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Hydropower Producer Day-ahead Market Strategic
Offering Using Stochastic Bi-level Optimization

Yelena Vardanyan, Anthony Papavasiliou and Mohammad R. Hesamzadeh

Abstract—This paper proposes a bi-level stochastic optimiza-
tion problem (a Stackelberg game) to generate optimal bids
for a profit maximizing hydropower producer and presents a
mathematical approach to solve it. The first level represents the
strategically acting hydropower producer also called a Stackel-
berg leader, while the second level represents the transmission
system operator (TSO) also called a Stackelberg follower. To
solve the bi-level stochastic optimization problem, the second
level is replaced by its KKT (Karush-Kuhn-Tucker) optimality
conditions, which results in a stochastic MPEC (mathematical
program with equilibrium constraints). Finally, the stochastic
MPEC is reformulated as a stochastic MILP (mixed integer
linear program) using linearization and SOS1 variables (special
ordered sets of type 1). Results are reported studying a small
case, which point out the impact on the market outcomes when
a hydropower producer behaves strategically.

Index Terms—Optimal hydropower bidding, bi-level opti-
mization, strategic behaviour, stochastic MPEC.

I. NOMENCLATURE

A. Sets
i index for possible bid prices i = 1, . . . ,I;
j index for hydro power plants j = 1, . . . ,J;
k index for generation type k = 1, . . . ,K;
n index for discharging segments n=1, . . . ,N;
t index for planning periods t = 1, . . . ,T;
s index for market price scenarios s = 1, . . . ,Sk;
Rj set for power plants downstream of hydropower

plant j;
⊥ Orthogonality symbol;

B. Parameters
ωs probabilities associated with the price scenarios;
Ij,t inflow level to each power plant and time (HE);
H̄j maximum power production at plant j (MW);
Ḡk maximum power production for generation type

k (MW);
Ds,t realized hourly demand scenarios (e/MWh);
m̄j maximum reservoir content (HE);
mo
j initial reservoir content (HE);

ηj,n marginal production equivalent at plant j segment
n (MWh/HE);

γj expected future production equivalent for plant j
(MWh/HE);

Q̄j,n maximum discharge level in plant j at segment n
(HE);
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pf expected future electricity price (e/MWh);
ρi possible fixed bid prices for day-ahead market

(e/MWh);
τj delay time for the water between power plants

(h);
ck, αk intercept and slope of linear cost function ;
M1,M2 positive large numbers;

C. Variables
ps,t realized day-ahead market price scenarios

(e/MWh);
µs,k,t dual variables
Hs,j,t generation level at each hydro power plant, hour

and scenario (MWh);
Gs,k,t generation level at each generation type, hour and

scenario (MWh);
ms,j,t content of reservoir j at the end of hour t, for

each scenarios (HE);
ms,j,T reservoir content at the end of the planning period

for each scenario (HE);
Qs,j,t,n discharged volume for hourly bids, for each

power plant, segment, hour and scenarios (HE);
Ss,j,t spillage from reservoir j during hour t, for each

scenario (HE);
xi,t hourly bid volumes to day-ahead market corre-

sponding to the possible bid prices (MWh);
qs,t dispatch level for each hour and scenario accord-

ing to day-ahead market bids (MWh);
ds,t,i binary variable which is equal to 1 when realized

price belongs to ith interval;
z objective function value (e).

II. INTRODUCTION

SHORT-TERM hydropower planning under uncertainty is
a challenging task. Two main sources causing complex-

ity in short term hydropower planning are on the one hand
the deregulation of the electricity market and on the other
hand, the continuous increase of wind power production
share in the electricity market. In the competitive electricity
market, electricity is now a commodity which can be sold
and purchased at the market with the price defined by
demand and supply for each hour [1]. However, due to
intermittent wind power production in the power system,
the hourly defined electric prices are getting increasingly
volatile and difficult to predict. This creates a challenge
for a hydropower producer , whose profits from short-term
production are driven by prices Therefore, developing an
optimal bidding strategy is very relevant and significantly
important to hydropower producers.

In general, the producer’s interactions with the rest of
the market players while preparing optimal offerings can
be categorized as follows: 1) the producer is a price taker



[2], [3] , 2) the producer acts strategically [4], [5], [6] and
3) the producer acts strategically considering the strategic
behavior of other market participants [7], [8]. A hydropower
producer as a price taker is addressed in the following papers
[9], [10], [11], [12], [13] and [14]. In all those papers the
electricity market prices are modelled as exogenous variables
and enter to the model as input data. The literature lacks
models addressing the application of the other two bidding
approaches for a hydropower producer.

In this paper, we present a stochastic optimal strategic
day-ahead bidding model for a hydropower producer aiming
to show that the hydropower producer can maximize its
profit by acting strategically. The strategic bids for a hy-
dropower producer is modelled as a Stackelberg game using
bi-level optimization, where the hydropower producer acts
as a ’leader’ and other participants behave as ’followers’.
Day-ahead market prices are calculated endogenously as a
dual variable of the load balance constraint presented in
the inner optimization problem. To solve the bi-level opti-
mization problem the inner optimization problem is relaxed
using KKT conditions. This relaxation results in a stochastic
MPEC, where equilibrium constraints and the profit term in
the objective function result in non-linearity. SOS1 based
approach is used to relax equilibrium constrains [15]. Finally,
the linearization of the non-linear term in the objective
function results in a stochastic MILP.

The paper is structured as follows. Section II provides the
background of the topic and reviews the literature. Section
III states the mathematical formulation. The results from a
case are discussed in section IV. Section V concludes the
paper.

III. MATHEMATICAL FORMULATION

The mathematical formulation of the stochastic bi-level
optimization problem is presented below:

Maximize

S∑
s=1

ωs[

T∑
t=1

(ps,tqs,t + pf

J∑
j=1

∑
r∈Rj

γrms,j,T ]

(1)
subject to :

ρi −M1(1− ds,t,i) ≤ ps,t ≤ ρi+1 +M1(1− ds,t,i) (2)
i∑
l=0

xi−l,t −M1(1− ds,t,i) ≤ qs,t ≤
i∑
l=0

xi−l,t

+M1(1− ds,t,i) (3)
I∑
i=1

ds,t,i = 1 (4)

ms,j,t = ms,j,t−1 −
N∑
n=1

Qs,j,t,n − Ss,j,t

+

N∑
n=1

Qs,j−1,t−τj ,n + Ss,j−1,t−τj + Ij,t (5)

Hs,j,t ≤
N∑
n=1

ηj,nQs,j,t,n (6)

qs,t =
∑
j

Hs,j,t (7)

Qs,j,t,n ≤ Q̄j,n (8)

ms,j,t ≤ m̄j (9)

Minimize

S∑
s=1

ωs[

T∑
t=1

K∑
k=1

(ckGs,k,t +
αk
2
G2
s,k,t)] (10)

subject to :
K∑
k=1

Gs,k,t + qs,t = Ds,t; [ps,t] (11)

Gs,k,t ≤ Ḡk; [µs,k,t] (12)

The first level is a maximization problem for a profit
maximizing hydropower producer. The second level is a
TSO economic dispatch problem based on cost minimization.
(1) is the profit of the hydropower producer, who acts
strategically. The first term is the expected profit from day-
ahead market trading and the second term is the expected
profit from the stored water. In order to model the bidding
process, the possible bidding prices are fixed: equidistance
price points are selected and the corresponding bid volumes
are considered as variables. Let i be the index for the
possible bid prices and let ρi represent these prices. Then, a
fundamental rule is applied to couple bid volumes xi,t and
dispatched volumes qt: for each hour if ρi ≤ pt ≤ ρi+1 then
qt =

∑i
l=0 xi−l,t, where l =1,2...i. Day-ahead market bids

for each hour and dispatched quantities for each hour and
scenario are coupled in constraints (2)-(4).

The constraint (5) sets balance in the reservoirs: the new
content of the reservoir is equal to the old content of
the reservoir plus water inflow minus water outflow. The
generation and discharge relation in each power plant is
stated in constraint (6). The constraint (7) sets the bound
on the dispatched quantity in day-ahead market. Maximum
discharge capacity and maximum reservoir content are im-
posed by the constraints (8) and (9).

The constraint (10) is the objective function of the second
level problem, which aims to minimize the total production
cost. Load balance is set by (11), according to which the
sum of the total production coming from different generation
types plus the hydropower production have to satisfy the
demand. Available production from different generation type
is bounded by (12).

The bi-level stochastic optimization problem (1)-(12) can
be solved by replacing the second level optimization problem
by its KKT conditions [16]. The KKT conditions for the
second level problem can be expressed as follows:

K∑
k=1

Gs,k,t + qs,t = Ds,t (13)

0 ≤ µs,k,t ⊥ (Ḡk −Gs,k,t) ≥ 0 (14)
0 ≤ Gs,k,t ⊥ ((ck + αkGs,k,t)− ps,t + µs,k,t) ≥ 0 (15)

The math program (10)-(12) is replaced by its KKT
conditions (13)-(15). The resulting stochastic non-linear op-
timization problem is presented below;

Maximize

S∑
s=1

ωs[

T∑
t=1

(ps,tqs,t + pf

J∑
j=1

∑
r∈Rj

γrms,j,T ]

(16)
subject to :

ρi −M1(1− ds,t,i) ≤ ps,t ≤ ρi+1 +M1(1− ds,t,i) (17)



i∑
l=0

xi−l,t −M1(1− ds,t,i) ≤ qs,t ≤
i∑
l=0

xi−l,t

+M1(1− ds,t,i) (18)
I∑
i=1

ds,t,i = 1 (19)

ms,j,t = ms,j,t−1 −
N∑
n=1

Qs,j,t,n − Ss,j,t

+

N∑
n=1

Qs,j−1,t−τj ,n + Ss,j−1,t−τj + Ij,t (20)

Hs,j,t ≤
N∑
n=1

ηj,nQs,j,t,n (21)

qs,t =
∑
j

Hs,j,t (22)

Qs,j,t,n ≤ Q̄j,n (23)
ms,j,t ≤ m̄j (24)
K∑
k=1

Gs,k,t + qs,t = Ds,t (25)

0 ≤ µs,k,t ⊥ (Ḡk −Gs,k,t) ≥ 0 (26)
0 ≤ Gs,k,t ⊥ ((ck + αkGs,k,t)− ps,t + µs,k,t) ≥ 0 (27)

The constraints causing non-linearity are (26)-(27). Non-
linearity complicates the search for a globally optimal so-
lution significantly. In order to facilitate the search for a
globally optimal solution, we have to linearize constraints
(26)-(27). First we use Schur’s decomposition and then
introduce special ordered sets of type 1 (SOS1) variables
[15].

Let’s assume we have a non-linear constraint yT g(x, y) =
0; y ≥ 0, g(x, y) ≥ 0. To apply Schur’s decomposition we
introduce variables u, v depending on x, y in the following
way: u = y+g(x,y)

2 , v = y−g(x,y)
2 and uTu − vT v = 0.

The first two equations do not contain any non-linear terms.
The last one has to be approximated with a piecewise-linear
function. Considering the assumptions that y ≥ 0, g(x, y) ≥
0, it is easy to notice that only positive u is feasible for

√
u2.

Thus the last equation can be written as u− | v |= 0. To
simplify things the transformation of the absolute value is
needed. For that purpose | v | is expressed as the sum of the
positive and negative parts, where at most one variable out
of the variable pair is non-zero. Hence, the linearization of
the non-linear equation yT g(x, y) = 0 is supported by the
following three linear equations. u = y+g(x,y)

2 , (v+−v−) =
y−g(x,y)

2 and u − (v+ + v−) = 0, where v+ and v− are
SOS1 type variables.

Applying these transformations on non-linear equations
(26)-(27) we obtain the following optimization problem.

Maximize

S∑
s=1

ωs[

T∑
t=1

(ps,tqs,t + pf

J∑
j=1

∑
r∈Rj

γrms,j,T ]

(28)
subject to :

ρi −M1(1− ds,t,i) ≤ ps,t ≤ ρi+1 +M1(1− ds,t,i) (29)

i∑
l=0

xi−l,t −M1(1− ds,t,i) ≤ qs,t ≤
i∑
l=0

xi−l,t

+M1(1− ds,t,i) (30)
I∑
i=1

ds,t,i = 1 (31)

ms,j,t = ms,j,t−1 −
N∑
n=1

Qs,j,t,n − Ss,j,t

+

N∑
n=1

Qs,j−1,t−τj ,n + Ss,j−1,t−τj + Ij,t (32)

Hs,j,t ≤
N∑
n=1

ηj,nQs,j,t,n (33)

qs,t =
∑
j

Hs,j,t (34)

Qs,j,t,n ≤ Q̄j,n (35)
ms,j,t ≤ m̄j (36)
K∑
k=1

Gs,k,t + qs,t = Ds,t (37)

Ḡk −Gs,k,t ≥ 0, µs,k,t ≥ 0 (38)
(ck + αkGs,k,t)− ps,t + µs,k,t ≥ 0, Gs,k,t ≥ 0 (39)

u1s,k,t =
µs,k,t + (Ḡk −Gs,k,t)

2
(40)

v1+s,k,t − v1−s,k,t =
µs,k,t − (Ḡk −Gs,k,t)

2
(41)

u1s,k,t − (v1+s,k,t + v1−s,k,t) = 0 (42)

u2s,k,t =
Gs,k,t + ((ck + αkGs,k,t)− ps,t + µs,k,t)

2
(43)

v2+s,k,t − v2−s,k,t =
Gs,k,t − ((ck + αkGs,k,t)− ps,t + µs,k,t)

2
(44)

u2s,k,t − (v2+s,k,t + v2−s,k,t) = 0 (45)

u ≥ 0; v+, v− are SOS1 type of variables.
(46)

We now focus on the non-linear term in the objective func-
tion, ps,tqs,t. The non-linear term in the objective function
is relaxed by discretizing the generation level.

For this purpose valid generation levels are fixed q̂s,t,y for
y = 1, . . . , Y [4]. Then, the binary variables ds,t,y and the
profit variables νs,t,y are defined in the following way:

ds,t,y =

{
1 if fixed generation level q̂s,t,y is selected
0 otherwise

(47)

νs,t,y =

{
q̂s,t,y ps,t if ds,t,y = 1
0 otherwise (48)

The corresponding constraints which are used for linearis-
ing the non-linear term are the following:

qs,t ≥
Y∑
y=1

ds,t,y q̂s,t,y (49)

Y∑
y=1

ds,t,y = 1 (50)



q̂s,t,yps,t −M2(1− ds,t,y) ≤ νs,t,y ≤ q̂s,t,yps,t
+M2(1− ds,t,y) (51)
−M2ds,t,y ≤ νs,t,y ≤M2ds,t,y (52)

where again M2 is a sufficiently large positive number.
Finally, considering the linearization constraints (49)-(52) the
stochastic MILP will have the following form:

Maximize

S∑
s=1

ωs[

T∑
t=1

Y∑
y=1

νs,t,y + pf

J∑
j=1

∑
r∈Rj

γrms,j,T ]

(53)
subject to :

qs,t ≥
Y∑
y=1

ds,t,y q̂s,t,y (54)

Y∑
y=1

ds,t,y = 1 (55)

q̂s,t,yps,t −M2(1− ds,t,y) ≤ νs,t,y ≤ q̂s,t,yps,t
+M2(1− ds,t,y) (56)
−M2ds,t,y ≤ νs,t,y ≤M2ds,t,y (57)
ρi −M1(1− ds,t,i) ≤ ps,t ≤ ρi+1 +M1(1− ds,t,i) (58)
i∑
l=0

xi−l,t −M1(1− ds,t,i) ≤ qs,t ≤
i∑
l=0

xi−l,t

+M1(1− ds,t,i) (59)
I∑
i=1

ds,t,i = 1 (60)

ms,j,t = ms,j,t−1 −
N∑
n=1

Qs,j,t,n − Ss,j,t

+

N∑
n=1

Qs,j−1,t−τj ,n + Ss,j−1,t−τj + Ij,t (61)

Hs,j,t ≤
N∑
n=1

ηj,nQs,j,t,n (62)

qs,t =
∑
j

Hs,j,t (63)

Qs,j,t,n ≤ Q̄j,n (64)
ms,j,t ≤ m̄j (65)
K∑
k=1

Gs,k,t + qs,t = Ds,t (66)

Ḡk −Gs,k,t ≥ 0, µs,k,t ≥ 0 (67)
(ck + αkGs,k,t)− ps,t + µs,k,t ≥ 0, Gs,k,t ≥ 0 (68)

u1s,k,t =
µs,k,t + (Ḡk −Gs,k,t)

2
(69)

v1+s,k,t − v1−s,k,t =
µs,k,t − (Ḡk −Gs,k,t)

2
(70)

u1s,k,t − (v1+s,k,t + v1−s,k,t) = 0 (71)

u2s,k,t =
Gs,k,t + ((ck + αkGs,k,t)− ps,t + µs,k,t)

2
(72)

v2+s,k,t − v2−s,k,t =
Gs,k,t − ((ck + αkGs,k,t)− ps,t + µs,k,t)

2
(73)

u2s,k,t − (v2+s,k,t + v2−s,k,t) = 0 (74)

u ≥ 0; v+, v− are SOS1 type of variables.
(75)

IV. CASE STUDY

A. Input data

A cascaded three-reservoir hydro system is used to repre-
sent a player who acts strategically as shown in Fig. 1. Other
electricity market players who do not exercise market power
own aggregated wind, hydro and thermal units.

I1

I2

I3

Q1

Q2

Q3

Reservoir

Power 
plant

Fig. 1: Cascaded hydro system.

The data related to the physical characteristics of the
reservoirs and power plants of the three-reservoir hydro
system are summarized in Table I.

TABLE I: Data for the three-reservoir hydro system

Reservoir m̄j (HE) Q̄j(m3/s) H̄j (MW) τj (h) mo
j (MW)

1 4008 340 95 0 2400
2 1392 310 50 0.5 835
3 4008 330 90 2 2400

Moreover, data related to the maximum capacity and
marginal cost of the aggregated hydro and thermal units are
set in Table II.

TABLE II: Data for aggregated units

Generation type Ḡk MW ck αk

Hydro 12000 0 0
Thermal 60000 10 0.0013

In addition, wind and demand scenarios used in the model
are depicted in Fig.2. It is assumed that all scenarios are
equally likely to occur.

Finally, the water opportunity cost is estimated based on
the financial market and taken 40 e/MWh.

B. Results

The stochastic bi-level optimization model is implemented
in GAMS and solved by CPLEX. Fig. 3 demonstrates the
price scenarios for the planning period calculated as dual
variables of the load balance constraints in the market
clearing problem. Depending on the realized demand and
wind power output for a specific hour, shown in Fig.2,
the production volume needed from the most expensive
generation type to meet the demand will vary, which result
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Fig. 2: Scenarios for demand (upper figure) and scenarios for wind power production
(lower figure).

in the varying price scenarios shown in Fig. 3. Having these
prices calculated internally, the player who acts strategically
will decide to sell the power to the day-ahead market or store
it and sell in the future with the water opportunity cost.

20

25

30

35

40

45

50

55

1 3 5 7 9 11 13 15 17 19 21 23

P
ri

ce
s 

(E
u

ro
/M

W
h

)

Hours

Fig. 3: Price scenarios calculated as dual variables of the load balance constraint

According to the calculated prices illustrated in Fig. 3,
the price driven bid offerings to the day-ahead market for the
whole planning period are summarised in Table III. These bid
offerings are the result of the first level optimization problem.
According to the Table III the model suggests selling at peak
hours when the realised market prices are higher than the
water opportunity cost and holding the energy back during
off-peak hours when the prices are low.

As the suggested model (’original’) simulates the results
of strategic behaviour, a benchmark case (’benchmark’) is
defined in order to analyse the impact of the strategic
behaviour on market settlement. The benchmark model is
the case of perfect competition. The first comparison results

TABLE III: The optimal bid offering to the day-ahead market

Hour Bid volume Hour Bid volume
1 0 13 235
2 0 14 235
3 0 15 235
4 0 16 235
5 0 17 235
6 0 18 235
7 159 19 235
8 235 20 235
9 235 21 235
10 235 22 210
11 235 23 130
12 235 24 70

based on the dispatch volumes for scenario 1 are illustrated
in Fig. 4. The benchmark model dispatches in all hours. In
contrast, the original model dispatches only under the high
prices.
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Fig. 4: Dispatch volume for original (solid line) and benchmark (dashed line) cases
for scenario 1.

Second, the model statistics for both cases are provided
in Table IV. Note that the benchmark model has a quadratic
cost function, thus it is faster to solve using the MOSEK
solver [17]. The CPLEX solver required 19.71 seconds in
order to solve the problem.

TABLE IV: Model statistics for the three-reservoir hydropower system

Original model Benchmark model
Continuous variables 61,993 12,961

Discrete variables 20,160 0
Single equations 106,561 13,681

Computational time (second) 42.35 0.359

Finally, Table V shows the impact of the strategic be-
haviour on the generation cost. In the original case where
the hydropower producer behaves strategically the generation
cost increases by 16, 630e, which is an increase of 0.06%.
For this specific example, when the hydropower producer
owns only three-reservoir system, the cost increase is modest
, but would be exacerbated id additional hydro production
assets were owned by the same firm. Thus, the hydropower
producer can behave strategically and increase its profit.

TABLE V: Generation cost minus profit from the stored water calculated for both
models.

Generation cost-profit from stored water
Original model 26,728,540

Benchmark model 26,711,910
Difference 16,630

Difference in % 0.06 %



V. CONCLUSION

In this work, a stochastic MPEC model is used for
representing a Stackelberg game applicable for a strate-
gic hydropower producer that maximizes profit. Using lin-
earization and SOS1 variables, the stochastic MPEC is
transformed to a stochastic MILP, which guarantees better
numerical behaviour. The results are analysed on a case
study, where an electricity market player owning hydropower
acts strategically. Results show that the strategic behaviour
of a hydropower producer alters the market outcomes. The
execution time of the model is less than a minute, thus the
approach can be applied to larger system.
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