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Abstract

This thesis provides practical answers to speci�c market design issues related to
the short-run pricing of electricity in the context of the integration of European
balancing electricity markets and the introduction of scarcity pricing through
an operating reserve demand curve (ORDC). Scarcity pricing refers to the
practice of pricing electricity above the marginal cost of the marginal generator.
It is an essential component of electricity market design to reach the e�cient
long-term equilibrium as it allows plant owners to recuperate their investment
cost.

Chapter 2 discusses the parametrization of the ORDC. The introduction
of an ORDC is an administrative measure warranted by inadequate scarcity
pricing caused by a lack of a strong responsive demand side. The administrative
nature of the mechanism necessitates a tool to assess its parametrization. This
chapter presents a short-term system operation simulator of Belgium to validate
the calibration of ORDCs. The simulator measures the trade-o� between the
cost of operation and system reliability resulting from the ORDC calibration.
Eight variants of ORDCs are considered, and this analysis serves as the basis
for supporting a recommendation to the Belgian regulatory authority for the
roll-out of scarcity pricing in Belgium [CREG, 2021].

Chapter 3 analyses how scarcity pricing can be implemented in the Eu-
ropean setting. It is a bridge between the scarcity pricing discussion and the
European balancing market discussion. It investigates the ambiguity stemming
from the introduction of scarcity adders and the potential discrepancy between
the balancing price used to remunerate �exibility provider supplying balancing
energy and �exibility consumers generating imbalances. Three options for in-
troducing scarcity adders are discussed: (i) an adder on the imbalance price,
(ii) an adder on the imbalance and balancing price, and (iii) an adder on the
imbalance and balancing price and the introduction of a real-time market for
reserve. This analysis highlights the detrimental e�ect of unilaterally intro-
ducing adders with a real-time market for reserve in an integrated European
setting. These adders induce ine�cient out-of-merit dispatch.

Chapter 4 presents another source of discrepancy between the balancing
and imbalance prices: the multiplicity of balancing energy product. Balancing
the market is a continuous process that involves the activation of automatic and
manual frequency regulation reserve (aFRR and mFRR). These products are
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traded on di�erent time-scales and their price are used to form the imbalance
price. This chapter examines the impact of (i) the imbalance pricing scheme,
(ii) the system operator's mFRR activation strategy, and (iii) the balancing
capacity demand curve on the balancing market equilibria.
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1 Introduction

1.1 Climate Change and the Need for Decar-

bonization

Climate change is the greatest challenge of our generation, and its e�ects are
already visible. Global temperature has increased by 1.1 degrees Celsius during
the period 2011-2020 compared to the period 1850-1900 [IPCC, 2023]. This has
resulted in heatwaves, human fatalities, and an increase in wild�re frequency
and intensity, but this is only the tip of the iceberg. Other extreme climatic
events such as droughts and �oods are endangering the food security of millions
of people and generating political instability. Additionally, global warming
increases the risk of reaching a climate tipping point with escalating e�ects
that are di�cult to predict.

There is a scienti�c consensus that this crisis has been caused by human
activity and the emission of greenhouse gases (GHGs) and that only a drastic
reduction in GHG emissions would limit the temperature increase to below
1.5°C or 2°C, as shown in �gure 1.1 from the Intergovernmental Panel on Cli-
mate Change (IPCC) report [IPCC, 2023]. These targets have been set at the
COP21 in Paris in 2015. On a European level, the �t for 55 package has passed
laws to reach climate neutrality by 2050 and a 55% decrease in greenhouse gas
emissions in 2030 compared to 1990. The objective in terms of renewable is to
reach 42.5-45% of overall energy sources at EU level by 2030.

The main greenhouse gases are carbon dioxide (CO2), which is emitted when
burning fossil fuel, and methane, which is emitted by livestock. Both emission
sources must be reduced to reach the climate target. In particular, net global
CO2 emissions need to be reduced to zero by 2050. There exist di�erent path-
ways to decarbonize our industry, transport, and energy generation to achieve
the energy transition but they all share a common feature: the electri�cation
of carbon-intensive processes. The advantage of electricity as an energy vector
is that it can be produced carbon-free or with limited carbon dioxide emission.
Transport can be decarbonized by electrifying the car and bus �eets. Heating
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2 Chapter 1. Introduction

can be electri�ed with heat pumps. Some industry processes can also be electri-
�ed. Processes that cannot be electri�ed due to technical constraints can often
be modi�ed to use green hydrogen that is produced with renewable electricity.

The energy transition will lead to an increased reliance on electricity. Elec-
tricity demand will rise and, at the same time, classic fossil-fuel-based electricity
generators will need to be decommissioned. A key component for the success
of the energy transition is the design of the markets that are used for trading
electricity. Their designs should ensure the most e�cient allocation of resources
to support the large-scale integration of renewable electricity that is envisioned
by the energy transition.

1.2 Electricity Market Design under Deep Re-

newable Integration

Electricity systems are designed to transmit electric power from generation as-
sets to loads through the electricity network. These systems have evolved from
regulated vertically integrated monopolies to competitive electricity markets
and are now on the verge of their second revolution due to the energy transi-
tion. They have always aimed at providing reliable and a�ordable electricity,
but the need for decarbonization has introduced a new objective: sustainabil-
ity. This objective is ful�lled by integrating renewable energy sources (RES),
that are characterized by their intermittency and near-zero marginal cost. The
integration of RES and the departure from dispatchable thermal power plants
has triggered a debate on the ability of modern electricity markets to support
the energy transition and to maintain the e�ciency and reliability objectives.

Before the 1990s and the electricity liberalization, electricity systems were
operated by regulated vertically integrated monopolies. State-backed utilities
operated the entirety of electricity generation, high-voltage transmission, low-
voltage distribution, and retail. Responsibilities could be split between local
distribution networks and retail, and regional transmission networks and gen-
eration assets, but conceptually these systems were run by a single central
entity [Cramton, 2017]. The main objective of the central operator was to pro-
vide reliable electricity by ensuring the feasibility of the physical constraints
governing the exchange of electricity. The �rst such constraint is that electricity
supply and consumption should be balanced at all times under the transmission
and distribution grid constraints. The second constraint is that the capacity
installed on the network should be su�cient to prevent load curtailment. These
two components of �reliability" are referred to as security and adequacy respec-
tively. The usual e�ciency drawbacks a�icting regulated monopolies [Joskow,
2019] eventually led to the creation of electricity markets and the unbundling
of electricity systems.

The unbundling of the electricity sector refers to the segmentation of the
vertically integrated monopolies into generation companies (GENCOs) own-
ing and operating power plants, retailers supplying energy to small local con-
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Figure 1.1: Limiting warming to 1.5°C and 2°C involves rapid, deep and in most cases
immediate greenhouse gas emission reductions (from [IPCC, 2023]).
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Figure 1.2: Structure of liberalized electricity markets (from [Kirschen and Strbac,
2018]).

sumers, a transmission system operated by a system operator, and local dis-
tribution networks. The natural division is now anchored around the split
between wholesale and retail market. Gencos and retailers compete with large
consumers connected to the transmission grid in the wholesale market whereas
small consumers connected to distribution networks purchase electricity from
retailers on the retail market, as illustrated in �gure 1.2 [Kirschen and Strbac,
2018]. Electricity markets in this manuscript refer to wholesale markets and
the intricacies of the distribution networks and retail markets are ignored.

Electricity markets are institutions that aim at ensuring an e�cient alloca-
tion of resources in the short- and long-run. In the short-run, they should allow
for the scheduling and dispatch of power plants that maximize social welfare,
and, in the long-run, they should signal the economical entry and exit of capac-
ity [Joskow, 2019]. More speci�cally, short-term market signals, the electricity
spot prices, should align the short-term scheduling and dispatch incentives of
private agents with the optimal short-term allocation of a benevolent system
operator. Similarly, long-term market signals, the expected revenues from the
electricity spot prices, should support the optimal capacity mix generated by
a central planner not subject to the ine�ciencies stemming from being a reg-
ulated monopoly. In theory, ideal competitive electricity markets can achieve
this equilibrium. In practice, market failures, and the current implementation
of electricity markets, prevent this idealized outcome.

One of the main objectives of liberalization was to produce incentives for
e�cient capacity investment. The central planner approach had led to over-
investment as there were no incentives to control cost, and the alternative,
curtailment of electricity due to a lack of capacity, was deemed serious enough,
both economically and politically, to justify expensive investment. Unfortu-
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nately, modern competitive markets have failed to provide su�cient long-term
signals for investment and the opposite e�ect has been observed. In various
regions of the world, spot prices alone have been deemed insu�cient to induce
investment in additional capacity. Reaching the e�cient long-term equilibrium
has been particularly challenging due to the so-called missing money problem
that stems from inadequate pricing during periods of scarcity. This market
failure has been exacerbated by the energy transition and the large-scale in-
tegration of renewable resources that are subsidized outside of the market.
The introduction of a large �eet of assets with low marginal cost has gener-
ated a merit order e�ect in which more expensive dispatchable power plants
are pushed further away in the activation order. This reduces their expected
revenues from the spot market and hinders investment in new capacity.

The integration of RES and the induced merit order e�ect does not prevent
sustained high prices event such as the one caused by the 2022 European gas
crisis caused by the disruption of the European gas supply chain. This has
caused an increase in natural gas and oil prices that a�ected the immediate
evolution of the European energy market. The �nancial repercussion of this
crisis has been massive for electricity retailers, while certain technologies on the
supply side of the market are enjoying comfortable pro�t margins. However,
the electricity price increase does not necessarily translate to a reduction of
the missing money. Peaking unit that were su�ering from insu�cient pro�t
margin are often gas power-plant. In the absence of market manipulation,
their increased revenues should be countered by an increased production cost
limiting their pro�t margin.

The discussion on how to reach an e�cient long-term equilibrium is central
to the success of the energy transition. Market design for decarbonized elec-
tricity systems needs to support a long-term welfare-maximizing equilibrium
that accounts for reliability and sustainability constraints. There are divergent
perspectives on how to best reach this objective. One school of thought ad-
vocates for stronger and improved energy spot prices [Hogan, 2019,Cramton,
2017,Mays and Jenkins, 2023]. The arguement here is that improved energy
pricing and adequate �nancial contracts can be su�cient for addressing the
missing money problem and restore investment incentives. Another school of
thought contends that short-term operation and long-term investment are now
largely disconnected [Newbery et al., 2018,Joskow, 2019]. Short-term markets
are still necessary for the optimal dispatch of assets and balancing the system,
however investments in new capacity should follow a central planner mandates
through capacity remuneration mechanisms in which private investors bid their
missing money.

Regardless of the strategy for attaining a long-term equilibrium, there is a
consensus that improving the pricing of short-run electricity will be necessary
to cope with the intermittency brought by the integration of RES. This inter-
mittency poses a challenge to the balance of electricity supply and demand. It
has the potential to compromise the reliability of electricity systems. It can be
addressed by either shifting the demand and supply over space via interconnec-
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tors, by shifting the demand and supply over time via storage, or by resorting
to �exible demand or supply [Newbery et al., 2018]. This last option can be
accessed by improving the pricing schemes that remunerate �exibility. Flexibil-
ity for the supply side is composed of responsive power plants that can modify
their dispatch on demand. Flexibility on the demand side is called demand
response and relies on residential, industrial, and commercial consumers who
are willing to modify their consumption schedule as a function of the needs of
the system. Flexible capacity can be categorized based on the activation time,
ranging from a few minutes to a few hours, and the direction, downward activa-
tion for compensating positive imbalance when the system is long and upward
activation for compensating negative imbalance when the system is short. The
total need for upward and downward �exibility in Belgium has been estimated
to increase from 4320 MW to 7380 MW and from 3500 MW to 5960 MW by
2034 [ELIA, 2024]. These �gures represent a 70% increase in �exible capacity
and show the need for e�cient short-run incentives.

This thesis is thus part of the literature in electricity market design on
pricing in short-term electricity markets to support the energy transition and
the large-scale integration of RES. It provides practical answers to speci�c
policy issues related to market design features that may hinder short-run price
formation. This thesis focuses on the short-term equilibrium and ignores the
long-run issues with the assumption that improving the short-run can only be
bene�cial to the long-run equilibrium.

These market features are studied in the context of the integration of Eu-
ropean electricity markets. More speci�cally, this thesis contributes to the
literature on the integration of balancing markets in the EU. European balanc-
ing markets are held in real time in order to ensure the continuous balance of
electricity consumption and generation. They are the successor of power sys-
tem mechanisms conducted by the system operators, and consequently, have
been designed with a focus on operational priorities rather than economics
principles. This thesis aims at rationalizing their designs based on economic
fundamentals.

The second focal point of this analysis is the use of operating reserve demand
curves (ORDCs) for implementing scarcity pricing. Scarcity pricing refers to
the practive of allowing prices to rise above the marginal cost of production
of the marginal generator in times of scarcity. Scarcity pricing is a necessary
component for reaching the e�cient long-term equilibrium as it allows plant
owners to recuperate their investment costs. The use of ORDCs for scarcity
pricing was proposed by Stoft [Stoft, 2002] and formalized by Hogan [Hogan,
2005]. Scarcity pricing has commonly been associated with US-style electricity
markets and this thesis investigates how this mechanism can be adapted to
European-style markets.
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1.3 European Balancing Markets

Balancing the market is the last step in the sequence of electricity markets.
It refers to the real-time dispatch of electricity assets to balance electricity
generation and consumption. The e�ciency of this process is a critical ele-
ment for the success of the energy transition, as it ensures the reliability of
the electricity system. Equally critical, this process sets the real-time price
that drives the wholesale electricity price in the day-ahead and other forward
markets [Cervigni and Perekhodtsev, 2013].

The balancing process in Europe is organized by transmission system oper-
ators (TSOs). They procure balancing energy to compensate for the real-time
imbalance that they measure on their transmission grid. They act as interme-
diaries between �exibility suppliers providing balancing energy and �exibility
consumers generating imbalances. The European terminology for �exibility
suppliers and �exibility consumers are balancing service providers (BSPs) and
balancing responsible parties (BRPs) respectively. Flexibility suppliers and
consumers can be on both sides of the traditional dichotomy between energy
demand and supply. Energy suppliers, such as gas power plants, can adjust
their scheduling dispatch to provide balancing energy but wind turbines can
generate imbalances due to inaccurate wind forecasts. Similarly, loads can gen-
erate imbalances when they consume more or less than their agreed consump-
tion schedule but demand response agents can provide balancing energy by
modulating their real-time consumption. This shows that di�erences between
balancing energy and imbalances are more a matter of terminology rather than
a physical distinction. The need for an entity to coordinate the balancing ac-
tion is warranted by the speed of adjustment required to maintain the stability
of the system. Prices alone are not su�cient [Wilson, 2002]. Flexibility in this
context refers to short-term capacity that can adjust its production or con-
sumption schedule. This does not include the long-term �exibility that can
be used for compensating for seasonal discrepancies between production and
generation.

Balancing markets refer to the real-time balancing energy auctions for the
activation of �exible assets but they are not the only components of the balanc-
ing process. The balancing energy auctions are preceded by balancing capacity
auctions and followed by the imbalance settlement. Balancing capacity is the
European terminology for reserve. It refers to the generating capacity avail-
able to the system operator to react to the short-term uncertainty of electricity
production and consumption and to contingency event such as the failure of
transmission lines or power plants. These reserves are procured to ensure an
adequate supply of balancing energy in real time. The tendered quantity that is
required to ensure the reliability of the system is determined through a reserve
dimensioning process. Balancing capacity is a public good �nanced by all the
grid users through the grid tari�s. Imbalance settlement refers to the pricing of
imbalances. Flexibility consumers are charged ex-post for the imbalance they
generate. Imbalances are settled at the imbalance price which is determined



8 Chapter 1. Introduction

by the activation cost of balancing energy [Brijs et al., 2017].

1.3.1 US-Style Real-Time Markets

European and US policy makers have designed their electricity markets dif-
ferently. US-style markets, such as PJM, MISO and ERCOT, typically rely
on integrated markets in which the scheduling is determined by unit commit-
ment problems and the dispatch by economic dispatch problems run by in-
dependent system operators (ISOs). Power plants participate individually in
these optimization problems with explicit technical constraints. In contrast,
European-style markets typically rely on exchange-based markets in which
power-producing companies submit price-quantity bids representing their will-
ingness to produce to a day-ahead auction [Cramton, 2017]. There are recourse
auctions called intraday markets but the production schedules are �nalized be-
tween one hour and �fteen minutes before electricity delivery. This leaves
some time for European system operators to operate the balancing markets.
The greater coordination brought by the integrated approach allows US system
operators to rely on the real-time markets to set the �nal production schedule.
This schedule is updated every �ve minutes and the uncertainty adjustment
within �ve minutes interval are handled by automatic generation control (AGC)
priced outside of the wholesale market. Arbitrary deviations from the produc-
tion schedules are often settled at a premium called uninstructed imbalance
penalty or uninstructed deviation penalty.

US-style real-time markets can be represented as a welfare maximization
problem where a system operator aims at maximizing the bene�t of holding
reserve minus the cost of covering the inelastic imbalance given power plants
(PP ) with a given marginal cost (C) and maximum technical production (Q),
given real-time demand (D) and given the marginal valuation for reserve by
the TSO (MBR(·)). This exposition ignores the indivisibilities and ramp con-
straints due to the operational characteristics of the plants and assumes linear
production costs to focus on the market structure. The power plant capacity
is split between energy (p) and reserve (r) (or balancing energy and balancing
capacity in EU terminology), and the duality conditions of the optimization
problem unambiguously characterize the remuneration of both products. The
model, in stylized form, can be expressed as follows:

max
dr,r,p

∫ dr

0

MBR(x)dx−
∑

g∈PP

Cg · pg (1.1a)

s.t. (λ) :
∑

g∈PP

pg = D (1.1b)

(λR) :
∑

g∈PP

rg = dr (1.1c)

(µg) : pg + rg ≤ Qg ∀g ∈ PP (1.1d)
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p, r, dr ≥ 0 (1.1e)

Energy is remunerated at the energy price, which is the dual variable related to
the market clearing constraint for energy (λ). Reserve capacity is remunerated
at the reserve price, which is the dual variable related to the market clearing
constraint for reserve (λR). Note that constraint (1.1d) results in a coupling of
the energy and reserve prices and that dr represents the remaining balancing
capacity in the system, which is also the satis�ed demand for reserve.

An inspection of the KKT conditions related to the energy production and
reserve variables and the remaining balancing capacity variable connects the
price for energy and reserve to the remaining capacity in the system:

0 ≤ rg ⊥ µg − λR ≥ 0 (1.2a)

0 ≤ pg ⊥ Cg + µg − λ ≥ 0 (1.2b)

0 ≤ dr ⊥ λR −MBR(dr) ≥ 0 (1.2c)

Constraint (1.2c) links the reserve price to the value of the marginal bene�t
function at the level of remaining balancing capacity in the system. Let us refer
to a marginal generator as a generator that supplies both energy and reserve at
the optimal solution, and let us index this generator by g′. Constraints (1.2b)
and (1.2a) show that the scarcity rent for a marginal generator g′ is equal to
µg′ and is further equal to the reserve price. In this stylized model without
ramp constraints, µg′ is equal to λR, and the energy price is then equal to the
marginal cost of the marginal generator Cg′ augmented by the reserve price
λR. These conditions ensure that a marginal generator is indi�erent between
supplying reserve or energy.

This welfare maximization problem is an energy and reserve economic dis-
patch. The system operator co-optimizes the procurement of both products.
Co-optimization allows scarcity pricing to emerge naturally, with the price of
energy rising above the marginal cost of the marginal generator, when the
marginal value of an additional MWh of reserve is greater than zero. This fea-
ture is discussed more at length in the next section of the chapter on scarcity
pricing.

In practice, balancing markets in the EU di�er from the ideal co-optimization
model presented in (1.1). This is the case even if we ignore the distinction be-
tween portfolio-based versus unit-based designs. A quantitative model of the
European balancing market can be described as follows for �exibility suppliers
(FS) submitting at a given marginal cost (C) and volume (Q) and �exibility
consumers (FC) generating imbalances (IMB):

max
p

−
∑
g∈FS

Cg · pg (1.3)

s.t. (λ) :
∑
g∈FS

pg =
∑
l∈FC

IMBl (1.4)

(µi) : pg ≤ Qg ∀g ∈ FS (1.5)
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p ≥ 0 (1.6)

The �rst di�erence with the US-style model is that TSOs do not value bal-
ancing capacity in real time and run an �energy-only�1 optimization problem.
This absence of a market for real-time balancing capacity raises issues for the
forward reservation of balancing capacity, as already pointed out in [Papavasil-
iou et al., 2021]. Without a real-time valuation for reserve, the only opportunity
cost that can be back-propagated to the day-ahead balancing capacity auction
would arise from the payo� di�erence between the balancing market and the
day-ahead spot market or from �xed cost e�ects.

The second point of di�erentation with US markets is that the law of one
price [Jevons, 1871] is not respected for the trading of balancing energy. The
balancing energy of �exibility suppliers (on the left-hand side of constraint
(1.4)) is remunerated at the balancing price, whereas �exibility consumers (on
the right-hand side of constraint (1.4)) face an imbalance price that is based
on the balancing price but may di�er from it. In Belgium, for example, an
�alpha� component was introduced on top of the balancing price. The stated
objective of such an adder is to incentivize �exibility suppliers to keep their
imbalance low. The point of view of ELIA, the national transmission system
operator of Belgium, is that the di�erence in pricing between imbalances caused
by �exibility consumers and balancing energy provided by �exibility suppliers
can be justi�ed by the di�erent goals of the price signals:

�The imbalance price incentivizes BRPs (�exibility consumers) to
keep and/or restore system balance of their imbalance price area
in accordance with the Electricity Balancing Regulation, while the
balancing energy price re�ects the price of the marginal bid selected
in the uncongested area by the activation optimization function of
the EU balancing platform� [ELIA, 2021b].

In practice, �exible assets can move freely between active imbalance and
participation in the balancing market, giving rise to arbitrage opportunities.

1.3.2 Multiple Balancing Products and Imbalance Pric-

ing

The previous exposition assumes a single balancing product for covering imbal-
ance. In practice, balancing the market is a continuous process that involves
the activation of a variety of balancing products with di�erent technical char-
acteristics and activation times. These products are tailored to speci�c bal-
ancing issues. In European balancing markets, there are three main products:
frequency containment reserve (FCR), automatic frequency restoration reserve

1Beware that the term �energy-only" can refer to markets without operating reserve in the
dispatch or markets not relying on capacity markets for reaching the long-term equilibrium
depending on the context.
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(aFRR) and manual frequency restoration reserve (mFRR). These products
were also referred to in the past as primary, secondary, and tertiary reserves.

FCR reacts proportionally and automatically to the frequency of electricity.
This product handles transient frequency deviations. FCR is often traded as
a purely capacity product. There is no energy component to remunerate the
activation of FCR as the symmetry of upward and downward activation is
assumed to even out. aFRR is used to relieve FCR capacity. It reacts almost
instantaneously to larger imbalances and is traded on a four-second basis with
a full activation time of �ve to seven and a half minutes. The activation of
aFRR is based on an automatic controller. Alternatively, mFRR can be used
to compensate for larger imbalances. mFRR activation is performed manually
on a �fteen-minute basis.

The US reserve products vary from one ISO to another and the product
de�nitions di�er from the standardized European ones. The main di�erence in
products concerns secondary reserve (aFRR). It is controlled and remunerated
through an auxiliary market that is distinct from the real-time market. There
also exist longer-lasting reserves that can be activated during the integrated
real-time dispatch. They are closer to mFRR in terms of characteristics. They
are often categorized as contingency reserve and can be further divided into
spinning and non-spinning reserve, depending on whether the assets providing
the reserve are connected to the grid.

The multiplicity of real-time energy products in European balancing energy
markets, aFRR and mFRR, raises an issue concerning the pricing of imbalances
that is absent in US-style markets. There is no ambiguity in the real-time
energy prices generated by an integrated economic dispatch model and unin-
structed deviation are settled outside of the real-time market. On the other
hand, it is unclear how imbalance prices set on a �fteen-minute basis can in-
corporate both an aFRR and an mFRR price component, given the di�erence
in timing granularity.

1.3.3 European Balancing Market Integration and Cross-

Border Balancing Platforms

The next phase of the European electricity market integration relates to bal-
ancing markets. It follows the integration of day-ahead markets through the
market coupling algorithm Euphemia. This algorithm connects the electricity
price in 26 European countries and allocates transmission capacity to maximize
welfare. It is considered the primary market for electricity in Europe. Intra-
day markets used for revising production and consumption schedules closer to
physical delivery have also been integrated through the single intraday coupling
platform.

One of the �rst steps in the integration of the European balancing market
was to standardize the balancing products [Meeus, 2020]. National balanc-
ing markets in Europe have been characterised by speci�c features in terms
of (i) traded balancing products, (ii) balancing capacity procurement (market-
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based or mandatory contribution), settlement methods (regulated price, pay-
as-bid, or pay-as-cleared) and cost recovery schemes (passed on to the customer
through the grid tari� or covered by �exibility consumers causing imbalances),
(iii) balancing energy activation (pro-rata or based on a merit-order), settle-
ment methods and cost recovery schemes, (iv) the imbalance settlement period
duration (from 15 minutes to 1 hour) and (v) imbalance price formation. These
rules re�ect the approach of diverse TSOs for covering imbalances and are a
legacy of a time with less coordination between European member states in
real time. The standardization process has been followed by several initiatives
to allow for the cross-border trading of balancing products. Currently, (i) FCR
capacity is jointly procured by the Austrian, Belgian, Czech, Danish, Dutch,
French, German, Slovenian and Swiss TSOs, (ii) mFRR balancing energy ac-
tivation is coordinated by the balancing platform MARI in Germany, Austria,
and the Czech Republic, and (iii) the activation of aFRR balancing energy is
optimized by the balancing platform PICASSO in Germany, Austria, the Czech
Republic, Slovenia and Italy2. To be more speci�c on aFRR and mFRR, TSOs
connected to the MARI platform submit a demand for mFRR balancing en-
ergy over the next �fteen minutes, potentially in the form of a demand curve,
and the platform selects balancing energy bids at least cost in order to satisfy
the demand given the network topology. Then, independent PICASSO runs
are solved every four seconds based on the zonal imbalances that are yet to
be covered. mFRR and aFRR balancing energy activated by the platforms
are remunerated at the aFRR and mFRR platform prices respectively. The
rules for setting the platform prices are framed by decision 2020/01 of ACER
and the amendment to this initial decision in Decision 03/2022. This decision
is often referred to as the platform pricing methodologies. The connection to
the platforms, coupled with the pricing methodology, create an impetus for
standardizing the balancing products and for transitioning to �pay-as-cleared"
settlement (also known as marginal pricing), for whichever Member States this
is not the case yet, in accordance with Article 30.1.a of the Electricity Balanc-
ing Guideline (EBGL). The push to harmonize balancing market operation to
fully harness the bene�ts of the European integration also takes the form of
the imbalance settlement harmonization methodology (ISHM) [ACER, 2020b].
This decision provides a framework for the calculation of the imbalance price.
It prompts TSOs to adopt an imbalance pricing scheme based on the balancing
prices generated by the platforms.

The sequence of integration, with balancing markets being the last, can
be said to be in reverse of the appropriate order [Hogan, 2019]. Even though
the volumes involved are much lower than the ones traded in day-ahead and
intraday markets, the design that determines price formation in balancing and
imbalance settlement should not be overlooked, as the expectation of the real-
time prices generated by the balancing markets drives the wholesale electricity
price in the day-ahead and other forward markets [Cervigni and Perekhodtsev,

2Italy has decided to suspend its participation in PICASSO starting on the 15th of March
2024.



1.4. Scarcity Pricing through an Operating Reserve Demand Curve 13

2013]. As Hogan has stated repeatedly: �The last (price generated) should be
(designed) �rst" [Hogan, 2016]. Additionally, the potential synergies brought
by the integration of balancing are estimated to be considerably more signi�cant
than the ones from coupling day-ahead and intraday markets [Newbery et al.,
2016]. The potential savings from imbalance netting and the use of cheaper
balancing resources have been simulated to 400 million e for the Nordics alone
[Farahmand and Doorman, 2012].

1.4 Scarcity Pricing through an Operating Re-

serve Demand Curve

In theory, short-run electricity markets should be able to support the e�cient
long-run investment that ensures the adequacy of the system. The short-run
prices are set by the marginal cost of the marginal unit when demand meets
supply and by the value of lost load (VOLL) when there is insu�cient capacity
and loads need to be curtailed. This forms a long-run equilibrium in which
every technology breaks even [Boiteux, 1960]. A necessary component of this
equilibrium is scarcity pricing, which refers to spot prices rising above the
marginal cost of every unit present in the system in times of scarcity. This
allows investors to recuperate their investment costs [Cramton and Stoft, 2005].
The equilibrium number of scarcity hours is directly connected to the cost of
new entry (CONE), measure in e per MW per year, of peaking units and
the VOLL. If a peaking unit, with marginal cost MCP , is only pro�table in
periods of curtailment when scarcity pricing occurs, the adequate number of
curtailment hours per year, H, is equal to the cost of new entry divided by the
pro�t margin of the peaking unit, V OLL−MCP .

H =
CONE

V OLL−MCP
(1.7)

Unfortunately, electricity markets su�er from a lack of responsive demand.
Electricity loads cannot specify their reliability preferences and this hinders
scarcity pricing. This market failure leads to non-priced rationing in which
loads are not curtailed based on their willingness to pay but rather on emer-
gency protocols. This also leads to the price in times of scarcity being set
administratively and not by the willingness to pay of the last disconnected
load. Price caps constraining electricity prices below the VOLL increase the
number of curtailment hours required for investors to recuperate their invest-
ment cost, as shown in (1.7). Missing money arises when there is a mismatch
between the number of hours curtailed and the scarcity prices. Ine�cient long-
term signals are not new [Joskow, 2008] but they have been exacerbated by the
rapid large-scale integration of RES that are fuelled by government subsidies.

These concerns demonstrate the need for making the demand side of elec-
tricity systems more responsive. While adequacy concerns may be mitigated by
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capacity remuneration mechanisms outside of the energy markets, such mech-
anisms may inhibit the adoption of demand response. If capacity markets
are established without considering the potential rise in demand response, the
short-term prices induced by the resulting capacity mix are likely to prevent
investment in demand response infrastructure. Similar to responsive genera-
tion, investment in demand response processes and load management requires
the stimulus of better scarcity pricing [Hogan, 2013]. Policy-makers should
focus on the root cause of ine�cient long-term signalling, inadequate scarcity
prices, before trying to �x the symptomatic adequacy concerns through capac-
ity mechanism [Hogan, 2019].

The introduction of an operating reserve demand curve (ORDC) is a mech-
anism for improving scarcity pricing and jump-starting demand response. This
administrative demand curve introduces price elasticity in the procurement of
reserve in the real-time market. Scarcity pricing induced by ORDCs exhibits
less pronounced and more frequent price spikes than scarcity pricing induced
by the value of loss load alone (VOLL pricing). The resulting �well-behaved�
energy price creates a more stable environment for investment. Early refer-
ences to this mechanism are found in Stoft in [Stoft, 2002] and the theory was
formally anchored to the loss of load probability (LOLP) and the value of loss
load by Hogan in [Hogan, 2005] and [Hogan, 2013]. Although scarcity pric-
ing is a real-time mechanism, the uplifted real-time energy and reserve prices
are expected to back-propagate to forward (e.g. day-ahead) energy and reserve
markets, thereby generating robust investment signals in the market [Papavasil-
iou et al., 2021].

Scarcity pricing has been increasingly considered for implementation by a
number of US independent system operators, such as ERCOT and PJM. These
markets co-optimize energy and reserve and have been transitioning from an
ORDC with a �xed reserve requirement to a downward sloping ORDC based
on the VOLL and LOLP [NYISO, 2019]. ISO-NE and MISO are also consid-
ering this transition, following the recommendation of their respective market
monitors. TSOs and regulators in Europe have also considered variations of
scarcity pricing mechanisms. A Reserve Scarcity Pricing function based on the
VOLL and the amount of leftover reserve based on hour-ahead measurements
is implemented in Great Britain [Department for Business, 2020]. One objec-
tive behind the introduction of the measure was to generate scarcity prices
without relying on agents internalizing inframarginal rents. The latter method
for generating scarcity prices can be hard to distinguish from an exercise of
market power. Ireland has also implemented a scarcity pricing mechanism,
nevertheless it is not based on ORDC and LOLP but rather triggered by stress
conditions in the system [SEM, 2021,EirGrid, 2017].
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1.4.1 ORDC to Approximate a Stochastic Economic Dis-

patch

The introduction of an explicit ORDC to form an energy and reserve economic
dispatch is motivated by the price generated by a two-stage stochastic economic
dispatch as laid out by Hogan [Hogan, 2013]. His reasoning is replicated here.
The objective of a central auctioneer is to maximize the �rst-stage welfare of
serving the load plus the expected cost of the recourse action after the dispatch
order. Let us assume an aggregate cost function, C(·), an aggregate marginal
cost function, MC(·), an aggregated maximum technical production, Q, a load
bene�t function B(·), and a load marginal bene�t function, MB(·). Let x be
the net load change after the dispatch with probability density function f(·)
and cumulative distribution function F (·).

max
q,d,r,s

B(d)− C(q) +

∫
V OLL · s(x)−

(
C(q + s(x))− C(q)

)
dF (x) (1.8a)

s.t. (µ) : q + r ≤ Q (1.8b)

(λ) : d = q (1.8c)

(γ(x)) : s(x) ≤ r ∀x (1.8d)

(θ(x)) : s(x) ≤ x ∀x (1.8e)

s, r ≥ 0 (1.8f)

The stochastic cost relative to covering the net load change is composed of
the bene�t of serving the additional load valued at V OLL and the additional
production cost. The two-stage stochastic economic dispatch is presented in
equation (1.8a) with q and d being the production and consumption in the
dispatch respectively, r being an auxiliary variable introduced to represent re-
serve in the model, and s(x) being the recourse additional production indexed
by the net load change x. Note that only upward net load increases are consid-
ered in this analysis. The stochastic economic dispatch can be approximated
by replacing the additional production cost with its �rst-order approximation,
M̂C(q) · s(x).

max
q,d,r,s

B(d)− C(q) +

∫ (
V OLL · s(x)− M̂C(q) · s(x)

)
dF (x) (1.9a)

s.t. (µ) : q + r ≤ Q (1.9b)

(λ) : d = q (1.9c)

(γ(x)) : s(x) ≤ r ∀x (1.9d)

(θ(x)) : s(x) ≤ x ∀x (1.9e)
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s, r ≥ 0 (1.9f)

The KKT conditions of this problem are presented in equations (1.10).

(d) : λ = MB(d) (1.10a)

(q) : λ = MC(q) +

∫
M̂C

′
(q) · s(x)dF (x) + µ (1.10b)

0 ≤ r ⊥ µ−
∫

γ(x)dF (x) ≥ 0 (1.10c)

0 ≤ s(x) ⊥ M̂C(q)− V OLL+ θ(x) + γ(x) ≥ 0 (1.10d)

(1.10e)

γ(x) can be isolated to

γ(x) =

{
V OLL− M̂C(q) if x ≥ r

0 else,
(1.11)

and this allows us to rewrite λ, the dual variable relative to the �rst-stage
market-clearing constraint (1.9c), as

λ = MC(q) +

∫
x≥r

V OLL− M̂C(q)dF (x) (1.12a)

= MC(q) + (1− F (r)) · (V OLL− M̂C(q)) (1.12b)

= MC(q) + LOLP (r) · (V OLL− M̂C(q)) (1.12c)

by dropping the derivative of the marginal cost which would be negligible and
by de�ning the loss of load probability, LOLP (r), as the probability that the net
load change exceeds the reserve available. Equation (1.12c) can be interpreted
as the energy price being equal to the marginal cost of production plus a scarcity
component. This scarcity component represents the cost associated with the
net load exceeding the available reserve. If there is no risk of curtailment and
the probability of x exceeding r is null, then the energy price reverts back to the
marginal cost of production and there is no scarcity component. Introducing
stochasticity in the economic dispatch allows a correction to the energy price
by re�ecting the risk of curtailment.

Scarcity components can be approximated with a deterministic economic
dispatch by co-optimizing energy and reserve, as in equation (1.1), through
the introduction an operating reserve demand curve. Let us de�ne BR(·) as
the bene�t function of holding reserve and MBR(·) as the marginal bene�t
function of holding reserve. The deterministic reserve and energy economic
dispatch can be formulated as follows.
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max
q,d,r,dr

B(d) +BR(r)− C(q) (1.13a)

s.t. (µ) : q + r ≤ Q (1.13b)

(λ) : d = q (1.13c)

(λR) : dr = r (1.13d)

There are now two market clearing constraints: one for energy in equation
(1.13c) and one for reserve in equation (1.13d). The analysis of the KKT
conditions shows us that the reserve price is equal to the marginal bene�t of
reserve,

λR = MBR(r), (1.14)

and that the energy price is equal to the marginal cost of production plus the
marginal bene�t of holding reserve,

λ = MC(q) +MBR(r). (1.15)

The price of energy is thus coupled to the price of reserve. This is due to the
maximum production constraint (1.13b) that links the dispatch of energy and
the dispatch of reserve. This coupling ensures that an asset that is scheduled
for both energy and reserve should be indi�erent between o�ering either prod-
uct. The consistency between the energy and reserve economic dispatch and
the stochastic economic dispatch is ensured by setting the marginal bene�t of
reserve equal to the product of the loss of load probability and the value of lost
load minus an estimation of the marginal cost of production, M̂C:

MBR(r) = LOLP (r) · (V OLL− M̂C) (1.16)

1.4.2 Scarcity Pricing without Co-Optimization of En-

ergy and Reserve

In the absence of co-optimization of energy and reserves, an implicit ORDC can
be used to compute scarcity adders based on the amount of reserve available in
real time. This adder re�ects the level of stress in the system, and would cor-
respond to the price of reserve in an independent real-time market for reserve
driven by the valuation of reserve demand. The coupling between reserve and
energy prices would then be implemented by adding this adder as a price com-
ponent to the real-time energy price. The introduction of a real-time market
for reserve and the use of an adder on the energy price has been implemented
in ERCOT [Hogan and Pope, 2020] and would be more realistic to implement
in EU markets in the immediate future. The use of implicit adders and real-
time markets for reserve can only reproduce co-optimization in a simple setting
without ramping constraints.
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1.4.3 Scarcity Pricing and Network Collapse

The procurement of operating reserve can be justi�ed by the risk of total net-
work collapse. Remember that the objective of balancing consumption and
production is to prevent the collapse of the electricity network caused by fre-
quency deviations. Frequency deviations lead to power plants tripping and
disconnecting from the network. Total network collapses are fundamentally
di�erent from controlled rolling blackouts. When load is shed during con-
trolled rolling blackouts, served loads value generation at the value of lost load.
During a network collapse, generation has no value as no load is served. There
is an externality that prevents all loads from being supplied even if there is
generation available.

The risk of network collapse compels system operators to procure operat-
ing reserve as shown in [Joskow and Tirole, 2007]. The authors demonstrate
the need for operating reserve through a two-stage model. In the �rst stage,
capacity is procured before the realization of the load. In the second stage, the
system operator decides how much of the load to cover and the ratio of capacity
to keep available as reserve. The availability of the capacity is then revealed
and there is a network collapse if the reserve level is insu�cient to cover the
generation unavailability. The potential unavailability and the risk of network
collapse justi�es investment in additional capacity and the procurement of op-
erating reserve. The equilibrium is characterized by three modes at the second
stage: o�-peak, reserve curtailment and load shedding.

� In o�-peak mode, all the load is covered and the capacity is not binding
with regard to the level of reserve. There is excess capacity and su�cient
reserve for preventing the network collapse. The marginal value of in-
vestment in capacity is equal to zero (or the commitment cost of reserve
in Joskow and Tirole's model).

� In reserve curtailment mode, all the load is covered but the level of reserve
is gradually reduced compared to the o�-peak mode. Capacity is binding
with regard to the level of reserve. The marginal value of investment in
capacity is equal to its contribution to reduce the probability of network
collapse.

� In load shedding mode, load is shed to ensure a minimum reserve require-
ment is met. At that level of reserve, the risk of network collapse is such
that reserve is more bene�cial to the system than covering load. The
marginal value of investment in reserve apacity reserve in that mode is
equal to the value of the load shed.

This analysis has shown that reserve is a public good. Generators and
loads will consider the reliability provided by reserve asexogenous from their
own policy. They have no incentive to procure reserve themselves and there is
a need for a neutral system operator to procure it on their behalf (or to force
them to procure it).
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Additionally, the value of marginal investment in capacity described ear-
lier can be interpreted as the implicit value for incremental investment in
reserve. These values are very similar to the reserve prices generated by a
co-optimization model. The price of reserve is very low in o�-peak mode when
the value of reserve on the ORDC is negligible. The price of reserve is equal to
the VOLL in load shedding mode when the level of reserve is lower than the
minimum reserve requirement.3 The price of reserve is equal to the improved
reliability it provides to the system in reserve curtailment mode.

There are however a couple of subtle di�erences between the two approaches.
First, Joskow and Tirole rely on a reserve ratio relative to the load which
can prove delicate to implement through an operating reserve market. The
problem is particularly visible in the reserve curtailment mode where the system
operator has to set administratively the exact reserve ratio that will prevent
load shedding but will mobilize all the capacity. Any mistake when setting
that ratio can result in price swings between zero (when the system operator
sets the reserve ratio too low and there is an excess capacity) and the VOLL
(when the system operator sets the reserve ratio too high and this results in
load shedding). Reserve ratios result in inelastic demand curve which is at the
root of this problem.

Secondly, the value of marginal investment in capacity proposed by Joskow
and Tirole does not necessarily equate to the marginal value of reserve in the
dispatch. The available capacity is not necessarily a good metric to estimate
reliability in modern capacity mixes with high levels of RES.

1.5 Contribution and Structure of the Thesis

The thesis includes three independent works revolving around scarcity pricing
and European balancing markets.

� Chapter 2 proposes a method for validating the calibration of ORDCs.
The administrative parametrization of the demand curves is tested on a
simulator of the Belgian short-term electricity market. The simulator ac-
counts for the scheduling of power plants and for dispatching constraints,
and has been validated against historical data. The objective of the anal-
ysis is to measure the tradeo� between the cost of operation and system
reliability resulting from the ORDC calibration. Eight variants of OR-
DCs are considered, and this analysis serves as the basis for supporting
a recommendation to the Belgian regulatory authority for the roll-out of
scarcity pricing in Belgium [CREG, 2021].

� Chapter 3 is a bridge between scarcity pricing and balancing markets,
as it discusses how scarcity pricing can be implemented in the Euro-
pean setting. It investigates the ambiguity stemming from the lack of

3Eq. (1.16) does not include a minimum reserve requirement but it is quite straightforward
to include it.



20 Chapter 1. Introduction

Figure 1.3: Thesis contributions.

co-optimization on the application of scarcity adders. Three variants are
considered: (i) an adder on the imbalance price, (ii) an adder on the
imbalance and balancing prices, and (iii) an adder on the imbalance and
balancing prices in conjunction with a real-time market for reserve. The
analysis demonstrates that adders without a real-time market for reserve
induce ine�ciencies by distorting the merit order and tend to be detri-
mental to the Member State that introduces them because the increased
balancing cost is borne by the consumer in the zone with an adder.

� Chapter 4 provides a framework for analyzing the interaction of imbalance
settlement with the clearing of multiple balancing energy and balancing
capacity markets. The impact of (i) the imbalance settlement scheme,
(ii) the mFRR activation strategy, and (iii) the capacity demand curves
on the balancing market equilibria are assessed.

The works can also be categorized as a function of the methods that are
used. Chapters 2 uses operations research techniques to optimize processes in
a given policy setting. On the other hand, chapters 4 and 3 start at a lower
level by discussing potential market designs. Game-theoretical techniques are
used to predict the equilibrium e�ect of di�erent market organizations.

The thesis contributions have been published in peer-reviewed academic
journals, or are in the reviewing process.

� Chapter 2 is published in the IEEE Transactions on Power Systems un-
der the title �Calibration of Operating Reserve Demand Curves Using
a System Operation Simulator� [Cartuyvels and Papavasiliou, 2023]. An
extension of the paper was published in the proceedings of the 2022 IEEE
Power & Energy Society General Meeting (PESGM) under the title �Cal-
ibration of Operating Reserve Demand Curves using Monte Carlo Simu-
lations� [?].

� Chapter 3 has been accepted for publication in the IEEE Transactions on
Energy Markets, Policy and Regulation under the title �Market Equilibria
in Cross-Border Balancing Platforms� [Cartuyvels et al., 2023].
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� Chapter 4 is under review and a previous version can be found as a CORE
discussion paper titled �Interactions of Imbalance Settlement with Energy
and Reserve Markets in Multi-Product European Balancing Markets�.

Additionally, I have participated as a second author in the publication
of �Implementation of scarcity pricing without co-optimization in European
energy-only balancing markets� in Utilities Policy [Papavasiliou et al., 2023]
and as a �rst author in the publication of �E�cient Dispatch in Cross-Border
Balancing Platforms: Elastic Demand Through Parametric Cost Function Ap-
proximation� as a proceeding of the 2024 International Conference on the Eu-
ropean Energy Market (EEM) [Cartuyvels et al., 2024].





2
Calibration of ORDC Using a
Short-Term System Operation

Simulator

2.1 Introduction

The lack of a strong responsive demand side in electricity markets makes pricing
in time of scarcity a delicate task that necessitates at least one administrative
input to price electricity in times of scarcity [Cramton and Stoft, 2005]. Energy-
only markets without explicit ORDCs need an estimate of the VOLL. Markets
with explicit ORDCs also require the characterization of the loss of load proba-
bility. Additionally, markets relying on capacity markets to induce the e�cient
long-term capacity mix need to specify the capacity demand curves and partic-
ipation guidelines. The list of administrative parameters for capacity markets
includes penalty for not being present in times of scarcity and derating factors
for renewable capacity.

The pre-implementation evaluation of these mechanisms' parametrizations
is essential for policy makers. This chapter describes a short-term simula-
tor for evaluating the calibration of ORDCs for the roll-out of scarcity pric-
ing in Belgium. This tool is part of a number of studies performed on be-
half of the Belgian regulatory authority for energy: [Papavasiliou and Smeers,
2017,Papavasiliou et al., 2018] assessed the potential of scarcity pricing based
on ORDC, [Papavasiliou et al., 2021] used a stochastic equilibrium framework
to test di�erent levels of integration of scarcity in the Belgian context, and [Pa-
pavasiliou and Bertrand, 2021] investigated the use of adders to back-propagate
balancing capacity prices in the Belgian balancing market.

The calibration of ORDCs has largely been restricted to open-loop analyses
in the existing literature [Zarnikau et al., 2020,ELIA, 2018,Papavasiliou et al.,
2018]. An open-loop analysis lacks feedback from the introduction of elastic
ORDCs. It calculates adders based on a given a dispatch as opposed to a closed-
loop analysis where dispatch would be a�ected by the ORDCs. The Belgian
transmission system operator, ELIA, studies scarcity pricing in Belgium in
[ELIA, 2018]. Papavasiliou et al. [Papavasiliou et al., 2018] provide a sensitivity
analysis of the induced scarcity prices based on the parametrization of the

23
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operating reserve demand curve. The scarcity prices are derived from the
remaining reserve capacity of a unit commitment model that uses �xed reserve
requirements. Zarnikau et al. [Zarnikau et al., 2020] analyze the impact of
scaling ORDCs horizontally, as well as the e�ect of the ORDC on the real-time
market price and investment incentives for natural-gas-�red generation in the
Texas electricity market.

References [Zarnikau et al., 2020, Papavasiliou et al., 2018] highlight the
in�uence of the shape of ORDC on the price and how the parametrization of the
ORDC can a�ect the remuneration of di�erent technologies through its e�ect
on prices. Nevertheless, the open-loop approach proposed in those papers is not
able to capture the dispatch and commitment incentives created by di�erent
calibrations of the ORDC. This shortcoming of open-loop analyses motivates
our proposal for a nested modelling approach for simulating the short-term
operation of the system and for modelling the interplay between reserve prices,
operational e�ciency, and uncertainty revelation.

Our simulator models the operation of a perfectly coordinated system,
where a sequence of centralized optimization model commits and dispatches
resources in a coordinated fashion. Uncertainty is assumed to stem from the
actual load that needs to be served by the system. The sequential optimiza-
tion of system scheduling aims at replicating the real-time controllability of the
di�erent assets present in the system, with a speci�c focus on quantifying the
interplay between lags in decision making and the revelation of uncertain infor-
mation in the system. The constraints on the scheduling of assets are inspired
by the detailed commitment model of [Simoglou et al., 2010]. This allows us
to quantify the fundamental tradeo� that ORDCs aim at balancing: incurring
non-negligible �xed costs for committing �exible resources that can allow the
system to operate reliably in real time, versus running the risk of not covering
imbalances fully.

The proposed quantitative methodology could be used in the future to adapt
the parametrization of ORDCs to the state of the system. An increase in renew-
able generation may introduce signi�cant additional uncertainty to the system,
resulting in wider ORDCs that can provide stronger signals for investment.
Such a shift has already been discussed in ERCOT [Zarnikau et al., 2020] and
our methodology can be used to assess such policies.

The nested modelling of system operation also appears in [Zhou and Bot-
terud, 2014] and [Lavin et al., 2020], albeit less detailed. Nested models also ap-
pear in other contexts in [Simao et al., 2017], [Bakirtzis et al., 2015], [Daraeep-
our et al., 2019], and [Atakan et al., 2022]. We proceed to discuss the relation
of these publications to our work.

Zhou and Botterud [Zhou and Botterud, 2014] develop their model in order
to analyze an ORDC which is based on the loss of load probability, and which
accounts for the uncertainty caused by wind and load forecast errors, as well
as generation contingencies. Lavin et al. [Lavin et al., 2020] introduce an
LOLP which is a function of the ambient temperature, in order to represent
the higher probability of forced generator outages under extreme temperature
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conditions. Those models use short-term system operation simulators in order
to compare di�erent ORDC schemes. Nevertheless, these publications mostly
leave aside the aspect of calibrating the ORDC. More speci�cally, the results
of Zhou and Botterud [Zhou and Botterud, 2014] and Lavin et al. [Lavin et al.,
2020] are limited by the hourly temporal granularity of their model, as they
cannot quantify the tradeo� between short-term dispatch adjustments and the
lagged activation of reserves. The increased precision of our model remedies
this shortcoming, and advances the state of the art by assessing more faithfully
the interplay between costs and lags versus reliability of operation for di�erent
calibrations of ORDC in a setting with multiple reserve products.

In this sense, the precision of our model is closer to the Smart-ISO model
of Simao and Powell [Simao et al., 2017]. The model of [Simao et al., 2017]
is inspired by system operator practices and it is used in order to assess the
reliability of the PJM system under di�erent levels of wind power integration.
We can also draw similarities with the model of Bakirtzis et al. in [Bakirtzis
et al., 2015] where the authors propose a number of short-term operating mod-
els in order to cope with the increased uncertainties of power system operations.
Daraeepour et al. [Daraeepour et al., 2019] have a model with multiple opti-
mization problems to estimate the gain from adopting a stochastic model when
committing assets. More recently, Atakan et al. [Atakan et al., 2022] use their
model to compare the cost performance of di�erent levels of reserve require-
ment. Their calibration of the level of reserve requirement based on simulations
in a stochastic hierarchical planning framework is simular in spirit to our ap-
proach. Note, however, that none of the aforementioned papers is focused on
the question of the calibration of ORDCs.

Discussions on the shape of demand curves also appear in the capacity
market literature. Cramton summarizes lessons learned from the early ca-
pacity market designs, and provides recommendations for the design of ca-
pacity demand curves in [Cramton and Stoft, 2005]. References [Brown, 2018]
and [Zhao et al., 2018] focus on the parametrization of capacity demand curves.
Brown [Brown, 2018] derives curve parameters that aim at maximizing welfare
in a 3-stage model where two �rms can (i) choose their production capacity, (ii)
compete in a capacity auction and (iii) compete in an energy market. Zhao,
Zheng and Litvinov [Zhao et al., 2018] propose a framework for rigorously de-
termining capacity demand curves based on the value of reliability obtained by
simulating di�erent levels of capacity in the market.

Our paper can also be linked to Mays [Mays, 2021]. The author advo-
cates for a more direct connection between the construction of ORDCs and the
expected outcome of a stochastic market.

The main contributions of this chapter are thus threefold. First, we provide
a quantitatively sound methodology for calibrating ORDCs. Previous works in
the scarcity pricing literature are either not accounting for the feedback e�ect of
introducing ORDCs due to being open-loop [Zarnikau et al., 2020,Papavasiliou
et al., 2018], or they are focusing on the comparison between �xed reserve
requirements and price elastic ORDCs and not on the parametrization of such
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ORDCs [Zhou and Botterud, 2014, Lavin et al., 2020]. Our method anchors
the calibration to a closed-loop simulation model and examines three speci�c
design criteria for ORDCs that emerge in a realistic implementation of the
mechanism.

Second, we implement detailed system operation models for quantifying
the tradeo� between incurring �xed costs for committing �exible resources and
allowing the system to operate reliably instead of running the risk of shedding
load.

Third, the current modeling e�ort is contributing directly to the implemen-
tation of a scarcity pricing mechanism in the Belgian electricity market. The
results of the analysis constitute the basis for our recommendation to the Bel-
gian regulatory authority for the possible implementation of scarcity pricing in
Belgium in the short to medium term. This recommendation supports their
latest study [CREG, 2021].

The chapter is structured as follows. Section 2.2 summarizes the principles
of scarcity pricing, with a speci�c focus on certain dilemmas pertaining to the
calibration of ORDCs. Section 2.3 presents the short-term operating model
that we have developed in order to support the calibration of an ORDC. Our
case study of the Belgian market is presented in section 2.4. The results of the
case study are presented and analysed in section 2.5. Finally, we conclude and
discuss future research perspectives in section 2.6.

2.2 Scarcity Pricing and ORDC

Scarcity pricing is summarized in 2.2.1. Subsection 2.2.2 considers the case of
multiple reserve products and subsection 2.2.3 introduces variants of ORDC.

2.2.1 Rationale of Scarcity Pricing

Following 1.4.1, ORDCs can be used to replicate deterministically the dispatch
and pricing from a stochastic economic dispatch [Hogan, 2013]. In this setting,
the value of an additional MW of balancing capacity is linked to the value of the
improved reliability that it provides to the system by reducing the likelihood of
load shedding. This marginal value is characterised by Hogan in [Hogan, 2013]
as a function of the value of lost load (V OLL), the loss of load probability
(LOLP (·)) given the level of reserve in the system (r) and the marginal cost
of the marginal unit in the system (M̂C):

MBR(r) = (V OLL− M̂C) · LOLP (r) (2.1)

In general, the value of lost load represents the willingness to pay to avoid
a power outage. Di�erent consumers (residential, commercial and industrial)
have di�erent values of lost load depending on the electricity use-case and the
electricity consumption context (outage duration, warning, ...) [Gorman, 2022].
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The V OLL in this context is the average value of lost load for the agents that
would be curtailed in a rolling blackout [Hogan, 2013].

The most complete integration of scarcity pricing based on ORDC to elec-
tricity market operations would correspond to the co-optimization of reserve
and energy in real time. An ORDC based on (2.1) would then be the explicit
demand curve for reserve and would be inserted in the multi-product auction
that trades energy and reserve simultaneously. Co-optimized markets would
then produce one price for each product: (i) a reserve price for the available
reserve and (ii) an energy price for the energy traded. Note that, in the absence
of binding ramp constraints, the price of energy will be coupled to the price of
reserve in order to ensure an equivalence between the marginal pro�t on the
energy and reserve market for a marginal generator that supplies both reserve
and energy.

In the absence of a co-optimization of energy and reserves, we could use the
expression of Eq. (2.1) to compute adders based on the amount of reserve that
is available in real time, as measured by system telemetry. This adder re�ects
the level of stress in the system, and would correspond to the price of reserve.
The coupling between reserve and energy prices would then be implemented
by adding this adder as a price component to the real-time energy price in the
absence of co-optimization (the balancing energy price in EU nomenclature).

2.2.2 Multiple Reserve Products

Formula (2.1) has been generalized by Hogan in [Hogan and Pope, 2019] to
the case of multiple reserve products of di�erent quality. The quality of reserve
refers to the delivery time that is required for this speci�c reserve product to be
fully available, which in EU jargon is referred to as full activation time. This
generalization is based on the split of a real-time dispatch interval in two parts.
In the �rst part of the interval, it is assumed that only high-quality resources
can respond, whereas in the second part of the interval, all reserve types are
assumed to be able to respond. We consider the full interval as an imbalance
interval.

In the EU, the reference duration for an imbalance interval is 15 minutes and
[Papavasiliou et al., 2019] suggests the following split of the real-time dispatch
based on the products that have been historically available in the EU balancing
market. The �rst part of the interval would last 7.5 minutes and imbalances
would be resolved by balancing capacity that can be fully activated in no longer
than 7.5 minutes (which corresponds in our analysis to aFRR capacity1). The
second part of the interval would also last for 7.5 minutes. In this time interval,
imbalances would be resolved by balancing capacity that can be fully activated
in 15 minutes (which correspond in our analysis to mFRR capacity).

1Note that, even though the full activation time of aFRR that is envisioned in the pan-
European platform PICASSO for the activation of aFRR capacity is 5 minutes, the current
analysis is performed for the Belgian system where aFRR has been required to be fully
activated in 7.5 minutes in the past [E-Bridge Consulting, 2014]
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Based on this split of an imbalance interval, the authors in [Papavasiliou
et al., 2019] suggest the introduction of two ORDCs: (i) a 7.5-minute ORDC
(eq. (2.2)) for the �rst part of the interval and (ii) the 15-minute ORDC (eq.
(2.3)) for the second part of the interval:

MBR7.5(r7.5) =
1

2
· (V OLL− M̂C) · LOLP7.5(r7.5) (2.2)

MBR15(r15) =
1

2
· (V OLL− M̂C) · LOLP15(r15) (2.3)

Here, LOLPx(·) corresponds to the loss of load probability after x minutes,
rx is the amount of reserve that can be activated within x minutes, and M̂C
represents the marginal cost of the system. The loss of load probability after
x minutes is described in equation (2.4) and represents the probability of the
imbalance after x minutes exceeding the balancing capacity that can be made
available in x minutes:

LOLPx(rx) = P(imbx ≥ rx) with imbx ∼ N (µx, σ
2
x). (2.4)

The ORDCs described in (2.2) and (2.3) are obtained by assuming that
reserve that can be activated in 15 minutes can prevent load curtailment in
the second interval (from 7.5 to 15 minutes) and that the marginal value of
that reserve should represent the improved reliability it brings in that second
interval. Reserve that can be activated in 7.5 minutes can prevent load shedding
in both intervals so the marginal value of that reserve should represent the
improved reliability it brings in both intervals. Note that the amount of reserve
that can be activated within 15 minutes includes both the reserve that can be
activated in 7.5 minutes and the reserve that can be activated in 7.5 to 15
minutes.

The imbalance is assumed to be drawn from a normal distribution with
mean µx and standard deviation σx. These parameters can be estimated from
the historical system imbalance. They are computed per 4-hour block and per
season, in order to account for seasonality.

The settlement in a co-optimized market can be understood by analysing
the following model in a convex setting. The model presented below is solely
for the sake of explaining the settlement in a system with multiple products
of reserve. Assuming a bene�t function for demand (B(·)) and a constant
production cost for generator g ∈ G (Cg), where G is the set of generators in
the system, our goal is to maximize the welfare of the system as a function of
the demand (d), reserve available after 7.5 and 15 minutes (r7.5 and r15)2 and
the production (qg) and supply of fast and slow reserve (rFg and rSg ) for every

2The value of r15 would be computed in practice ex post, based on telemetry measure-
ments. In case the resolution of telemetry data is 15 minutes, it would be necessary to
assume a pre-de�ned availability of di�erent resources for 7.5 minutes, which is the case in
our present study.
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generator g:

max
d,p,rS ,

rF ,r7.5,r15

B(d)−
∑
g

Cg · qg +
∫ r7.5

0

MBR7.5(x)dx+

∫ r15

0

MBR15(x)dx, (2.5)

The co-optimization must obey the market clearing constraint for energy and
fast and slow reserve (the associated dual variables are provided in parentheses):

(λ) : d =
∑
g

qg, (2.6)

(λ7.5) : r7.5 =
∑
g

rFg , (2.7)

(λ15) : r15 =
∑
g

(rFg + rSg ), (2.8)

The operating constraints of generator g are characterised by the set Xg:

(qg, r
S
g , r

F
g ) ∈ Xg. (2.9)

It is worth noting that the fast reserve supplied by the generators is eligible
not only for the pool of reserve available after 7.5 minutes (Eq. (2.7)) but also
for the pool of reserve available after 15 minutes (Eq. (2.8)).

The pro�t maximization problem faced by a generator g can be obtained
by �rst relaxing the market clearing constraints of the co-optimization model
(Eqs. (2.6)-(2.8)):

max
d,q,rS ,

rF ,r7.5,r15

B(d)−
∑
g

Cg · qg +
∫ r7.5

0

MBR7.5(x)dx+

∫ r15

0

MBR15(x)dx

+ λ · (
∑
g

qg − d) + λ7.5 · (
∑
g

rFg − r7.5)

+ λ15 · (
∑
g

rFg +
∑
g

rSg − r15) (2.10)

(s.t.) (qg, r
S
g , r

F
g ) ∈ Xg, ∀g ∈ G, (2.11)

and then decomposing the relaxed problem by g ∈ G:

max
qg,rSg ,rFg

qg · (λ− Cg) + rFg · (λ15 + λ7.5) + rSg · λ15 (2.12)

(s.t) (qg, r
S
g , r

F
g ) ∈ Xg. (2.13)

From the generator point of view, λ, λ7.5 and λ15 are exogenous parameters
representing respectively the price of energy, fast reserve, and slow reserve
for the �rst and second interval of an imbalance period. From the system
operator point of view, these prices are can be obtained by solving the initial
co-optimization problem.
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The prices of reserve for the �rst and second interval, λ7.5 and λ15, are set
by the ORDCs. This is demonstrated by the KKT conditions of the initial co-
optimization problem relative to the complementarity constraints implicating
variables r7.5 and r15 in (2.14) and (2.15):

λ7.5 −MBR7.5(r7.5) = 0 (2.14)

λ15 −MBR15(r15) = 0 (2.15)

Generators are then remunerated according to (2.12) under co-optimization.

� Balancing capacity that can be made available in 7.5 minutes is remuner-
ated with the fast reserve price:

λF = MBR7.5(r7.5) +MBR15(r15). (2.16)

� Balancing capacity that can be made available in 15 minutes is remuner-
ated with the slow reserve price:

λS = MBR15(r15). (2.17)

� Energy is remunerated in real time, with the energy price, λ.

A notable challenge of integrating scarcity pricing in the EU and certain past
US markets is the lack of co-optimization in the real-time European market.
Without co-optimization, a system operator cannot rely anymore on the dual
variables of the co-optimization problem in order to characterize the prices and
needs to resort to approximations. In the past, ERCOT has used adders as
proxies to couple the reserve and energy prices, although the evolution of the
ERCOT design is towards a co-optimization model [Hogan and Pope, 2020].

In the spirit of the original ERCOT design, [Papavasiliou et al., 2019] sug-
gests to introduce 3 adders in order to approximate pricing under co-optimization.
The fast adder and slow adder would be equal to the fast and slow reserve price
and would remunerate balancing capacity that can be made available in 7.5 and
15 minutes. The energy adder would be equal to the fast adder and would be
added to the real-time balancing price for remunerating energy.

Assuming that the energy adder is equal to the fast adder is an approxima-
tion that presumes non-binding ramp constraints. The reader is referred to the
supplement of [Papavasiliou et al., 2021] for a more detailed discussion about
this approximation. The explanation can be summarized as follows. The price
of energy is �xed by the KKT conditions of the initial co-optimization problem
relative to the generation variables qg, r

F
g and rSg . Depending on which con-

straints of the model are binding, the energy price may be o�set by a constant
with respect to the fast adder, the slow adder, or neither.
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2.2.3 Variants of ORDC

Eqs. (2.2) and (2.3) depend on a number of design parameters. Di�erent
variants of ORDCs can be produced depending on these assumptions. In this
paper, we consider the following design parameters, which have been discussed
in the context of the implementation of scarcity pricing in Belgium: (i) di�erent
values for VOLL, (ii) whether the argument of the LOLP operator is the reserve
capacity remaining before or after the activation of reserve and (iii) whether
imbalance increments within an imbalance interval are assumed to be correlated
or not.

VOLL at 8300 e/MWh versus 13500 e/MWh

The Belgian federal planning bureau has estimated the Belgian VOLL at 8300
e/MWh in [Devogelaer, 2017]. This value has been used as the reference value
of the VOLL in [Papavasiliou et al., 2019]. The value of 13500 e/MWh has also
been suggested because it represents the current bidding limit of the imbalance
price [CREG, 2018] and as such the market players' assumed highest VOLL.

Pre- versus Post-Activation

Reference [Papavasiliou et al., 2021] points out that the pre- and post-activation
variants correspond to di�erent interpretations of what making a certain quan-
tity of reserve available in real time would mean in terms of system operator
expectations. The pre-activation interpretation means that 1 MW of reserve
implies that a resource has been a�orded time to recover from its balancing
dispatch during the previous imbalance interval. The post-activation interpre-
tation means that the resource is prepared to o�er 1 MW even if it has not
been a�orded time to return to its originally scheduled setpoint. The e�ect
of the assumption is found to be signi�cant in the context of the stochastic
equilibrium formulation presented in [Papavasiliou et al., 2021]. As the time
step of the real-time / balancing market becomes shorter (5 minutes currently
in the US, and 15 minutes in Europe), the distinction becomes less relevant.

If the post-activation reserve capacity margin is denoted as r, then the
pre-activation margin is r − imb, with imb being the di�erence between the
scheduled and actual demand. This allows us to value balancing capacity at
the beginning of an interval before absorbing the imbalance. In practice, these
options correspond to di�erent timings for computing the LOLP . The pre-
activation variant computes the LOLP at the beginning of the period whereas
the post-activation variant does it at the end of the interval.

Independent versus Correlated Imbalance Increments

When splitting an imbalance period into two intervals, the full imbalance that
needs to be covered also has to be split into two imbalance increments. Each
interval is then responsible for causing one of the two imbalance increments.
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Figure 2.1: Example of ORDCs under di�erent variants.

The assumption then is on how imbalance increments correlate in these two
separate time steps. On the one extreme, we can assume correlated increments
which implies that the total imbalance over both stages evolves linearly from
the beginning to the end of the interval. On the other extreme, the assumption
of independent imbalances implies that the total imbalance over both stages is
the sum of two independently distributed imbalance increments occurring at
stages 1 and 2 respectively.

The distinction a�ects the implied standard deviation of the imbalance that
is used in the 7.5-minute version of Eq. (2.4). Given σ and µ, the standard
deviation and mean of the 15-minute imbalance, the standard deviation of the
7.5-minute increments is either σ/

√
2 if the increments are independent, or σ/2

if the increments are perfectly correlated. The mean of both the independent
and correlated 7.5-minute increments is µ/2.

Fig. 2.1 presents di�erent variants of ORDC. Each variant can be inter-
preted as a geometric transformation. The variation of VOLL, of the imbalance
distribution, and of the activation time are respectively equivalent to vertical
scaling, horizontal scaling and horizontal translation.
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2.3 Simulator for Short-Term Operation

The structure of the simulator of short-term operation is described in subsec-
tion 2.3.1. We then characterize the generic unit commitment problem that is
the building block of the di�erent components of the simulator in subsection
2.3.2. The modi�cations to this generic unit commitment problem in order to
account for the speci�cities of the intraday and real-time models are discussed
in subsection 2.3.3.

2.3.1 Structure of the Simulators

The short-term operating model that we develop for the purpose of our analysis
is composed of 4 embedded optimization problems that are solved in sequence
throughout the day. Simulations begin in the day ahead by scheduling inelastic
production, and unfold in intraday and real time by solving a sequence of
unit commitment and economic dispatch problems with di�erent scheduling
windows. Each problem is employed for the commitment and / or dispatch of
speci�c types of plants, depending on their response speed.

Particular care is given to (i) the operational constraints of the individually
modelled generation plants, (ii) the revelation of real-time uncertainty and the
scheduling of the system based on forecast information, and (iii) the e�ect of
each decision-making stage on subsequent optimization problems.

Depending on the characteristics of an asset, its commitment plan and dis-
patch decisions will be obtained by di�erent optimization problems. Assets can
be partitioned into 3 broad categories, based on their real-time controllability.

1. DA scheduled generators cannot modify their planned day-ahead dis-
patch. This might be due to the in�exibility of the technology, or a
link between electricity production and other processes, such as heating.
The electricity production of these generators is typically determined in
forward processes, and these units are not participating in a balancing
market.

2. Fast balancing capacity generators require a non-negligible lag to
start up (between 1 and 3 hours) but are very reactive once committed.
CCGT generators constitute the bulk of this category. These assets can
provide fast and slow reserve depending on their ramping constraint when
committed.

3. Slow balancing capacity generators include all emergency generators
and demand response resources. These generators are typically costly to
start up, but can be activated in a short time, in order to free up some
of the fast balancing capacity. These assets can provide fast and slow
reserve when o�ine.
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The 4 dispatch and commitment models that we develop optimize di�erent
subsets of the aforementioned assets. The dependencies are described hereun-
der. The sequencing of the models in the simulator is indicated in Fig. 2.2.

� The day-ahead unit commitment (DA-UC) model is used for
scheduling the inelastic production that will not vary in real time rel-
ative to its day-ahead set-point. The model is launched once, before the
beginning of the day, with a scheduling horizon of 72 hours. The model
assumes a �xed initial dispatch of units for the day, which will be identical
for every variant of ORDC that is tested in our analysis. The parameters
of the simulation include the day-ahead load forecast, as well as settings
that determine the reactivity and availability of the generation pool. This
problem also determines the hydro storage target for the real-time mod-
els. The system is allowed to deviate from this target in order to address
balancing issues, but such deviations are penalized.

� The intermediate rolling-window unit commitment (Inter-RUC)
is solved every six hours over a 24-hour scheduling window. The Inter-
RUC determines the commitment of CCGT plants for the next 6 hours
until the next Inter-RUC is launched. This process thus proxies intraday
market adjustments.

� The pre-real-time rolling-window unit commitment (PRT-RUC)
determines the commitment of emergency generators. The model is
launched every 15 minutes over a 1-hour scheduling window.

� The real-time economic dispatch (RT-ED) dispatches the genera-
tors that are committed in the previous optimization problems.

All of these models are necessary for simulating e�cient system operation.
The DA-UC allows us to account for uncertainty in day-ahead scheduling. The
Inter-RUC provides real-time �exibility on the commitment of CCGT units.
The PRT-RUC alone would be insu�cient for those units because they require
a long scheduling window to be worth committing. The PRT-RUC allows the
system operator to react to the very short-term revelation of uncertainty by
activating emergency measures. The RT-ED is necessary for determining a �nal
position for the system, for quantifying scarcity adders, and for quantifying the
cost of operating the system.

2.3.2 Generic Unit Commitment Problem

All the optimization problems are based on a standard unit commitment prob-
lem that aims at minimizing the total cost of the system under a series of
constraints for both classical and pump-hydro generation.
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Figure 2.2: Sequence of models in our simulator of short-term operation.

Sets, Variables and Parameters

We de�ne T = {t1, t2, . . . tT } as the scheduling window for a problem, D as
the demand, G = {1, 2, . . . N} as the set of generators and S = {7.5, 15} as the
type of ORDC considered in this analysis. Let us also denote MBRit as the
marginal bene�t function of reserve type i at period t. The segments of the
ORDC are obtained by approximating (2.2) and (2.3) with a stepwise constant
function3.

The set of decisions concerning a generator g at period t is characterized
by the point xg,t = (qg,t, r

F
g,t, r

S
g,t, r

NS,F
g,t , rNS,S

g,t , ug,t, vg,t, wg,t, sg,t). This vector
is the concatenation of the production, fast reserve, slow reserve, fast non-
spinning reserve, slow non-spinning reserve and binary variables for the com-
mitment, activation, shut-down and start-up of generator g at time t. The
vector xg,t belongs to the set X = R5

+ × B4.
Each generator g is characterized by its technical parameters P+

g , P−
g , Rg,

RNS,F
g , RNS,S

g , UTg, DTg and SUg which are respectively the maximum and
minimum production limit, the ramp rate, the limit for fast and slow non-
spinning reserve, the minimum up time and down time, the start-up time of
the unit, and its cost function Cg : X → R. The cost function includes the
minimum load cost of keeping a generator online (CML

g (·)), the start-up cost
(CSU

g (·)), and the production cost with variable heat-rate (CP
g (·)). The cost

function can be expressed as in Eq. (2.18):

Cg(q, u, v) = CP
g (q) + CML

g (u) + CSU
g (v) (2.18)

The composition of the cost function is similar to the three-part bids of
ERCOT with a production cost, a minimum load cost and a start-up cost.

1. The production cost is a function of production. It includes the emission
cost, which depends on the emission price of a ton of CO2 (CC02) and
the emission rate of the plant (ERg). It also depends on the production
cost which varies based on fuel price (CF

g ) and the variable heat rate as
a function of the power output (HRg(p)).

CP
g (q) =

∫ q

0

CCO2 · ERg + CF
g ·HRg(x)dx (2.19)

3A method to approximate (2.1) by a stepwise constant function is proposed in [Zhou and
Botterud, 2014].
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2. The minimum load cost is a function of the commitment variable u and
the minimum load of the plant (QML

g ) and the price of the fuel.

CML
g (u) = u ·QML

g · CFu
g (2.20)

3. The start-up cost is a function of the activation variable v and the start-
up load of the plant (QSU

g ), as well as the price of the fuel.

CSU
g (v) = v ·QSU

g · CFu
g (2.21)

The plant parameters are extrapolated from the real parameters of a subset of
all the plants from a private database. This extrapolation is performed in order
to adapt our realistic data to capacity levels that are not explicitly represented
in our database. The fuel cost is based on the monthly historical spot TTF
prices.4

We represent demand for energy and reserve using the vectormt = (zt, r
7.5
t , r15t ).

This tuple consists of the shortage in energy and the system supply for reserve
for both the �rst and second half of an imbalance interval interval for period
t. The hydro vector ht = (qHt , dHt , eHt , rH,F

t , rH,S
t , uH

t ) represents the produc-
tion, consumption, energy stored, fast and slow reserve supplied by pumped
hydro, and the pumping mode of a pumped hydro unit for period t. Note that
mt ∈ R3

+ and ht ∈ R5
+ × B1.

We further introduce the notation t− to characterize the period preceding
period t.

Objective Function

The system operator aims at minimizing the sum of the production cost and
shortage cost minus the bene�t from reserve:

min
xg,t,
mt,ht

∑
t∈T

(∑
g∈G

Cg(xg,t) + V OLL · zt −
∑
i∈S

∫ rit

0

MBRit(x)dx
)
. (2.22)

The cost of shedding load is valued at the VOLL.

Market Clearing Constraints

Dt =
∑
g∈G

qg,t + qHt − dHt + zt ∀t ∈ T (2.23)

r7.5t =
∑
g∈GD

rFg,t + rNS,F
g,t + rH,F

t ∀t ∈ T (2.24)

r15t =
∑
g∈GD

rSg,t + rNS,S
g,t + rH,S

t + r7.5t ∀t ∈ T (2.25)

4Data available at https://my.elexys.be/MarketInformation/SpotTtf.aspx

https://my.elexys.be/MarketInformation/SpotTtf.aspx
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Constraint (2.23) ensures that the market is balanced at all times, and
constraints (2.24) and (2.25) de�ne the market clearing conditions for fast and
slow reserve. Reserve can be sourced from online generators (spinning reserve),
from o�ine generators (non-spinning reserve) or from hydro (hydro reserve).

Generation Constraints

rFg,t ≤ Rg · 7.5 ∀g ∈ G,∀t ∈ T (2.26)

rSg,t ≤ Rg · 15 ∀g ∈ G,∀t ∈ T (2.27)

pqg,t + rFg,t + rSg,t ≤ P+
g · ug,t ∀g ∈ G,∀t ∈ T (2.28)

pg,t ≥ P−
g · ug,t ∀g ∈ G,∀t ∈ T (2.29)

Eqs. (2.26) to (2.29) represent the ramp constraints of fast and slow reserve
and the maximum and minimum technical production limits of a unit.

Non-Spinning Reserve Constraints

rNS,F
g,t ≤ RNS,F

g · (1− ug,t) ∀g ∈ G,∀t ∈ T (2.30)

rNS,F
g,t + rNS,S

g,t ≤ RNS,S
g · (1− ug,t) ∀g ∈ G,∀t ∈ T (2.31)

Eqs. (2.30) and (2.31) limit the supply of non-spinning reserve from o�ine
generators. Most of the generators cannot provide non-spinning reserve and
their parameters RNS,F

g and RNS,S
g are equal to 0.

Transition Constraints

qg,t − qg,t− ≤ Rg · T · (1− vg,t) + P−
g · vg,t ∀g ∈ G,∀t ∈ T (2.32)

vg,t + ug,t− − ug,t − wg,t = 0 ∀g ∈ G,∀t ∈ T (2.33)

The transition constraints (2.32) and (2.33) represent the ramp constraint
for production and the commitment transition constraint. The production
ramp constraint has two possible modes: one for normal operation and one
for activation. The parameter T is the number of minutes of one period in a
speci�c problem. For example, T = 60 for the DA-UC problem.

Operating Constraints

wg,t +

t∑
t′=max(t0,t−UTg+1)

vg,t′ ≤ 1 ∀g ∈ G,∀t ∈ T (2.34)
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vg,t +

t∑
t′=max(t0,t−DTg+1)

wg,t′ ≤ 1 ∀g ∈ G,∀t ∈ T (2.35)

SUg · vg,t −
t−1∑

t′=max(t0,t−SUg+1)

sg,t′ ≤ 0 ∀g ∈ G,∀t ∈ T (2.36)

The operating constraints (2.34), (2.35) and (2.36) represent the minimum
down time, minimum up time and start-up time of assets. Similarly as for
T , UT , DT and SU are adapted to the granularity of the problem under
consideration.

Hydro Generation Constraints

dHt ≤ DMax
H · uH

t ∀t ∈ T (2.37)

eHt ≤ EMax
H ∀t ∈ T (2.38)

qHt + rH,F
t + rH,S

t ≤ PMax
H · (1− uH

t ) ∀t ∈ T (2.39)

qHt + rH,F
t + rH,S

t ≤ eHt ∀t ∈ T (2.40)

eHt = eHt− − 60

T
(qHt− + dHt− · η) ∀t ∈ T (2.41)

The pumped hydro generation constraints restrict the maximum hydro con-
sumption, energy stored and hydro production in constraints (2.37) - (2.39)
with the pumped hydro characteristics DMax

H , EMax
H and PMax

H . Note that a
unit is either pumping or producing, as a function of the pumping mode uH

t .
Eq. (2.40) restricts the hydro reserve to the total stored energy. Constraint
(2.41) describes the evolution of energy stored in the reservoir as a function
of pumping and production decisions in the previous period, as well as the
e�ciency of the plant.

2.3.3 Modi�cations for the Intraday and Real-Time Prob-

lems

The intraday problem (Inter-RUC) and real-time problems (PRT-RUC and
RT-ED) extend the standard unit commitment problem described previously
to account for the day-ahead schedule and the particularities of the balancing
market.

Day-ahead Constraints

rFg,t = 0 ∀g ∈ GI ,∀t ∈ T (2.42)

rSg,t = 0 ∀g ∈ GI ,∀t ∈ T (2.43)
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qg,t = qDA,∗
g,t ∀g ∈ GI ,∀t ∈ T (2.44)

Given the set GI representing the DA-scheduled generators, constraints (2.42)
and (2.43) restrict their ability to supply reserve. Constraint (2.44) character-
izes their real-time in�exibility by equalizing the real-time production to the
scheduled day-ahead production pDA,∗

g,t .

Status Constraints

The commitment decisions of previous optimization models are enforced by
this set of constraints. We introduce the notation SU,t, SS,t, SA,t and SF,t to
represent the set of generators that are unavailable, in the start-up process,
activated or free in period t5.

ug,t = 0 ∀t ∈ T ,∀g ∈ SU,t ∪ SS,t (2.45)

ug,t = 1 ∀t ∈ T ,∀g ∈ SA,t (2.46)

sg,t = 1 ∀t ∈ T ,∀g ∈ SS,t (2.47)

Constraints (2.45) and (2.46) imply that a generator is either o� (ug,t = 0)
or on (ug,t = 1) because of the minimum down time and minimum up time
constraints of previous optimization problems. Similarly, Eq. (2.47) enforces
the start-up variables dictated by a start-up decision in a previous problem and
its start-up time.

Hydro-Deviation Constraints

The opportunity cost of hydro in real time is modelled by a hydro storage
target eDA,∗

t and the variable lt representing the deviation from that target:

lt ≥ eDA,∗
t − eHt ∀t ∈ T (2.48)

lt ≥ eHt − eDA,∗
t ∀t ∈ T (2.49)

lt ≥ 0 ∀t ∈ T (2.50)

The term
∑

t∈T
∫ qt
0

HD(q)dq is subtracted from the objective function of
the real-time problem in order to penalize deviations.

Start-Up Constraints

The scheduling window for the pre-real-time problem is de�ned as T = {t0,0, t0,1,
t1, . . . , tw−1}. It represents two 7.5-minute periods (t0,0 and t0,1) and w − 1
15-minute periods. This window plans over w · · · 15 minutes. The �rst period
is split, in order to account for the start-up pro�le of emergency generators and
how much of their generation is available after 7.5 minutes. Given the initial

5No generator can be in two sets at the same time and all generators must be in a set at
every period t.
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position of a generator p0g, the initial transition constraint of equation (2.32)
needs to be reformulated:

pg,t0,0 − p0g≤ Rg · 7.5 · (1− vg,t) +RSU,0
g · vg,t

∀g ∈ G,∀t ∈ T
(2.51)

pg,t0,1 − pg,0,1≤ Rg · 7.5 · (1− vg,t) +RSU,1
g · vg,t

∀g ∈ G,∀t ∈ T
(2.52)

ug,t0,0 = ug,t0,1 ∀g ∈ G,∀t ∈ T (2.53)

vg,t0,0 = vg,t0,1 ∀g ∈ G,∀t ∈ T (2.54)

The start-up constraints (2.51) and (2.52) ensure that generators com-
ply with their start-up pro�le. This start-up pro�le is characterized by the
maximum production 7.5 minutes and 15 minutes after activation (RSU,0

g and
RSU,1

g ). The start-up ramp pro�le is similar to the limit on non-spinning reserve
for emergency generators and demand response.

Note that the two 7.5-minute dispatch periods only account for one 15-
minute commitment period (Eqs. (2.53)-(2.54)).

Economic Dispatch Constraints

The real-time economic dispatch is similar to the �rst and second period of
the pre-real-time unit commitment except that all the generators are either
activated, unavailable or in start-up. No commitment decision is taken in this
problem.

2.4 Model Validation against Historical Data

Subsection 2.4.1 describes the case study of the simulation and subsection 2.4.2
the validation of the day-ahead module.

2.4.1 Case Study

The investigation is performed on the Belgian power system with the historical
load of 2018.

Generation pool

The generation pool modelled in the simulator includes all the controllable
assets of Belgium and the load �exibility considered by the Belgian transmission
system operator, Elia, and is presented in Table 2.1.

The controllable assets are mainly based on the database of installed ca-
pacity by unit, which is publicly available on the Elia open data platform. In
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Table 2.1: Generation pool of Belgium

Balancing
capacity
category

Type of
plant

Number of
units

Max. agg.
prod. [MW]

DA sched.

Cogeneration,
run of river hydro,
waste incinerators,
Nuclear

7500

Fast bal. cap. CCGT 10 3754

Slow bal. cap. OCGT 6 302

Slow bal. cap. Turbo-jet 10 194

Slow bal. cap. Demand response 250 to 500

Slow bal. cap. Foreign bal. cap. 50

Fast bal. cap. Pump-hydro 1300

addition to these resources, this pool also includes demand response, pump-
hydro and some foreign balancing capacity.6 Demand response varies from
month to month and is extracted from historical data. Foreign balancing ca-
pacity represents the availability on the transmission lines between ELIA and
its neighbouring TSOs. This value is �xed at 50 MW following [Papavasiliou
et al., 2019].

The technical parameters relative to the operating constraints of the �exi-
ble generators are largely aligned with [ELIA, 2019], except for the minimum
production of emergency generators. We consider emergency generators and
demand response as �all-or-nothing� generators.

Net Load

Net load is modelled as the power that must be served by �exible and control-
lable assets. It corresponds to the di�erence between grid load and renewable
energy and imports / exports.

The data that we use for net load is obtained from ELIA's website and the
ENTSO-E transparency platform.7 The data resolution of the ELIA website
and ENTSO-E platform is respectively 15-minute and hourly.

6Demand response and foreign balancing capacity are referred to as Non-CIPU generation

and Inter-TSO in the Belgian framework.
7Data available at https://www.elia.be/fr/donnees-de-reseau/data-download-page

and https://transparency.entsoe.eu/

https://www.elia.be/fr/donnees-de-reseau/data-download-page
https://transparency.entsoe.eu/
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Imbalance

The mean and standard deviation of the distribution of the imbalances used for
the LOLP in (2.4) is obtained from the historical system imbalance recorded
in [ELIA, 2021a]. For simulating 2018, we use the historical imbalance of the 3
preceding years. The full characterization of the mean and standard deviation
of the system imbalance can be found in the appendix.

2.4.2 Validation

We validate our model by assessing the quality of the forward position com-
puted by the day-ahead unit commitment compared to the historical records
of day-ahead positions. The validation is restricted to the day-ahead unit com-
mitment because the co-optimization of reserve and energy in real time in our
simulator is a closed-loop investigation that is expected to produce a di�erent
dispatch depending on the ORDC that we analyse.

The comparison is performed over the aggregated forecast production per
type of fuel. There are �ve types of fuel, namely (i) nuclear, (ii) gas, (iii)
hydro, (iv) liquid fuel and (v) other. We will mostly focus on gas and hydro
production. Nuclear and other technologies are mainly driven by the maximum
available output and liquid fuel is used as an emergency measure and is rarely
scheduled in the day ahead.

The performance of the simulator is compared to that of [Papavasiliou and
Smeers, 2017]. Whereas [Papavasiliou and Smeers, 2017] aims at computing
scarcity prices and does not perform a sensitivity analysis on the shape of the
ORDC, both the present model and that of [Papavasiliou and Smeers, 2017]
are calibrated against the Belgian system. The current work improves [Pa-
pavasiliou and Smeers, 2017] by (i) re�ning and extending the generation pool,
(ii) reducing the granularity of the dispatch, and (iii) proposing a more realis-
tic modeling of the dispatch and commitment decisions. These enhancements
allow us to analyse the tradeo� between the commitment of fast balancing
capacity and the cost of operating the system with more realism. Table 2.2
details this comparison and demonstrates that the increased modeling detail
does not come at the cost of accuracy in replicating past observations of the
Belgian electricity system.

Discrepancies between our simulations and the historical dispatch may orig-
inate from: (i) The di�culty of assessing the opportunity cost of pump-hydro
and thermal assets that belong to a portfolio, (ii) the impact of climatic condi-
tions on the availability of certain assets and (iii) di�erence in the commitment
of particular CCGTs between the simulated and historical dispatch.

2.5 Results and Analysis

The results presented in this section are obtained by simulating the historical
demand of Belgium for 2018. The analysis is based on a reference scenario and
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Table 2.2: Mean Error (ME), Mean Absolute Error (MAE) and Root Mean Squared
Error (RSME) between the historical and simulated production per type of fuel for
2018 and comparison with the errors of the study in [Papavasiliou and Smeers, 2017]
for 2013.

Gas Hydro Fuel Nucl. Other

ME
Simulator -76.7 28.5 0.0 2.7 140.4

1st Study 168.9 4.7

MAE
Simulator 208.8 69.2 0.0 36.8 148.7

1st Study 240.7 61.6

RMSE
Simulator 267.7 113.7 1.0 116.2 176.9

1st Study 309.9 119.3

on a sensitivity analysis on the availability of the slow balancing capacity for
contributing towards satisfying the demand of the 7.5-minute ORDC.

Our analysis focuses on comparing the total operating cost of the di�erent
variants of ORDCs (subsection 2.5.1), and on analyzing the impact of these
variants on the level of the scarcity adder (subsection 2.5.2). The comparison
focuses largely on the in�uence of the level of conservatism of the variants. More
conservative variants (value of lost load at 13500 e/MWh and / or indepen-
dent 7.5-minute imbalance increments) are compared against less conservative
variants (value of lost load at 8300 e/MWh and / or correlated 7.5-minute
imbalance increments).

Some of the slow balancing capacity is assumed to partly cover the demand
of the 7.5 minute ORDC and [ELIA, 2018] highlights the importance of this
assumption. We investigate further in this direction with the sensitivity analy-
sis that is performed in section 2.5.3. Note that the reference scenario assumes
an availability of 28%.

2.5.1 Cost Analysis of the Reference Scenario

The total cost of the variants is reported in Table 2.3. The values reported here
are obtained by adding the production cost, minimum load cost, activation
cost and shortage cost of the system, and do not include the cost of the price-
inelastic generators, since the latter is identical across di�erent scenarios. The
last columns report the cost of emergency measures. The total cost varies from
1.697 M e per day to 1.683 M e per day. Thus, we �nd a di�erence of up to
14 k e per day between the di�erent variants. This corresponds to a variation
of up to 0.8% of the mean total �exible cost, which can be considered quite
stable.

Despite the stability of the total cost, we can analyse the di�erences between
the variants in order to better understand the impact of the ORDC on the com-
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Table 2.3: Decomposition of the mean total operating cost of each variant in million
e per day.

Total
cost

Prod.
cost

Min.
load
cost

Act.
cost

Short.
cost

Em.
cost

8300

Pre-
Act.

Ind. 1.694 1.317 0.344 0.032 0.001 0.109

Corr. 1.697 1.321 0.342 0.033 0.000 0.114

Post-
Act.

Ind. 1.691 1.316 0.343 0.032 0.000 0.107

Corr. 1.694 1.318 0.343 0.033 0.000 0.110

13500

Pre-
Act.

Ind. 1.688 1.304 0.352 0.031 0.000 0.101

Corr. 1.687 1.302 0.350 0.033 0.002 0.097

Post-
Act.

Ind. 1.684 1.301 0.352 0.031 0.000 0.097

Corr. 1.683 1.299 0.350 0.033 0.000 0.095

mitment and dispatch decisions. Based on Table 2.3, we can observe that more
conservative variants are typically less costly. This trend is more accentuated
for the variation of the VOLL, where the 13500 variants are consistently lower
in cost than their 8300 counterpart. More conservative ORDCs tend to result in
higher minimum load costs, and this is balanced out by their lower production
cost. This is particularly the case when comparing the variants with di�erent
value of lost load. For instance, the 13500/Post-activation/Independent vari-
ant incurs 352,000 e of minimum load cost and 1,304,000 e of production cost,
compared to the 8300/Post-activation/Independent that incurs 343,000 e of
minimum load cost cost and 1,316,000 e of production cost.

2.5.2 Price Analysis of the Reference Scenario

The values of the adders that result from the di�erent variants under the refer-
ence scenario are presented in Table 2.4. The fast adder varies from 2.7 e/MWh
to 6.5 e/MWh and the slow adder from 0.15 e/MWh to 0.5 e per MWh. The
adders generated by the di�erent variants are thus more signi�cantly depen-
dent on the choice of ORDC than system cost. Two main observations can be
highlighted from the table.

Firstly, conservative ORDCs (13500 variants and Independent variants) pro-
duce higher adders than their counterparts. Note that the most signi�cant dif-
ference is caused by the distribution of the 7.5-minute imbalance increments,
with the independent variants producing fast reserve adders that are approxi-
mately twice the value of their counterparts.

Secondly, correlated variants result in a higher slow reserve adder. This is
driven by the fact that CCGTs have lower incentives for commitment, which
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Table 2.4: Mean level of the adders for the reference scenario in e/MWh.

Fast reserve adder Slow reserve adder

8300

Pre-
Act.

Ind. 5.78 0.25

Corr. 2.86 0.36

Post-
Act.

Ind. 5.78 0.14

Corr. 2.74 0.30

13500

Pre-
Act.

Ind. 6.50 0.37

Corr. 3.28 0.56

Post-
Act.

Ind. 6.20 0.21

Corr. 2.92 0.32

decreases the committed balancing capacity and increases the value of the slow
adder.

This last point highlights a fundamental di�erence between the variations
in terms of distribution of imbalance increments versus the variations of the
VOLL. The independent and correlated variants only impact the 7.5-minute
ORDC and increase or decrease the incentives for committing CCGTs, while
keeping the slow reserve demand constant. In comparison, variations of the
VOLL impact both the 7.5-minute and 15-minute ORDCs.

Fig. 2.3 provides an indication about the persistence of the price signal
generated by the ORDC in terms of pro�tability for owners of �exible assets.
The �gure compares the price signal obtained by 4 variants, beginning with
the most conservative variant that produces the highest adder (13500/Post-
activation/Independent) and modifying each of the design parameters in turn.
The y-axis displays the measure of the adder under the metric of conditional
value at risk as a function of the risk aversion of the agents on the x-axis.
Depending on the risk aversion α of an agent, the agent will only consider the
100− α worst adders for computing its expected payo�s from the adder. The
risk aversion can range from 0% to 100%, where 0% is a completely risk-neutral
agent and 100% is a completely risk-averse one.

We observe a notable drop in the value of the payo� curve for low values
of the x axis, which corresponds to the impact of a very high adder resulting
from very stressed conditions in the system. These highly stressed conditions
constitute less than 1% of the total possible outcomes in the system. It is
possible to assess the quality of the signal produced by a variant by analysing
the persistence of the adder when the risk aversion increases.

In Fig. 2.3 we observe that the correlated variant is the least persistent by
a wide margin. The variants related to the value of lost load and the pre/post-
activation capacity produce similar levels of persistence. Note that, for these
variants, the decrease can be considered constant until a risk aversion level of
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Figure 2.3: Adder payo� as a function of the risk aversion of the agents.

(a) (b)

Figure 2.4: (a) Yearly distribution and (b) cumulative distribution of the mean fast
reserve adder per day [e/MWh] for 2018.

7.5%, which indicates a mean adder that is generated by the repetition of a
large number of occurrences of small adders in the market, which is desirable
from the perspective of mitigating investment risk.

Fig. 2.4 presents the mean fast adder per day for 2018. It shows that
the mean price per day is between 0 and 10 e/MWh for the majority of the
time, while during approximately 50 days the average adder is higher than 10
e/MWh. Scarcity adders turn out to be zero between 75 and 86% of the time
in the simulations depending on the variant.
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Table 2.5: Fast and slow reserve adder in e/MWh as a function of ρ, the availability
of the slow balancing capacity for covering the demand of the 7.5-minute ORDC.

Fast reserve adder Slow reserve adder

ρ 0% 28% 50% 0% 28% 50%

8300

Pre-
Act.

Ind. 14.65 5.78 1.57 0.12 0.25 0.33

Corr. 12.88 2.86 0.81 0.19 0.36 0.54

Post-
Act.

Ind. 14.62 5.78 1.51 0.08 0.14 0.29

Corr. 13.33 2.74 0.74 0.14 0.30 0.48

13500

Pre-
Act.

Ind. 14.76 6.50 1.66 0.25 0.37 0.32

Corr. 12.92 3.28 0.90 0.27 0.56 0.62

Post-
Act.

Ind. 14.91 6.20 1.55 0.09 0.21 0.25

Corr. 13.12 2.92 0.92 0.17 0.32 0.62

2.5.3 Sensitivity Analysis for the Variation of the Avail-

ability of Slow Balancing Capacity for the 7.5-Minute

ORDC

The eligibility of slow balancing capacity for the 7.5-minute ORDC is an im-
portant determinant for the remuneration of �exible assets. In principle, the
eligibility of these resources should be plant-dependent and should re�ect as
accurately as possible their reactivity. For reasons of simplicity, the current
Belgian scarcity pricing proposal only assumes a generic value for the avail-
ability. ELIA [ELIA, 2018] assumes an availability of 50%, and our analysis
considers availabilities ranging from 0% to 28%.

Given an availability ρ, the parameters RSU,0
g in Eq. (2.51) and RNS,F

g in
Eq. (2.30) for the emergency generators and demand response are modi�ed as
follows:

RSU,0
g = RNS,F

g = ρ ·RNS,S
g . (2.55)

The e�ects of modifying the availability on the adder are two-fold, and can
be observed in Table 2.5. Increasing ρ (i) reduces notably the level of the
fast adder by increasing the fast balancing capacity pool, and (ii) increases
marginally the level of the slow reserve adder. Increasing the availability of
mFRR for covering the demand of the 7.5-minute ORDC reduces the need
for aFRR from CCGTs, and has a direct e�ect on their commitment. This
compresses the committed balancing capacity, which in turn increases the level
of the slow adder.
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2.6 Conclusion

We develop a detailed unit commitment and economic dispatch simulation
model of the Belgian power system in order to analyze the e�ect of di�erent
design choices for Operating Reserve Demand Curves on the cost of system
operation and the price of aFRR and mFRR capacity. Our simulator attempts
to emulate a best-case, fully coordinated operation of the system from the
day ahead to real time. We propose four modules that are interleaved and
implemented as a rolling horizon optimization.

The precision of our model allows us to account for the tension between
incurring �xed costs for committing �exible resources that can allow the system
to operate reliably in real time, versus running the risk of shedding load.

We validate our model against historically observed data of the Belgian
market for 2018. We then perform a case study on the impact of ORDCs
on scarcity prices and system costs for 2018. We also perform a sensitivity
analysis on the extent to which mFRR reserves are assumed to contribute
towards satisfying the demand for 7.5-minute reserves.

The main �ndings of our analysis can be summarized as follows:

1. The total �exible operating cost for a day is stable, regardless of the
chosen ORDC variant. It is also stable for the speci�c generation pool of
Belgium that is investigated in our work.

2. The fast adder varies from 2.8 e/MWh to 6.5 e/MWh in the reference
scenario. The main driver of the price is the assumption related to the
distribution of the 7.5-minute imbalance increments, followed by the value
of lost load.

3. The level of the fast adder is sensitive to assumptions about what re-
sources can contribute towards covering the demand of the 7.5-minute
ORDC. Note that this sensitivity was already reported in [ELIA, 2018].

Note that, even though the methodology is generic, the conclusions regard-
ing shape of the ORDC are system-dependent and cannot be generalized to
other systems.

In future work, we are interested in developing a Monte Carlo simulation
model for the Belgian system which draws samples of system uncertainty, in-
stead of relying on historical data. This would allow us to enhance the sta-
tistical reliability of our results, by exposing the system to multiple years of
hypothetical operation.
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Table 2.6: Mean and standard deviation of the 15-minute imbalance distribution.

Season Time of the day Mean Standard deviation
Winter Block 1 29.00 160.25
Winter Block 2 25.93 134.12
Winter Block 3 6.77 165.30
Winter Block 4 44.00 190.88
Winter Block 5 56.95 169.15
Winter Block 6 3.99 144.29
Spring Block 1 7.74 145.75
Spring Block 2 27.05 128.75
Spring Block 3 -0.86 143.95
Spring Block 4 28.81 173.13
Spring Block 5 40.64 159.02
Spring Block 6 -7.44 127.18
Summer Block 1 14.54 134.15
Summer Block 2 27.89 111.75
Summer Block 3 0.86 130.06
Summer Block 4 28.98 151.59
Summer Block 5 27.60 144.17
Summer Block 6 -5.93 119.16
Autumn Block 1 11.62 151.34
Autumn Block 2 29.19 124.09
Autumn Block 3 -21.08 160.09
Autumn Block 4 -7.58 175.77
Autumn Block 5 -5.30 144.98
Autumn Block 6 -10.95 150.09

2.A Seasonal Imbalance

The parameters of the ORDCs, which are extracted from the historical seasonal
imbalances, can be found in Table 2.6. Block 1 is 10 pm to 2 am, block 2 is 2
am to 6 am, block 3 is 6 am to 10 am, block 4 is 10 am to 2 pm, block 5 is 2
pm to 6 pm and block 6 is 6 pm to 10 pm.





3 Adders and Market for Reserve in
Integrated Balancing Markets

3.1 Introduction

The imbalance settlement harmonization methodology (ISHM) o�ers to the
TSOs the possibility of unilaterally introducing a scarcity component or an in-
centivizing component in their imbalance price. Such adders on the imbalance
price are already present in Belgium and the Netherlands, with the stated goal
of inducing �exibility consumers to contribute towards balancing the system.
They aim at incentivizing �exibility consumers to participate in the balanc-
ing process by penalizing (resp. rewarding) positions that hurt (resp. help)
the system. Imbalances in the same (resp. opposite) direction as the system
imbalance are punished (resp. rewarded) with an increased imbalance price.
Similarly the possibility of introducing a scarcity component to the balancing
prices generated by the platforms is foreseen by the cross-border balancing plat-
forms' pricing methodology. Adders on the imbalance or balancing prices do not
target the same agents. Adders on the imbalance price are paid by �exibility
consumers or balancing responsible parties (BRPs) and adders on the balancing
price are paid to the �exibility providers or balancing service providers (BSPs).

The intention of introducing adders to the imbalance price is to keep the sys-
tem imbalance stable and to prevent long-lasting imbalances by BRPs [ELIA,
2021b]. This imbalance pricing scheme holds BRPs accountable for their con-
sumption of balancing capacity and one possible interpretation is that this
acknowledges the real-time value of balancing capacity. The introduction of
adders on the imbalance and/or the balancing price can thus be interpreted
as an incomplete implementation of scarcity pricing through an operating re-
serve demand curve. The lack of real-time markets for balancing capacity in
European balancing markets generates ambiguity on the application of scarcity
components and this chapter investigates the direct distributional e�ect trig-
gered by these design choices.

This work uses an analytical model to investigate how adders foreseen by
the ISHM and the pricing methodology can be applied in European balanc-
ing markets connected with cross-border balancing platforms. Three designs
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are examined: (i) The adder on BRPs design, which is currently used in Bel-
gium by ELIA, the Belgian TSO, where the adder is applied on the imbalance
price [ELIA, 2022], (ii) the adder on BRPs and BSPs design, suggested by
the Dutch TSO TenneT, where an adder is applied on both the balancing and
imbalance price [Nederlands, 2023], and (iii) the Real-Time (RT) market for
reserve suggested by [Papavasiliou, 2020,Papavasiliou et al., 2021,Papavasiliou
and Bertrand, 2021]. This design proposes to remunerate available but non-
activated balancing capacity in addition to balancing energy. The coupling of
the balancing capacity and balancing energy market uplifts the balancing and
imbalance price by an adder equal to the balancing capacity price. The value
of balancing capacity, the reserve price, is based on an ORDC which represents
the probability of losing load given the current state of the system [Hogan,
2005].

This analysis is part of the balancing market design literature. Seminal
work on coupled capacity and energy auctions includes [Bushnell and Oren,
1994], where the authors identify with an analytical model the optimal bidding
strategy and the necessary conditions for an equilibrium in early bid scoring
systems with discriminatory settlement rules. Chao and Wilson establish, by
arguing through backward induction, that uniform pricing for both energy and
reserve can create incentives for truthful bidding [Chao and Wilson, 2002].
Similar analytical methods have been employed in order to investigate the
interplay between the wholesale market and the balancing market [Ehrhart
and Ocker, 2021] and the switch from �pay-as-bid� to �pay-as-cleared� auc-
tions [Ocker et al., 2018]. Agent-based [van der Veen et al., 2012,Poplavskaya
et al., 2020, Poplavskaya et al., 2021, Papavasiliou and Bertrand, 2021] and
simulation-based methods [Petitet et al., 2019] have also been used for analysing
the impact of the imbalance pricing scheme on system cost [van der Veen et al.,
2012], strategic bidding in joint or split balancing capacity and balancing en-
ergy markets [Poplavskaya et al., 2020, Poplavskaya et al., 2021], the back-
propagation of real-time prices to day-ahead prices [Papavasiliou and Bertrand,
2021], and the timing of the gate closure time [Petitet et al., 2019].

There is also a broad literature on optimizing the strategy of di�erent agents
in balancing markets. Such literature includes analyses of optimal trading
strategies [Matsumoto et al., 2021,Bottieau et al., 2021], the minimization of
portfolio imbalance [Hellmers et al., 2016], the optimal activation of balancing
energy by system operators [Shinde et al., 2021], and the optimal scheduling
of batteries that perform reactive balancing [Smets et al., 2023]. Nevertheless,
this line of work is tangent to our analysis, which is focused on the design of
balancing markets.

A similar analysis on the e�ect of uncoordinated regulation in spatially
integrated electricity markets has been conducted by Bushnell in the context
of carbon reduction policies [Bushnell et al., 2017]. The authors conclude that
regulatory interventions can lead to a distortion of the merit order, which may
in turn lead to ine�ciencies.

This chapter completes and extends the model proposed in [Papavasiliou
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and Bertrand, 2021] in order to assess the back-propagation induced by di�er-
ent imbalance and balancing pricing schemes. The modelling and theoretical
contributions can be stated as follows: (i) we characterize an equilibrium for
the �adder on BRPs� design, which allows us to abandon the agent-based mod-
eling method used in [Papavasiliou and Bertrand, 2021], (ii) we provide a novel
analysis of a newly proposed pricing scheme, the �adder on BRPs and BSPs�
design, and (iii) we apply our analysis to a cross-border setting. From a policy
standpoint, our analysis shows the inability of both the �adder on BRPs� and
the �adder on BRPs and BSPs� designs to support an optimal dispatch in a
cross-border setting, in contrast to the �RT market for reserve� design which
can achieve this objective.

The remainder of the chapter is structured as follows. Section 3.2 goes
on to describe the functioning of European balancing markets and balancing
platforms, and introduces our notation and model. Sections 3.3 and 3.4 describe
the optimal strategies of agents under the di�erent designs analyzed in this
work, as well as the resulting market equilibrium. Section 3.5 illustrates and
compares the market equilibria in a two-zone setting. Section 3.6 concludes.

3.2 European Balancing Market

This section presents a single-zone balancing market and then introduces bal-
ancing platforms for representing cross-zonal integration in balancing opera-
tions.

3.2.1 Single-Zone Balancing Market

The functioning of European balancing markets is outlined in the Electricity
Balancing Guideline (EBGL) and described in a stylised manner hereunder.

TSOs are responsible for the operational security of the grid. They hold
reservation auctions for ensuring an adequate level of available reserve capacity
of di�erent types in real time. Balancing capacities can be di�erentiated accord-
ing to their activation time and include frequency containment reserve (FCR),
automatic frequency restoration reserve (aFRR), manual frequency restoration
reserve (mFRR), and replacement reserve (RR). The discussion in the paper is
targeted at manual frequency restoration reserve that is dispatched through bal-
ancing energy auctions. Replacement reserve and automatic frequency restora-
tion reserve are also dispatched through balancing energy auctions, but they
are ignored in order to highlight the e�ect of introducing adders on the inter-
action between two cash �ows with comparable settlement timeframes: mFRR
balancing energy and imbalance. Any subsequent reference to balancing ca-
pacity and energy in this chapter will respectively refer to the mFRR capacity
available for activation by the TSOs and to the mFRR capacity dispatched by
the TSOs.
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BRPs (�exibility consumers) are owners of portfolios that consist of residen-
tial, commercial and industrial load, as well as generation assets. According to
the EBGL, they shall strive to be balanced or to help the system be balanced
(article 17.1 of EBGL) and they are �nancialy responsible for their imbalance
(article 17.2 of EBGL). Their imbalance relative to their ex-ante position is
charged at the imbalance price. For the sake of this analysis, BRPs can be
considered as price-inelastic energy bids.

BSPs are �exibility providers that participate in the balancing energy auc-
tions. They belong to a BRP portfolio, and they include a wide range of assets,
such as classical thermal units (CCGT, OCGT, ...), battery aggregations, and
industrial and/or commercial demand response. BSPs can o�er various re-
serves, depending on their characteristics and on the quali�cation criteria set
by the TSO. BSPs can be considered as elastic suppliers of balancing energy
in the context of our models.

The term �balancing the market� refers to the process whereby a TSO ac-
tivates balancing energy from BSPs, in order to cover the aggregation of the
BRPs' inelastic imbalance. We proceed now with a description of the balancing
process. We have voluntarily left aside the reserve procurement auctions, as
their representation is not required in order to highlight the issues that emerge
from pricing asymmetries resulting from adders.

Firstly, BSPs submit their balancing energy bids to a balancing energy auc-
tion which is organised by the TSO. The balancing energy auction is assumed
to clear at a uniform price, following the pricing scheme of the European bal-
ancing platforms [ACER, 2020a].

Secondly, the aggregation of the BRPs' inelastic imbalance is revealed. The
TSO clears the balancing energy auction in order to balance the market and
a platform price, λP , is generated as the marginal cost of balancing energy
activation. Given the available information, one can also compute a scarcity
component price, λR. This represents the value of balancing capacity at the
time of clearing and can be set by an ORDC.

Between the �rst and second step, BSPs, as part of a BRP portfolio, can
decide to perform reactive balancing and self-activate their assets. In this case,
the activated energy is considered part of the BRP's imbalance and is charged
at the imbalance price.

The ISHM and the pricing methodology leave the door open for the intro-
duction of scarcity components in the balancing price, λbal, and the imbalance
price, λimb. These prices are used respectively for remunerating BSPs' balanc-
ing energy and for settling BRPs' imbalance.1 The application of such adders
can result in di�erent designs, as shown in Table 3.1. The default design is the
�no adder� policy, where the balancing and imbalance price are equal to the
platform price. The �adder on BRPs� and �adder on BRPs and BSPs� designs
introduce an adder on the imbalance price and on the imbalance and balancing
price, respectively. Finally, the �RT market for reserve� design has an adder

1This analysis does not include boundary cases where the price cap for the balancing
energy market and the imbalance settlement is reached.
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Table 3.1: Balancing and imbalance prices under the various designs that are debated
in European balancing market design.

λbal λimb Res. price
No
adder

λP λP 0

Adder
on BRPs

λP λP + λR 0

Adder on
BSPs and
BRPs

λP + λR λP + λR 0

RT Market
for reserve

λP + λR λP + λR λR

on the imbalance and balancing price, and additionally trades balancing ca-
pacity in real time. In this last design, the balancing capacity that has not
been activated is entitled to the real-time reserve price, which is equal to an
adder computed from an ORDC. More speci�cally, the �RT market for reserve�
design proposes to introduce a market for balancing capacity imbalance which
is equivalent to a market for balancing capacity that is conducted in real time.
The reader is referred to section 1.3.1 for additional details on the functioning
of RT market for reserve.

3.2.2 Cross-Border Balancing Platforms

The transition from one zone to multiple zones requires cross-border coordina-
tion, which is the goal of the European balancing platforms. These platforms
aim at coordinating the dispatch of balancing energy from di�erent zones, and
are called PICASSO (for aFRR) and MARI (for mFRR). Their objective is to
cover the TSOs' demand, at least cost, by activating balancing energy from
the BSPs of multiple zones. They have gone live in 2022 and are operating
in Germany, Austria and the Czech Republic. The other European TSOs are
expected to join the platforms in 2024 or 2025. MARI clears every 15 minutes
and PICASSO clears every 4 seconds.2

TSOs that are connected to the platforms �rst receive the balancing bids
from the BSPs. They �lter these bids in order to suppress the ones that could
create congestion and transmit the others to the platform. Afterwards, they
send their demand for the activation of balancing energy to the platform3. The
platform clears a balancing energy auction and informs TSOs on which bids of
their control area have been accepted. Finally, TSOs inform BSPs the bids of
which are accepted. TSOs are also responsible for the settlement between the

2MARI can clear more than one time per 15 minutes at the TSOs' request.
3In practice, MARI accepts elastic demand bids from TSOs, but we restrict our investi-

gation to inelastic demand.
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Figure 3.1: Cash �ow over multiple zones for a general European cross-border bal-
ancing market.

BRPs and BSPs and the platform. This balancing process, and the cash �ow
between the di�erent agents, is represented graphically in Fig. 3.1 for the case
of two zones: zone B and zone B̄, where zone B̄ corresponds to the rest of the
system.

The demand for activation of balancing energy in zone i is denoted as xBRP
i

if there is no reactive balancing and as xBRP
i +α in the case with reactive bal-

ancing. Note that the TSO cannot distinguish between the inelastic imbalance
from BRPs and reactive balancing. The demand for balancing energy accounts
for all the imbalances generated by agents mobilizing �exiblity outside of the
balancing energy auction. This includes demand response aggregators not par-
ticipating in the balancing energy auctions. The activated balancing energy in
zone i is denoted as xBSP

i . Settlements between the platform and the TSOs
are charged at the platform price cleared by the balancing energy auction, but
TSOs are free to unilaterally introduce adders, corresponding to the designs
proposed in table 3.1, for the settlements with the BRPs and BSPs.

These potential pricing asymmetries between the platform price and the
balancing and imbalance price might result in a capacity cost component ccap

borne by all the consumers in the zone introducing the adder, which is socialized
through the grid tari�. Outside of balancing settlement, BSPs are also entitled
to a capacity settlement zcap for their unused balancing capacity if their zone
operates a �RT market for reserve�. Both of these components are described
for the di�erent designs in Table 3.2.

Note that all ccap(x), except for the �no adder� one, should include a self-
activation component α but they were dropped due to the level of self-activation
at equilibrium being equal to 0 for the �adder on BSPs and BRPs� and the �RT
market for reserve�. These results are shown in section 3.4.



3.3. Optimal Decisions of Agents 57

Table 3.2: Cost of capacity and capacity settlement

ccap(x) zcap(x)
No
adder

0 0

Adder
on BRPs

−λR(x) · (xBRP
B − α) 0

Adder on
BSPs and
BRPs

λR(x) · (xBSP
B − xBRP

B ) 0

RT Market
for reserve

λR(x) · (Pmax − xBRP
B ) λR(x) · (Pmax − xBSP

B )

3.3 Optimal Decisions of Agents

The objective of the analytical model is to identify the optimal strategy of
risk-neutral BSPs that maximize pro�t.4 BSPs are assumed to participate
in a single-product balancing market with a uniform balancing price and an
imbalance price which is based on the balancing price. The agents can ei-
ther participate in the energy balancing auction or perform reactive balancing.
BRPs are assumed to be inelastic. We will �rst describe the pro�t function of
a fringe BSP with P+ MW of upward balancing capacity and a marginal cost
of C e/MWh. We will then derive its optimal strategy and discuss the impact
of BSPs' level of information on the demand for balancing energy on their bid-
ding strategy. The notation and analysis presented here are an extension of
the model presented in [Papavasiliou and Bertrand, 2021].

The model has been kept simple on purpose to highlight the e�ects brought
forth by the introduction of adders. Ine�ciencies encountered in a simple
stylized model are symptoms of underlying design �aws. In this spirit, well-
documented sources of distortion or ine�ciencies in electricity markets such as
market power [Borenstein et al., 2002,Prabhakar Karthikeyan et al., 2013], col-
lusive bidding by suppliers [Ocker et al., 2018], arbitrage opportunities between
di�erent products [Oren, 2001], gaming opportunities created by congestion
management actions [Chaves-Ávila et al., 2014], and frictions resulting from
ramping or commitment constraints [Petitet et al., 2019] are ignored. Never-
theless, the modelling framework is quite �exible, and additional components
can be introduced in the analysis. For example, the introduction of reservation
cost and a day-ahead balancing capacity market is discussed in the appendix
of the chapter.

The focus on upward balancing capacity is justi�ed by the fact that scarcity
adders are expected to be activated when the system is under stress due to
insu�cient generation, i.e. when it is short. BSPs with downward balancing
capacity will not be a�ected by the introduction of scarcity adders as such

4Market agents may exhibit risk-averse behaviour in practice.
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Figure 3.2: Two-stage balancing process

adders will be zero when these BSPs are dispatched.5

3.3.1 Balancing and Imbalance Payo�s of Agents

The two-stage balancing process is represented in �gure 3.2. In the �rst stage,
the agent submits a price-quantity bid (p, q) to the energy balancing auction
and decides on its level of reactive balancing ai. Note that the sum of the
level of reactive balancing and of the bid quantity must be lower than the total
capacity of the agent. In the second stage, the TSO dispatches balancing energy
through the balancing energy auction in order to cover the system imbalance x,
which is the demand for balancing energy. This demand is assumed to be drawn
from a known distribution X with cumulative distribution function F (·) and
probability density function f(·). The resulting price from the balancing energy
auction, λP (x), is a function of the random demand for balancing energy. It
can be de�ned as the price o�er of the most expensive accepted energy bid.
Alternatively, the platform price is equal to the dual variable of the market
clearing constraint of the economic dispatch problem that is solved by the
system operator in order to balance the system.

The scarcity component, λR(x), is obtained through an operating reserve
demand curve. Scarcity pricing based on ORDC adders takes the leftover
capacity in the system as an input, but leftover capacity can be equivalently
expressed as a function of the demand for balancing energy by assuming that
the leftover capacity in the system is the total capacity in the system minus the
inelastic energy demand. The scarcity component is a non-decreasing function
of demand.

The price-quantity bid and the decision to self-dispatch depends on the
expectation of agents regarding their payo� which is a function of the platform
price, the scarcity component and the distribution of the demand for balancing
energy. It is important to note that decisions are taken before the revelation
of the demand for balancing energy.The balancing payo� for a BSP, given a
random demand for balancing energy, is the uniform balancing price multiplied
by the quantity bid if the price bid is lower than the platform price, or 0 if the
bid is not accepted.

5The paper focuses on upward reserve but the rise in solar generation and the resulting
steep increasing ramp in the morning, the so-called �duck curve�, has increased the need for
downward reserve. Further research is required to asses how the mechanism can accommodate
a scarcity adder on downward reserve.
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zB(p, q, x) =

{
λbal(x) · q if p ≤ λP (x),

0 else
(3.1)

Note that bids are assumed to be either fully selected, if they are at-the-
money or in-the-money, or not selected at all. The expectation of this payo�
can be reformulated as follows, with the operator EX being the expectation
over the random variable X:

zB(p, q) = EX [zB(p, q, ·)] =
∫
λP (x)≥p

(λbal(x)− C)dF (x) · q (3.2)

The payo� of reactive balancing is found by �rst deriving the level of reac-
tive balancing performed by an agent. This is found by solving the following
optimization problem:

max
ai

(EX [λimb]− C) · ai (3.3)

s.t. ai+ q ≤ P+ (3.4)

ai ≥ 0 (3.5)

If C ≥ EX [λimb], the optimal level of reactive balancing ai⋆ is 0, else ai⋆ is
equal to the leftover capacity from the balancing energy auction. The reactive
balancing payo� is then described as follows:

zI(q) =

{
(EX [λimb]− C) · (P+ − q) if C ≤ EX [λimb],

0 else.
(3.6)

The optimal strategies for the �no adder�, �adder on BRPs� and �adder
on BRPs and BSPs� designs are then found by maximizing the sum of the
balancing and of the reactive balancing payo�.

A real-time market for balancing capacity requires the introduction of a
new component in the payo�s. The unused balancing capacity of BSPs is now
remunerated by the reserve price. As the balancing and imbalance prices are
equal to the platform price plus the reserve component in the �RT market
for reserve� design (see table 3.1), the real-time payo� can be reformulated
as follows for a random demand x, with zI(ai, x) being the reactive balancing
payo� for self-activating ai MWh:

zB(p, q, x) + zI(ai, x)

=


(λP (x) + λR(x)− C) · (q + ai) + λR(x) · (P+ − q − ai)

if λP (x) ≤ p,

(λP (x) + λR(x)− C) · ai+ λR(x) · (P+ − ai)

else,

(3.7)

=

{
(λP (x)− C) · (q + ai) + λR(x) · P+ if λP (x) ≤ p,

(λP (x)− C) · ai+ λR(x) · P+ else.
(3.8)
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This allows us to rewrite both the balancing and imbalance payo� as a
function of the platform price:

zI(q) =

{
(EX [λP ]− C) · (P+ − q) if C ≤ EX [λP ]

0 else,
(3.9)

zB(p, q) =

∫
λP (x)≥p

(
(λP (x)− C) · q

)
dF (x) + EX [λR] · P+. (3.10)

The objective of this reformulation is to isolate the scarcity component
remuneration EX [λR] · P+ from the standard imbalance and balancing payo�,
in order to highlight the correspondence between the payo�s of the �RT market
for reserve� and �no adder� designs up to a constant.

3.3.2 Optimal Balancing Market Bid

The strategy for characterizing the optimal behaviour under the di�erent de-
signs is an extension of [Papavasiliou and Bertrand, 2021] where we additionally
analyze the �adder on BRPs and BSPs design�. Only the statement and a brief
intuition of the results are provided here. The complete proofs are available
in the appendix. These proofs consider fringe agents reacting to an exogenous
platform price. The platform price is also assumed to be strictly monotonic
increasing. The inverse of the platform price, i.e. the supply function, is as-
sumed to be di�erentiable almost everywhere.6 Section 3.4 shows that these
assumptions hold at equilibrium.

Proposition 3.1 (Bidding Strategy � No Adder). The optimal strategy for
a fringe agent under a �no adder� design is to bid truthfully in the balancing
auction.

Bidding more or less than the marginal cost in the balancing energy auction
will result in a lower balancing payo� for an agent, as the agent can respectively
lose some potential payo� (in the case of overbidding) or be unpro�table (in
the case of underbidding). One can then conclude that it is optimal for every
agent to bid its full capacity in the balancing auction, since the payo� of the
balancing auction will be (i) equal to the payo� from self-activation whenever
the agent is in the money in the balancing auction, and (ii) is higher than the
payo� of self-activating whenever the agent is out of the money.

Proposition 3.2 (Bidding Strategy � Adder on BRPs). The optimal strategy
for a fringe agent under an �adder on BRPs� design is to bid truthfully in the
balancing market if

C ≥ EX [λP + λR]−
∫
λP (x)≥C

(λP (x)− C)dF (x),

else to perform reactive balancing with its full capacity.

6At equilibrium, the supply function may exhibit breaking points due to BSPs resorting
to reactive balancing. This can cause the supply function to not be di�erentiable everywhere.



3.3. Optimal Decisions of Agents 61

The pricing asymmetry of this design can incentivize BSPs to self-activate
when they have a low marginal cost. If a BSP is very likely to be activated,
the little it would lose when the imbalance price is not su�cient to cover its
cost can be compensated by the additional payo� of the imbalance settlement,
compared to the balancing energy auction, due to the scarcity component in
the former.

In order to analyze the next design, we de�ne (λP + λR)
−1 as the inverse

function of the sum of the platform price and the scarcity component under
the adder on BRPs and BSPs design. This sum is equal to both the balancing
and imbalance price (see Table 3.1). The expression (λP + λR)

−1(p) is then
the level of demand for balancing energy such that the balancing price p is
attained. Note that λP +λR has a well-de�ned inverse everywhere because the
platform price is strictly monotonic increasing and the reserve component is
non-decreasing.

Proposition 3.3 (Bidding Strategy � Adder on BRPs and BSPs). The optimal
strategy for a fringe agent under an �adder on BRPs and BSPs� design is to
bid its full capacity in the balancing energy market at price

λP ((λP + λR)
−1(C)).

BSPs should internalize the value of the adder in their balancing energy
bid so as to ensure that they are always activated when the balancing price is
higher than or equal to their marginal cost. This corresponds to bidding the
platform price λP (x

′) for x′ such that

(λP + λR)(x
′) = C.

Proposition 3.4 (Bidding Strategy � RT Market for Reserve). The optimal
strategy for a fringe agent under a RT market for reserve design is to bid
truthfully in the balancing energy market.

The pro�t function of the �RT market for reserve� design is equal to the
one of the �no adder� design up to a constant EX [λP ] ·P+, independent of the
agent's strategy.

The optimal bidding strategies for a BSP under the di�erent designs are
not modi�ed by the transition to multiple zones. As long as (i) the platform
price and the reserve component price as a function of the zonal demands for
balancing energy and (ii) the probability measures of these demands are known,
the optimal strategies described above remain valid.

3.3.3 Level of Information Regarding the Demand for

Balancing Energy

In practice, one could argue that BSPs have more freedom concerning the self-
activation of their plant than what has been described earlier. Current Belgian
bidding rules require BSPs to bid in the balancing energy auction and allow
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them to retract their bid up to 25 minutes before the clearing of the balancing
auction. Under this regulation, BSPs can decide to self-activate their plant only
when the state of the system at time t minus 25 guarantees them a favorable
outcome by self-activating. If the state of the system is unfavorable, they can
opt to bid in the balancing market instead, and thus avoid being exposed to
any risk.

From a modelling standpoint, we can introduce information on the demand
for balancing energy by using a random variable y drawn from a known distri-
bution Y with PDF g(·) and CDF G(·). The random variable y is assumed to
be observable at the moment when the BSP is called to reach a decision about
reactive balancing, e.g. it can include the realized imbalance of the previous
interval, wind forecasts, load forecasts, etc. This random variable thus pro-
vides information that is revealed to the BSPs when submitting their energy
bid. BSPs can then consider whether to self-activate their assets or participate
in the balancing auction, depending on the distribution of the demand given y,
X|y, its CDF F (·|y), and the platform price, balancing price, and imbalance
price for a given demand given y, λP (x|y), λbal(x|y) and λimb(x|y).

The balancing payo� of an agent can then be expressed as follows:

zB(p, q, y) =

∫
λbal(x|y)≥p

(λbal(x|y) · q)dF (x|y) (3.11)

The payo� from reactive balancing as a function of the information is found
by solving the following optimization problem:

max
ai(y)

∫ ∫
(λimb(x|y)− C) · ai(y))dF (x|y)dG(y) (3.12)

s.t. ai(y) + q(y) ≤ P+ (3.13)

ai ≥ 0 (3.14)

Notice that both the balancing and imbalance pro�t functions are separable
for y, meaning that they are parametrized by y but do not couple di�erent
values of y with each other. This allows us to model the level of information by
combining the optimal strategy of agents for di�erent distributions of demand
for balancing energy without information and to fall back to the basic setting.

3.4 Market Equilibrium

This section commences by characterizing the Nash equilibria resulting from the
optimal strategy outlined earlier in a single zone. These equilibria correspond
to the ones that would emerge in a balancing market that is not connected to
a cross-border platform. We then extend the analysis to multiple zones and we
discuss the ensuing ine�ciencies.

The result presented here assumes a truthful merit order curve MC(x),
which is strictly monotonic increasing and di�erentiable, as well as a system
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capacity Pmax which is greater than the upper bound of the support of the
distribution of the random demand for balancing energy.

3.4.1 Single-zone

Proposition 3.5 (Equilibrium � �No Adder� and �RT market for reserve�).
The Nash equilibrium generated by fringe agents under the �no adder� and �RT
market for reserve� designs is characterized by all agents participating truthfully
in the balancing energy auction and the following platform price:

λP (x) = MC(x).

Proof. The agents' optimal strategies consisting of bidding truthfully are inde-
pendent from the other agents' bidding behavior. This behavior, coupled with
the balancing energy auction selecting bids in increasing price order, results
in the platform price following the merit order, and being strictly monotone
increasing and di�erentiable. This con�rms the validity of propositions 3.1 and
3.4.

We now de�ne λP (x, α) as the platform price for energy demand x, a total
of αMWh of reactive balancing from the cheapest BSPs with upward balancing
capacity, and we consider what happens when other BSPs bidding truthfully.
The platform price in this situation is as follows:

λP (x, α) =


MC(x− α) if x < α,

MC(x) if x > α,

price indeterminacy between MC(0) and MC(α) else.
(3.15)

If x < α, x− α MWh of downward balancing capacity has to be activated
in order to balance the excessive self-activation by the agents, resulting in
λP (x, α) = MC(x − α). If x > α, there is no price distortion and λP (x, α) =
MC(x). If x = α, no balancing energy is activated through the balancing
energy auction and there is a price indeterminacy.

In a multi-zone setting, the reserve component in a zone is impacted by
the level of reactive balancing in that zone contrarily to the single-zone setting
where the presence of downward balancing capacity allows us to ignore it. To
see this, note that if the level of reactive balancing is greater than the demand
for balancing energy, then the potential curtailment of downward balancing
capacity that was dispatched to cover the excessive reactive balancing can be
assimilated as upward balancing energy. In case of an increased demand for
balancing energy, reducing the level of the dispatched downward balancing
capacity will contribute towards reducing the imbalance and will therefore not
impact the level of upward balancing capacity in a single zone setting where
only that zone can provide upward balancing capacity. If several zone can be
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dispatched to cover reactive balancing, the potential curtailment of downward
balancing capacity in another zone cannot be assimilated as upward balancing
energy.

The opportunity cost of participating in the balancing auction given a level
α of self-balancing from the cheapest agents with upward balancing capacity
for an agent with marginal cost C is:

z(α,C) =(EX [λP (·, α) + λR(·)]− C)

−
∫
λP (x,α)≥C

(λP (x, α)− C)dF (x). (3.16)

If z(α,C) < 0, an agent with marginal cost C should bid truthfully in the
balancing auction for a level α of reactive balancing. If z(α,C) > 0, the
agent should self-activate its capacity. Note that the reserve component is
independent from the level of reactive in this single zone setting. To see this,
note that if the level of reactive balancing is greater than the demand for
balancing energy, then the potential curtailment of downward balancing energy
that was dispatched to cover the excessive reactive balancing can be assimilated
as upward balancing capacity. Reducing the level of the dispatched downward
balancing capacity will contribute towards reducing the imbalance and will
therefore not impact the availability of upward balancing capacity.

Proposition 3.6 (Equilibrium � Adder on BRPs). If z(α,MC(α)) is continu-
ous, there exists a unique Nash equilibrium generated by fringe agents under the
�adder on BRPs� design characterized by an equilibrium level of reactive bal-
ancing, α∗, such that 0 ≤ α∗ ≤ Pmax, and with other BSPs bidding truthfully.
This optimal level of reactive balancing is equal to (i) 0 if z(0,MC(0)) < 0,
(ii) Pmax if z(Pmax,MC(Pmax)) > 0 or (iii) α∗ characterized by the identity

z(α∗,MC(α∗)) = 0. (3.17)

This equilibrium level of reactive balancing generates platform prices equal to
λP (x, α

∗).

The existence of an equilibrium with 0 < α∗ < Pmax relies on on the conti-
nuity of z. The stability of α∗ is derived analytically. Stability in this context
refers to a level of reactive balancing for which no agent has an incentive to
deviate from its decision. BSPs after α∗ on the merit order prefer to partici-
pate in the balancing auction and agents before α∗ prefer to resort to reactive
balancing. The uniqueness of the equilibrium results from the monotonicity of
z. The complete proof can be found in the appendix.

Note that assuming a positive distribution for the demand for balancing
energy results in z being continuous. Under this assumption, the probability of
a particular demand occurring is in�nitesimal. Discrete random demand can
generate a price indeterminacy if the level of reactive balancing is equal to the
imbalance. This breaks the continuity of z and an example of a system without
a pure-strategy equilibrium can be found in the appendix.
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Proposition 3.7 (Equilibrium � Adder on BRPs and BSPs). If MC(x)−λR(x)
is strictly monotonic increasing, there exists a Nash equilibrium generated by
fringe agents under an �adder on BRPs and BSPs� design. It is characterized
by all agents participating in the balancing energy auction and internalizing the
value of the adder in their balancing energy bid. The produced platform price
is described as follows:

λP (x) = MC(x)− λR(x).

Proof. The agents' optimal strategy is to bid at their marginal cost minus
the scarcity component. This bidding behavior, combined with the balancing
energy auction selecting bids in increasing price order, results in the platform
price following the merit order minus the scarcity component and being strictly
monotonic increasing and di�erentiable. This con�rms the validity of proposi-
tion 3.3.

If MC(x)−λR(x) is not strictly monotonic increasing, the optimal strategy
derived in proposition 3.3 could modify the order of activation.

In terms of e�ciency, the �no adder�, �adder on BRPs and BSPs� and �RT
market for reserve� designs support the optimal dispatch for a single zone,
as they do not modify the order of activation speci�ed by the truthful merit
order. The �adder on BRPs� design increases the cost by inducing the dispatch
of assets out of the merit order.

3.4.2 Multiple Zones

The characterization of an equilibrium in a setting with multiple zones requires
introducing an aggregation operator ∪ for the aggregation of o�er curves from
di�erent zones. Given Bi(q), the o�er curve in zone i, the aggregated o�er
curve, B(q), can be obtained through the aggregation operator, as follows:

B(q) = ∪iBi(q) = {π : Bi(qi) = π for all i and
∑
i

qi = q}. (3.18)

The optimal strategies derived in section 3.3 remain valid in a multi-zone
setting, and are used in order to derive o�er curves under di�erent designs, as
shown in Table 3.3. λR,i is the reserve demand curve in zone i and αi is the
optimal level of self-activation in zone i.

For the �adder on BRPs� design, the opportunity cost function has to be
modi�ed in order to account for multiple zones. The assumption regarding
the scarcity component not being impacted by the level of self-activation needs
to be revisited. Excessive self-activation in a multi-zone setting is covered by
activating downward balancing capacity from all zones. This reduces the total
level of available upward balancing capacity in the zone with self-dispatched
assets. This means that we need to de�ne the scarcity component as a function
of both the level of aggregated demand for balancing energy over all zones,
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Table 3.3: O�er curves under di�erent designs.

Design in zone i Bi(x)
No adder MCi(x)

Adder on BRPs and BSPs MCi(x)− λR,i(x)

Adder on BRPs

{
MCi(x− αi) if x ≤ αi

MCi(x) else
RT market for reserve MCi(x)

as well as the level of self-activation in the zone with the �adder on BRPs�,
λR(x, α), and to update the opportunity cost of self-activation, as follows:

z(α,C) = (EX [λP (·, α) + λR(·, α)]− C)

−
∫
λP (x,α)≥C

(λP (x, α)− C)dF (x), (3.19)

This modi�es the condition for an equilibrium level of self-activation and might
lead to multiple equilibria if z(α,MC(α)) is not strictly monotonic decreasing
in α.

Two conclusions can be drawn from the aggregation of the o�er curves pre-
sented in table 3.3. First, only the introduction of a �RT market for reserve�
does not a�ect the optimal dispatch. Both the �adder on RBPs and BSPs� and
the �adder on BSPs� modify the bidding incentives in the zone implementing
an adder, and result in a suboptimal aggregated o�er curve. Second, the sub-
optimal aggregated o�er curves generate lower platform prices than the one
generated by the aggregation of the truthful merit order curves.

3.5 Illustration on a Stylized Example

The examples presented in this section assume a maximum level of upward
balancing capacity Pmax, and a BSP merit order curve MC(x) which is a
function of the level of demand for balancing energy, x. The demand is drawn
from a known distribution X with CDF F (·). The scarcity component λR is
obtained from an operating reserve demand curve de�ned as a function of the
level of demand for balancing energy in the system.

This section presents four examples: (i) a single-zone example without in-
formation on the level of demand for balancing energy in the system, (ii) a
single-zone example with information on the level of demand for balancing
energy, (iii) a two-zone example without cross-border congestion and with in-
formation on the level of demand for balancing energy, and (iv) a two-zone
example with cross-border congestion and with information on the level of de-
mand for balancing energy.
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Table 3.4: Example 3.1 � Expected platform and scarcity prices, level of reactive
balancing and activation cost for the di�erent designs

No adder
Adder on
BRPs

and BSPs

Adder on
BRPs

RT market
for reserve

EX [λP ] (e/MWh) 60.00 55.83 60.00 60.00
EX [λR] (e/MWh) 0.00 4.17 4.17 4.17
α (MWh) 0.00 0.00 0.00 0.00
Activation cost (e) 833.38 833.38 833.38 833.38

3.5.1 Example 3.1: Single Zone without Information on

the Demand for Balancing Energy

In this example, we assume that the demand is uniformly distributed between
−100 MWh and 100 MWh and that the merit order curve is described as
follows:

MC(x) = x/2 + 60 e/MWh. (3.20)

The scarcity price component is de�ned as

λR(x) =

{
0 e/MWh if x ≤ 0,

x/6 e/MWh else,
(3.21)

which can be equivalently formulated as a function of the leftover capacity in
the system, λr

R(r), assuming a maximum level of balancing capacity in the
system Pmax, equal to 200 MW in our case.

λr
R(r) = λR(P

max − r) =

{
(Pmax − r)/6 if r ≤ Pmax,

0 else.
(3.22)

All BSPs (i) bid truthfully under the no-adder and RT market for reserve
design, thus λP (x) = MC(x) (see proposition 3.5); (ii) bid at their marginal
cost minus the level of the adder at their position on the merit order under
the adder on BRPs and BSPs design, thus λP (x) = MC(x) − λR(x) (prop.
3.7); (iii) bid in the balancing energy auction at their marginal cost under the
adder on BRPs design, thus λP (x) = MC(x) (prop. 3.12). No BSP does
reactive balancing, as the opportunity cost of the cheapest generator when no
asset is self-activating is negative. If participating in the balancing auction is
more pro�table for the cheapest generator, then this is also the case for every
generator.

Table 3.4 presents the expected platform price, the expected scarcity com-
ponent, the level of self-activation, and the cost of reserve activation under the
four designs. The four designs result in the same activation cost as the merit
order is not distorted.
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Figure 3.3: Comparison of marginal bene�t of reactive balancing and balancing auc-
tion for the frontier agent in the case of example 3.2.

3.5.2 Example 3.2: Single Zone with Information on the

Demand for Balancing Energy

In this example, BSPs have some information on the level of demand that
the system will be exposed to, and are speci�cally aware of the sign of the
required balancing activation. Speci�cally, we assume a draw with a probability
0.5 of having a negative demand that is distributed uniformly between −100
MWh and 0 MWh and a probability 0.5 of having a positive demand that is
distributed uniformly between 0 MWh and 100 MWh.

All the parameters are identical to the previous example. The BSPs' strat-
egy under the �no-adder�, �adders on BRPs and BSPs� and �RT market for
reserve� designs are not modi�ed by the introduction of information on the
imbalance, but there is an impact on the �adder on BRPs� design. The optimal
level of reactive balancing in the �adder on BRPs� design is (i) 0 MWh if the
system imbalance is in the interval [−100, 0] MWh, and (ii) 33.33 MWh if the
system imbalance is in the interval [0, 100] MWh. The optimal level of reactive
balancing is found by resolving the identity of Eq. (3.17) for α, the level of self-
activation. In the �rst interval, no generator self-balances, as z(α,MC(α)) ≤ 0
for all α. For the second interval, α = 33.33 MWh does satisfy the identity.
This process is illustrated graphically in Fig. 3.3 by splitting the opportunity
cost between the balancing auction and reactive balancing component. This
�gure represents the di�erence in pro�ts for the frontier agent (i.e. the last
agent to self-activate) for di�erent levels of reactive balancing.

The platform prices for the four designs are presented in Fig. 3.4 as a
function of the level of demand for balancing energy. Agents bid truthfully
under the �no adder� and �RT market for reserve� designs, and they internalize
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Figure 3.4: O�er curve in example 3.2.

Table 3.5: Example 3.2 � Impact of additional information on the demand for bal-
ancing energy in the market equilibrium

Add. information With Without
Imbalance interval [-100; 0] [0; 100] [-100; 100] [-100; 100]
EX [λP ] (e/MWh) 35.00 79.42 57.21 60.00
EX [λR] (e/MWh) 0.00 8.33 4.17 4.17
α (MWh) 0.00 33.33 16.67 0.00
Activation cost (e) -2166.63 3925.99 879.68 833.38

the reserve adder under the �adder on BRPs and BSPs� design. Some of the
BSPs decide to resort to reactive balancing if they know that the demand
will be between 0 MWh and 100 MWh under the �adder on BRPs�. This self-
activation results in a translation of the merit order curve for negative balancing
activation up to the level of reactive balancing.

The metrics concerning both intervals are presented in the �rst two columns
of Table 3.5. Columns 3 and 4 compare the result for the �adder on BRPs�
design with and without additional information on the demand for balancing
energy. The reactive balancing results in an ine�cient dispatch that increases
the total activation cost of the system. It also decreases the platform price,
which is bene�cial to the BRPs.
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3.5.3 Example 3.3 � Two Zones without Cross-Border

Congestion and with Information on the Demand

for Balancing Energy

We now refer to the system mentioned in examples 3.1 and 3.2 as zone B, and
connect it to a new zone with an unlimited interconnector capacity between
the two zones. The system in this new zone, called zone D, is four times larger
than the one in zone B, resulting in a less steep merit order curve (see Eq.
(3.23)).

MCD(x) = x/8 + 60 e/MWh (3.23)

The example is intended to mimic, in a highly stylized setting, the interac-
tion between Belgium and Germany, hence the initials of the zones. We limit
the exposition to the 2-zone case with zone D implementing a �no adder� pol-
icy in order to analyze the e�ect of the pricing asymmetry between the zones,
since this has also dominated the policy discussion thus far [Papavasiliou et al.,
2023].

The demand in zone D is distributed as in example 3.2, except for the
distributions being uniform between 0 MWh and 400 MWh, and −400 MWh
and 0 MWh. The combination of the probability distributions in zone B and
zone D results in an equiprobable four-branch probability tree drawn from
the random variables U [0, 100] + U [0, 400] MWh, U [0, 100] + U [−400, 0] MWh,
U [−100, 0] + U [0, 400] MWh, and U [−100, 0] + U [−400, 0] MWh.

The equilibrium prices are presented in Table 3.6 and Fig. 3.5 compares
the surplus distribution with respect to the �no adder� benchmark. The results
are based on the aggregated o�er curves that are generated from the optimal
BSP bids in zone B and D. The aggregated curve is constructed with Eq.
(3.18) and is described in the appendix. Consumer surplus refers to the cost
of serving the inelastic BRP imbalance plus the capacity cost borne by all the
consumers of zone B or D.

The platform prices from the �adder on BRPs and BSPs� and the �adder
on BRPs� design are lower than the ones in the designs that induce truthful
bidding, due to the lower o�er curve in zone B. These altered o�er curves result
in an over-dispatch of the assets in zone B, and in an increased level of adders
compared to the �RT market for reserve� design. The self-activation of assets
for the �adder on BRPs� design generates particularly high imbalance prices in
zone B.

Three adverse e�ects resulting from the �adder on BRPs and BSPs� and
the �adder on BRPs� designs can be observed. First, the induced out-of-merit
activations lead to an increased activation cost and an ine�cient dispatch. The
compliance with the objective outlined in article 3(m) of the Clean Energy
Package [Commision, 2019] might be questioned.

Second, these designs give rise to cross-zonal distributive e�ects between
consumers. The cost of decreasing the platform price is borne by the consumers
in zone B, either through an increased imbalance price or through the capacity
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Table 3.6: Example 3.3 � Expected prices (e/MWh)

No adder
Adder on
BRPs

and BSPs

Adder on
BRPs

RT market
for reserve

Platform
price

60.00 59.07 59.74 60.00

Scarcity
component (zone B)

0.00 4.64 3.71 3.40

Balancing
price (zone B)

60.00 63.71 63.45 63.40

Imbalance
price (zone B)

60.00 63.71 67.08 63.40

Figure 3.5: Di�erences in surplus and relative activation cost compared to the �no
adder� benchmark in example 3.3.

cost. This suggests that the consumers in the zone with the adder subsidize
the consumption of the consumers in the zone without the adder.

Third, these designs result in discrimination between BSPs from di�erent
zones. At similar marginal costs, BSPs in zone B are more likely to be activated
than BSPs in zone D due to the increased balancing price or the possibility of
resorting to reactive balancing. This leads to an increased surplus for BSPs in
zone B compared to the �no-adder� benchmark and an opposite e�ect for zone
D.

Only the �RT market for reserve� manages to introduce adders without
inducing ine�ciencies. In addition, this design only in�uences the surplus dis-
tribution between BRPs and BSPs in zone B and does not generate cross-zonal
distributional e�ects.

The complete characterization of the equilibrium prices and surplus for each
branch of the probability tree and for both zones can be found in the appendix.
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3.5.4 Example 3.4 � Two Zones with Cross-Border Con-

gestion and with Information on the Demand for

Balancing Energy

We revisit example 3.3 by limiting the interconnector capacity between zone B
and D at T MW. The analytical model with congestion requires the disaggrega-
tion of the demand for balancing energy between zone B and D. In a two-zone
setting, congestion can be foreseen by BSPs in zone B when the di�erence be-
tween the demand for balancing energy in their zone and the activated balanc-
ing energy in their zone if there were no congestion, xBSP,uncon

B (xBRP
B , xBRP

D ),
exceeds the interconnector capacity in either direction:

xBRP
B − xBSP,uncon

B (xBRP
B , xBRP

D ) ≥ T, (3.24)

or
xBRP
B − xBSP,uncon

B (xBRP
B , xBRP

D ) ≤ −T. (3.25)

The activated balancing energy in zone B as a function of the demand for
balancing energy in zones B and D follows from these bounds and is presented
in Eq. (3.26):

xBSP
B (xBRP

B , xBRP
D ) =

xBRP
B + F if xBRP

B − xBSP,uncon
B (xBRP

B , xBRP
D ) ≥ T,

xBRP
B − F if xBRP

B − xBSP,uncon
B (xBRP

B , xBRP
D ) ≤ −T,

xBSP,uncon
B (xBRP

B , xBRP
D ) else.

(3.26)

The platform price in zone B, λP,B , can be derived by evaluating the o�er curve
in zone B at the activated balancing energy,

λP,B(x
BRP
B , xBRP

D ) = BB(x
BSP
B (xBRP

B , xBRP
D )). (3.27)

The same process can be reproduced to obtain the platform price and activated
balancing energy in zone D.

Table 3.7 displays the expected zonal platform prices for an interconnector
with a capacity of 50 MW. The expected prices are equal in both zones for the
�no adder� and the �RT market for reserve� designs, due to the symmetrical
bidding in upward and downward balancing energy.

Table 3.8 presents the relative increase in activation cost resulting from the
suboptimal bidding for the �adder on BRPs� and the �adder on BRPs and BSPs�
designs and for three levels of interconnector capacity: (i) the uncongested
case with unlimited capacity (example 3.3), (ii) the case with some level of
congestion (example 3.4), and (iii) the case with isolated systems (example
3.2). The last column reports the cost of the �no adder� design standardized
to the case with unlimited capacity. Activation cost increases by up to 47%,
depending on the availability of the interconnector.
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Table 3.7: Example 3.4 � Expected prices (e/MWh) with an interconnector capacity
of 50 MW in example 3.4.

No adder
Adder on
BRPs

and BSPs

Adder on
BRPs

RT market
for reserve

Platform
price (Zone B)

60.00 58.24 59.8 60.00

Platform
price (Zone D)

60.00 59.54 59.9 60.00

Scarcity
component

0.00 3.62 3.18 3.00

Table 3.8: Example 3.4 � Relative increase in activation cost (%) relative to least-cost
activation

Relative cost
activation increase

Reference
cost

Interconnector
capacity

Adder on
BRPs and
BSPs

Adder on
BRPs

No adder

T = ∞ (MW) 1.65 0.48 100.0
T = 50 (MW) 0.73 0.23 110.5

T = 0 (MW) 0.00
1.11 (5.56

for zone B)
147.1

The adverse e�ects encountered in example 3.3 are present for the case
with some congestion, as displayed by the ine�cient dispatch, but the e�-
ciency losses due to limited cross-border capacity interfere with the analysis.
There is also a question of how the congestion rent is allocated. Note that
the relative increase in activation cost is not representative of the intensity of
the distributional e�ects, as exempli�ed in �gure 3.5 of the previous example.
We have observed empirically that even minor changes in relative cost can be
associated with signi�cant changes in the distribution of welfare.

There is no distributional e�ect for the case with isolated systems. As
already shown in example 3.1, the �adder on BRPs and BSPs� design does
not generate ine�ciencies in an isolated balancing market. The ine�ciencies
encountered in the �adder on BRPs� design is concentrated in zone B, the zone
with the adder.

The complete characterization of the equilibrium prices and surplus for each
branch of the probability tree and for both zones for an interconnector limit of
50 MW can be found in the appendix.
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3.6 Conclusion

This paper investigates the unilateral application of an adder to balancing
prices in a cross-border setting. An analytical model is used in order to identify
the optimal strategies of �exibility providers under three di�erent designs: the
�adder on BRPs� design where the adder is applied to the imbalance price, the
�adder on BRPs and BSPs� design, where the adder is applied to the balancing
and imbalance price, and the �RT market for reserve� design that addition-
ally introduces a real-time balancing capacity market. Market equilibria are
derived based on these optimal strategies, extended to a cross-border setting,
and illustrated on a two-zone example.

Adders, either on the imbalance price or on the balancing and imbalance
price, in the absence of a real-time market for reserve, induce out-of-merit
dispatch and increase the activation cost that is required for balancing the
system. In a cross-border setting, this increased cost is borne by the consumers
in the zone with the adder, as they face higher balancing and imbalance prices,
whereas consumers in other zones enjoy lower prices. The introduction of a real-
time market for reserve restores truthful bidding incentives and ensures that
the increased cost to consumers in a zone, due to the adder, is fully distributed
back to the �exibility suppliers in that zone.
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3.A Optimal Strategies without Reservation Cost

The following strategies assume that the platform price, λP , obtained by clear-
ing the balancing energy auction, is strictly monotone increasing in x, which is
the level of required balancing activation. These strategies also assume that the
supply function, λ−1

P , is di�erentiable almost everywhere.7 The scarcity com-
ponent λR is assumed to be non-decreasing in the level of demand for balancing
energy. A fringe agents can consider these two prices as being exogenous.

Proposition 3.8 (Bidding Strategy � No Adder). The optimal strategy for
a fringe agent under a �no adder� design is to bid truthfully in the balancing
auction.

Proof. The optimal strategy for a fringe agent with upward balancing capacity
P+ and marginal cost C can be found by maximizing the sum of zB and zI .

a) If EX [λP ] ≤ C, then zI(q) = 0 and the total reward of the agent R(p, q)
is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.28)

= C1(p) · q (3.29)

with C1(p) characterized as follows:

C1(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.30)

Note that the bound on the integral in C1(p) can be reformulated, since
λP is strictly monotonic increasing and thus has a uniquely de�ned inverse
function.

∫
λP (x)>p

(λP (x)− C)dF (x) =

∫
x>λ−1

P (p)

(λP (x)− C)dF (x) (3.31)

The optimal bidding strategy of the agent can be derived from the �rst-
order conditions with respect to p and q. Let us �nd p �rst by �xing
q.

∂R(p, q)

∂p
= C ′

1(p) · q (3.32)

= −(λP (λ
−1
P (p))− C) · f(λ−1

P (p)) ·
dλ−1

P (p)

dp
· q (3.33)

7At equilibrium, the supply function may exhibit breaking points due to BSPs resorting
to reactive balancing. This can cause the supply function to not be di�erentiable everywhere.
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= −(p− C) · f(λ−1
P (p)) ·

dλ−1
P (p)

dp
· q (3.34)

For �xed q, the payo� function R(p, q) is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞)8. Thus for any q, an optimal strategy in
the balancing auction is to bid truthfully the marginal cost. Given this
strategy, the payo� becomes

R(C, q) = C1(C) · q. (3.35)

We can then determine the �rst-order condition with respect to q.

∂R(C, q)

∂q
= C1(C) (3.36)

=

∫
λP (x)>C

(λP (x)− C)dF (x) (3.37)

> 0 (3.38)

We conclude that, for a fringe agent with upward balancing capacity
and marginal cost C higher than EX [λP ], the optimal strategy is to bid
truthfully in the balancing auction.

b) If EX [λP ] > C, then zI(q) = (EX [λP ]−C) ·(P+−q) and the total reward
of the agent R(p, q) is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.39)

= C1 + C2 · q + C3(p) · q (3.40)

with C1, C2, and C3(p) characterized as follows:

C1 = (EX [λP ]− C) · P+ (3.41)

C2 = −(EX [λP ]− C) (3.42)

C3(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.43)

The optimal bidding strategy of the agent can be derived from the �rst-
order conditions with respect to p and q. The optimal bidding price p
can be obtained as in case a), and is equal to the marginal cost C.

Given this strategy, the payo� becomes

R(C, q) = C1 + C2 · q + C3(C) · q. (3.44)

8This argument relies on R(p, q) being continuous and dλ−1
P (p)/dp being positive where it

exists, since λP is strictly monotonic increasing. The cases where λ−1
P (p) is not di�erentiable

are analysed on a case-by-case basis.
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We then have

∂R(C, q)

∂q
= C2 + C3(C) (3.45)

= −(EX [λP ]− C) +

∫
λP (x)>C

(λP (x)− C)dF (x) (3.46)

= −
(∫

x≤λ−1
P (C)

(λP (x)− C)dF (x) +

∫
x>λ−1

P (C)

(λP (x)− C)dF (x)

)
+

∫
x>λ−1

P (C)

(λP (x)− C)dF (x) (3.47)

= −
∫
x≤λ−1

P (C)

(λP (x)− C)dF (x)) (3.48)

> 0 (3.49)

We conclude that, for a fringe agent with upward balancing capacity
and marginal cost C higher than EX [λP ], the optimal strategy is to bid
truthfully in the balancing auction.

Proposition 3.9 (Bidding Strategy � Adder on BRPs). The optimal strategy
for a fringe agent under an �adder on BRPs� design is to bid truthfully in the
balancing market if

C ≥ EX [λP + λR]−
∫
λP (x)≥C

(λP (x)− C)dF (x),

else to perform reactive balancing.

Proof. The optimal strategy for a fringe agent with upward balancing capacity
P+ and marginal cost C can be found by maximizing the sum of zB and zI .

a) If EX [λP + λR] ≤ C, then zI(q) = 0 and the total reward of the agent
R(p, q) is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.50)

= C1(p) · q (3.51)

with C1 characterized as follows:

C1 =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.52)

Note that the bound of the the integral in C1(p) can be reformulated as
a function of x, since λP is strictly monotonic increasing and thus has an
inverse function.
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∫
λP (x)>p

(λP (x)− C)dF (x) =

∫
x>λ−1

P (p)

(λP (x)− C)dF (x) (3.53)

The optimal bidding strategy of the agent can then be derived from the
�rst-order conditions with respect to p and q. Let us focus on p �rst.

∂R(p, q)

∂p
= C ′

1(p) · q (3.54)

= −(λP (λ
−1
P (p))− C) · f(λ−1

P (p)) ·
dλ−1

P (p)

dp
· q (3.55)

= −(p− C) · f(λ−1
P (p)) ·

dλ−1
P (p)

dp
· q (3.56)

For �xed q, the payo� function R(p, q) is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to
bid truthfully the marginal cost. Given this strategy, the payo� becomes

R(C, q) = C1(C) · q. (3.57)

We can then determine the �rst order condition relative to q.

∂R(C, q)

∂q
= C1(C) (3.58)

=

∫
λP (x)>C

(λP (x)− C)dF (x) (3.59)

> 0 (3.60)

We conclude that, for a fringe agent with upward balancing capacity and
marginal cost C higher than E[λP + λR], the optimal strategy is to bid
truthfully in the balancing auction.

b) If E[λP + λR] −
∫
λP (x)>C

(λP (x) − C)dF (x) ≤ C < E[λP + λR], then

zI(q) = (E[λP + λR] − C) · (P+ − q) and the total reward of the agent
R(p, q) is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.61)

= C1 + C2 · q + C3(p) · q (3.62)

with C1, C2 and C3(p) characterized as follows:

C1 = (EX [λP + λR]− C) · P+ (3.63)

C2 = −(EX [λP + λR]− C) (3.64)
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C3(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.65)

The optimal bidding strategy of the agent can then be derived from the
�rst-order conditions with respect to p and q. The optimal bidding price
p can be obtained as in case a), and is equal to the marginal cost C.

Given this strategy, the payo� becomes

R(C, q) = C1 + C2 · q + C3(C) · q. (3.66)

The next step is to examine the �rst-order condition with respect to q.

∂R(C, q)

∂q
= C2 + C3(C) (3.67)

= −(EX [λP + λR]− C) +

∫
λP (x)>C

(λP (x)− C)dF (x) (3.68)

> 0 (3.69)

We conclude that, for a fringe agent with upward balancing capacity
P+ and marginal cost C between EX [λP + λR] and EX [λP + λR] −∫
λP (x)>C

(λP (x) − C)dF (x), the optimal strategy is to bid its entire ca-
pacity truthfully in the balancing auction.

c) If C < EX [λP +λR]−
∫
λP (x)>C

(λP (x)−C)dF (x), then zI(q) = (EX [λP +

λR] − C) · (P+ − q) and the total reward of the agent R(p, q) is de�ned
hereunder.

R(p, q) = zB(p, q) + zI(q) (3.70)

= C1 + C2 · q + C3(p) · q (3.71)

with C1, C2 and C3(p) characterized as follows:

C1 = (EX [λP + λR]− C) · P+ (3.72)

C2 = −(EX [λP + λR]− C) (3.73)

C3(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.74)

The optimal bidding strategy of the agent can then be derived from the
�rst-order conditions with respect to p and q. The optimal bidding price
p can be obtained as in case a), and is equal to the marginal cost C.

Given this strategy, the payo� becomes

R(C, q) = C1 + C2 · q + C3(C) · q. (3.75)
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The next step is to examine the �rst-order condition with respect to q.

∂R(C, q)

∂q
= C2 + C3(C) (3.76)

= −(E[λP + λR]− C) +

∫
λP (x)>C

(λP (x)− C)dF (x) (3.77)

< 0 (3.78)

We conclude that, for a fringe agent with upward balancing capacity and
marginal cost C lower than EX [λP + λR] −

∫
λP (x)>C

(λP (x) − C)dF (x),
the optimal strategy is to not participate in the balancing auction and to
rather resort to reactive balancing.

Proposition 3.10 (Bidding Strategy � Adder on BRPs and BSPs). The op-
timal strategy for a fringe agent under an �adder on BRPs and BSPs� design
is to bid its full capacity in the balancing energy market at price

λP ((λP + λR)
−1(C)).

Proof. The optimal strategy for a fringe agent with upward balancing capacity
P+ and marginal cost C can be found by maximizing the sum of zB and zI .

a) If EX [λP + λR] ≤ C, then zI(q) = 0 and the total reward of the agent
R(p, q) is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.79)

= C1(p) · q (3.80)

with C1 characterized as follows:

C1 =

∫
λP (x)>p

(λP (x) + λR(x)− C)dF (x) (3.81)

Note that the bound of the the integral in C3(p) can be reformulated as
a function of x, since λP is strictly monotonic increasing and thus has an
inverse function.∫
λP (x)>p

(λP (x)+λR(x)−C)dF (x) =

∫
x>λ−1

P (p)

(λP (x)+λR(x)−C)dF (x)

(3.82)

The optimal bidding strategy of the agent can then be derived from the
�rst-order conditions with respect to p and q. Let us �nd p �rst by �xing
q.

∂R(p, q)

∂p
= C ′

1(p) · q (3.83)
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= −(λP (λ
−1
P (p)) + λR(λ

−1
P (p))− C) · f(λ−1

P (p)) ·
dλ−1

P (p)

dp
· q

(3.84)

= −(p+ λR(λ
−1
P (p))− C) · f(λ−1

P (p)) ·
dλ−1

P (p)

dp
· q (3.85)

The unique root of g(p) = p + λR(λ
−1
P (p)) − C is λP (λ

−1
I (C)), with

λI(x) = λP (x) + λR(x). This root can be interpreted as the platform
price when the total system imbalance is such that the platform plus the
reserve adder is equal to C.

g(λP (λ
−1
I (C))) = λP (λ

−1
I (C)) + λR(λ

−1
P (λP (λ

−1
I (C))))− C (3.86)

= λP (λ
−1
I (C)) + λR(λ

−1
I (C))− C (3.87)

= λI(λ
−1
I (C))− C (3.88)

= 0 (3.89)

For �xed q, the payo� function R(p, q) is increasing in (−∞, C ′], zero at
C ′, and decreasing in [C ′,+∞) with C ′ = λP (λ

−1
I (C)). Thus, for any q,

an optimal strategy in the balancing energy auction is to bid the plat-
form price when the platform price plus the reserve adder is equal to the
marginal cost of the agent. This strategy internalizes the added reward
from the scarcity adder in the balancing bid such that the balancing bid
is equal to the marginal cost minus the reserve adder when the platform
price plus the reserve adder is equal to the marginal cost. Given this
strategy, the payo� becomes

R(C ′, q) = C1(C
′) · q. (3.90)

We can then determine the �rst order condition relative to q.

∂R(C ′, q)

∂q
= C1(C

′) (3.91)

=

∫
λP (x)>C′

(λP (x) + λR(x)− C)dF (x) (3.92)

=

∫
x>λ−1

I (C)

(λI(x)− C)dF (x) (3.93)

> 0 (3.94)

We conclude that, for a fringe agent with upward balancing capacity and
marginal cost C higher than EX [λP + λR], the optimal strategy is to bid
its full capacity at price λP ((λP + λR)

−1(C)) in the balancing energy
auction.
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b) If EX [λP + λR] > C, then zI(q) = (EX [λP + λR]−C) · (P+ − q) and the
total reward of the agent R(p, q) is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.95)

= C1 + C2 · q + C3(p) · q (3.96)

with C1 and C3(p) characterized as follows:

C1 = (EX[λP + λR]− C) · P+ (3.97)

C2 = −(EX [λP + λR]− C) (3.98)

C3(p) =

∫
λP (x)>p

(λP (x) + λR(x)− C)dF (x) (3.99)

The optimal bidding strategy of the agent can then be derived from the
�rst-order conditions with respect to p and q. The optimal bidding price
p can be derived as previously, and is equal to C ′ = λP (λ

−1
I (C)).

Given this strategy, the payo� becomes

R(C ′, q) = C1 + C2 · q + C3(C
′) · q. (3.100)

We can then determine the �rst-order condition with respect to q.

∂R(C ′, q)

∂q
= C2 + C3(C

′) (3.101)

= −(EX [λP + λR]− C) +

∫
λP (x)>C′

(λP (x) + λR(x)− C)dF (x)

(3.102)

= −
(∫

x≤λ−1
I (C)

(λI(x)− C)dF (x) +

∫
x>λ−1

I (C)

(λI(x)− C)dF (x)

)
+

∫
x>λ−1

I (C)

(λI(x)− C)dF (x) (3.103)

= −
∫
x≤λ−1

I (C)

(λI(x)− CdF (x)) (3.104)

> 0 (3.105)

We conclude that, for a fringe agent with upward balancing capacity and
marginal cost C higher than EX [λP + λR], the optimal strategy is to bid
its entire capacity at price λP (λ

−1
I (C)) in the balancing energy auction.

Proposition 3.11 (Bidding Strategy � RT Market for Reserve). The optimal
strategy for a fringe agent under a �RT market for reserve� design is to bid
truthfully in the balancing energy market.
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Proof. The optimal strategy for a fringe agent with upward balancing capacity
P+ and marginal cost C can be found by maximizing the sum of zB and zI .

a) If EX [λP ] ≤ C, then zI(q) = 0 and the total reward of the agent R(p, q)
is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.106)

= C1 + C2(p) · q (3.107)

with C1 and C3(p) characterized as follows:

C1 = EX [λR] · P+ (3.108)

C2(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.109)

Maximizing R(p, q) here is equivalent to case (a) of the �no adder� design,
where we have shown that it is optimal to bid the entire capacity of the
BSP truthfully.

b) If EX [λP ] > C, then zI(q) = (EX [λP −C) · (P+−q) and the total reward
of the agent, R(p, q), is de�ned hereunder.

R(p, q) = zB(p, q) + zI(q) (3.110)

= C1 + C2 · q + C3(p) · q (3.111)

with C1,C2 and C3(p) characterized as follows:

C1 = (EX [λP + λR]− C) · P+ (3.112)

C2 = −(EX [λP ]− C) (3.113)

C3(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.114)

Maximizing R(p, q) here is equivalent to case (b) of the �no adder� design.
The optimal strategy for an agent is to bid its entire capacity truthfully.

3.B Nash Equilibrium for �Adder on BRPs� De-

sign

We de�ne the platform price for a level α of reactive balancing,
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λP (x, α) =


MC(x− α) if x < α,

Price indeterminacy between MC(0) and MC(α) if x = α,

MC(x) else.
(3.115)

The opportunity cost of performing reactive balancing for an agent with
marginal cost C, given a level α of reactive balancing in the system, is expressed
as:

z(α,C) = (EX [λP (·, α) + λR(·)]− C)−
∫
λP (x,α)≥C

(λP (x, α)− C)dF (x).

Proposition 3.12 (Equilibrium � Adder on BRPs). If z(α,MC(α)) is continu-
ous, there exists a unique Nash equilibrium generated by fringe agents under the
�adder on BRPs� design characterized by an equilibrium level of reactive balanc-
ing, α∗, such that 0 ≤ α∗ ≤ Pmax, and with the other BSPs bidding truthfully.
This optimal level of reactive balancing is equal to (i) 0 if z(0,MC(0)) < 0,
(ii) Pmax if z(Pmax,MC(Pmax)) > 0 or (iii) α∗ characterized by the identity

z(α∗,MC(α∗)) = 0. (3.116)

This equilibrium level of reactive balancing generates platform prices equal to
λP (x, α

∗) and is strictly monotonic increasing.

Proof. z(α,C) is strictly monotonic decreasing in C for a �xed α as z(α,C) <
z(α,C−) for C− < C.

z(α,C)− z(α,C−) =

∫
λP (x,α)≤C

(λP (x, α))− C)dF (x)−
∫

λP (x,α)≤C−

(λP (x, α)− C−)dF (x)

(3.117)

=

∫
C−≤λP (x,α)≤C

(λP (x, α)− C)dF (x) +

∫
λP (x,α)≤C−

(C− − C)dF (x) (3.118)

< 0 (3.119)

This allows us to prove the stability of the optimal level of reactive balancing
mentioned in points (i) to (iii). As mentioned earlier, stability refers to a level
of reactive balancing for which no agent has an incentive to deviate from their
decision. BSPs after α∗ on the merit order prefer participating in the balancing
auction and agents before α∗ prefer to resort to reactive balancing.

(i) If z(0,MC(0)) < 0, then a level of reactive balancing equal to 0 is stable
as z(0,MC(x)) < z(0,MC(0) for all x in (0, Pmax]. In other words, if
the cheapest generator �nds the balancing energy auction more pro�table
than resorting to reactive balancing, every other generator should also
�nd the balancing energy auction more pro�table.
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(ii) If z(Pmax,MC(Pmax)) > 0, then a level of reactive balancing equal
to Pmax is stable as z(Pmax,MC(x)) > z(Pmax,MC(x)) for all x in
[0, Pmax). In other words, if the most expensive generator �nds resorting
to reactive balancing more pro�table than participating in the balancing
energy auction, every other generator should also �nd resorting to reactive
balancing more pro�table.

(iii) If z(α∗,MC(α∗)) = 0, then a level of reactive balancing equal to α∗ is
stable, since z(α∗,MC(α∗)) > z(α∗,MC(x)) for all x in (α∗, Pmax] and
z(α∗,MC(α∗)) < z(α∗,MC(x)) for all x in [0, α∗). In other words, if the
frontier agent is indi�erent between resorting to reactive balancing and
participating in the balancing energy auction, every cheaper (resp. more
expensive) generator should �nd reactive balancing (resp. the balancing
energy auction) more pro�table than the balancing energy auction (resp.
doing reactive balancing) and has no incentive to modify its behaviour.

The existence of an equilibrium is proven by the continuity of z(α,MC(α))
with respect to α and the fact that at least one condition of (i) to (iii) must be
true. The proof of uniqueness relies on z(α,MC(α)) being strictly monotonic
decreasing with respect to α for strictly monotonic increasing MC. We show
hereunder that z(α,MC(α)) < z(α−,MC(α−)) for α− < α.

z(α−,MC(α−))− z(α,MC(α))

=

∫
x≤α−

(MC(x− α−)−MC(α−))dF (x)

−
∫
x≤α

(MC(x− α)−MC(α))dF (x) (3.120)

=

∫
x≤α−

(MC(x− α−)−MC(x− α)− (MC(α−)−MC(α)))dF (x)

−
∫
α−<x≤α

MC(x− α)−MC(α)dF (x) (3.121)

> 0 (3.122)

This bidding behavior, coupled with the balancing energy auction selecting
the bid in increasing price order, results in the platform price being equal to
MC(x− α) for x < α (as x− α MWh of downward balancing capacity has to
be activated) and to MC(x) if x > α.

The optimal strategy developed in proposition 2 of the main paper is still
valid even when λP is not a standard single-valued function but rather a set-
valued function with a price indeterminacy at α. The �rst-order condition with
respect to p (3.54) exhibits two behaviours.

1. If p < MC(0) and p > MC(α), the supply function λ−1
P is well de�ned
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and the �rst order condition is equal to the following:

∂R(p, q)

∂p
= −(p− C) · f(λ−1

P (p)) ·
dλ−1

P (p)

dp
· q. (3.123)

2. If MC(0) < p < MC(α), the supply function hits a plateau (due to the
agents between 0 and α resorting to reactive balancing and not partici-
pating in the energy balancing auction), and the payo� function is then
characterized as follows.

R(p, q) =

∫
x>α

(λP (x)− C)dF (x) · q (3.124)

The �rst order condition with respect to p is equal to 0 for any p between
MC(0) and MC(α).

The optimal price bid for an agent can be derived as a function of the agent's
marginal cost, based on the continuity of R.

1. If C < MC(0), the derivative of R with respect to p is increasing in
(−∞, C[, zero at C, decreasing in ]C,MC(0)[, zero in ]MC(0),MC(α)[
and decreasing in ]MC(α),∞). Bidding p = C is optimal.

2. If MC(0) ≤ C ≤ MC(α), the derivative of R with respect to p is in-
creasing in (−∞,MC(0)[, zero in ]MC(0),MC(α)[ and decreasing in
]MC(α),∞). Bidding any cost between MC(0) and MC(α) (including
p = C) is optimal.

3. If MC(α) < p, the derivative of R with respect to p is increasing in
(−∞,MC(0)[, zero in ]MC(0),MC(α)[, increasing in ]MC(α), C[, zero
at C and decreasing in ]C,∞). Bidding p = C is optimal.

The uniqueness of the equilibrium in the two-zone setting is not certain due
to the impact of the level of reactive balancing on λR and its impact on the
monotonicity of z.

The �adder on BRPs� design fails to produce a Nash equilibrium if the im-
balance distribution is drawn from a unit set. In other words, if BSPs have
perfect information on the level of imbalance that they will face, no equilib-
rium can be reached for the �adder on BRPs� design. The following argument
illustrates this point. Let us assume that all agents know that the system will
be exposed to a level of imbalance x′. In this context, the optimal level of
reactive balancing is exactly x′, since all agents below x′ on the merit order
would prefer the imbalance price to the balancing price and all agents after x′

will participate in the balancing energy auction. The platform price could be
anything between 0 and MC(x′) due to the discontinuity in the merit order
curve.
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a) If it is between 0 and MC(x′)−λR(x
′), a level x′ of reactive balancing is

not sustainable, as the agent at position x′ on the merit order curve would
rather participate in the balancing auction. But if the agent at position
x′ on the merit order curve participates truthfully in the balancing energy
auction, they would be selected, and that platform price would have
incentivized them to resort to reactive balancing.

b) If the platform price is between MC(x′)−λR(x
′) and MC(x′), then some

agents located after x′ on the merit order curve would rather do reactive
balancing than participate in the balancing energy auction. The platform
price with a level of reactive balancing higher than x′ is not su�cient to
sustain this level of self-activation.

Only a balancing energy price equal to MC(x′)− λR(x
′) would ensure a Nash

equilibrium in this situation but, even if it is possible, it is not guaranteed.
Note that there is no risk of failing to produce a Nash equilibrium even if

the domain of the imbalance distribution is a unit set in the 2-zones setting.
The aggregation of a continuous and a non-continuous o�er curve is continuous
and this induces unique balancing energy prices.

3.C Optimal Strategies with Reservation Cost

The following strategies are derived for pro�t-maximizing agents with pro-
duction cost C and reservation cost K. These agents can �rst participate in
a reservation auction followed by a balancing energy auction for activation.
They can also only participate in the balancing energy auction or only resort
to reactive balancing. The reservation cost is incurred once if (i) the agent is
selected in the reservation auction, and/or (ii) if the agent is selected in the
balancing energy auction, and/or (iii) if the agent resorts to reactive balancing.
The agents o�er a reservation bid (pDA, qDA), a balancing energy bid (p, q),
and decide to self-activate ai MWh. The reservation payo� can be expressed
as:

zDA(p
DA, qDA) =

{
λDA · qDA if λDA ≥ pDA,

0 else.
(3.125)

Here, λDA is the reservation price. If the reservation bid is accepted, the
balancing energy payo� is:

zB(p, q, q
DA, x) =

{
λP · (q + qDA) if λP (x) ≥ p,

0 else,
(3.126)

and the expected balancing energy payo� is

zB(p, q, q
DA) =

∫
λP (x)≥p

(λP (x)− C)dF (x) · (q + qDA). (3.127)
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Finally, the reactive balancing payo� if the reservation bid has been accepted
is the solution to the following optimization problem:

max
ai

(EX [λimb]− C) · ai (3.128)

s.t. ai+ q + qDA ≤ P+ (3.129)

ai ≥ 0 (3.130)

If C ≥ EX [λimb], the optimal level of reactive balancing ai⋆ is 0, else ai⋆

is equal to the leftover capacity from the balancing energy and reservation
auctions. The reactive balancing payo� is then described as follows:

zI(q, q
DA) =

{
(EX [λimb]− C) · (P+ − q − qDA) if C ≤ EX [λimb],

0 else.
(3.131)

The introduction of a real-time market for reserve has an impact on the
real-time payo�. The capacity that was accepted in the reservation auction
has to be bought back in real-time:

zB(p, q, q
DA, x) + zI(ai, x)

=


(λP (x) + λR(x)− C) · (q + qDA + ai) + λR(x) · (P+ − q − qDA − ai)− λR(x) · qDA

if λP (x) ≤ p,

(λP (x) + λR(x)− C) · ai+ λR(x) · (P+ − ai)− λR(x) · qDA

else,
(3.132)

=

{
(λP (x)− C) · (q + qDA + ai) + λR(x) · (P+ − qDA) if λP (x) ≤ p,

(λP (x)− C) · ai+ λR(x) · (P+ − qDA) else.

(3.133)

Both the expected imbalance and balancing payo�s can be modi�ed to
account for the real-time market for reserve:

zI(q, q
DA) =

{
(EX [λP ]− C) · (P+ − q − qDA) if C ≤ EX [λP ]

0 else,
(3.134)

zB(p, q,
DA ) =

∫
λP (x)≥p

(λP (x)− C)dF (x) · (q + qDA) + EX [λR] · (P+ − qDA).

(3.135)

We can now derive the optimal bidding strategy for a fringe agent with
marginal cost C and reservation costK. The reservation cost can be considered
as a �xed must-run cost for keeping the plant up-and-running.
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Proposition 3.13 (Bidding Strategy � Reservation Cost � No Adder). The
optimal strategy for a fringe agent under a �no adder� design is to bid its full
capacity in the day-ahead auction at a price

pDA = max

(
K − δzB · P+

P+
; 0

)
,

with δzB =
∫
λP (x)>C

(λP (x) − C)dF (x), and to then bid truthfully in the bal-

ancing auction. If the day-ahead bid is not accepted, the optimal action is to
not activate its plant.

Proof. (a) If E[λP ] ≤ C then zI(q, q
DA) = 0. The total reward of an agent

selected in the day-ahead auction, R(p, q, qDA), is de�ned hereunder for a given
day-ahead price λDA:

R(p, q, qDA) = zB(p, q) + zI(q) + zDA(q
DA) (3.136)

= C1 + C2(p) · q + C3 · qDA + C4(p) · qDA (3.137)

with C1, C2(p), C3 and C4(p) equal to:

C1 = −K (3.138)

C2(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.139)

C3 = λDA (3.140)

C4(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.141)

The optimal bidding strategy of the agent can be derived from the �rst-order
condition with respect to p, q and qDA. We focus on p �rst:

∂R(p, q, qDA)

∂p
= C ′

2(p) · q + C ′
4(p) · qDA (3.142)

= −(λP (λ
−1
P (p))− C) · f(λ−1

P (p)) ·
dλ−1

P (p)

dp
· (q + qDA)

(3.143)

= −(p− C) · f(λ−1
P (p)) ·

dλ−1
P (p)

dp
· (q + qDA) (3.144)

For �xed q and qDA, the payo� functionR(p, q, qDA) is increasing in (−∞, C],
zero at C, and decreasing in [C,+∞). Thus, for any q and qDA, an optimal
strategy in the balancing auction is to bid truthfully the marginal cost.

The payo� maximization problem given this strategy is presented in equa-
tion (3.145). It shows that, for a positive λDA, the coe�cient on qDA in the
objective is higher than on q. The strategy of setting q at 0 dominates all other
strategies for allocating the balancing capacity between q and qDA.

max
q,qDA

R(C, q, qDA) (3.145)
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s.t. qDA + q ≤ P+

qDA ≥ 0

q ≥ 0

Given these two strategies, the payo� becomes

R(C, 0, qDA) = C1 + C3 · qDA + C4(C) · qDA. (3.146)

The �rst-order condition with respect to qDA can be examined, in order to
compute the optimal action with respet to qDA.

∂R(C, 0, qDA)

∂qDA
= C2 + C4(C) (3.147)

= λDA +

∫
λP (x)>C′

(λP (x)− C)dF (x) (3.148)

= λDA +

∫
x>λ−1

P (C)

(λP (x)− C)dF (x) (3.149)

> 0 (3.150)

We conclude that, for a fringe agent with upward balancing capacity and
marginal cost C higher than E[λP ] selected in the day-ahead auction at an
arbitrary day-ahead price λDA, the optimal strategy is to bid its full capacity
in the DA auction and to then bid thruthfully in the balancing auction.

The payo� of an agent selected in the day ahead given this strategy is
expressed as a function of a given day-ahead price as follows:

RDA(λDA) = δzB · P+ −K + λDA · P+. (3.151)

The payo� for an agent not participating in the day-ahead auction can be
inferred from proposition 3.8:

RB =

{
δzB · P+ −K if K ≤ ΠB ,

0 else.
(3.152)

The optimal price bid in the day ahead can then be derived from the pro�t
maximization problem (3.153).

Q(pDA) = max
pDA

∫
λDA(x)≤pDA

RBdFDA(x)+

∫
λDA(x)>pDA

RDA(λDA(x))dF
DA(x)

(3.153)
This problem is de�ned as a function of the stochastic day-ahead demand

x, the corresponding day-ahead price λDA(x) and the CDF and PDF of the
demand FDA(·) and fDA(·). The total payo� is the probability-weighted sum of
(i) the payo� of an agent not selected in the day-ahead auction, if pDA ≥ λDA,
and (ii) the payo� of an agent selected in the day ahead, if pDA < λDA.
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If the balancing payo� is lower than the reservation cost, so ΠB < K and
RB = 0, the optimal bidding strategy can be derived from the �rst order
condition with respect to pDA:

dQ(pDA)

dpDA
= −RDA(λDA(λ

−1
DA(p

DA))) · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

(3.154)

= −(δzB · P+ −K + pDA · P+) · fDA(λ−1
DA(p

DA) · dλDA−1(pDA)

dpDA

(3.155)

Condition (3.155) indicates that the optimal price bid in the day ahead is
pDA = (δzB · P+ −K)/P+.

The same reasoning can be applied if the balancing payo� is greater than
the reservation cost, so δzB · P+ > K and RB = δzB · P+ −K:

∂Q(pDA)

∂pDA
= (δzB −K −RDA(pDA)) · fDA(λ−1

DA(p
DA)) ·

dλ−1
DA(p

DA)

dpDA
(3.156)

= −pDA · P+ · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA
(3.157)

Condition (3.157) speci�es that the optimal price bid in the day ahead is
pDA = 0.

The optimal bidding strategy in the day-ahead market if E[λP ] ≤ C is then
for a unit to bid its maximal capacity at price

pDA = max

(
K − δzB · P+

P+
; 0

)
and to then bid truthfully in the balancing energy auction, if selected, or not
activate its plant, if not selected.

(b) If E[λP ] > C, then zI(q, q
DA) = E[λP − C] · (P+ − q − qDA). Since

participating in the balancing energy auction is always more pro�table than
resorting to reactive balancing, the reasoning developed in point (a) applies
and the optimal bidding strategy in the day-ahead market is to bid the full
capacity at price

pDA = max

(
K − δzB · P+

P+
; 0

)
and to then bid truthfully in the balancing energy auction, if selected, or not
activate the plant, if not selected.

Proposition 3.14 (Bidding Strategy � Reservation Cost � Adder on BRPs).
The optimal strategy for a fringe agent under an �adder on BRPs� design is to
bid its full capacity in the day-ahead auction at price

pDA = max

(
K − δzB · P+

P+
; δzB − δzI ; 0

)
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with δzB =
∫
λP (x)>C

(λP (x)−C)dF (x) and δzI = (E[λP +λR]−C). If the DA

bid has been accepted, the optimal action is to bid truthfully in the balancing
auction. If the DA bid is δzI − δzB and has not been accepted, the optimal
action for an agent is to do reactive balancing with its full capacity. Else, the
agent should not activate its plant.

Proof. (a) If E[λP + λR] ≤ C, then zI(q, q
DA) = 0. As participating in the

balancing energy auction is always more pro�table than resorting to reactive
balancing, the reasoning developed in point (a) of proposition 3.13 applies and
the optimal bidding strategy in the day-ahead market is to bid the maximal
capacity at a price

pDA = max

(
K − δzB · P+

P+
; 0

)
and to then bid truthfully in the balancing energy auction, if selected, or not
activate the plant, if not selected.

(b) If E[λP + λR] −
∫
λP (x)>C

(λP (x) − C)dF (x) ≤ C < E[λP + λR], then

zI(q, q
DA) = E[λP + λR − C] · (P+ − q − qDA). Since participating in the

balancing energy auction is always more pro�table than resorting to reactive
balancing, the reasoning developed in point (a) of proposition 3.13 applies and
the optimal bidding strategy in the day-ahead market is to bid the maximal
capacity at a price

pDA = max

(
K − δzB · P+

P+
; 0

)
and to then bid truthfully in the balancing energy auction, if selected, or not
activate the plant, if not selected.

(c) If C < E[λP + λR] −
∫
λP (x)>C

(λP (x) − C)dF (x) then zI(q, q
DA) =

E[λP + λR − C] · (P+ − q − qDA) and the total reward of an agent selected
in the day-ahead auction, R(p, q, qDA), is de�ned hereunder for an arbitrary
day-ahead price λDA:

R(p, q, qDA) = zB(p, q) + zI(q) + zDA(q
DA) (3.158)

= C1 + C2 · q + C3(p) · q + C4 · qDA + C5(p) · qDA (3.159)

with C1, C2, C3(p), C4 and C5(p) expressed as:

C1 = −K + (E[λP + λR]− C) · P+ (3.160)

C2 = −(E[λP + λR]− C) (3.161)

C3(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.162)

C4 = −(E[λP + λR]− C) + λDA (3.163)

C5(p) =

∫
λP (x)>p

(λP (x)− C)dF (x) (3.164)
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The same argument as in case (a) of proposition 3.13 can be applied for
proving the optimality of bidding p = C in the balancing auction. Similarly,
the strategy consisting of bidding its full capacity in the reservation auction
dominates all other strategies for allocating the capacity between the reserva-
tion auction and the balancing energy auction.

The �rst order condition with respect to qDA can be examined next:

∂R(C, 0, qDA)

∂qDA
= C4 + C5(C) (3.165)

= −(E[λP + λR]− C) + λDA +

∫
λP (x)>C

(λP (x)− C)dF (x)

(3.166)

= λDA + δzB − δzI (3.167)

In contrast to case (a) and (b), it is not possible to ascertain the sign of
∂R(C,O, qDA)∂qDA for any positive λDA. If λDA > δzI − δzB then

∂R(C, 0, qDA)

∂qDA
> 0 and qDA = P+

and if λDA < δzI − δzB then

∂R(C, 0, qDA)

∂qDA
< 0 and qDA = 0.

The payo� for an agent selected in the day-ahead market is then dependent
on the value of λDA and on the day-ahead capacity bid qDA. It is characterized
as follows, as a function of an arbitrary day-ahead price:

RDA(λDA, q
DA) = qDA · (λDA + δzB) + (P+ − qDA) · δzI −K (3.168)

The payo� for an agent not participating in the day-ahead auction can be
derived from proposition 3.9:

RB =

{
δzI · P+ −K if K ≤ δzI · P+,

0 else.
(3.169)

The optimal price and quantity bid in the day ahead can then be derived
from the pro�t maximization problem (3.170).

Q(pDA, qDA) = max
qDA,pDA

∫
λDA(x)≤pDA

RBdFDA(x)

+

∫
λDA(x)>pDA

RDA(λDA(x), q
DA)dFDA(x) (3.170)

The total payo� is the probability weighted sum of (i) the payo� of an agent
not selected in the day-ahead auction, if pDA ≥ λDA, and (ii) the payo� of an
agent selected in the day ahead, if pDA < λDA:
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If δzI ·P+ < K then RB = 0, and the optimal strategy can be derived from
the �rst order condition with respect to pDA and qDA:

∂Q(pDA, qDA)

∂pDA
= −RDA(λDA(λ

−1
DA(p

DA)), qDA) · FDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

(3.171)

= −RDA(pDA, qDA) · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA
(3.172)

= (P+ − qDA) · δzI −K) · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

− (qDA · (pDA + δzB) (3.173)

Equating (3.173) to zero leads to the following optimality condition:

pDA∗ =
K − P+ · δzI + qDA · (δzI − δzB)

qDA
(3.174)

This allows us to de�ne the optimal price bid pDA∗ for any capacity bid
qDA di�erent from 0. We can also derive the �rst-order condition with respect
to qDA:

∂Q(pDA, qDA)

∂qDA
=

∫
λDA(x)>pDA

(λDA(x) + δzB − δzI)dF
DA(x). (3.175)

The next step consists in inserting pDA∗ in equation (3.175):

∂Q(pDA∗, qDA)

∂qDA
=

∫
λDA(x)>pDA∗

(λDA(x) + δzB − δzI)dF
DA(x) (3.176)

> 0 (3.177)

The last inequality is due to pDA∗ always being greater than δzB − δzI for
any qDA di�erent than zero. This leads to qDA∗ = P+ and pDA∗ = (K − P+ ·
δzB)/P

+.
If δzI · P+ ≥ K then RB = δzI · P+ −K and the optimal strategy can be

derived from the �rst-order condition with respect to pDA and qDA:

∂Q(pDA, qDA)

∂pDA
= (RB −RDA(pDA, qDA)) · fDA(λ−1

DA(p
DA)) ·

dλ−1
DA(p

DA)

dpDA

(3.178)

= (δzI · P+ −K − qDA · (pDA + δzB)− (P+ − qDA) · δzI +K)

· fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA
(3.179)

= −(pDA + δzB − δzI) · qDA · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

(3.180)
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For �xed qDA, the day-ahead payo� function RDA(pDA, qDA) is increasing
in (−∞, δzI −δzB [, zero at δzI −δzB and decreasing in ]δzI −δzB ,+∞). Thus,
for any qDA, an optimal strategy in the reservation auction is to bid δzI − δzB .

We can also derive the �rst-order condition with respect to qDA:

∂Q(δzI − δzB , q
DA)

∂qDA
=

∫
λDA(x)>δzI−δzB

(λDA(x) + δzB − δzI)dF
DA(x)

(3.181)

≥ 0 (3.182)

This shows that the optimal strategy in the day-ahead capacity auction is
to bid the full capacity at the price δzI − δzB .

Combining both cases δzI · P+ < K and δzI · P+ ≥ K allows us to de�ne
the optimal bid in the capacity auction if C < E[λP −λR]−

∫
λP (x)≥C

(λP (x)−
C)dF (x) as

pDA = max
(
δzI − δzB ,

K − δzB · P+

P+

)
. (3.183)

Proposition 3.15 (Bidding Strategy � Reservation Cost � Adder on BRPs
and BSPs). The optimal strategy for a fringe agent under an �adder on BRPs
and BSPs� design is to bid its full capacity in the day-ahead auction at price

pDA = max

(
K − δzB · P+

P+
; 0

)
,

with δzB =
∫
λP (x)>λP ((λP+λR)−1(C))

(λP (x)−C)dF (x), and to then bid at price

λP ((λP + λR)
−1(C)) in the balancing energy auction. If the day-ahead bid is

not accepted, the optimal action is to not activate its plant.

Proof. (a) If E[λP ] ≤ C, then zI(q, q
DA) = 0. As internalizing the value of

the adder when participating in the balancing energy auction is always more
pro�table than resorting to reactive balancing, the reasoning developed in point
(a) in proposition 3.16 applies and the optimal bidding strategy in the day-
ahead market is to bid the maximal capacity at price

pDA = max

(
K − δzB · P+

P+
; 0

)
and to then internalize the value of the adder in the balancing energy auction,
if selected, or to not activate the plant, if not selected.

(b) If E[λP ] > C, then zI(q, q
DA) = E[λP + λR − C] · (P+ − q − qDA).

Since internalizing the value of the adder when participating in the balancing
energy auction is always more pro�table than resorting to reactive balancing,
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the reasoning developed in point (a) in proposition 3.16 applies, and the optimal
bidding strategy in the day-ahead market is to bid the full capacity at price

pDA = max

(
K − δzB · P+

P+
; 0

)
and to then internalize the value of the adder in the balancing energy auction,
if selected, or not activate the plant, if not selected.

Proposition 3.16 (Bidding Strategy � Reservation Cost � RT Market for Re-
serve). The optimal strategy for a fringe agent under a �RT market for reserve�
design is to bid its full capacity in the day-ahead auction at price

pDA = max

(
K − (δzB + EX [λR]) · P+

P+
;EX [λR]

)
,

with δzB =
∫
λP (x)>C

(λP (x)−C)dF (x) and δzI = E[λP ]−C. If the day-ahead

bid is accepted, the optimal action is to bid truthfully in the balancing auction.
If the day-ahead bid is EX [λR] and has not been accepted, the optimal action
for the agent is to bid truthfully in the balancing auction with its full capacity.
Else, the agent should not activate its plant.

Proof. (a) If E[λP ] ≤ C then zI(q, q
DA) = 0 and the total reward of an agent

selected in the day-ahead auction, R(p, q, qDA), is de�ned hereunder for a given
day-ahead price λDA:

R(p, q, qDA) = zB(p, q) + zI(q) + zDA(q
DA) (3.184)

= C1 + C2(p) · q + C3 · qDA + C4(p) · qDA (3.185)

with C1, C2(p), C3 and C4(p) equal to:

C1 = −K + EX [λR] · P+ (3.186)

C2(p) =

∫
λP (x)>p

(λP (x)− C)dX(x) (3.187)

C3 = −E[λR] + λDA (3.188)

C4(p) =

∫
λP (x)>p

(λP (x)− C)dX(x) (3.189)

The same argument as in case (a) of proposition 3.13 can be applied for
proving the optimality of bidding p = C in the balancing auction. The dom-
inance of allocating the capacity of an agent between q and qDA depends on
the sign of λDA − EX [λR].

If λDA > EX [λR], then the payo� of the real-time reserve market is less
pro�table than the day-ahead payo�, and setting q at 0 dominates all other
strategies for allocating the balancing capacity between q and qDA. If λDA <
EX [λR], then the real-time reserve payo� is more pro�table than the day-ahead
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payo� and setting qDA at 0 dominates all other strategies for allocating the
balancing capacity between q and qDA. In either case, resorting to reactive
balancing is dominated by at least one of these strategies.

The payo� for an agent selected in the day ahead is then dependent on the
value of λDA and on the day-ahead capacity bid qDA. It is expressed as follows,
as a function of a given day-ahead price:

RDA(λDA, q
DA) = (δzB +EX [λR]) · P+ + (λDA −EX [λR]) · qDA −K (3.190)

The payo� for an agent not participating in the day-ahead auction can be
derived from proposition 3.9:

RB =

{
(δzB + EX [λR]) · P+ −K if K ≤ (δzB + EX [λR]) · P+,

0 else.
(3.191)

The optimal price and quantity bid in the day-ahead market can then be
derived from the pro�t maximization problem (3.192).

Q(pDA, qDA) = max
qDA,pDA

∫
λDA(x)≤pDA

RBdFDA(x)+

∫
λDA(x)>pDA

RDA(λDA(x), q
DA)dFDA(x)

(3.192)
The total payo� is the probability weighted sum of (i) the payo� of an agent

not selected in the day-ahead auction, if pDA ≥ λDA, and (ii) the payo� of an
agent selected in the day ahead, if pDA < λDA.

If (δzB +EX [λR]) · P+ < K then RB = 0, and the optimal strategy can be
derived from the �rst-order condition with respect to pDA and qDA:

∂Q(pDA, qDA)

∂pDA
= −RDA(λDA(λ

−1
DA(p

DA)), qDA) · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

(3.193)

= −RDA(pDA, qDA) · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA
(3.194)

= (pDA − EX [λR]) · qDA −K) · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

− ((δzB + EX [λR]) · P+ (3.195)

Equating (3.173) to zero leads to the following optimality condition:

pDA∗ =
K − P+ · (δzB + EX [λR])

qDA
+ EX [λR] (3.196)

This allows us to de�ne the optimal price bid pDA∗ for any capacity bid
qDA di�erent from 0. We can also derive the �rst-order condition with respect
to qDA:

∂Q(pDA, qDA)

∂qDA
=

∫
λDA(x)>pDA

(λDA(x)− EX [λR])dF
DA(x). (3.197)
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The next step consists of inserting pDA∗ in equation (3.197):

∂Q(pDA∗, qDA)

∂qDA
=

∫
λDA(x)>pDA∗

(λDA(x)− EX [λR])dF
DA(x) (3.198)

> 0 (3.199)

The last inequality is due to pDA∗ always being greater than or equal to
EX [λR] for K > P+ · (δzB + EX [λR]) for any qDA di�erent from zero and
positive. This leads to qDA∗ = P+ and

pDA∗ = (K − P+ · δzB)/P+.

If (δzB + EX [λR]) · P+ ≥ K then RB = (δzB + EX [λR]) · P+ −K and the
optimal strategy can be derived from the �rst-order condition with respect to
pDA and qDA:

∂Q(pDA, qDA)

∂pDA
= (RB −RDA(pDA, qDA)) · fDA(λ−1

DA(p
DA)) ·

dλ−1
DA(p

DA)

dpDA

(3.200)

= (δzB + EX [λR]) · P+ −K − ((δzB + EX [λR]) · P+

+ (pDA − EX [λR]) · qDA −K)) · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

(3.201)

= −(pDA − EX [λR]) · qDA · fDA(λ−1
DA(p

DA)) ·
dλ−1

DA(p
DA)

dpDA

(3.202)

For �xed qDA, the day-ahead payo� function RDA(pDA, qDA) is increasing
in (−∞,EX [λR][, zero at EX [λR], and decreasing in ]EX [λR],+∞). Thus, for
any qDA, an optimal strategy in the reservation auction is to bid EX [λR].

We can also derive the �rst-order condition with respect to qDA:

∂Q(EX [λR], q
DA)

∂qDA
=

∫
λDA(x)>EX [λR]

(λDA(x)− EX [λR])dF
DA(x) (3.203)

> 0 (3.204)

This shows that the optimal strategy in the day-ahead capacity auction is
to bid the entire capacity at the price EX [λR].

Combining both cases (δzB+EX [λR])·P+ < K and (δzB+EX [λR])·P+ ≥ K
allows us to de�ne the optimal bid in the capacity auction if C < EX [λP ] as

pDA = max
(
EX [λR],

K − δzB · P+

P+

)
. (3.205)

(b) If E[λP ] > C then zI(q, q
DA) = E[λP − C] · (P+ − q − qDA). Since

participating in the balancing energy auction is always more pro�table than
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resorting to reactive balancing, the reasoning developed in point (a) applies and
the optimal bidding strategy in the day-ahead market is to bid the maximal
capacity at price

pDA = max
(
EX [λR],

K − δzB · P+

P+

)
.

If the reservation bid is accepted, the optimal action is to bid truthfully in the
balancing auction. If the day-ahead bid is EX [λR] and is not accepted, the
optimal action is to bid the full capacity truthfully in the balancing energy
auction. Else, the agent should not activate its plant.

3.D Aggregated O�er Curves in a Cross-Border

Setting with Linear Marginal Cost

This section describes the analytical formulation characterizing the market
equilibrium resulting from the aggregation of two zones: B and D. Zone B has
a merit order curve equal to MCB(x) = aBx + b and applies one of the four
designs with an ORDC equal to ORDC(x) = aRx. Zone D has a merit order
curve equal to MCD(x) = aDx+ b.

3.D.1 No Adder and RT Market for Reserve:

The aggregated o�er curve is de�ned as follows:

B(x) = BB(x) ∪BD(x) = MCB(x) ∪MCD(x). (3.206)

This results in{
aDxD = aBxB

xD + xB = x
=⇒

{
xB = aDx

aD+aB

xD = aBx
aD+aB

(3.207)

and

B(x) = MCB(
xaD

aD + aB
) =

aDaBx

aD + aB
+ b. (3.208)

3.D.2 Adder on BRPs and BSPs:

Under this design, BB(x) = MCB(x)− λR(x) so aB is replaced by aB − aR if
x ≥ 0.

B(x) =

{
aDaBx
aD+aB

+ b if x ≤ 0,
aD(aB−aR)x
aD+aB−aR

+ b else.
(3.209)



100 Chapter 3. Adders and Market for Reserve

3.D.3 Adder on BRPs:

Under this design,

BB(x) =

{
MCB(x− α) if x ≤ α,

MCB(x) else.
(3.210)

Due to the discontinuity in BB(x), three cases have to be considered: (i) x ≤ α,
α < x ≤ (1 + aB/aD)α, and (iii) x > (1 + aB/aD)α. The results are presented
here are for an arbitrary α.

xB =


aD(x−α)
aD+aB

if x ≤ α

0 if α < x ≤ (1 + aB/aD)α
aDx

aB+aD
− α if x > (1 + aB/aD)α

(3.211)

xD =


aB(x−α)
aD+aB

if x ≤ α

x− α if α < x ≤ (1 + aB/aD)α
aBx

aB+aD
if x > (1 + aB/aD)α

(3.212)

B(x) =


aBaD(x−α)

aD+aB
+ b if x ≤ α

aD(x− α) + b if α < x ≤ (1 + aB/aD)α
aBaDx
aB+aD

+ b if x > (1 + aB/aD)α

(3.213)

3.E Analytical Platform Prices with Congestion

This section revisits the analytical formulation of the market equilibrium re-
sulting from the connection of zones B and D with an interconnector capac-
ity of T MW. As previously, the merit order curves in zone B and D are
MCB(x) = aBx+ b and MCD(x) = aDx+ b. The ORDC in zone B is equal to
ORDC(x) = aRx. The demand for balancing energy is denoted as xBRP and
the activated balancing energy as xBSP . The platform price in zone B and D
is denoted as λP,B and λP,D respectively.

3.E.1 No Adder and RT Market for Reserve

The o�er curve in zone B and D is equal to the merit order curve. If there is
no congestion,

xBSP,uncon
B = KD · (xBRP

B + xBRP
D ) (3.214)

xBSP,uncon
D = KB · (xBRP

B + xBRP
D ). (3.215)

with KB = aB/(aB + aD) and KD = aD/(aB + aD). The interconnector is
congested when

T ≤ xBSP,uncon
B (xBRP

B , xBRP
D )−xBRP

B or T ≤ xBRP
B −xBSP,uncon

B (xBRP
B , xBRP

D ).
(3.216)
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Note that, in a two-zone setting, this is equivalent to

T ≤ xBSP,uncon
D (xBRP

B , xBRP
D )−xBRP

D or T ≤ xBRP
D −xBSP,uncon

D (xBRP
B , xBRP

D ).
(3.217)

These constraints allow us to compute the activated balancing energy in
both zones for all cases: no congestion, congestion B to D, and congestion D
to B.

xBSP
B =


xBRP
B + T if T ≤ KD · (xBRP

B + xBRP
D )− xBRP

B

xBRP
B − T if T ≤ xBRP

B −KD · (xBRP
B + xBRP

D )

KD · (xBRP
B + xBRP

D ) else
(3.218)

xBSP
D =


xBRP
D − T if T ≤ KD · (xBRP

B + xBRP
D )− xBRP

B

xBRP
D + T if T ≤ xBRP

B −KD · (xBRP
B + xBRP

D )

KB · (xBRP
B + xBRP

D ) else.
(3.219)

The platform price in both zones can then be expressed as follows:

λP,B(x
BRP
B , xBRP

D ) = BB(x
BSP
B ) (3.220)

=


MCB(x

BRP
B + T ) if T ≤ KD · (xBRP

B + xBRP
D )− xBRP

B

MCB(x
BRP
B − T ) if T ≤ xBRP

B −KD · (xBRP
B + xBRP

D )

MCB(KD · (xBRP
B + xBRP

D )) else
(3.221)

λP,D(xBRP
B , xBRP

D ) = BD(xBSP
D ) (3.222)

=


MCD(xBRP

D − T ) if T ≤ KD · (xBRP
B + xBRP

D )− xBRP
B

MCD(xBRP
D + T ) if T ≤ xBRP

B −KB · (xBRP
B + xBRP

D )

MCD(KD · (xBRP
B + xBRP

D )) else
(3.223)

This equilibrium is illustrated in �gure 3.6.

3.E.2 Adder on BRPs and BSPs

If there is no congestion, the o�er curves in zone B and D are respectively equal
to the merit order curve in zone B minus the ORDC and the merit order curve
in zone D. The activated balancing energy can then be expressed as follows:

xBSP
B =

{
KD · (xBRP

B + xBRP
D ) if xBRP

B + xBRP
D ≤ 0

KR
D · (xBRP

B + xBRP
D ) else

(3.224)

xBSP
D =

{
KB · (xBRP

B + xBRP
D ) if xBRP

B + xBRP
D ≤ 0

KR
B · (xBRP

B + xBRP
D ) else.

(3.225)
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(a) xBSP
B (b) xBSP

D

(c) λP,B (d) λP,D

Figure 3.6: Illustration of the activated balancing energy and the price at equilibrium
under the �no adder� and �RT market for reserve� designs for aB = 1/2, aD = 1/8,
b = 60 and T = 50

Here, KR
B = (aB − aR)/(aD + aB − aR) and KR

D = aD/(aB + aD − aR). From
there, the same procedure as for the �no adder� design can be reproduced
to generate six cases: no congestion, congestion from D to B and congestion
from B to D for either negative or positive demand for balancing energy. The
equilibrium is illustrated in �gure 3.7.

3.E.3 Adder on BRPs

If there is no congestion, the o�er curves in zone B and D can be expressed as
follows:

xBSP
B =


KD · (xBRP

B + xBRP
D − α) if xBRP

B + xBRP
D ≤ α

0 if α ≤ xBRP
B + xBRPD ≤ (1 + aB/aD)α

KD · (xBRP
B + xBRP

D )− α else
(3.226)

xBSP
D =


KB · (xBRP

B + xBRP
D − α) if xBRP

B + xBRP
D ≤ α

xBRP
B + xBRP

D − α if α ≤ xBRP
B + xBRPD ≤ (1 + aB/aD)α

KB · (xBRP
B + xBRP

D ) else.
(3.227)
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(a) xBSP
B (b) xBSP

D

(c) λP,B (d) λP,D

(e) λR

Figure 3.7: Illustration of the activated balancing energy and prices at equilibrium
under the �adder on BRPs and BSPs� design for aB = 1/2, aD = 1/8, aR = 1/6,
b = 60 and T = 50
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The same procedure as previously can be reproduced to generate nine cases:
no congestion, congestion from D to B and congestion from B to D for either
a demand for balancing energy lower than α, a demand for balancing energy
between α and (1 + aB/aD)α and a demand for balancing energy greater than
(1 + aB/aD)α. Figure 3.8 illustrates these results. Note that, for the non-
congested case when α ≤ xBRP

B + xBRP
D ≤ (1+ aB/aD)α, there is no activated

balancing energy from zone B and we need to use the o�er curve and the
activated balancing energy in zone D to obtain the platform price.
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(a) xBSP
B (b) xBSP

D

(c) λP,B (d) λP,D

(e) λR

Figure 3.8: Illustration of the activated balancing energy and prices at equilibrium
under the �adder on BRPs� design for aB = 1/2, aD = 1/8, aR = 1/6, α = 20, b = 60
and T = 50





4 Multi-Product Balancing Markets

4.1 Introduction

A second source of di�erence between the balancing and imbalance prices is
generated by the multiplicity of balancing energy product. Balancing the mar-
ket is a continuous process and, broadly speaking, it involves the activation of
fast balancing products with high reactivity over a short duration versus slow
balancing products with low reactivity over a longer duration. This tradeo�
is not unique to European systems. Every electricity system has to deal with
electricity imbalances to ensure the stability of the power grid. The fast balanc-
ing product considered in this chapter is the automatic frequency restoration
reserve (aFRR) product of the European market, which can react almost in-
stantaneously to a dispatch order, whereas the slow balancing product analyzed
in this work is the manual frequency restoration reserve (mFRR) product of the
European market. The balancing process is composed of a sequence of short-
term energy auctions for aFRR preceded by one longer-term energy auction
for mFRR. aFRR balancing energy is priced every four seconds and mFRR
balancing energy every �fteen minutes. Both balancing energy products are
priced independently. Similarly to mFRR, imbalance is priced once every �f-
teen minutes. The imbalance settlement harmonization methodology (ISHM)
provides guidelines for forming the imbalance price based on the aFRR and
mFRR platform prices and this chapter proposes a game-theoretical frame-
work for analysing these guidelines and understanding the interaction between
di�erent balancing products in a multi-product balancing system comprised
of multiple distinct balancing energy auctions. Two issues are speci�cally in-
vestigated in this work: (i) the strategy of the system operator for activating
balancing energy, and (ii) the imbalance settlement scheme.

The activation strategy of the system operator refers to the trade-o� that is
faced by the system operator when allocating the imbalance between balancing
products. Balancing the market is a continuous process and, broadly speaking,
it involves the activation of fast balancing products with high reactivity over a
short duration versus slow balancing products with low reactivity over longer

107
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duration. This tradeo� is not unique to European systems. Every electricity
system has to deal with electricity imbalances to ensure the stability of the
power grid. The fast balancing product studied in this paper is the automatic
frequency restoration reserve (aFRR) product of the European market, which
can react almost instantaneously to a dispatch order and has a full activation
time of 5 minutes. In contrast, the slow balancing product analyzed in this work
is the manual frequency restoration reserve (mFRR) product of the European
market. We assume that it cannot be adjusted in the very short term. The
balancing process can be modelled as a sequence of short-term energy auctions
for aFRR preceded by one longer-term energy auction for mFRR. The standard
practice in Europe is a sequence of 225 four-second aFRR auctions preceded
by a �fteen-minute mFRR auction. In terms of operation, the system operator
sets a demand for mFRR balancing energy over the next �fteen minutes and the
leftover imbalance, the original imbalance minus the mFRR balancing energy,
is covered every four seconds in the aFRR activation auctions. The system
operator activation strategy refers to the process for determining the demand
for mFRR balancing energy. Reasoning about this process as a two-stage deci-
sion process, the activation strategy can be interpreted as a �rst-stage decision
whereas the demand for aFRR balancing energy is a recourse decision given
the �rst-stage decision. The activation strategy of the system operator will be
referred to as the mFRR activation strategy for the remainder of the paper.

The imbalance pricing scheme refers to the mechanism for pricing the de-
mand side of balancing markets, which is represented by price-inelastic imbal-
ances. These imbalances are generated by agents that are connected to the
grid and deviate from their traded positions due to forecast errors in renewable
energy supply or electricity demand, the sudden loss of assets due to failure,
or the intentional deviations from market schedules for supporting the system
or seizing a better price to maximimize pro�t, to name a few reasons.1 Imbal-
ances are settled over �fteen-minute intervals, that are referred to as imbalance
settlement periods (ISP), at the imbalance price. TSOs have some freedom
concerning the design of the imbalance price, however there exists a decision
by the European Union Agency for the Cooperation of Energy Regulators,
ACER, to harmonize and standardize imbalance settlement [ACER, 2020b].
This decision is referred to as the imbalance settlement harmonization method-
ology, ISHM, wherein article 9 states that the imbalance price should be based
on the mFRR and aFRR prices. This paper reviews three imbalance pricing
schemes considered in the power market design discourse: (i) the �mean mFRR
and aFRR� price, (ii) the �max mFRR and mean aFRR� prices, and (iii) the
�mFRR only� price. The �rst two are based on the ISHM and constructed by
respectively taking the mean of the mFRR and aFRR prices and the maximum
of the mFRR and the mean aFRR price, and the �mFRR only� price accounts
solely for the mFRR price when computing the imbalance settlement price.

Both elements (the TSO activation strategy and the imbalance pricing

1Agents generating imbalances are referred to as balance responsible parties (BRPs) in
European balancing markets.
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scheme) a�ect the payo� that is associated with the actions of agents and their
bidding behavior. The mFRR activation strategy impacts the expected aFRR
and mFRR payo�s of the agents. The imbalance pricing scheme modi�es the
payo� of the self-dispatching option for �exible assets. Certain imbalance pric-
ing schemes can incentivize �exible assets to opt out of the centralized aFRR
and mFRR auctions and to self-activate their asset in order to be intentionally
in imbalance and be remunerated at the imbalance price.

The investigation in this paper is related to ongoing revisions of imbalance
pricing schemes throughout Europe such as the rati�cation of the ISHM in the
Nordic countries (Norway, Sweden, Finland and Denmark) [Stattnett et al.,
2023]. The discussion in these countries revolves around shifting from the
�mFRR only� imbalance pricing scheme to the �mean mFRR and aFRR� or
the �max mFRR and mean aFRR� approaches.

An additional motivation for this work is connected to the price incidents
that occurred in Austria following its connection to the balancing platforms
MARI and PICASSO. Austria has experienced aFRR prices above 7500 e/MWh
for 0.17% of the PICASSO platform optimization runs over the last 6 months
of 2022 [ACER, 2023]. This corresponds to 7.5 hours of extreme prices, which
impact the Austrian imbalance cost. The study of the mFRR activation strat-
egy was recommended by ACER as a means for mitigating the aFRR price
incidents.

Additionally to the balancing energy auctions and imbalance settlement,
the balancing process also includes balancing capacity auctions. They are held
in the day ahead, before or after the day-ahead wholesale energy market, in
order to ensure an adequate supply of real-time balancing energy. In contrast
to balancing energy auctions, balancing capacity auctions have remained at the
national level. Every TSO has speci�c procedures for procuring the capacity.
A common practice is to rely on �pay-as-bid� for pricing but discussions at
the European level about cross-border exchange of balancing capacity2 and the
co-optimization of wholesale energy and balancing capacity in an integrated
day-ahead market [Papavasiliou and Avila, 2024] indicate a progressive move
to a �pay-as-clear� (i.e. uniform pricing) mechanism. This analysis can be
extended to include balancing capacity market but this feature is ignored for
the remainder of the paper.

Two European idiosyncracies that are not included in this analysis are dual-
pricing schemes for imbalance settlement and direct mFRR activation. The
ISHM permits Member States to employ a dual-pricing structure. In this struc-
ture, the settlement of imbalances for a market participant is contingent upon
the direction of its own imbalance in relation to the aggregate system position.
This investigation considers a single-pricing scheme with a unique imbalance
settlement price for all agents generating imbalances. Direct mFRR activation
is the process that allows system operators to submit a demand for mFRR

2See ACER's website https://www.acer.europa.eu/electricity/market-rules/
electricity-balancing/capacity-calculation-and-allocation and [Cho and Pa-
pavasiliou, 2024] for an application.

https://www.acer.europa.eu/electricity/market-rules/electricity-balancing/capacity-calculation-and-allocation
https://www.acer.europa.eu/electricity/market-rules/electricity-balancing/capacity-calculation-and-allocation
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balancing energy during the course (as opposed to the beginning of) an im-
balance settlement period. These direct activations are typically triggered by
generation contingencies. Only scheduled mFRR activations occurring at the
beginning of an ISP are accounted for in our model.

Our analysis aims at contributing to the electricity market design literature.
Analytical and game-theoretical techniques have been used in [Fabra et al.,
2006] to compare pay-as-bid and uniform pricing in energy auctions under con-
ditions of market power. Similar frameworks are also used in [Bushnell and
Oren, 1994] and [Chao and Wilson, 2002] in order to analyse coupled reserve
and energy auctions. [Bushnell and Oren, 1994] analyze scoring rules with dis-
criminatory pricing in the reserve auction and [Chao and Wilson, 2002] prove,
through backward induction, that independent capacity and energy auctions
induce a truthful revelation of cost under uniform pricing and in the presence of
price-taking agents. Multi-product capacity auctions are investigated in [Ka-
mat and Oren, 2002] without an energy component. Similar methods have been
applied in the analysis of European balancing markets. [Ocker et al., 2018] fo-
cus on pricing rules for balancing markets and strategic interactions between
agents. [Ehrhart and Ocker, 2021] include the day-ahead wholesale market in
their analysis. [Cartuyvels et al., 2023] examine the uncoordinated implemen-
tation of adders in integrated energy auctions and introduce an outside option
to balancing energy auctions through imbalance settlement.

Non-analytical methods have also been used in order to address speci�c
questions of market design in European balancing markets. Agent-based mod-
els have been used for investigating the e�ect of the imbalance pricing scheme
[van der Veen et al., 2012], market organization [Poplavskaya et al., 2020], the
introduction of free bids [Poplavskaya et al., 2021], and the back-propagation of
real-time balancing capacity prices to day-ahead markets [Papavasiliou et al.,
2021]. [Petitet et al., 2019] use a simulation-based model in order to analyze
the impact of the gate-closure time on operating cost.

Our paper extends the literature on balancing market design by proposing
an analysis for the case of multiple reserve products that accounts for real-time
balancing constraints and the intricate relationship between faster- and slower-
moving reserves. The goal of this paper is to provide a quantitative framework
for highlighting the incentives that are generated in a multi-product balancing
market and the sensitivity of the market equilibrium to (i) the imbalance pricing
scheme, and (ii) the activation strategy for slow-moving reserve (mFRR in our
case).

The four main policy insights uncovered by our analysis are summarized as
follows. (1) The �mFRR only� imbalance price allows for simple optimal strate-
gies and prevents self-dispatching from participants. (2) Minimum balancing
activation cost can be reached from the �mFRR only� and �mean mFRR and
aFRR� imbalance pricing schemes under the optimal mFRR activation strat-
egy. (3) If the optimal mFRR activation strategy is not available, the �mean
mFRR and aFRR� imbalance pricing scheme incentivizes self-dispatching in a
way that reduces the balancing cost compared to the no-reaction benchmark.
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(4) The �max mFRR and mean aFRR� imbalance price distorts price signals
and induces an ine�cient level of self-dispatching. This translates to actionable
presprictive policy guidance for the ongoing European market design debates
that are mentioned previously in the introduction.

The remainder of the paper is structured as follows. Section 4.2 presents
the multi-product balancing market model that is used in our analysis. Section
4.3 analyzes the impact of the mFRR activation strategy and the imbalance
pricing scheme on the balancing energy equilibrium. Section 4.4 illustrates the
results of our analytical models on an example and section 4.6 discusses them.
Section 4.7 concludes.

4.2 Modelling Multi-Product Balancing Mar-

kets

This section describes in detail the di�erent components of our model. It begins
by describing the social optimum for a benevolent system operator with direct
control over �exible assets. The second subsection describes the mechanism
used in practice for emulating this resource allocation (the sequence of balanc-
ing energy markets). The individual strategy of fringe agents participating in
the game is described. The last subsection discusses the aggregation of those
strategy sets and their mapping to aFRR and mFRR merit orders.

4.2.1 Least-Cost Activation

The social optimum for covering the imbalances is attained when a system
operator minimizes the activation cost of �exible assets while respecting bal-
ancing constraints. System operators have two technologies at their disposal
for covering imbalances: slow capacity that is dispatched once at the begin-
ning of the horizon (a 15-minute imbalance settlement period in our analysis)
and cannot be modi�ed later and fast capacity that can modify its dispatch
as uncertainty unfolds. The least-cost activation problem can be modeled as a
two-stage stochastic program (4.1) and (4.2):3

min
xS ,xF

∫ xS

0

OS(x)dx+ EΩ[
∑

t=1...T

1

T

∫ xF
t,ω

0

OF (x)dx] (4.1)

s.t. xt,ω = xS + xF
t,ω ∀t ∈ {1 . . . T},∀ω ∈ Ω. (4.2)

In this model, the system operator faces an uncertain demand in stage t and
scenario ω, xt,ω. The scenario ω belongs to the uncertainty set Ω The TSO
has at its disposal an inverse supply curve for fast and slow reserve, OF (·) and

3The general problem with ramp constraints and direct mFRR activation is a multi-stage
stochastic program.
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OS(·).4 The inverse supply curves represent continua of price-taking fast and
slow agents.

This problem characterizes activation levels for slow reserve, xS , and for fast
reserve in subperiod t and scenario ω, xF

t,ω, for every combination of inverse
supply functions belonging to the set of inverse supply functions, O. This set
O is composed of the positive strictly monotonic increasing functions between
arbitrary capacity level, −NF and NF , and −NS and NS . More speci�cally,
the least-cost activation problem can be interpreted as a social choice function
f : O2 → A that maps a combination of inverse supply curves to a dispatching
schedule for slow and fast reserve.5

The formulation can be made more compact by assuming the subperiod
demands to be independently drawn from a random variable, X. This allows
us to aggregate the sum over the subperiods as a single realization of uncertainty
and to derive the following �rst-order condition for the optimal activation level
for slow reserve:6

OS(xS) = EX [OF (x− xS)] (4.3)

This condition states that the marginal cost of slow reserve should be equal to
the expected marginal cost of fast reserve.

4.2.2 Sequence of Markets

The system operator does not have direct control over the �exible assets and
needs to organize balancing energy auctions to collect the technical parame-
ters of the assets composing the inverse supply curves. The system operator
conducts an mFRR balancing energy auction every �fteen minutes to activate
mFRR balancing energy over the next �fteen minutes and aFRR balancing en-
ergy auctions every four seconds to continuously cover the leftover imbalance
with aFRR balancing energy.

Alternatively to these centralized auctions, assets can participate directly
in the balancing process through imbalance settlement for self-dispatching re-
sources. Agents can self-dispatch to put themselves intentionally in imbalance
relative to their market position and thus receive the imbalance price.

This sequence of markets is displayed in �gure 4.1 and generates three types
of price: aFRR balancing energy prices, P aFRR, the mFRR balancing energy
price, PmFRR, and the imbalance price, P imb. The three stages are explained
hereunder.

1. Every agent forming the inverse supply curves for fast and slow capacity
submits price-quantity balancing energy bids for the aFRR or mFRR

4The inverse supply functions are often referred to as merit orders in the power systems
literature.

5See chapter 23 of [Mas-Colell et al., 1995] for a de�nition of social choice functions.
6The independence assumption might not hold in practice as pointed out in [Papavasiliou

et al., 2018]. The results of this paper are not dependent on this assumption but it simpli�es
the notation.
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Figure 4.1: Sequence of markets and revelation of uncertainty.

balancing energy auctions or decides to self-dispatch. The aggregations
of the balancing energy bids forms the aFRR and mFRR merit order,
OaFRR(·) and OmFRR(·), and the level of self-dispatching, xSD.

2. The system operator forecast of the system imbalance, y, is then revealed.
The system operator activates a level of mFRR balancing energy, xmFRR,
based on this forecast and its mFRR activation strategy, AS(·). The
mFRR price follows from the mFRR balancing energy cleared and the
mFRR merit order.

3. The system imbalance that the system is actually confronted with, x,
is then revealed and the leftover imbalance is covered by aFRR bal-
ancing energy, xaFRR. Notice that the balancing constraints include a
self-dispatching component that is absent in (4.2). In practice, the sys-
tem operator can only measure leftover imbalances and the initial system
imbalance is indistinguishable from the self-dispatching of agents. The
aFRR balancing energy prices follow from the cleared aFRR balancing
energy and the aFRR merit order. The imbalance price is then formed
by combining the aFRR and mFRR balancing energy price through the
imbalance pricing scheme, h(·).

At the second stage, the system operator could follow the least-cost ac-
tivation strategy de�ned in (4.1) and (4.2) but it could also activate less or
more mFRR than the least-cost activation strategy. TenneT, the Dutch TSO,
underlines that it is a �reactive� TSO that �only activates balancing products
if imbalances actually occur, not in response to forecasted imbalances.�7 This
approach naturally leads to less proactive activation of slow reserve. It is driven
by the desire to avoid in�uencing the system by arbitrarily activating mFRR
balancing energy. This approach also aims at preventing dispatching �mistakes�
that lead to a counter-activation of aFRR resources to deal with overshooting
mFRR activations. Similarly, German TSOs do not consider the economic
trade-o� between the use of aFRR and mFRR in their mFRR activation strat-
egy [CONSENTEC, 2022]. Activation strategies that lead to an over-activation

7See TenneT's website: https://www.tennet.eu/markets/market-news/balancing-
markets.

https://www.tennet.eu/markets/market-news/balancing-markets
https://www.tennet.eu/markets/market-news/balancing-markets
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of mFRR balancing energy are less frequent so this manuscript focuses on the
least-cost mFRR activation strategy and on strategies that activate less mFRR
than the least-cost amount.

Both the imbalance pricing scheme and the mFRR activation strategy have
an impact on the bidding behaviour of �exible agents. Agents will account for
these features as they weigh their options in balancing energy and imbalance
payo�s. The activation strategy directly a�ects the aFRR and mFRR balancing
price. The more mFRR that is activated, the higher the mFRR balancing
energy price and the lower the aFRR balancing energy price. The e�ect of
the imbalance pricing scheme is more subtle as it can induce self-dispatching.
Self-dispatching is re�ected in the aFRR and mFRR merit orders as assets that
are not available for the balancing energy auctions. It also a�ects the aFRR
balancing energy prices by reducing the leftover imbalances.

The gradual revelation of uncertainty is represented as a realization of a
random variable that a�ects the conditional distribution of imbalances. At
bid submission, the initial distribution of imbalance, X, is quite wide but it
becomes narrower as the system operator forecast, y, is revealed. The system
operator forecast is drawn from a random variable Y and the realization of
imbalance that is conditional on y is drawn from the random variable X|y.

4.2.3 Individual Bidding Strategy

The strategy set of a fast agent with marginal cost θ is characterized as QF (θ),
the concatenation of the price-quantity aFRR and mFRR balancing energy
bids, (paFRR, qaFRR) and (pmFRR, qmFRR) and the level of self-dispatching,
qSD.

QF (θ) = {(paFRR, qaFRR, pmFRR, qmFRR, qSD)|qaFRR + qmFRR + qSD = 1,

qaFRR ≥ 0, qmFRR ≥ 0, qSD ≥ 0} (4.4)

The objective of the agent is to maximize its payo� from participating in
the aFRR balancing energy auction, the mFRR balancing energy auction, and
self-dispatching. This pro�t maximization problem is presented in (4.5) and
(4.6):

max qaFRR · zaFRR(θ, paFRR) + qmFRR · zmFRR(θ, pmFRR) + qSD · zSD(θ)
(4.5)

s.t. (paFRR, qaFRR, pmFRR, qmFRR, qSD) ∈ QF (θ) (4.6)

Here, zaFRR(θ, paFRR) and zmFRR(θ, pmFRR) indicate the payo�s from partic-
ipating in the aFRR and mFRR balancing auctions respectively, as a function
of their price bids, while zSD(θ) indicates the payo� from self-dispatching.

As the agents are in�nitesimal, the payo�s for participating in the balanc-
ing energy auctions are not a�ected by their capacity allocation and are only
functions of the price bids that are submitted. The mFRR activation payo�
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can be computed through the pro�t maximization problem (4.7) as a function
of the cumulative distribution function of the mFRR balancing energy price,
FPmFRR :

zmFRR(θ, pmFRR) = max
pmFRR

∫
x≥pmFRR

(x− θ)dFPmFRR(x) (4.7)

The objective function results from a uniform price auction where an agent
is selected as soon as the price of the auction exceeds the price component
of the balancing energy bid of the agent. The payo� of the agent is equal
to the expectation of the mFRR price minus the marginal cost of the agent
whenever the o�er is selected. Accepted bids are assumed to be fully selected.
Bidding at marginal cost is a weakly dominant strategy in this context and
agents e�ectively act as price-takers. The marginal mFRR activation payo�
can then be rewritten as the expectation over the maximum operator between
the pro�t when being activated and zero:

zmFRR(θ) =

∫
x≥θ

(x− θ)dFPmFRR(x) (4.8)

= E[max(PmFRR − θ; 0)]. (4.9)

A similar analysis can be performed to show the weak dominance of bidding
at marginal cost in the aFRR balancing auction. This allows us to restrict the
strategy set to the capacity components of the bids and the self-dispatching
variable.

QF (θ) = {(qaFRR, qmFRR, qSD)|qaFRR + qmFRR + qSD = 1,

qaFRR ≥ 0, qmFRR ≥ 0, qSD ≥ 0} (4.10)

The marginal self-dispatching payo� is not based on an energy auction
but rather on the self-activation of an agent based on its expectation of the
imbalance price. The payo� can be found by maximizing the expected payo�
of performing self-dispatching, ai, given the expected imbalance price. This is
expressed in problem (4.11):

zSD(θ) = max
ai

(E[P imb]− θ) · ai (4.11)

s.t. 0 ≤ ai ≤ 1

We assume that the decision on how much capacity to allocate to self-dispatching
is made at gate closure of the mFRR/aFRR balancing energy auctions, before
y is revealed. We directly see that ai = 0 if E[P imb] ≤ θ and ai = 1 otherwise.
This means that an agent should commit to self-dispatching its asset only if
the expected imbalance price is greater than its marginal cost. This allows us
to reformulate the self-dispatching payo� as

zSD(θ) = max(E[P imb]− θ; 0). (4.12)
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The allocation of the capacity between aFRR and mFRR balancing energy
auctions and self-dispatching then depends on the ranking of the payo� of
the di�erent options which are dependent on the aFRR and mFRR balancing
energy price and the imbalance price. The strategy set for a slow agent with
marginal cost θ is de�ned similarly as QS(θ) except that there is no aFRR
component.

QS(θ) = {(qmFRR, qSD)|qmFRR + qSD = 1, qmFRR ≥ 0, qSD ≥ 0} (4.13)

4.2.4 Aggregated Bidding Strategy

Aggregating the individual allocation strategies generates aggregate functions
belonging to aggregate strategy sets. To be more speci�c, an aggregate strategy
belonging to the aggregate strategy set for fast agents, QF , is composed of
the aggregate function for the aFRR balancing energy auction, qaFRR(·), the
aggregate function for the mFRR balancing energy auction, qmFRR

F (·), and
the aggregate function for self-dispatching, qSD

F (·). These aggregate functions
describe the aggregate strategy of fast agents as a function of their marginal
cost. Similarly, an aggregate strategy for slow agents belongs to the aggregate
strategy set for slow agents, QS , and is composed of the aggregate function
for participating in the mFRR balancing energy auction, qmFRR

S (·), and the
aggregate function for self-dispatching, qSD

S (·).

(qaFRR(·), qmFRR
F (·), qSD

F (·)) ∈ QF (4.14)

(qmFRR
S (·), qSD

S (·)) ∈ QS (4.15)

The conversion between aggregate strategy sets and merit orders to match
the notation of �gure 4.1 is provided analytically in (4.16) to (4.18) for aFRR,
mFRR and self-dispatching allocation functions given cumulative distribution
functions for fast and slow capacity, GF and GS , and for capacity levels, NF

and NS :

(OaFRR)−1(θ) = NF

∫ θ

0

qaFRR(x)dGF (x) (4.16)

(OmFRR)−1(θ) = NF

∫ θ

0

qmFRR
F (x)dGF (x) +NS

∫ θ

0

qmFRR
S (x)dGS(x)

(4.17)

xSD = NF

(∫
qSD
F (x)dGF (x) +NS

∫
qSD
S (x)dGS(x)

)
(4.18)

The supply curve for aFRR is de�ned in (4.16) by integrating the capacity
of the fast agents with a marginal cost lower than θ that allocate their ca-
pacity to the aFRR balancing energy auction. The supply curve for mFRR
is de�ned similarly except that both fast and slow agents can submit mFRR
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balancing energy bids. The level of self-dispatching is obtained by integrating
slow and fast capacity that allocates its capacity to self-dispatching. Note that
the supply curves for fast and slow capacity can be also be derived analytically:

(OS)−1(θ) = Q

∫ θ

0

1dGS(x) = Q ·GS(θ) (4.19)

(OF )−1(θ) = Q

∫ θ

0

1dGF (x) = Q ·GF (θ) (4.20)

4.3 Equilibrium

This section describes the equilibria that are generated by di�erent combina-
tions of mFRR activation strategies, AS, and imbalance pricing schemes, h.
Each combination is modeled as a mechanism

Γ(AS, h) = {QF ,QS , g(·|AS)} (4.21)

where g(·|AS) : QF × QS → A is an outcome function that maps aggregated
strategy sets for fast and slow capacity to a dispatching schedule given an
mFRR activation strategy. Two types of activation strategies are investigated:
(i) the least-cost activation strategy that replicates the mFRR dispatch of the
social optimum in the two-stage stochastic program, and (ii) every mFRR
activation strategy activating less mFRR than the least-cost ideal. Three im-
balance pricing schemes are investigated: (i) the �mFRR only� imbalance price
inspired by the �law of one price�, (ii) the �mean mFRR and aFRR� and (iii)
the �max mFRR and mean aFRR� imbalance price as stated by article 9 of the
ISHM. This results in six possible cases that can be restricted to four equilib-
ria: (1) the �mFRR only� imbalance price for both mFRR activation strategies,
(2) the �mean mFRR and aFRR� imbalance price with the least-cost mFRR
activation strategy, (3) the �mean mFRR and aFRR� imbalance price with an
activation of mFRR which is less than that of the least-cost mFRR activation
strategy, and (4) the �max mFRR and mean aFRR� imbalance price for both
activation strategies. The equilibria are summarised in table 4.1 and consist
of (1) every slow agent participating in the mFRR balancing energy auction
and every fast agent participating in the aFRR balancing energy auction for
the �mFRR only� price, (2) same for the �mean mFRR and aFRR� imbalance
pricing method with the least-cost activation strategy, (3) some slow agents
self-dispatching and others participating in the mFRR balancing energy auc-
tion and every fast agent participating in the aFRR balancing energy auction
for the �mean mFRR and aFRR� imbalance pricing method with less mFRR ac-
tivation than that of the least-cost mFRR activation strategy, and (4) some fast
and slow agents self-dispatching and others participating either in the aFRR
or mFRR balancing energy auction for the �max mFRR and mean mFRR�
imbalance pricing scheme.

The remainder of the section will cover the di�erent cases.
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Table 4.1: Summary of equilibria for di�erent combinations of imbalance pricing
schemes and activation strategies.

Imb. Pricing
Schemes

mFRR only mean mFRR
and aFRR

max mFRR and
mean aFRR

Act.
Strat.

Asset
Slow Fast Slow Fast Slow Fast

Least-cost

mFRR aFRR

mFRR aFRR self-disp.
and

mFRR

self-disp.
and
aFRR

Less mFRR self-disp
and mFRR

aFRR

4.3.1 �mFRR only�

The �mFRR only� imbalance pricing scheme is motivated by the �law of one
price�: homogeneous goods should trade at the same price [Jevons, 1871]. This
imbalance pricing scheme considers that imbalances and mFRR balancing en-
ergy are at least partially substitutable, based on the fact that they both repre-
sent balancing energy that is traded on a 15-minute timescale and should thus
be priced similarly. This results in the imbalance price aligning to the mFRR
price:

h(P aFRR(x, y), PmFRR(y)) = PmFRR(y). (4.22)

One property of this scheme is that no agents �nd it to their advantage
to self-dispatch, since participating in the mFRR balancing auction is always
more pro�table.

Lemma 4.1. The payo� from participating in the mFRR balancing auction is
greater than or equal to the one from self-dispatching under the �`mFRR only�
imbalance price.

Proof. By Jensen's inequality on (4.9) and (4.12),

max(E[P imb]−θ; 0) = max(E[PmFRR]−θ; 0) ≤ E[max(PmFRR−θ; 0)]. (4.23)

We can now analyze the impact of the mFRR activation strategy on the
payo� of agents. We begin by applying the least-cost activation strategy to the
aFRR and mFRR merit order curves.

Lemma 4.2. The payo� from participating in the mFRR balancing energy auc-
tion is lower than or equal to the payo� of participating in the aFRR balancing
energy auction if the mFRR activation strategy of the system operator follows
the least-cost strategy.
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Proof. By Jensen's inequality,

max(PmFRR − θ; 0) = max(E[P aFRR]− θ; 0) ≤ E[max(P aFRR − θ; 0)]. (4.24)

The di�erence between the aFRR and the mFRR payo�s can be considered
as a �exibility premium. We are now ready to characterize the equilibrium
under the �mFRR only� imbalance price.

Proposition 4.3. Every agent o�ering their capacity to the best quality auction
they can (fast agents to aFRR balancing energy and slow agents to mFRR
balancing energy), which corresponds to the aggregate functions

(qaFRR∗(·), qmFRR∗
F (·), qSD∗

F (·)) = (1, 0, 0) and (4.25)

(qmFRR∗
S (·), qSD∗

S (·)) = (1, 0), (4.26)

is a dominant strategy equilibrium under the �mFRR only� imbalance price and
with an mFRR activation strategy equal to the least-cost activation strategy.
This mechanism implements the least-cost social choice function in dominant
strategy.8

Proof. Lemmas 4.1 and 4.2 state that, for all agents, performing self-dispatching
is less pro�table than participating in the mFRR balancing energy auction and
that the aFRR balancing energy auction is more pro�table than the mFRR bal-
ancing energy auction. Every slow agent o�ering their capacity to the mFRR
balancing energy auction and every fast agent o�ering their capacity to the
aFRR balancing energy auction are dominant strategies.

This results in aFRR prices following the inverse supply curve of fast agents
and mFRR prices following the inverse supply curve of slow agents. The anal-
ysis for mFRR activation strategies with less mFRR activation than the least-
cost mFRR activation is trivial, since lemma 4.1 is not a�ected by the mFRR
activation strategy and lemma 4.2 remains valid for mFRR activation strate-
gies that activate less mFRR capacity than that activated in the least-cost
mFRR activation strategy. The only di�erence in that context would be that
the mFRR activation strategy prevents the balancing markets from reaching
the least-cost allocation.

4.3.2 �mean mFRR and aFRR� Imbalance Settlement with

Least-Cost Activation Strategy

The �mean mFRR and aFRR� imbalance price is expressed in equation (4.27)
as a function of the demands for mFRR and aFRR balancing energy, xmFRR

and xaFRR
t for t ∈ {1 . . . T}:

h(P aFRR(x, y), PmFRR(y)) =

∑
t=1...T

1
T P

aFRR
t (xt, y) + PmFRR(y)

2
(4.27)

8See chapter 23 of [Mas-Colell et al., 1995] for an introduction to mechanism design.
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Proposition 4.4. Every agent o�ering their capacity to the best quality auction
they can is a dominant strategy equilibrium under the �mean mFRR and aFRR�
imbalance price and with an mFRR activation strategy equal to the least-cost
activation strategy. This mechanism implements the least-cost social choice
function in dominant strategy.

Proof. Under the least-cost mFRR activation strategy, the mFRR price is equal
to the expected aFRR price, PmFRR = E[P aFRR], which establishes an ex-
pected imbalance price equal to the expected mFRR price (see equation (4.27)).
Lemmas 4.1 and 4.2 can then both be applied to prove the desired result.

Interestingly, both propositions 4.3 and 4.4 can also be interpreted as com-
petitive equilibria. No agent has any incentive to deviate from their aggregate
function given the aFRR, mFRR, and imbalance prices that are generated.

4.3.3 �mean mFRR and aFRR� Imbalance Settlement with

Less mFRR than Least Cost

If the mFRR activation strategy activates less than the amount of mFRR acti-
vated by the least-cost activation strategy, self-dispatching may become more
pro�table than participating in the mFRR balancing energy auction. This is
due to the higher aFRR prices that lift the imbalance price. This results in the
following proposition.

Proposition 4.5. Every agent o�ering their capacity to the best quality auction
they can is not always an equilibrium under the �mean mFRR and aFRR�
imbalance price and with an mFRR activation strategy that activates less mFRR
than the least-cost strategy.

An example of truthful participation in the balancing energy auction not
being an equilibrium, proving proposition 4.5, is provided in section 4.4.2. The
equilibrium in that case results in self-dispatching from the slow agents and is
characterized by the following aggregate function:

� Every fast agent participates in the aFRR balancing energy auction:

(qaFRR∗(·), qmFRR∗
F (·), qSD∗

F (·))) = (1, 0, 0) (4.28)

� Slow agents with marginal cost lower than OS(xSD
S ), i.e. the cheapest

capacity up to a quantity xSD
S , self-dispatch and other slow agents decide

to participate in the mFRR balancing energy auction:

(qmFRR∗
S (θ), qSD∗

S (θ)) =

{
(0, 1) if OS(0) ≤ θ ≤ OS(xSD

S ),

(1, 0) else.
(4.29)

A level xSD
S of self-dispatch from slow agents has two direct e�ects: it in-

creases the mFRR prices by removing cheap assets from the mFRR merit order,
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and it decreases the aFRR prices by reducing the leftover imbalance that needs
to be covered by aFRR. The speci�c structure of these aggregate functions al-
lows us to derive a closed-form formulation for the mFRR merit orders without
solving (4.17) explicitly. Generators with a marginal cost lower than OS(xSD

S )
opt out of the mFRR balancing energy auction and this translates the inverse
supply function of slow assets to the left by xSD

S for upward balancing capacity:

OmFRR(x) =

{
OS(x+ xSD

S ) if x ≥ 0,

OS(x) else.
(4.30)

As shown in �gure 4.1, self-dispatching decreases the demand for aFRR
balancing energy and the subsequent aFRR prices. The demand for mFRR
balancing is not a�ected by the self-dispatching, as this demand is obtained
from the system operator forecast and an mFRR activation strategy that is
assumed to be una�ected by the self-dispatching. Increasing the self-dispatch
level increases the mFRR activation payo�, due to the increased mFRR prices,
and decreases the self-dispatching payo�, due to the decreased aFRR prices. An
equilibrium can then be found by �nding a level of self-dispatch xSD

S such that
every agent below xSD

S on the inverse supply curve �nds self-dispatching more
pro�table, every agent after xSD

S �nds participating in the mFRR balancing
energy auction more pro�table, whereas the agent at xSD

S is indi�erent between
both options. This corresponds to solving the following identity where the
payo� for both mFRR activation and self-dispatch are dependent on the level
of self-dispatching:

zmFRR(OS(xSD
S )|xSD

S ) = zRB(OS(xSD
S )|xSD

S ). (4.31)

4.3.4 �max mFRR and mean aFRR� Imbalance Pricing

The �max mFRR and mean aFRR� imbalance price as a function of the de-
mands for mFRR and aFRR balancing energy is characterized as follows:

h(P aFRR(x, y), PmFRR(y)) = max

( ∑
t=1...T

1

T
P aFRR
t (xt, y);P

mFRR(y)

)
(4.32)

Under this imbalance settlement scheme, the expected imbalance price is
always greater than the expected aFRR price or the mFRR price. Both fast
and slow agents may �nd it optimal to self-dispatch at equilibirum. As in the
case of the �mean mFRR and aFRR� price, self-dispatch is performed by the
cheapest agents.

Proposition 4.6. Every agent o�ering their capacity to the best quality auction
they can is not always an equilibrium under the �max mFRR and mean aFRR�
imbalance price.
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The di�erence between proposition 4.5 and 4.6 is that even the least-cost
activation strategy does not always sustain an equilibrium where every agent
o�ers their capacity to the best quality auction. An example proving 4.6 is also
given in section 4.4.2. The equilibrium in this case exhibits self-dispatching
from both fast and slow agents, and can be characterized as follows:

� Fast agents with marginal cost lower than OF (xSD
F ) self-dispatch and

other fast agents decide to participate in the aFRR balancing energy
auction.

(qaFRR∗(θ), qmFRR∗
F (θ), qSD∗

F (θ)) =

{
(0, 0, 1) if OF (0) ≤ θ ≤ OF (xSD

F ),

(1, 0, 0) else.
(4.33)

� As in (4.29), slow agents with marginal cost lower than OS(xSD
S ) self-

dispatch and others decide to participate in the mFRR balancing energy
auction.

Self-dispatching by fast assets is not an equilibrium outcome in the �mean
mFRR and aFRR� case as the expected imbalance price is bounded by the mean
mFRR and aFRR prices and if the mean mFRR price becomes greater than the
mean aFRR price, self-dispatching becomes strictly less pro�table than o�ering
mFRR. For the �max mFRR and mean aFRR� imbalance pricing design, if the
mFRR price becomes greater than the aFRR price and dominates the formation
of the imbalance price, self-dispatching is as pro�table as o�ering mFRR and
can be strictly greater than o�ering aFRR. This can result in self-dispatching
from both fast and slow assets. The equilibrium can be obtained by �nding the
fast and slow agents that are indi�erent between self-dispatching and o�ering
aFRR or mFRR, depending on the level of fast and slow self-dispatching, xSD

F

and xSD
S . These thresholds are characterized by the following identity:

zmFRR(OS(xSD
S )|xSD

S ) = zRB(OS(xSD
S )|xSD

S , xSD
F ), (4.34)

zaFRR(OF (xSD
F )|xSD

S , xSD
F ) = zRB(OF (xSD

F )|xSD
S , xSD

F ). (4.35)

4.4 Results

The results that are presented in this section are based on an illustrative ex-
ample. Let NF = 500 MW and NS = 1000 MW be the fast and slow capacity
that is available for balancing. The aggregate marginal cost of fast and slow
balancing capacity is distributed uniformly between 0 and 100 e/MWh. Let
Y (w) be the forecast of the system operator be uniformly distributed between
−100 + w and 100 + w. w can be interpreted as the forecast at the gate-
closure of the aFRR and mFRR balancing energy auction. It is known before
the system operator forecast, y, is revealed and before the formation of the
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equilibrium. For each realization of the gate-closure forecast, w, there is a cor-
responding equilibrium.Let X|y be the random variable from which the actual
system imbalance is drawn. It is uniformly distributed between y − 100 and
y + 100.

This section begins by describing the least-cost mFRR activation strategy
in this setting. It continues with the equilibria for the di�erent imbalance
pricing schemes, illustrating propositions 4.5 and 4.6. Finally, we focus on
the activation cost under the di�erent pricing schemes and mFRR activation
strategies.

4.4.1 Least-Cost mFRR Activation Strategy

The least-cost mFRR activation strategy is obtained by expressing the acti-
vation of slow capacity as a function of the system operator forecast of the
imbalance, y, as indicated in condition (4.3). It results in the following identity
when applied to our numerical settings:

OS(xS) =

∫
OF (x− xS)dFX|y(x) =

∫ y+100

y−100

OF (x− xS)
1

200
dx. (4.36)

Given OS(x) = x/10 and OF (x) = x/5, the least-cost activation strategy,
AS∗(y), can be expressed analytically as:

xS =
2

3
y = AS∗(y). (4.37)

This strategy is also used to determine the demand for mFRR balancing
energy by replacing the fast and slow merit orders by the aFRR and mFRR
merit orders.

4.4.2 Self-Dispatching

Figure 4.2 presents the capacity that is not o�ered to balancing energy auctions
as a function of w for the illustrative example. A new equilibrium with its
associated level of self-dispatch is established for every realization of w. This
�gure presents the level of self-dispatching for a mFRR activation strategy that
activates less mFRR than the least-cost activation strategy,

AS(y) = 0.5 · y < AS∗(y), (4.38)

and for the imbalance pricing schemes that generate self-dispatch, namely the
�mean mFRR and aFRR� and the �max mFRR and mean aFRR� imbalance
pricing schemes. The illustrative example is symmetric and exhibits a similar
level of self-dispatching by downward �exible assets for negative w. Higher
gate-closure forecasts indicate a higher discrepancy between the aFRR and
mFRR balancing energy prices and result in higher self-dispatching payo�s for
imbalance pricing schemes that include an aFRR price component. There is a
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Figure 4.2: Fast and slow assets self-dispatching when the mFRR activation strategy
is lower than that of the least-cost activation strategy (AS(y) = 0.5 · y).

change of mode for the �max mFRR and aFRR� imbalance price when the gate-
closure forecast reaches around 100 MW. Only slow agents self-dispatch before
100 MW, but, as soon as the forecast reaches 100 MW, fast agents start to
self-dispatch and this increases the total capacity not o�ered to the balancing
energy auctions. This coincides with the mFRR price dominating the mean
aFRR price in the formation of the imbalance price.

Figure 4.3 illustrates the e�ect of self-dispatching on the expected payo�s of
the agents as a function of their marginal cost for a given gate-closure forecast
w. Figure 4.3a shows that, under the mFRR activation strategy AS(y) = 0.5 ·y
and the gate-closure forecast w = 140, every fast asset o�ering aFRR and every
slow asset o�ering mFRR cannot constitute an equilibrium for either the �mean
mFRR and aFRR� or the �max mFRR and mean aFRR� imbalance prices. The
mFRR balancing energy payo� is dominated by the self-dispatching payo�,
and agents would rather self-dispatch than participate in the mFRR balancing
energy auctions.

Figure 4.3b presents the payo�s under the equilibrium level of self-dispathcing
for the �mean mFRR and aFRR� imbalance price. Slow assets that self-dispatch
reduce the aFRR prices and payo�s (by reducing the residual system imbal-
ance that needs to be covered by aFRR) and increase the mFRR prices and
payo�s (by removing cheap assets from the mFRR merit order). Slow assets
self-dispatch up to the point where the expected incremental payo� of self-
dispatching and of participating in the mFRR balancing energy auction become
equal. This characterizes a frontier agent such that all slow assets with lower
marginal cost self-dispatch and all assets with higher marginal cost participate
in the mFRR balancing energy auction.

Figure 4.3c provides a similar analysis for the �max mFRR and mean aFRR�
imbalance price. The self-dispatching from slow assets results in an increased
mFRR price dominating the mean aFRR price in the formation of the imbal-
ance price. This leads to a large level of self-dispatching from fast assets.
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(a) No self-dispatch.

(b) Optimal level of self-dispatching
for �mean mFRR and aFRR�.

(c) Òptimal level of self-dispatching
for �max mFRR and mean aFRR�.

Figure 4.3: Activation payo�s for w = 140 and AS(y) = 0.5 · y.
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Figure 4.4: Activation cost in the illustrative example as a function of the mFRR
activation strategy.

4.4.3 Activation cost

Figure 4.4 presents the activation that results from di�erent mFRR activation
strategies and imbalance pricing schemes. The minimum activation cost can
be found under the least-cost mFRR activation strategy for the �mFRR only�
and the �mean mFRR and aFRR� imbalance settlement schemes. The �mFRR
only� imbalance price generates the benchmark activation cost where all agents
o�er their capacity to the best quality auction they can. The �mean mFRR
and aFRR� can reduce the activation cost by correcting an ine�cient mFRR
activation strategy. It incentivizes slow agents to self-activate and it drives the
equilibrium closer to the optimal least-cost dispatch. The self-activation result-
ing from the �max mFRR and aFRR� imbalance pricing scheme is ine�cient
and over-compensates for the inaccurate mFRR activation strategy.

4.5 Discussion

This section discusses the policy implications of the results that are illustrated
in the previous section and the impact of some modeling assumptions.

4.5.1 Bidding Incentives

One �nding of our analysis is that bidding the marginal cost in the balancing
energy auctions is not always the optimal strategy for the �mean mFRR and
aFRR� and the �max mFRR and mean aFRR� imbalance settlement schemes.
The �mFRR only� imbalance settlement scheme has the advantage of providing
a clear weakly dominant strategy for the agents: they should bid in the best-
quality auction they can. An advantage of a clear optimal bidding strategy is
that it fosters competition by reducing the barrier to entry. There is no need
to rely on extended analytics in order to participate pro�tably in the market.
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The other imbalance pricing schemes can allow for pure strategy equilibria,
but they can be harder to reach in practice. They require agents to perfectly
anticipate the behaviours of the other agents, since their strategy depends on
the level of self-dispatching in the system.

The analysis also highlights the in�uence of arbitrary components, such as
the system operator forecast, y, on the bidding incentives. Reacting purely to
the imbalance and not proactively activating mFRR has an impact on the mar-
ket as it in�uences the mFRR and aFRR prices and payo�s. It also propagates
to the imbalance prices and payo�s.

4.5.2 Balancing Process E�ciency

The objective of this analysis is not to condemn self-dispatching as a practice
but rather to isolate and highlight the balancing energy market features that
support an e�cient balancing process. Balancing market features that provide
incentives for self-dispatching can have a positive social impact if TSOs do not
activate optimally as seen by the reduction in balancing cost induced by the
�mean mFRR and aFRR� imbalance prices.9 However, these features should
not unduly in�uence the balancing energy auctions or impede the e�ciency
of the balancing process. The analysis in the paper has shown that some
imbalance pricing schemes (here the �max mFRR and mean aFRR�) cannot
support an e�cient dispatch.

The connection to the cross-border balancing platforms has sparked a de-
bate on self-dispatching incentives. ELIA, the Belgian TSO, wants to avoid
pricing signals that may aggravate its own position to relieve the aggregated
European imbalance [ELIA, 2023]. CREG, the Belgian regulator, believes that
prices should support self-dispatching that helps the aggregated European im-
balance [CREG, 2023]. This debate can be avoided with the �mFRR only�
imbalance pricing scheme that provides incentives for �exible agents to o�er
their capacity to the balancing energy markets. It can help to fully harness the
coordination bene�ts brought forth by the connection to the platforms.

4.5.3 Robustness to Modelling Assumptions

In practice, balancing markets are split into upward and downward markets.
The simultaneous activation of balancing energy in both directions can result
from ramp constraints. For example, if some upward balancing energy is ac-
tivated but the imbalance decreases and the upward balancing energy cannot
decrease fast enough, downward balancing energy may be activated to keep the
balance. The simultaneous activation of both products is dealt with in practice
through separate markets. In the absence of ramp constraints, as this paper
assumes, it is su�cient to consider a single merit order that extends for both
negative and positive balancing energy.

9Self-dispatching can also enable TSOs to access �exible capacity that faces di�culties in
participating explicitly in the balancing energy market.



128 Chapter 4. Multi-Product Balancing Markets

In general, a market design should be evaluated based on its ability to
elicit both the type of the agents (fast or slow in our case) and their marginal
cost. This analysis only focuses on eliciting the type by assuming price-taking
fringe agents. Market power considerations are ignored. There is value in
understanding market behavior under simpli�ed assumptions. Designs that
fail this test are highly questionable for more complex conditions that include
market power. Our analysis shows that the case without market power is
already highly non-trivial, and is a necessary �rst step before venturing into
more complex analysis. The assumption on market power is anyway aligned
with REMIT, the European approach for tackling market power. REMIT is
an ex-process process that checks the competitiveness of the bids after market
clearing.

The model assumes that assets commit to self-dispatching at gate closure.
This is a realistic representation of some European countries where the system
imbalance is revealed with a thirty-minute delay.10 In other countries, such as
Belgium and the Netherlands, the system imbalance is revealed in real time,
at every minute. Our model underestimates the bene�ts of self-dispatching in
this context, since the risk associated with self-dispatching decreases with the
level of information that agents have on the system imbalance. Nevertheless,
the insights of the �mFRR only� imbalance pricing scheme are independent of
this assumption. Self-dispatching is always weakly dominated by participating
in the mFRR balancing energy auction, regardless of the information that is
available to the agent at the time of balancing. If assets can commit to self-
dispatching at the beginning of the ISP, or adapt dynamically to the revelation
of uncertainty as the ISP unfolds, a qualitative argument can be made for
an increased level of self-dispatch for the �mean mFRR and aFRR� and the
�max mFRR and mean aFRR� imbalance prices. A quantitative analysis would
require the characterization of the equilibrium.

The model also assumes that the system operator demand for mFRR bal-
ancing energy is not endogenized. In particular, the activation strategy does
not account for the induced self-dispatch. If the system operator is considered
to be an agent that participates in the multi-stage game with the objective
of minimizing activation cost, then only three cases based on the imbalance
pricing scheme need to be inspected. There is no need anymore to consider dif-
ferent activation strategies, since the system operator would submit a demand
for mFRR balancing energy that would minimize activation cost. The equilib-
rium with a responsive system operator and the �mFRR only� and the �mean
mFRR and aFRR� prices would actually be identical to the one generated by
an unresponsive system operator following the least-cost activation strategy.
The case with the �max mFRR and mean aFRR� is not as straightforward, as
there may exist an activation strategy such that the induced self-dispatching
results in a lower activation cost than the least-cost activation strategy of an
unresponsive system operator.

10European regulation mandates system operators to publish the system imbalance with
a delay of at most thirty minutes.
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4.6 Discussion

This section discusses the policy implications of the results that are illustrated
in the previous section and the impact of some modelling assumptions.

4.6.1 Policy Implications

One �nding of our analysis is that bidding the marginal cost in the balancing
energy auctions is not always the optimal strategy for the �mean mFRR and
aFRR� and the �max mFRR and mean aFRR� imbalance settlement schemes.
The �mFRR only� imbalance settlement scheme has the advantage of providing
a clear strategy for the agents: they should bid in the best-quality auction
they can, and they have no opportunity cost in the capacity auctions. This
strategy is weakly dominant, and independent of the other agents' strategies.
An advantage of a clear optimal bidding strategy is that it fosters competition
by reducing the barrier to entry. There is no need to rely on extended analytics
in order to participate pro�tably in the market. The other imbalance pricing
schemes can allow for pure strategy equilibria, but they can be harder to reach
in practice. They require agents to perfectly forecast the behaviours of the
other agents, since their strategy depends on the level of reactive balancing in
the system.

Our analysis also goes against one argument in favor of reactive balanc-
ing. It is argued that reactive balancing decreases the capacity procurement
cost, by reducing the reserve requirement. The reserve requirement drives the
width of the capacity demand curve and it is computed based on the historical
distribution of the system imbalance, which can be reduced through reactive
balancing [ELIA, 2021b]. This reasoning ignores the potential capacity cost in-
crease that is caused by a balancing setting that incentivizes reactive balancing
and generates arti�cial opportunity cost that is driven by imbalance settlement
pricing as opposed to the intrinsic economic value of reserve. The more reactive
balancing is pro�table, the higher the opportunity cost for agents to participate
in the balancing energy auctions and the higher the prices in the capacity auc-
tions. It is unclear which factor, the reduction in reserve requirements or the
increase in capacity prices, exerts a greater impact on the procurement cost,
and this should be evaluated in a system-speci�c manner, but the argument
cited above that has been used in public discourse is incomplete.

4.6.2 E�ect of Modelling Assumptions

The model assumes that assets commit to performing reactive balancing at gate
closure. This is a realistic representation of some European countries where the
system imbalance is revealed with a thirty-minute delay.11 In other countries,
such as Belgium and the Netherlands, the system imbalance is revealed in real

11European regulation mandates system operators to publish the system imbalance with
a delay of at most thirty minutes.
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time, at every minute. Our model underestimates the bene�ts of performing
reactive balancing in this context, since the risk associated with performing
reactive balancing decreases with the level of information that agents have on
the system imbalance. Nevertheless, the insights of the �mFRR only� imbal-
ance pricing scheme are independent of this assumption. Performing reactive
balancing is always weakly dominated by participating in the mFRR balancing
energy auction, regardless of the information that is available to the agent at
the time of balancing. If assets can commit to performing reactive balancing at
the beginning of the ISP, or adapt dynamically to the revelation of uncertainty
as the ISP unfolds , a qualitative argument can be made for an increased level
of reactive balancing for the �mean mFRR and aFRR� and the �max mFRR
and mean aFRR� imbalance prices. A quantitative analysis would require the
characterization of the equilibrium.

The model also assumes that the system operator demand for mFRR bal-
ancing energy is not endogenized. In particular, the activation strategy does
not account for the induced self-dispatch. If the system operator is considered
to be an agent that participates in the multi-stage game with the objective
of minimizing activation cost, then only three cases based on the imbalance
pricing scheme need to be inspected. There is no need anymore to consider dif-
ferent activation strategies, since the system operator would submit a demand
for mFRR balancing energy that would minimize activation cost. The equilib-
rium with a responsive system operator and the �mFRR only� and the �mean
mFRR and aFRR� prices would actually be identical to the one generated by
an unresponsive system operator following the least-cost activation strategy.
The case with the �max mFRR and mean aFRR� is not as straightforward, as
there may exist an activation strategy such that the induced self-dispatching
results in a lower activation cost than the least-cost activation strategy of an
unresponsive system operator.

Finally, the one-way substitutability assumption of the fast assets can be
discussed. It is common to assume that fast-moving assets can o�er both
mFRR and aFRR without restriction, however this ignores energy-constrained
assets such as batteries or pump-hydro power plants. These assets can have
di�culties in participating in the mFRR auction due to the longer activation
time in the same direction. Without the one-way substitutability, our model
could lead to price reversal in aFRR and mFRR capacity prices.

4.7 Conclusion

This chapter proposes a framework for analyzing European multi-product bal-
ancing auctions. We analyze the impact of the imbalance settlement scheme
and the mFRR activation strategy on the balancing market equilibria. The
reaction of rational fringe agents is endogenously accounted for by the model.

Four main insights can be derived from the model. (1) The �mFRR only�
imbalance pricing scheme incentivizes agents to o�er their capacity to the best-
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quality balancing energy auction they can. (2) The minimum balancing acti-
vation cost can be reached with the �mFRR only� and the � `mean mFRR and
aFRR� imbalance prices under the least-cost mFRR activation strategy. (3) If
the least-cost activation strategy is not applied, the �mean mFRR and aFRR�
imbalance price incentivizes a level of reactive balancing compensating for the
ine�cient activation strategy and generates a lower balancing activation cost
than the benchmark equilibrium where agents participate in the best balanc-
ing energy auction they can. (4) The �max mFRR and mean aFRR� imbalance
price induces a level of reactive balancing that increases the balancing activa-
tion cost.

Future works aim to extend the framework to account for cross-border in-
teractions through the European balancing platforms and empirically estimate
the mFRR activation strategy of European TSOs. Another line of research will
focus on the characterization of elastic demand curves for mFRR balancing en-
ergy.
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Figure 4.5: Sequence of markets and revelation of uncertainty with balancing capacity
markets.

4.A Balancing Capacity Markets

The sequence of markets updated to account for balancing capacity markets is
displayed in �gure 4.5. The capacity auctions (also called reserve auctions) are
assumed to be held consecutively.12 They generate balancing capacity prices,
P aFRR
cap and PmFRR

cap , based on the aFRR and mFRR capacity demand curves
and the fast and slow assets balancing capacity bids.

The fast assets that are not selected can compete in the mFRR capacity
auction with the slow assets. The capacity that is cleared in either the aFRR
or the mFRR capacity auction has to be o�ered to the corresponding energy
auction. The capacity that is not cleared can either participate in one of the
energy auctions through so-called free bids or self-dispatch.

Modeling balancing capacity markets requires the introduction of the gate
closure forecast, w, drawn from the random variable W . It represents the
information available at the gate-closure of the balancing energy auctions and
allows for multiple equilibria.13 Each equilibrium as a function of w can be
analyzed independently The gate-closure forecast was already introduced in
the result section.

Balancing capacity markets interact with both the wholesale energy market
and the balancing energy markets. The need for balancing capacity markets
stems from an opportunity cost for participating in the balancing energy mar-
kets. If wholesale energy markets are more pro�table than balancing energy
markets, �exible assets need additional incentives to participate in the balanc-
ing energy auctions. This analysis does not explicitly account for the wholesale
market but it shows the potential opportunity cost that can be generated by
combinations of mFRR activation strategies, imbalance pricing schemes, and
capacity demand curves.

12The product of higher quality, aFRR, is assumed to be auctioned �rst in our analysis.
The joint co-optimized procurement of aFRR and mFRR balancing capacity is out of scope,
although this is a very active �eld of debate at present, for instance in the UK.

13Article 8.2 of the Implementation Framework for the European Platform for the Exchange

of Balancing Energy from Frequency Restoration Reserve with Automatic Activation.
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Figure 4.6: Strategy set with balancing capacity market.

This analysis will describe the strategy sets for players participating in the
game described in �gure 4.5 and will then characterize equilibrium for the
corner case with full capacity demand curve, and illustrate it on the example
of section 4.4.

4.A.1 Strategy sets with Capacity Markets

The full game with balancing capacity markets is displayed in �gure 4.6. The
strategy set for an agent with marginal cost θ participating in this game is the
concatenation of the strategy set of the initial game for every possible realiza-
tion of gate-closure forecast (see (4.10) and (4.13)), (qaFRR(w), qmFRR(w), qSC(w)),
and the aFRR and mFRR capacity price bids, paFRR

cap and pmFRR
cap .14

QF (θ) = {(paFRR
cap , pmFRR

cap , qaFRR, qmFRR, qSD)|qaFRR + qmFRR + qSD = 1,

qaFRR ≥ 0, qmFRR ≥ 0, qSD ≥ 0} (4.39)

The optimal strategy of this game is obtained through backward induction
by starting at the bottom of the tree at the aFRR and mFRR activation payo�s
and the self-dispatching payo�. The payo� of the non-reserved capacity is then
back-propagated to the mFRR capacity auction and then to the aFRR capacity
auction.

The energy activation stage, after w is revealed, is not impacted by the
balancing capacity auctions and the payo� of the non-reserve capacity, zpow,

14In practice, agents must submit a price-quantity bid for the mFRR and aFRR balancing
capacity auction, (paFRR

cap , qaFRR
cap ) and (pmFRR

cap , qmFRR
cap ). We only consider pure strategies

between the aFRR and mFRR balancing capacity auctions thus the quantity component of
the balancing capacity bid is set at the maximum of the capacity.
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can be formulated as the expectation over the realization of w of the maximum
of the aFRR and mFRR balancing energy payo� and the self-dispatching payo�.

zpow =

∫
max

(
zaFRR(θ, w); zmFRR(θ, w); zSD(θ, w)

)
dFW (w) (4.40)

The expected non-reserved payo� is then backpropagated to the mFRR
capacity auction (see top-right of �gure 4.6). The tradeo� between (i) par-
ticipating in the mFRR balancing capacity auction and then in the mFRR
balancing energy auction and (ii) participating in the balancing market as non-
reserved capacity corresponds to the price component of the balancing capacity
bid. It determines whether a bid is selected in the capacity auction and is su�-
cient for characterizing pure strategies. As in the case of non-reserved capacity,
bidding the marginal cost in the subsequent balancing energy auction is weakly
dominant. The optimal bidding strategy at this stage can then be found by
solving (4.41) given an exogenous mFRR capacity price PmFRR

cap :

max
pmFRR
cap

{
PmFRR
cap + EW [zmFRR(θ, w)] if pmFRR

cap ≤ PmFRR
cap

zpow if pmFRR
cap > PmFRR

cap

(4.41)

Bidding the opportunity cost of participating in the mFRR balancing energy
auction, zpow−EW [zmFRR(θ, w)], is always optimal. If PmFRR

cap +EY1 [z
mFRR(θ, w)] >

zpow, then any price bid belonging to the interval [0, PmFRR
cap ] is optimal. If

PmFRR
cap + EY1 [z

mFRR(θ, w)] < zpow, then any price bid belonging to the in-
terval (PmFRR

cap ,+∞) is optimal. This optimal strategy results in the expected
payo� at the mFRR balancing capacity stage, zmFRR

sta , characterized as the
maximum between the mFRR procurement and activation payo� and the pay-
o� from not being reserved:

zmFRR
sta = max(PmFRR

cap + EW [zmFRR(θ, w)]; zpow) (4.42)

The expected payo� at the mFRR capacity auction stage is then backprop-
agated to the aFRR capacity auction (see top-left of �gure 4.6). The action
space at that stage is similar to that of the mFRR capacity auction stage. The
optimal bidding strategy is similar to the one in the mFRR capacity auction
except that the tradeo� is between the aFRR procurement and activation pay-
o�, P aFRR

cap +EW [zaFRR(θ, w)], and the expected payo� at the mFRR capacity
auction stage. This results in the following price o�er in the aFRR balancing
capacity auction:

paFRR
cap = zmFRR

sta − EW [zaFRR(θ, w)] (4.43)

In summary, rational fringe agents participating in the multi-product re-
serve and energy balancing auction game (i) allocate their non-reserved ca-
pacity between the aFRR and mFRR balancing energy auction, as well as
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self-dispatching depending on the highest activation payo� (bottom right of
�gure 4.6), (ii) bid the di�erence between solely participating in the mFRR
balancing energy auction and participating in the balancing market as non-
reserved capacity in the mFRR capacity auction (top right of �gure 4.6), and
(iii) bid the di�erence between solely participating in the aFRR balancing en-
ergy auction and the payo� at the mFRR capacity auction stage in the aFRR
capacity auction (top left of �gure 4.6).

4.A.2 Equilibrium with Full Capacity Demand Curve

The equilibria discussed in section 4.3 is a corner case of the complete multi-
product reserve and energy games of �gure 4.6 with zero aFRR and mFRR
capacity demand curves. A second corner case of this game arises when the
system operator uses full capacity demand curves, which procure the entirety of
the balancing capacity for both fast and slow assets in the forward (day-ahead)
market. This corresponds to inelastic reserve requirements for aFRR equal to
the installed fast capacity and reserve requirements for mFRR equal to the
installed slow capacity. This would correspond to aFRR and mFRR capacity
demand curve of width NF and NS . This scenario results in the following
equilibrium.

Proposition 4.7. The equilibrium with full capacity demand curves is char-
acterized by every fast agent being selected in the aFRR capacity auction and
every slow agent being selected in the mFRR capacity auction.15

Proof. At equilibrium, the mFRR capacity price is equal to the di�erence in
payo� between participating in the mFRR balancing energy auction versus par-
ticipating in the balancing market as non-reserved capacity for the agent with
the highest such cost, and the aFRR capacity price is equal to the maximum
between (a) the di�erence between participating in the aFRR balancing energy
auction versus participating in the balancing market as non-reserved capacity
for the agent with the highest such cost, and (b) the di�erence between par-
ticipating in the aFRR balancing energy auction versus participating in the
mFRR balancing energy and balancing capacity auctions for the agent with
the highest such cost. These opportunity costs are presented in �gure 4.7. No
price-taking agent has an incentive to deviate from the equilibrium given these
capacity prices.

Full capacity demand curves result in mFRR and aFRR capacity prices that
are equal to zero for the �mFRR only� imbalance pricing policy. Participating
in the mFRR balancing energy auction is the optimal strategy for slow assets,
therefore slow assets have no opportunity cost for doing so, which results in

15Technically, this equilibrium is generated from ϵ-full capacity demand curves that procure
the entirety of the balancing capacity minus a small ϵ. The equilibrium requires a fringe agent
to not be selected to ensure that the last agent that is selected in the balancing capacity
auction bids its opportunity cost.
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Figure 4.7: Opportunity cost in the capacity auctions.

a zero mFRR capacity price. If there is no mFRR procurement payo�, par-
ticipating in the aFRR balancing energy auction remains the optimal strategy
for fast assets. They too have no opportunity cost, which results in a zero
aFRR capacity price. More generally, every balancing energy market design,
i.e. the combination of an mFRR activation strategy and an imbalance pric-
ing scheme, that incentivizes agents to participate in the best quality auction
they can will result in zero aFRR and mFRR balancing capacity prices. This
includes the �mean mFRR and aFRR� imbalance price under the least-cost
mFRR activation strategy.

Balancing energy market designs that do not incentivize agents to o�er their
capacity in the best quality balancing energy auction can generate non-zero bal-
ancing capacity prices. Slow assets require a compensation for participating in
the mFRR balancing energy auction if it is not their optimal strategy. Even if
participating in the aFRR balancing energy auction is still the optimal strategy
for the fast non-reserved capacity, the mFRR procurement payo� pushes the
aFRR capacity price up as this generates an opportunity cost between solely
o�ering aFRR balancing energy and participating in the mFRR balancing ca-
pacity auction (see �gure 4.7).

4.A.3 Capacity Prices with Full Capacity Demand Curves

for the Illustrative Example

Self-dispatching can be restricted to the case of the �mean mFRR and aFRR�
and the �max mFRR and mean aFRR� imbalance pricing schemes given su�-
ciently large capacity demand curves. The �mFRR only� imbalance price does
not incentivize self-dispatching and generates zero capacity prices. This behav-
ior and the resulting mFRR balancing capacity prices are presented in �gure
4.8 for the illustrative example. The horizontal axis in this �gure represents
the slope of a linear mFRR activation strategy up to the least-cost activation
strategy at 2/3. The lower the slope, the less mFRR is activated by the TSO,
and the higher the opportunity cost for participating in the mFRR auction.
Note that the aFRR balancing capacity prices are equal to the mFRR balanc-
ing capacity prices as the dominating opportunity cost in �gure 4.7 is the one
related to participating in the mFRR capacity auction.
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Figure 4.8: mFRR and aFRR capacity prices (which are equal) under full capacity
demand curves for an mFRR activation strategy that is lower than or equal to that
of the least-cost activation strategy.





5 Conclusion

Market design is the cornerstone of electricity systems for reaching the triple
objectives of reliability, a�ordability and sustainability. It should create an
environment that incentivizes the e�cient short- and long-run allocation of
resources. This thesis discusses the short-run pricing and dispatching of elec-
tricity in the context of the integration of European balancing markets and
the introduction of scarcity pricing through an ORDC. It is composed of three
independent works analysing speci�c issues related to either scarcity pricing
(chapter 2), or the integration of European balancing markets (chapters 4), or
both (chapter 3). These works are also characterized by the techniques used.
Chapters 3 and 4 rely on game-theoretical techniques to assess di�erent reg-
ulatory frameworks concerning the balancing and imbalance prices, whereas
chapter 2 uses operations research methods to calibrate or determine demand
curves in a given regulation setting.

Chapter 2 provides a tool for assessing the calibration of administrative
ORDCs in Belgium. It uses a simulation of short-term electricity markets
of Belgium to measure the trade-o� between system reliability and cost of
operation generated by the ORDC calibration. The simulator is composed of
four embedded optimization problems replicating the short-term revelation of
uncertainty, the inertia of the power plants, and the decision process behind
their commitment and dispatch.

Chapter 3 analyses the introduction of scarcity adders on the balancing
and imbalance prices in an integrated European balancing market. It uses a
game-theoretical model to show the ine�ciencies resulting from the unilateral
implementation by a member state of adders without a real-time market for
reserve in a cross-border balancing market. The lack of a real-time market
for reserve modi�es the bidding incentives and generates out-of-merit activa-
tions that are detrimental to the member state using the adder because their
consumers bear the increased balancing cost.

Chapter 4 discusses the impact of multiple balancing energy products on
the balancing process. It uses a game-theoretical model to analytically de-
rive the impact of (i) the mFRR activation strategy, (ii) the imbalance pricing

139



140 Chapter 5. Conclusion

scheme, and (iii) the balancing capacity demand curve on the balancing pro-
cess equilibrium. The four main policy insights highlighted by our analysis are
(1) the �mFRR only� imbalance price allows for simple optimal strategies and
prevents self-scheduling from participants, (2) the minimum balancing activa-
tion cost can be reached from the �mFRR only� and �mean mFRR and aFRR�
imbalance pricing schemes under the optimal mFRR activation strategy, (3)
if the optimal mFRR activation strategy is not available, the �mean mFRR
and aFRR� imbalance pricing scheme incentivizes self-scheduling in a way that
reduces the balancing cost compared to the no-reaction benchmark, and (4)
the �max mFRR and mean aFRR� imbalance price distorts price signals and
induces an ine�cient level of self-dispatching.

These analyses have also highlighted the need for further research on Euro-
pean balancing markets. For instance, the roll-out of the cross-border balanc-
ing platforms and the subsequent occurrences of prices spikes (periods when
prices exceed 7500e/MWh) in Austria have demonstrated the need for im-
proved mFRR activation strategies. The use of elastic mFRR demand curves
in MARI is a potential method to mitigate those price spikes. Elastic mFRR
demand curves would enable the system operator to better manage the trade-
o� between aFRR and mFRR activation and could allow the operator to get
closer to the least-cost mFRR activation strategy discussed in chapter 4. This
raises questions about the optimal procedure to determine such elastic demand
curves. Parametric cost function approximation is a promising technique for
characterizing demand curve [Cartuyvels et al., 2024]. It is a reinforcement
learning technique that allows us to model the problem of �nding the optimal
demand curve parametrization as a stochastic non-convex program. The vari-
ables of the problem are the parameters of the demand curve (its width, the
number of steps, . . . ) and the objective is a stochastic cost function. This
method could also be applied in other contexts involving administrative de-
mand curves such as an operating reserve demand curve or a capacity demand
curve.
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