmax,exist

g,t −
xexist

g Cexist
g Pmax,exist

g,t

max(Pmax,exist
g,t )

∀g ∈ Gexist, t ∈ T (5.24e)
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Technology Plant Size Technology Plant Size

[MW] [MW]

Nuclear 1000 Light oil 100

Gas/CCGT new 500 Heavy oil/old 2 300

Gas/CCGT old 2 400 Heavy oil/old 1 200

Gas/CCGT present 2 450 Oil shale/new 250

Gas/CCGT present 1 450 Hard coal/new 600

Gas/CCGT old 1 400 Hard coal/old 1 550

Gas/OCGT new 300 Hard coal/old 2 800

Gas/OCGT old 250 Lignite/new 300

Gas/conventional old 1 200 Lignite/old 1 800

Gas/conventional old 2 200 Lignite/old 2 500

Table 5.8: Capacity lumps—or plant size—for the different technologies.

The fixed costs of the objective are:

∑
g∈Gnew

xnew
g Cnew

g ICnew
g − ∑

g∈Gexist

xexist
g Cexist

g ICexist
g (5.25)

The energy prices πM
i,t in this model are assumed to be the merit order

prices of Definition 5.1. The investment decisions are fixed to their optimum
(xnew,∗∗

g , xexist,∗∗
g ) and the prices are then obtained as the dual variables of

the market clearing constraints.

capacity market. The capacity auction model reads as follows.

min
p≥0
x∈N

∑
g∈Gnew

(
xnew

g Cnew
g ICnew

g − ∆T ∑
t∈T

(πM
i(g),t −MCnew

g )qnew
g,t

)
(5.26a)

+ ∑
g∈Gexist

(
−xexist

g Cexist
g ICexist

g − ∆T ∑
t∈T

(πM
i(g),t −MCexist

g )qexist
g,t

)
(5.26b)

∑
g∈Gnew

i

xnew
g Cnew

g − ∑
g∈Gexist

i

xexist
g Cexist

g ≥ Cmin
i (5.26c)

0 ≤ xnew
g ≤ bCapamax

g /Cnew
g c ∀g ∈ Gnew (5.26d)

0 ≤ xexist
g ≤ bRCapamax

g /Cexist
g c ∀g ∈ Gexist (5.26e)

0 ≤ qnew
g,t ≤ Cnew

g xnew
g ∀g ∈ Gnew, t ∈ T (5.26f)
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Pmin,exist
g,t ≤ qexist

g,t ∀g ∈ Gexist, t ∈ T (5.26g)

qexist
g,t ≤ Pmax,exist

g,t −
xexist

g Cexist
g Pmax,exist

g,t

max(Pmax,exist
g,t )

∀g ∈ Gexist, t ∈ T (5.26h)

The capacity prices πC
i are the Lagrangian multipliers associated to

constraint (5.26c).

5.c detailed numerical results

The detailed results of the summary Tables 5.3 and 5.4 are provided respec-
tively in Tables 5.9 and 5.10. Table 5.9 also provides the correspondence
between the scenario labels (e.g. 2025/7), used in the text of the article
to denote the scenarios, and the climate years (e.g. 1989) used in the raw
data of ENTSO-E. Let us notice that among the 35 scenarios (climate years)
provided by ENTSO-E, we were not computationally able to solve 4 of
them (the climate years 1988, 2000, 2005, 2006) which are, therefore, not
reported in the tables.

Climate Scenario Total Cost Commissioning Decommissioning LOC

Year Label Cont. Disc. Inc. Cont. Disc. Cont. Disc. Disc.

1982 2025/1 7.472e10 7.493e10 0.3% 4811 5300 38233 35500 1.3032e9

1983 2025/2 7.427e10 7.453e10 0.4% 12029 11900 38020 34900 8.93e8

1984 2025/3 7.563e10 7.585e10 0.3% 4331 3500 33497 29150 1.7367e9

1985 2025/4 8.259e10 8.272e10 0.2% 23579 23900 10841 7950 1.4379e9

1986 2025/5 7.738e10 7.752e10 0.2% 10641 9600 18380 14650 8.005e8

1987 2025/6 8.214e10 8.23e10 0.2% 16320 16200 20120 16400 1.1895e9

1989 2025/7 7.385e10 7.409e10 0.3% 4745 3800 37790 33000 4.91e8

1990 2025/8 7.097e10 7.12e10 0.3% 1829 1300 35663 30750 2.5412e8

1991 2025/9 7.764e10 7.783e10 0.2% 4927 4300 23674 20550 1.207e9

1992 2025/10 7.406e10 7.427e10 0.3% 3445 3300 27520 23950 1.1151e9

1993 2025/11 7.624e10 7.644e10 0.3% 4316 3800 21012 17050 4.6549e8

1994 2025/12 7.353e10 7.38e10 0.4% 6640 5800 45503 40800 1.3519e9

1995 2025/13 7.346e10 7.372e10 0.4% 4967 4300 35929 32250 1.4473e9

1996 2025/14 7.982e10 8.001e10 0.2% 10150 9900 30945 27150 5.871e8

1997 2025/15 7.719e10 7.736e10 0.2% 6822 6800 33530 30650 3.831e9

1998 2025/16 7.472e10 7.491e10 0.3% 5600 5500 25829 23100 7.489e8

1999 2025/17 7.463e10 7.485e10 0.3% 8588 7300 32784 29000 3.2773e9

2001 2025/18 7.562e10 7.581e10 0.3% 4338 4300 29388 26700 5.246e8

2002 2025/19 7.471e10 7.491e10 0.3% 5841 5400 32895 29550 1.0566e9

2003 2025/20 8.017e10 8.04e10 0.3% 14713 13300 35522 29750 7.432e8
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2004 2025/21 7.72e10 7.735e10 0.2% 7019 6300 25367 22700 5.307e8

2007 2025/22 7.214e10 7.238e10 0.3% 5689 6300 37386 34150 7.997e8

2008 2025/23 7.256e10 7.29e10 0.5% 3136 1800 46552 41300 1.4014e9

2009 2025/24 7.763e10 7.782e10 0.2% 6359 5900 18435 15750 1.383e9

2010 2025/25 8.358e10 8.376e10 0.2% 11713 10600 14991 10400 7.862e8

2011 2025/26 7.554e10 7.574e10 0.3% 6823 6800 21109 17950 2.743e9

2012 2025/27 7.811e10 7.823e10 0.2% 13708 13200 17311 14300 2.5346e8

2013 2025/28 7.75e10 7.769e10 0.2% 5919 4500 24448 20550 1.3712e9

2014 2025/29 7.228e10 7.258e10 0.4% 3690 3300 46929 43100 4.254e8

2015 2025/30 7.328e10 7.347e10 0.3% 5750 5000 33932 30350 6.574e8

2016 2025/31 7.708e10 7.725e10 0.2% 5740 5300 22735 20100 5.043e8

Average 7.614e10 7.634e10 0.3% 7554 7048 29560 25920 1.1392e9

Table 5.9: Comparison of the discrete and continuous results of ERAA.

Climate Without capacity market With capacity market

Year New units Exist units Total Inelastic Elastic No Coord.

LOC 3.396e8 9.636e8 1.303e9 1.651e8 2.603e8 9.988e8

1982 RS 1.926e8 9.6e8 1.153e9 1.468e7 2.808e7 4.155e7

FO 1.469e8 3.521e6 1.505e8 1.505e8 2.322e8 9.573e8

LOC 7.811e8 1.119e8 8.929e8 8.123e8 9.12e8 1.73e9

1983 RS 7.601e7 5.74e6 8.175e7 1.126e6 2.54e7 1.952e7

FO 7.05e8 1.061e8 8.112e8 8.112e8 8.866e8 1.711e9

LOC 6.647e8 1.072e9 1.737e9 6.055e8 8.153e8 1.87e9

1984 RS 7.247e7 1.068e9 1.14e9 8.536e6 3.135e7 3.422e7

FO 5.923e8 4.668e6 5.969e8 5.969e8 7.839e8 1.835e9

LOC 7.911e8 6.468e8 1.438e9 2.569e7 1.115e8 3.759e8

1985 RS 7.911e8 6.259e8 1.417e9 4.821e6 4.821e6 6.5e7

FO 0.0 2.087e7 2.087e7 2.087e7 1.067e8 3.109e8

LOC 4.804e8 3.201e8 8.005e8 5.978e8 7.812e8 1.089e9

1986 RS 5.245e7 1.588e8 2.113e8 0.0 0.0 1.398e6

FO 4.28e8 1.612e8 5.892e8 5.978e8 7.812e8 1.088e9

LOC 9.443e8 2.452e8 1.19e9 8.249e8 8.979e8 1.378e9

1987 RS 1.939e8 1.864e8 3.803e8 1.486e7 1.486e7 0.0

FO 7.504e8 5.885e7 8.092e8 8.1e8 8.831e8 1.378e9

LOC 3.534e8 1.376e8 4.91e8 4.863e8 6.354e8 1.144e9
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1989 RS 1.802e7 0.0 1.802e7 1.335e7 4.154e7 3.244e7

FO 3.354e8 1.376e8 4.73e8 4.73e8 5.939e8 1.111e9

LOC 3.842e7 2.157e8 2.541e8 8.317e7 2.532e8 1.143e9

1990 RS 3.842e7 1.477e8 1.861e8 1.4e7 3.874e7 3.45e7

FO 0.0 6.802e7 6.802e7 6.917e7 2.145e8 1.109e9

LOC 8.765e8 3.305e8 1.207e9 1.122e9 1.301e9 1.756e9

1991 RS 2.387e7 8.05e7 1.044e8 1.975e7 2.662e7 2.662e7

FO 8.526e8 2.5e8 1.103e9 1.103e9 1.274e9 1.73e9

LOC 2.576e8 8.575e8 1.115e9 1.835e8 3.493e8 1.078e9

1992 RS 1.111e8 8.385e8 9.496e8 1.802e7 2.621e7 1.681e7

FO 1.465e8 1.897e7 1.655e8 1.655e8 3.231e8 1.061e9

LOC 3.953e8 7.019e7 4.655e8 3.965e8 5.583e8 1.386e9

1993 RS 3.947e7 4.276e7 8.223e7 1.108e7 1.044e7 1.044e7

FO 3.558e8 2.743e7 3.833e8 3.854e8 5.479e8 1.376e9

LOC 1.106e9 2.459e8 1.351e9 1.302e9 1.52e9 2.197e9

1994 RS 2.619e7 4.576e7 7.195e7 2.291e7 4.8e7 2.171e7

FO 1.079e9 2.001e8 1.279e9 1.279e9 1.472e9 2.176e9

LOC 6.289e8 8.184e8 1.447e9 6.073e8 7.575e8 1.371e9

1995 RS 6.91e7 7.831e8 8.522e8 1.219e7 4.209e7 3.381e7

FO 5.598e8 3.527e7 5.951e8 5.951e8 7.154e8 1.337e9

LOC 4.125e8 1.746e8 5.871e8 3.188e8 5.896e8 9.255e8

1996 RS 1.709e8 1.076e8 2.785e8 8.699e6 2.36e7 2.481e7

FO 2.416e8 6.699e7 3.086e8 3.101e8 5.66e8 9.007e8

LOC 2.769e9 1.062e9 3.83e9 3.774e9 3.779e9 4.016e9

1997 RS 2.477e7 6.559e7 9.036e7 3.421e7 3.421e7 2.122e7

FO 2.744e9 9.961e8 3.74e9 3.74e9 3.745e9 3.995e9

LOC 4.625e8 2.864e8 7.489e8 3.582e8 5.41e8 9.477e8

1998 RS 1.08e8 2.826e8 3.906e8 0.0 0.0 3.261e7

FO 3.545e8 3.734e6 3.582e8 3.582e8 5.41e8 9.151e8

LOC 2.545e9 7.323e8 3.278e9 3.267e9 3.466e9 3.697e9

1999 RS 1.915e7 1.555e7 3.47e7 2.379e7 2.573e7 1.554e7

FO 2.526e9 7.168e8 3.243e9 3.243e9 3.44e9 3.681e9

LOC 3.046e8 2.2e8 5.246e8 3.033e8 3.967e8 9.833e8

2001 RS 3.822e7 1.957e8 2.339e8 1.261e7 2.798e7 2.798e7

FO 2.664e8 2.431e7 2.907e8 2.907e8 3.687e8 9.553e8

LOC 2.839e8 7.727e8 1.057e9 4.977e8 6.292e8 1.423e9
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2002 RS 2.321e7 5.572e8 5.804e8 2.137e7 2.276e7 2.2e7

FO 2.607e8 2.155e8 4.762e8 4.763e8 6.065e8 1.401e9

LOC 6.128e8 1.304e8 7.432e8 4.132e8 6.189e8 1.462e9

2003 RS 2.435e8 1.207e8 3.642e8 2.457e7 4.948e7 3.917e7

FO 3.693e8 9.747e6 3.79e8 3.886e8 5.694e8 1.423e9

LOC 3.155e8 2.152e8 5.307e8 5.307e8 6.39e8 1.086e9

2004 RS 1.017e7 0.0 1.017e7 1.017e7 1.017e7 1.017e7

FO 3.053e8 2.152e8 5.205e8 5.205e8 6.288e8 1.076e9

LOC 1.494e8 6.503e8 7.997e8 1.162e7 2.079e8 7.412e8

2007 RS 1.494e8 6.503e8 7.997e8 1.162e7 3.714e7 5.302e7

FO 0.0 0.0 0.0 0.0 1.708e8 6.882e8

LOC 1.013e9 3.884e8 1.401e9 1.319e9 1.544e9 2.431e9

2008 RS 0.0 1.316e8 1.316e8 4.958e7 5.062e7 1.824e7

FO 1.013e9 2.568e8 1.27e9 1.27e9 1.494e9 2.413e9

LOC 1.21e9 1.73e8 1.383e9 1.353e9 1.565e9 1.846e9

2009 RS 2.072e7 1.108e7 3.18e7 1.968e6 1.968e6 0.0

FO 1.19e9 1.619e8 1.352e9 1.352e9 1.563e9 1.846e9

LOC 1.196e8 6.666e8 7.862e8 1.029e8 1.238e9 6.17e8

2010 RS 3.189e7 6.62e8 6.939e8 1.012e7 0.0 1.012e7

FO 8.771e7 4.592e6 9.23e7 9.274e7 1.238e9 6.068e8

LOC 7.27e8 2.016e9 2.743e9 4.947e8 5.7e8 1.059e9

2011 RS 2.456e8 2.016e9 2.262e9 1.331e7 1.331e7 6.36e7

FO 4.814e8 0.0 4.814e8 4.814e8 5.567e8 9.954e8

LOC 1.545e8 9.896e7 2.535e8 5.663e7 1.929e8 4.525e8

2012 RS 1.139e8 9.277e7 2.067e8 9.862e6 9.862e6 0.0

FO 4.058e7 6.192e6 4.677e7 4.677e7 1.83e8 4.525e8

LOC 1.19e9 1.812e8 1.371e9 1.144e9 1.269e9 1.714e9

2013 RS 4.613e7 1.812e8 2.273e8 104000.0 1.576e7 1.69e7

FO 1.144e9 0.0 1.144e9 1.144e9 1.253e9 1.697e9

LOC 1.052e8 3.202e8 4.254e8 5.447e7 2.678e8 1.328e9

2014 RS 6.925e7 3.171e8 3.864e8 1.312e7 4.362e7 3.012e7

FO 3.599e7 3.061e6 3.905e7 4.135e7 2.242e8 1.297e9

LOC 3.969e8 2.605e8 6.574e8 5.8e8 7.717e8 1.232e9

2015 RS 9.872e6 1.15e8 1.248e8 4.744e7 1.837e7 1.931e7

FO 3.871e8 1.455e8 5.326e8 5.326e8 7.533e8 1.213e9

LOC 3.423e8 1.62e8 5.043e8 5.043e8 5.993e8 8.232e8
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2016 RS 1.013e7 0.0 1.013e7 1.013e7 1.013e7 1.013e7

FO 3.322e8 1.62e8 4.942e8 4.942e8 5.891e8 8.131e8

LOC 6.7e8 4.692e8 1.139e9 7.192e8 9.044e8 1.429e9

Av. RS 9.805e7 3.376e8 4.356e8 1.477e7 2.364e7 2.429e7

FO 5.72e8 1.316e8 7.037e8 7.045e8 8.808e8 1.405e9

Table 5.10: Analysis of the agent incentives decomposed into lost opportunity
costs (LOC), revenue shortfall (RS) and foregone opportunity (FO),
for the two cases including or not a capacity payment. The results
report three CRM settings: the inelastic capacity target, the elastic
capacity demand curve and the inelastic capacity target computed
without European coordination.
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C O N C L U S I O N

6.1 summary of the contributions

This thesis has studied what is often termed as “[. . . ] one of the
fundamental assumptions of microeconomics” (Mas-Colell et al.,
1995, p. 133), the convexity of the market. Electricity markets provide

a unique playing field for studying the impacts of relaxing this assumption.
Indeed, since the implementation of the deregulation policies that led to the
liberalization of the power sector, wholesale electricity markets have been
characterized by the presence of non-convex bids. Therefore, the question
of how to price these non-convexities, on top of being a fundamental and
theoretical inquiry, has also taken a very practical form, attracting the
interest of both academics and practitioners.

In chapter 3, we perform a theoretical and numerical analysis of different
price formation rules proposed in the literature. We analyse six pricing
methods, we establish several mathematical properties and we illustrate
our findings on stylized examples and numerical simulations with realistic
datasets. Although our analysis applies to both European and American
electricity markets, it has been particularly motivated by the recent discus-
sions among European stakeholders to reform the price formation rules
adopted almost two decades ago by the “Trilateral Market Coupling” (2006).
Our analysis highlights several advantages of convex hull pricing (CHP):

• CHP considerably reduces the lost opportunity costs, therefore im-
proving the incentives faced by the market participants, mitigating
the self-scheduling opportunities.

165
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• This reduction is such that, not only the total, but the distribution of
the lost opportunity costs across suppliers is significantly improved.

• CHP guarantees a theoretical bound on the total lost opportunity
costs, which is independent from the number of market participants.
This translates into a relative magnitude of lost opportunity costs
with respect to the total surplus that shrinks with the market size (cf.
Proposition 3.11).

• CHP ensures the consistency between cost minimization (or surplus
maximization) and lost opportunity costs minimization, thus avoiding
any clash between these two objectives.

• CHP also leads to modest revenue shortfalls. This is due to the fact
that revenue shortfalls are a particular type of lost opportunity costs,
where the “lost opportunity” is to self-schedule at 0. We further ob-
serve a remarkable asymmetry: while minimizing the lost opportunity
costs (as CHP does) leads to low revenue shortfalls ; minimizing the
revenue shortfalls (as MMWP does) can exacerbate the lost opportu-
nity costs dramatically.

• These features are numerous advantages with respect to the alter-
native pricing rules. In particular, with respect to IP pricing, the
fact that CHP incorporates the lumpy costs in the price signal im-
proves significantly the incentives faced by the market agents. If
ELMP would be a significant first step in the direction of CHP, it
does not safeguard all the theoretical guarantees of CHP nor does
it achieve the same performance in terms of lost opportunity costs
minimization. Finally, while minimizing the revenue shortfall—or
“make-whole payments”—may sound like a reasonable target, our
analysis shows that approaches such as “MMWP pricing” may also
result in unbearable lost opportunity costs.

Chapter 4 goes on with the computational challenges related to convex
hull pricing. Indeed, if it has often been contemplated as a promising
approach to price electricity in non-convex wholesale markets, a practical
concern with CHP is that it turns out to be computationally challenging
to calculate. In this chapter, we propose a dual decomposition algorithm
known as the Level Method to efficiently compute locational convex hull
prices. We adapt the basic algorithm to the specificities of convex hull
pricing and we provide empirical evidence about the favorable performance
of our algorithm on large test instances based on PJM and Central Europe
markets (with respect to the number of suppliers, our largest dataset
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includes 1000 power units; with respect to the dimension of the price-
space, our largest dataset includes 96 periods and 30 to 59 bidding zones,
comparable to the size of the European day-ahead market). Our analysis
shows that:

• The Level Method is able to compute convex hull prices on realistic-
size datasets in a computing time compatible with the timing con-
straints of the wholesale markets. On a personal computer, the largest
instance is solved in less than 10 minutes.

• On the so-called CWE “BE dataset”, that includes 96 periods and 30

bidding zones, the Level Method is 5 times faster than the state-of-the
art in the literature.

• These results are hardly sensitive towards the choice of the “α” in the
projection program, the main parameter of the Level Method.

• The Level Method exhibits a convergence path that is robust: it
reaches near-optimal convex hull prices within a few iterations.

Chapter 5 analyses a source of non-convexities that is not discussed as
broadly as the non-convexities in day-ahead power auctions: the indivisibil-
ities in investment decisions. We study this problem by means of a capacity
expansion model with indivisibilities. The main findings are illustrated
with a numerical experiment conducted on the capacity expansion model
used by ENTSO-E to assess the adequacy of the entire European system.
Our analysis leads to several conclusions:

• Under indivisible investment decisions, a decentralized market for
energy fails to reproduce the efficient investment plan. This failure
can be measured by the concept of long-term lost opportunity costs.

• A popular argument to neglect indivisibilities is based on the smooth-
ing effect induced by market size. Our analysis shows that, as far
as the investment problem is concerned, under the classic “merit
order pricing”, this smoothing effect may not happen, consequently
the long-term lost opportunity costs could be arbitrary large. The
theoretical argument is confirmed by our numerical simulations.

• A capacity market that clears discrete offers could mitigate the lumpi-
ness problem. We particularly introduce the novel concept of convex
hull pricing for capacity auctions. Our analysis shows that, similarly
to CHP in short-term auctions, it can mitigate long-term lost oppor-
tunity costs. This is confirmed by our numerical simulations. These
simulations nevertheless stress the limits of a capacity market: its
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effect can be inconclusive—and even counter-productive—when the
CRM is ill-designed.

6.2 a word about the changes induced by the energy tran-
sition

This thesis has said very little about global warming or the energy transi-
tion. This might sound like an unforgivable oversight, knowing that the
production of electricity stands for ∼25% of global anthropogenic green-
house gas emissions (IPCC, 2014)1. In this concluding section, I would like
to correct this omission by, first, briefly discussing the relationship between
environmental policies and electricity markets; and second, to discuss the
impact of the energy transition on the subject matter of this thesis—pricing
under non-convexities.

global warming and the electricity market. Two striking con-
temporary phenomena are, on the one hand, the increasing reliance on the
market in our societies as an institution used to coordinate many aspects
of our social and economical spheres and to allocate resources; and on the
other hand, the alarming evidence of global warming and the massive envi-
ronmental harm resulting from human economic activities (O’Neill, 2016).
One could legitimately wonder what is the relationship between these two
phenomena. From the viewpoint of economics, the relationship is straight-
forward: global warming is not the consequence of too many markets, but
of too few markets. It results from externalities of our economic activities
on the environment: because these externalities are not priced, they are
over-produced. The absence of a market for carbon virtually implies a price
for emitting carbon of 0€/tCO2, which fails to signal the scarcity of this
resource, resulting into inefficiencies.

If the environmental policies dictated by these economical principles
are conceptually straight—Pigouvian taxation of carbon externalities—,
implementing the right carbon tax, however, turns out to be both scien-
tifically challenging and politically controversial. For example, the DICE
model, developed by Nordhaus for more than thirty years, has significantly
adapted its estimation of the social cost of carbon based on the scientific
data collected along the years: it went from an estimate of the optimal
carbon tax for 2015

2 of 5$/tCO2 with the DICE model of 1992, to an esti-

1 This figure is taken from the Fifth Assessment Report of IPCC and accounts for all anthro-
pogenic greenhouse gas emissions, including the so-called “AFOLU”. Let us also stress that
this is a global figure. In a country like Belgium, that has already phased out coal-fired power
plants, and that uses nuclear plants as base-load units, this number is likely much lower.

2 In money adjusted for inflation, in 2010$.
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mate of 31$/tCO2 with the DICE model of 2016.3 At the same time, other
approaches, such as the Stern Review, advocate for a lower discount rate
and thus for a much higher tax of 100$/tCO2, or even more4.

Actual implementations of carbon price policies have nonetheless fol-
lowed, although with a varying level of ambition. In 2023, 23% of emissions
worldwide are covered by some sort of carbon price, the level of which
varies significantly across countries5. In the US, the average national carbon
price is 25$/tCO2 but it covers less than 10% of national emissions. In Eu-
rope, the Emissions Trading System (ETS), a cap-and-trade system, covers
40% of emissions and is close to ∼90$/tCO2

6. Another broadly adopted
approach is the subsidy-based approach, instead (or on top) of a taxed-based
(carbon price) approach. A recent example is the Inflation Reduction Act
voted in 2022 in the US.

All-in-all, the consequences of these various policies for the electricity
sector have been unprecedented. Two important effects are the phase-out of
coal-fired units, which are carbon intensive, and the massive investments
into renewable electricity plants such as wind and PV. Figure 6.1 illustrates
these trends with the case of Belgium. The last units of coal were phased
out a decade ago. As far as renewable energy resources are concerned, in
2012, wind and PV generation capacities stood for less than 20% of the
Belgian power fleet. Ten years later, in 2023, this number has raised to
almost 50%. Looking further in the past, back in 2006, there were 212MW
and 2MW of, respectively, wind and PV. In 2023, these figures have raised
to 5504MW and 8549MW7.

energy transition and pricing under non-convexities . The
shift from the “old” system, dominated by thermal generation units, to
a system with a large share of renewable resources does not invalidate
the basic market design principles that have been outlined in chapter 2.
On the contrary, it makes them even more important and it makes the
flaws in the implementation of these principles more critical (Hogan, 2019,

3 Nordhaus (2018) provides a comprehensive analysis of the changes between the first version
of DICE in 1992 (Nordhaus, 1992) and the version of 2016: the social cost of carbon turns out
to be one of the most severely flawed estimate of the 1992’ model.

4 The carbon tax estimated with DICE, using the discount rate advocated by Stern is around
100$/tCO2 for 2015 (Nordhaus, 2008).

5 For the following numbers, see Clausing and Wolfram (2023) who rely on data from the
World Bank.

6 It is worth stressing the volatility of the ETS price, that reached ∼100€/tCO2 in early 2023,
but dropped to ∼50€/tCO2 in early 2024.

7 These number are sourced from the “renewable energy capacity statistics” of IRENA
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Figure 6.1: Electricity generation capacity in Belgium. [Data source: IRENA for
wind and PV, Elia for the remaining technologies]

2022).8 The massive integration of renewable energy sources, with typically
high capital cost and low—if not zero—variable production cost, tends
to lower the electricity price—as renewable resources are “zero-marginal
cost” resources—, therefore reducing the surplus earned by the conven-
tional power plants from the electricity prices. In this context, there is a
pressing need to rightly price the flexibility offered by these “conventional
power plants” that are making less profit from selling power and more by
providing the system with their flexibility (Hogan, 2019).

As a consequence, one could argue that the topic of “pricing non-
convexities” becomes even more important in the “new” system. Indeed,
the penetration of renewable ressources renders the operations of thermal
plants more cyclic, increasing the share of start-up costs in the variable
production cost. As an example, Schill et al. (2017) estimates that the share
of start-up costs in variable production cost of a CCGT in Germany unit
has doubled between 2013 and 2020. Since the thermal units will have to
switch on and off more frequently to compensate for the intermittence of
renewable sources, accounting for their fixed costs and operational con-
straints in the market, and reflecting this cost of being flexible—start-up
cost, but also ramping capability—in the price signal remains evermore
critical.

8 “The impact of greater penetration of intermittent generation underscores the importance of
continuing to improve implementation of the basic efficient market design without requiring
a fundamental change in the underlying theory.” (Hogan, 2022)
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