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Electricity Markets

* Pricing in Electricity Markets with Non-Convexities
* Day-Ahead Market

e Unit Commitment problem

 Commercial state-of-the-art: Mixed Integer Linear Programming

* Non-convexities: due to commitment costs and technical
constraints, indivisibilities.

* There may be no market-clearing prices!

e Standard marginal cost pricing may result in losses even for truthful
bidders

* Prices may not be adequate to cover for start-up/minimum-load costs

» Several Approaches proposed to define prices in this context (keeping marginal
costs as prices, and/or providing side-payments to market participants, and/or
“inflating marginal costs” to obtain revenue adequate prices). (*)

* G. Liberopoulos and P. Andrianesis, “Critical review of pricing schemes in markets with non-convex
costs,” Oper. Res., vol. 64, no. 1, pp. 17-31, 2016.



Convex Hull Pricing [Preliminaries]

e Unit Commitment problem

min f(X,y) = Zj;(xi,yl.), /,(-): Cost function of unit i
X,y ;

X.. . Continuous variables,
e.g., power output of
unit Z, at time period ¢

subject to:

System constraints, in,t =D, Vt,
i

e.g., power balance: )., . Discrete variables,

e.g., status (on/off) of
unit 7, at time period ¢

Generation unit constraints, D :

e.g., min/max limits,

ramp rates, .

min up/down times, etc.: (Xl. \ Yz’) c Zl. , V1. 7. : Setof constraints of
unit i

Demand at time period ¢



Convex Hull Pricing [Preliminaries]

Lagrangian Dual of the Unit Commitment Problem

max g(h),

where: q()») = 1Inf L(X,y,K),

(Xi ayl' )EZi ,VI

(Unit Commitment:
min /(%)= 3. fi(X.¥).

subject to:

le.’t =D, Vi,

L(XayJV) = Zfi(xz"yl')_zﬂ“t (in,t _Dzj'

Unit Commitment problem.

(x,,y,)eZ,, Vi.

Convex Hull prices are obtained by the solution of the Lagrangian Dual of the

P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity prices and energy uplift,” Working Paper, John F.

Kennedy School of Government, Harvard University, 2007.
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Convex Hull Pricing [Preliminaries]

* Equivalent convexified primal formulation

. : A
. ” Unit Commitment:
min > /" (x;,¥,); min £(x,¥)= Y £(%,3,)
S Xy l_
subject to: subject to:
> x,=D, Vt, — 4, > x,=D, Vi,
: X,y¥.)EZ., Vi.
(x,,y,) € conv(Z,), Vi. s (x;,y,) €Z,

» Convex Hull prices are obtained by the solution of the UC problem, replacing the
objective function by its convex envelope, and the feasible set of each unit by its
convex hull.

P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity prices and energy uplift,” Working Paper, John F.
Kennedy School of Government, Harvard University, 2007.



Convex Hull Pricing [Preliminaries] (Parenthesis)

* Current Marginal Cost Pricing?

y* . Optimal values of discrete variables (Unit Commitment: h
min f(x,y) =Y £(x,,y)), min £(%,y) =2 £,(x;,¥,),
su bject to: l SUbject to:
N'x,=D, V1, — A, > x,=D, Vi,
P i
* : X.,vV.)eZ., Vi
(Xi’yi)EZi’ Vi. L ( i yz) i

» Marginal Costs (Locational Marginal Prices) are obtained by the solution of the
Linear Programming problem that results after fixing the discrete variables to
their optimal values.

» If generation units incur losses under these prices, they are compensated with
make-whole payments.



Convex Hull Pricing [Preliminaries] (Parenthesis)

 How about Integer Relaxation?

Y : Continuous variable (relaxed) " Unit Commitment: )
min f(x,y) =Y £(X,,¥,), min £(%,y) =2 £,(x;,¥,),
X,y - ’ i
subject to: subject to:

N'x,=D, V1, — A, > x,=D, Vi,

; i
: X,yY.)eZ., Vi.
(x,,y.)€Z,, Vi, - (%Y)EZ,

0< Vi <1, Vi,t. (assume relaxed binary)

» Integer Relaxation prices are obtained by the solution of the Linear Programming
problem that results after relaxing the discrete variables.

» Integer Relaxation is at most as tight as the Lagrangian Dual (usually less tight).

» Extended Locational Marginal Prices currently relax fast-start units (limited set).

* H. Chao, “Incentive for efficient pricing mechanism in markets with non-convexities,” J. Reg. Econ., vol 56, pp. 33-58,
2019.



Convex Hull Pricing [Preliminaries]

* Key Property: Convex Hull prices support an arbitrary market solution,
with minimum uplift. This uplift equals the duality gap between the
market (primal) solution and the optimal solution of the Lagrangian Dual.

Support the market solution? Make participant (generation unit) indifferent between:
(i) following the market schedule, and

(ii) self-scheduling.

P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity prices and energy uplift,” Working Paper, John F.

Kennedy School of Government, Harvard University, 2007.
W. W. Hogan and B. J. Ring, “On minimum-uplift pricing for electricity markets,” Working Paper, John F. Kennedy School of

Government, Harvard University, 2003.



Convex Hull Pricing [Preliminaries]

* Key Property: Convex Hull prices support an arbitrary market solution,
with minimum uplift. This uplift equals the duality gap between the
market (primal) solution and the optimal solution of the Lagrangian Dual.

Support the market solution? Make participant (generation unit) indifferent between:
(i) following the market schedule, and
Define Profit: (ii) self-scheduling.

gpi(xﬂyz")\‘) = Zﬂ’txi,t _fi(xisyi)

Market Schedule ———— @, (X} y ™) (i)

Self-schedule for

given ;\' - (def’yfdf) :etrgr?ix[q)i(xi:yi;)“)]
X;»Yi €L,

—— (Y (i)

Uplift? Additional payments required to compensate (ii) (i)
for Lost Opportunity Costs (LOC) LOC, = @ (x5 ,y5 ;1) — g (x 17kt yMarket )

P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity prices and energy uplift,” Working Paper, John F.

Kennedy School of Government, Harvard University, 2007.
W. W. Hogan and B. J. Ring, “On minimum-uplift pricing for electricity markets,” Working Paper, John F. Kennedy School of

Government, Harvard University, 2003.



Convex Hull Pricing [Preliminaries]

* Key Property: Convex Hull prices support an arbitrary market solution,
with minimum uplift. This uplift equals the duality gap between the
market (primal) solution and the optimal solution of the Lagrangian Dual.

Support the market solution? Make participant (generation unit) indifferent between:
(i) following the market schedule, and
Define Profit: (ii) self-scheduling.

gpi(xﬂyz")\‘) = Zﬂ’txi,t _fi(xisyi)

Market Schedule ———— @, (X} y ™) (i)

Self-schedule for

given ;\' - (def’yfdf) :etrgr?ix[q)i(xi:yi;)“)]
X;»Yi €L,

—— (Y (i)

Uplift? Additional payments required to compensate (ii) (i)
for Lost Opportunity Costs (LOC) LOC, = @ (x5 ,y5 ;1) — g (x 17kt yMarket )

Duality gap = minimum uplift? ~ f —q* = inf{ZLOCl)
| &

P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity prices and energy uplift,” Working Paper, John F.

Kennedy School of Government, Harvard University, 2007.
W. W. Hogan and B. J. Ring, “On minimum-uplift pricing for electricity markets,” Working Paper, John F. Kennedy School of

Government, Harvard University, 2003.
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Convex Hull Pricing [Computational Approaches]

Main Computational Approaches employed so far:

e Subgradient methods

Ve

(Lagrangian Dual) max q(A),

where: Q(l)=( inf L(x,y,M\),

X;,y;)€ZL; Vi

L(x,y,m=Zﬁ(xi,yi)—21t[2xi,,—Dtj,

&

» Extended formulations (convex hull)

-

(Convexified Primal) min Zfi**(x,-, y.)
X,y -
subject to: in,t =D,, Vi,
i

(Xx,,y,) econv(Z,), Vi.

11



Convex Hull Pricing [Computational Approaches]

e Subgradient methods (first “early” approaches)

* Solve the Lagrangian Dual " max q(h),
A

 An ISO initially tried this approach, but... .
Y PP where: g(h)= mf L(X,y,}),
* Convergence difficulties. (X,,¥,)€Z, Vi

* Introducing customized algorithms in Ly, )= fi(x,y)- D4 [me _Dtj'
subgradient methods made vendor ! ! !
uncomfortable...

- J

*  Would it always work?
* Effort abandoned.

* C.Wang, P. B. Luh, P. Gribik, L. Zhang, and T. Peng, “A subgradient based cutting plane method to calculate convex hull
market prices,” in Proc. 2009 IEEE PES GM,, Calgary, AB, Canada, 26—30 July 2009.

* C.Wang,T. Peng, P. B. Luh, P. Gribik, and L. Zhang, “The subgradient Simplex cutting plane method for extended
locational marginal prices,” in IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2758-2767, 2013.

* G.Wang, U. V.Shanbhag, T. Zheng, E. Litvinov, and S. Meyn, “An extreme-point subdifferential method for convex hull
pricing in energy and reserve markets — Part |: Algorithm structure,” IEEE Trans. Power Syst., vol 28, no. 3, pp. 2111-
2120, 2013. ——, Part ll: Convergence analysis and numerical performance,” IEEE Trans. Power Syst., vol 28, no. 3, pp.
2121-2127,2013.

12



Convex Hull Pricing [Computational Approaches]

Extended Formulations (latest stream of works)

Characterize the convex envelope of the cost functions,

and the convex hull of the constraints sets.

Usually yield approximate, not exact, convex hull prices.
Problematic constraints (e.g., ramps)
Result in Linear Programs at least impractical to solve.

Depend on specific formulations of constraints, on a
case-by-case basis.

Difficult to implement, complicate modifications (e.g.,
additions of new units).

Lack intuition of the price formation.

s

nxliyn 217Xy,
subject to:

le.’t =D, Vi,

(x,,y,) € conv(Z,), Vi.
N

J

B. Hua and R. Baldick, “A convex primal formulation for convex hull pricing,” IEEE Trans. Power Syst., vol 32, no. 5, pp.
3814-3823, 2017.
Y. Yu, Y. Guan, and Y. Chen, “An extended integral unit commitment formulation and an iterative algorithm for convex
hull pricing,” IEEE Trans. Power Syst., vol 35, no. 6, pp. 4335-4346, 2020.
Y. Chen, R. O’Neill, and P. Whitman, “A Unified approach to solve convex hull pricing and average incremental cost
pricing with large system study,” Working Paper, 2020.
D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in electricity markets: Formulation, analysis, and
implementation challenges,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4068-4075, 2016.

B. Knueven, J. Ostrowski, A. Castillo, and J.-P. Watson, “A computationally efficient algorithm for computing convex hull
prices,” SAND2019-10896 J, Sandia National Labs, Albuquerque, NM, Sep. 2019.
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Convex Hull Pricing [Proposal]

* Key ldea: (*)

* Generalized Linear Programming, a.k.a. Dantzig-Wolfe decomposition, a.k.a.
Column Generation solves the Lagrangian Dual, equivalently the convexified
primal!

T. L. Magnanti, J. F. Shapiro, and M. H. Wagner, “Generalized linear programming solves the dual,” Manag. Sci.,
vol. 22, no. 11, pp. 1195-1203, 1976.

* A. M. Geoffrion, “Lagrangian relaxation for integer programming,” Mathem. Program. Study, pp. 82—-114, 1974.

*  @G.B. Dantzig and P. Wolfe, “Decomposition Principle for Linear Programs,” Oper. Res., vol. 8, no. 1, pp. 101-111,
1960.

* Main motivation: Crew-scheduling problems!

* C.Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsebergh, and P. H. Vance, “Branch-and-Price: Column
generation for solving huge integer programs,” Oper. Res., vol. 46, no. 3, pp. 316329, 1998.

* F Vanderbeck, “On Dantzig-Wolfe decomposition in integer programming and ways to perform branchingin a
branch-and-price algorithm,” Oper. Res., vol. 48, no. 1, pp. 111-128, 2000.

. M. E. Lubbecke and J. Desrosiers, “Selected Topics in Column Generation,” Oper. Res., vol. 53, no. 6, pp. 1007—-
1023, 2005.

* P. Andrianesis, D. Bertsimas, M.C. Caramanis, W.W. Hogan, “Computation of Convex Hull Prices in
Electricity Markets with Non-Convexities using Dantzig-Wolfe Decomposition,” IEEE Transactions on
Power Systems, vol. 37, no. 4, pp. 2578-2589, 2022, doi: 10.1109/TPWRS.2021.3122000.
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Convex Hull Pricing [Proposal]

* Method
Define feasible schedule 7 of unit i : Z — (X, ) y ) = Z

with cost: éln =f(f(f,§’n)

Unit Commitment problem:

mm g(z) = Zé”zl”,
subject to:

Zx z' =D, Vt,

>z =1, Vi,

z; €40,1}, Vi,n.



Convex Hull Pricing [Proposal]

Method
Define feasible schedule 7 of unit i : Z — (X, ) y ) = Z

An 4N

with cost: éln Zf(X, Y )

Unit Commitment problem:

mm g(z) = Zé”zl’“,
subject to:

Zx z! =D, V1,
Zz =1, Vi,

xion n .
' \p relaxat z; 20, Vi,n.
z, € —V1,n.

16



Convex Hull Pricing [Proposal]

Method
Define feasible schedule 7 of unit i : Z — (X, ) y ) = Z

An 4N

with cost: éln Zf(X, Y )

Unit Commitment problem: (LP relaxation)

mm g(z) = Zé”zl’“,

subject to:
Zx 2" =D, Vi, —@

sz =1, Vi, Convexity constraint

n .
z, 20, Vi,n.

17



Convex Hull Pricing [Proposal]

* Method (@ iteration k)

Restricted Master Problem
. k S/
min Z) = E c'z
v g ( ) [

i,neNl-k
subject to:
k
AN n __
3 &z =D, Yi,— A,
i,neNik S

Z z; =1, Vi, — 7Z'lk

neNik

z!' >0, Vi,ne N/.

— Sub-problem of unit i

If negative reduced cost (rc),
then, add schedule to RMP. minrc,(X,,y,) = f,(X,,y,)— Z Afx, -
X;,Y; ¢ ’

subjectto: (X,,¥,)€Z,

18



Convex Hull Pricing [Proposal]

* Method (@ iteration k)

Restricted Master Problem

ming*(z)= 2, &'z,

I neNk

subject to:

k
3 &z =D, Yi,— A,

i,neNik

ZZ—IVZ—»jZ'

neNk

z!' >0, Vi,ne N/.

If negative reduced cost (rc),
then, add schedule to RMP.

 Constraints of Units: (X,,y,) € Z,

- Bounded feasible sets (always true).
- MILP representation yields finite
convergence.

e Exact convex hull prices.

e Valid Lagrangian Dual bounds.
* Highly parallelizable.

* Highly generalizable!

— Sub-problem of unit i

. k
Iinynrcl.(xl.,yi) = f,-(X,-,y,-)—Z& Xir —
i°Yi t

subjectto: (X,,¥,)€Z,

19




Convex Hull Pricing [Proposal]

* Economic Interpretation

Restricted Master Problem

ming*(z)= 2, &'z,

I neNk

subject to:

k
3 &z =D, Yi,— A,

i,neNl.k

ZZ—IVZ—»jZ'

neNk

z!' >0, Vi,ne N/.

If negative reduced cost (rc),
then, add schedule to RMP.

~

max
X;»Yi

{Zi X, Ji(xpy,-)}

\_subject to: (X,,y,)eZ,

Profit maximization if self-scheduling under A

Equivalent
sub-problem

A

~

/

» Sub-problem of unit i

\su bject to:

I?iyn re,(x,,y,) = f,(X,,y,)— Zﬂ“thi,t -
i2Yi t
(Xiayi) € Zi

20



Convex Hull Pricing [Proposal]

* Economic Interpretation

Restricted Master Problem

min g*(z) = Z

i,neNik

~n_n

C z;,

subject to:

.
max |:Z ﬂ’thi,t o fz (Xi Y, ):|

X;»Y;

\_subject to: (X,,y,)eZ,

Profit maximization if self-scheduling under A

Equivalent
sub-problem

A

~

/

t

ko
3 &z =D, vi,—A

i,neNl.k

Z z; =1, Vi, — 7Z'lk =

neNik

z!' >0, Vi,ne N/.

If negative reduced cost (rc),
then, add schedule to RMP.

k
[_ﬁi] at iteration &

» Tentative price at time ¢, iteration &

Tentative profit of unit i,

» Sub-problem of unit i

\su bject to:

~

minrc,(X,,y,) = f,(X,,y,)— Zﬂ“thi T
X;»Yi t ,
(Xiayi) < Zi

J

* W.J. Baumol and T. Fabian, “Decomposition, pricing for decentralization and external economies,” Manag. Sci., vol.

11, no. 1, pp. 1-32, 1964
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Convex Hull Pricing [Proposal]

* Economic Interpretation

Restricted Master Problem
mlng “(z) = Z c'z!,

I neNk

subject to:

Grofit maximization if self-scheduling under A’ R
max {Z/I X, fl.(xl.,yl.)} Equivalent
hiodi sub-problem
\_subject to: (X,,y,)eZ, Y,

ko
3 &z =D, vi,—A

t

i,neNl.k

ZZ—IVZ—»jZ'

neNk

z; 20, Vi,neNik.

If negative reduced cost (rc),
then, add schedule to RMP.

» Tentative price at time ¢, iteration &

A
Self-scheduling profit > Tentative profit

[
»

[_ k ] Tentative profit of unit i, at
i iteration &k

re,(X.,Y,;) [ ]{Zik f,.(X,-,y,-)}
/

» Sub-problem of unit i

min e, (X, y,) = f;(X,¥,) = DA%, -
i2Yi t
Qubject to: (X,y)€Z,

J

* W.J. Baumol and T. Fabian, “Decomposition, pricing for decentralization and external economies,” Manag. Sci., vol.

11, no. 1, pp. 1-32, 1964

22



Numerical lllustrations [Stylized Examples]

* Asimple example [Schiro et al. 2016, Ex. 1]
* Two Generators: (A) and (B) serve 35 MW load, single period.

. - . A Unit Commitment \
Consider trivial schedules: z!, — X!, =10;¢,, = 500; /

Problem (MILP):
zp =X, =0; 7, =0. xging=SOxA+leB,
subject to:
X,+x, =35,
/RMP(L): min g' =500z} + 0z} +1000s 10=x, =50,
subjectto: 102!+ 02 +5 =35, 4'(=1000) \ =200 5 <101

zi, =1,— 7, (= -9500)

\ 2}3:1,—)772(=0) J

D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in electricity markets: Formulation, analysis, and
implementation challenges,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4068—4075, 2016.
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Numerical lllustrations [Stylized Examples]

* Asimple example [Schiro et al. 2016, Ex. 1]
* Two Generators: (A) and (B) serve 35 MW load, single period.

p
—>| Sub-problems: [tentative] —[self]

max (lOOOxA—SOxA) — x,=50— rc,=9500-47500=-38000<0

10<x <50
2 A2 en. A2

max (1000x, —10x,) —— x, =50 — rc, =0—49500=-49500 <0

B=20)s: 2 ~2 A2
yp 0.y — zp, > Xz =50;c; =500.
N

J

RMP(1):  min g' =500z, + 0z +1000s

Z452B,S

subjectto: 10z + 0z +5=35,5 A'(=1000) )

zi, =1L, 7, (= -9500)
» =1 (ﬂ;(= 0 )
D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in electricity markets: Formulation, analysis, and
implementation challenges,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4068—4075, 2016.

z
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Numerical lllustrations [Stylized Examples]

* Asimple example [Schiro et al. 2016, Ex. 1]
* Two Generators: (A) and (B) serve 35 MW load, single period.

Sub-problems: [tentative] —[self]

max (lOOOxA—SOxA) — x,=50— rc,=9500-47500=-38000<0

10<x <50
2 A2 =0 A2

max (1000x, —10x,) — x, =50 — rc, =0—49500=—49500 < 0

et 2 a2 ~2
€{0,1}. > 3 — . —

A

" rmP(2) “min_ g" =500z, + 0z, +2500z; + 500z +1000s

subjectto: 10z, +0z, +50z° +50z; +5 =35,—> 1°(=10)

zi +z2 =1,— 7’ (= 400)

\_ zy+2, =1,— 7, (=0) )

D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in electricity markets: Formulation, analysis, and
implementation challenges,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4068—4075, 2016.
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Numerical lllustrations [Stylized Examples]

* Asimple example [Schiro et al. 2016, Ex. 1]
* Two Generators: (A) and (B) serve 35 MW load, single period.

—>(Sub-problems:
[tentative] —[self]

10<x ,<50

xg?%??’(loxB—loxB) — rc; =0-0=0
Yp&€lU,ly.

-

max (leA —SOxA) — x,=10— rc, =—400-(-400)=0

RMP(2):  min  g” =500z, + 0z, +2500z; + 500z +1000s

subjectto: 10z, +0z, +50z° +50z; +5 = 35,-C> A (= 10)\

zi +z2 =1, 7’ (= 400)

Zp+2; = 1,-Qﬂ§(= 0) )

D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in electricity markets: Formulation, analysis, and

implementation challenges,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4068—4075, 2016.
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Numerical lllustrations [Stylized Examples]

* Asimple example [Schiro et al. 2016, Ex. 1]

* Two Generators: (A) and (B) serve 35 MW load, single period.

7

A2 =2 =10

g2 =g* =750 (2}4 =1, Z}B =0.5, Zé = 0.5.)

RMP(2):  min_ g” =500z, + 0z, +2500z

Z42ZB 24,25 »S

subjectto: 10z, +0z, +50z° +50z; +5 =35,

Uplift = /" —g" =1750—-750 =1000
+500z, +1000s
sz(z 10)\
zi +z2 =1, 7’ (= 400)
Zp+2; = 1,-Qﬂ§(= 0) )

D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in electricity markets: Formulation, analysis, and

implementation challenges,” IEEE Trans. Power Syst., vol. 31, n

0.5, pp. 4068-4075, 2016.
27



Numerical lllustrations [Stylized Examples]

* Another “simple” example [Chen et al. 2020, Ex. 2]

* Two Generators, 3-hours, ramp constraints.

Unit Commitment

3 3
/minz 10-p,, + Z(ao “uy, +50-p,, + 1000- vh
t=1 t=1

Power balance constraint:
Pi: + P2 = LD
Vo Uz, €2, Are binary forl=t=3

Limit constraints:
0=p, =100

20Uy, = ppr = 35U,
Ramping constraints:
Pzt —
Paeo1 — P2 = DUy, + 36,5,
Binary constraints:

for 1l=t<3
for 1=t<=3

(al)
(a2)
Pas 1 = DlUps g + 22,57, for 1=t<3 (a3)
for 2=t=3 (ad)

Usp — Unp g = Vap — g forl=t=3

with u,, = 0 for initially of f (as)
Vo < Uy forl=t<=3 (a6)
Vo= 1—Upe s forl=t=3 (a7)

forl=t=3

(a8)
(a9

Q’a.ua + V313~ 2333 = 0.

Extended Formulation

/ The extended formulation is:

min ¥2=; 10 - py o + 1000 - (T rieeqoz,03.13) Yook +
Ere{l.z.s}“’z.r) +30- (Ere{o.l.z] Yee[e+13] W +
X tke[02,03,18} Dise[t+1,k—1] }'z,:k) +50-
(Ere{o.m}zse[\-ﬂ.a] G'Wir +sze{oz,03.13} EsE[r+1.k—1] (T}'zs,sk)
Limit constraints
0=p,, =100 for 1=t=3
20w,, = qwi, =35w,, t€[0,2],5 €[t +1,3]
20V2,60 = qVie = 35 Youi

tk € {02,03,13}, s e[t + 1L,k —1] (b3)
Ramping constraints

(b1)
(b2)

qyeE < 225 you qwitl = 225wy,

qyZos — q¥ies =5 V203 GV30s — qVi0s < 5 Vaos,
qwit! — qwi, < Swy, t €[0,2],5 € [t + 1,3]
qws, —qwiil = Swy,. t €[0,2],5 € [t + 1,3]
Binary constraints

—030 + Y202 + Y203 + W20 =0,
—055+ Wy =0,

(b4)

—053 + V213 + Wy =0,
Vapz — Zazz — Z223 = 0,
0,0t 05y 0,5 =1

The final dispatch MW of Gen2:

P21 = qVigs + qVigs + qwio

P22 = V303 + qViis + qWio + qwi,
P2z = qwio + qwiy + qwi,

Power balance constraint:

Piet+ P2 = LD, forl=t=3

04,,: Tepresentng Gen? staying off through t and starting up
at the beginning of t+1, for t=0.1,2

W, representing Gen? starting at the beginning of t+1 and
staying on until the end, for t=0.1.2.

When wy, =1, Gen 2 1s on for s=t+1. ... 3. Define the
dispatch variable as qw3,, s € [t + 1,3]

V2,1 Tepresenting Gen? starting at the beginning of t+1 and
shutting down at the beginning of k, for tk € {02,03,13}.
Define the dispatch variable g5, s € [t + 1,k — 1]

Z 4 Tepresenting Gen2 shut down at the beginning of t and
staying off until the beginning of k+1, for tk € {22,23,33}.

(ag)

* Y. Chen, R. O’Neill, and P. Whitman, “A Unified approach to solve convex hull pricing and average incremental cost
pricing with large system study,” Working Paper, 2020.
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Numerical lllustrations [Stylized Examples]

* Another “simple” example [Chen et al. 2020, Ex. 2]
* Two Generators, 3-hours, ramp constraints.

e Column Generation terminates in 4 iterations.

$7,500
A MILP: f* = $7,34‘0
$7.000 — CH: q(lQ,10,276) = $6,975;
| Duality Gap = $365.
| 276
$6,500 | 7 -
AIC 3-bin: q(10,10,1161) = $4,762.5;
Gap = $2,5775. | g
$6,000 1
IR: q(10,10,182.7) = $6,464.55; 1161
P Gap = $875.45. .
$5,500 3 ap =$ Dual function
146]3 AIC extended: (10,10,146.3) = $6,202.25; q(10,10,43)
$5,000 Gap = $1,137.75.
1827 A MWh
$4,500 | 3 3 (8/ )
[=RigNeligNaRisielipialiseRipgielisialigieRisiehigfalisielipgfehisNaliplalisfehipgNealisNaliphwhisNelipNel iRl ipNa]
=TT O "+ OO AT OO AT OO AT AT OO AT OO AT OO AT OO AT OO AFORD

Evaluation of g(A) for A = (10,10,A3), 90 <= A3 <= 1200.

Y. Chen, R. O’Neill, and P. Whitman, “A Unified approach to solve convex hull pricing and average incremental cost
pricing with large system study,” Working Paper, 2020.
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Numerical lllustrations [Larger Datasets]

FERC PIM-like dataset [Krall et al., 2012]

~ 1000 Generators, 24-hours, up to 10 block offers for energy, reserve offers

Unit constraints (min/max, min up/down times, ramp up/down, start-
up/shut down ramps)

RMP Ob;.
value

g® —g*
$700

$600
$500
$400 1
$300
$200
$100

8 Columns [Warm]
--RMP obj [Warm]

‘75 Columns [Flat]
--RMP obj [Flat]

Duality Gap

$0 "W

fr—g'=$435

[teration (k)

Columns

Bt 25000

ety 20000

11 5000

0

11 15000

it 10000

* E. Krall, M. Higgins, and R. P. O’Neill, “RTO unit commitment test system,” FERC Staff Report, 2012.
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Numerical lllustrations [Larger Datasets]

* FERC PJM-like dataset [Krall et al., 2012]

* Additional instances (reduced ramp limits)

RMP Objective function Generated Columns
(relative to optimal LD) added to the RMP
10000
8000 12000
7000
10000
6000
5000 8000
4000 6000
3000 4000
2000
1000 2000
0 S — — 0
1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
s SUMMET [60-Min] s Summer [30-min] Summer [15-min] s SUMMeEr [60-min] s====Summer [30-min] Summer [15-min]
Winter [60-min] s \Vinter [30-min] s \\inter [15-min] Winter [60-min] s \Vinter [30-min] s \\inter [15-min]

* E. Krall, M. Higgins, and R. P. O’Neill, “RTO unit commitment test system,” FERC Staff Report, 2012.
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Numerical lllustrations [Larger Datasets]

FERC PIM-like dataset [Krall et al., 2012]

14000.00

12000.00

10000.00

8000.00

6000.00

4000.00

2000.00

0.00

Additional instances (reduced ramp limits)

CH Uplift Bounds CH Uplift Bounds
Comparison with LP Uplift Comparison with LP Uplift
Summer [60-min] Summer [15-min]

14000.00
\ 12000.00
p— 10000.00
8000.00
6000.00
4000.00
2000.00
0.00
135 7 911131517192123252729313335373941 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
=) B: Summer [60-min] =—=Summer [15-min]
LB: Summer [60-min] Summer [15-min]
LP Uplift: Summer [60-min] LP Uplift: Summer [15-min]

* E. Krall, M. Higgins, and R. P. O’Neill, “RTO unit commitment test system,” FERC Staff Report, 2012.
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Numerical lllustrations [Larger Datasets]

FERC PIM-like dataset [Krall et al., 2012]

Additional instances (reduced ramp limits)

1.5

05

Energy Price Trajectories
Summer (60-min)

38 38

Reserve Price Trajectories
Summer (60-min)

40

41

Energy Price Trajectories
Summer (15-min)

Reserve Price Trajectories
Summer (15-min)

33



Numerical lllustrations [Larger Datasets]

|EEE RTS GMLC dataset [Barrows et al., 2020]

72 thermal generators, 73 nodes and 120 lines (includes transmission
constraints), 24 hours, 3-block energy offers, reserves, and same unit
constraints with FERC dataset.

RMP Objecitive function Generated Columns

(relative to Optimal LD) added to the RMP
10000 4000
3500
8000 3000
6000 2500
2000
4000 1500
2000 1000
500
0 0

TN RYRGIRESSS “PaNALIRLEINRLSSE
s Symmer( 1) == Summer(2) Summer(3) e SN ME (1) == Summer(2) Summer(3)
Winter(1l) es\Vinter(2) e\Vinter(3) Winter(l) es=\Vinter(2) es\\inter(3)

* Barrows et al., The IEEE Reliability Test System: A Proposed 2019 Update, IEEE Trans. Power Syst. Vol 35, no. 1,

2020, pp. 119-127.
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Numerical lllustrations [Larger Datasets]

 SPP dataset

e 765 resources (~630 available), 24 hours, 10-block energy offers, reserves
(RegUp, RegDn, Spin, Supp), and same unit constraints with FERC dataset.

1800
1600
1400
1200
1000
800
600
400
200
0

RMP Objective Function
(relative to Optimal LD)

1 6111621263136414651566166717681

e Series]  es—Series?

12000

10000

8000

6000

4000

2000

0

Generated Columns
added to RMP

1 6 111621263136414651566166717681

e Series] e Series?
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Thank you for your attention!

Questions?

panagiotis.andrianesis@minesparis.psl.eu

panosa@bu.edu

24
BOSTON
&, Psix
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