Grid-aware Flexibility Aggregation for Zonal Balancing Markets

Efthymios Karangelos & Anthony Papavasiliou

School of Electrical and Computer Engineering,
National Technical University of Athens,
Athens, Greece.

ICEBERG Interim Workshop,
June 14, 2024,
Athens, Greece
Cross-border integration for electricity balancing

Source: ENTSO-e website

AI generated image
How is the grid represented?

- Balancing market clears at the zonal resolution.
Intra-area **congestion** to be managed by respective TSO.
Available tools to manage intra-area congestion

Ex-ante Bid Filtering

- TSO can filter any intra-area bid that is anticipated to cause congestion.
 - How to do this?
 - Intra-zonal grid constraints hidden from the market?
 - TSO risk aversion also hidden from the market?

Ex-post Bid Blocking

- TSO can block & replace any activated intra-area bid to resolve congestion.
 - Only replacing within the same zone causes inefficiencies?
Aggregation/disaggregation approach [1, 2, 3]

- Aggregate intra-zonal resources into a price – quantity curve (ex-ante).
 ✓ Communicate both resource & intra-zonal congestion mgmt costs.

- Dispatch & settle intra-zonal resources s.t. grid constraints (ex-post).
Residual Supply Function (RSF) \textit{ex-ante} approximation

► Given an export volume, minimize intra-area cost s.t. grid constraints.
 Ø over an export volume range:

► Resulting price – quantity curve can be submitted in the zonal market.
Aggregation/disaggregation approach [1, 2, 3]

Residual Supply Function (RSF) *ex-ante* approximation

- Given an export volume, minimize intra-area costs s.t. grid constraints.
 - to construct a price – quantity curve.

Why revisit?

- Incremental export cost depends on uncertain & unobservable factors:
 - realization of imbalances all over the multi-area grid.
 - activation of balancing bids in external control-areas.
 - detailed topologies of external control-areas.

- Represented by a single "best-guess" in [2, 3]:
 \star comes with the risk that the disaggregation cost may be greater than approximated by the RSF (a.k.a., disaggregation risk).
Aggregation/disaggregation approach [1, 2, 3]

Residual Supply Function (RSF) \textit{ex-ante} approximation

▶ Given an export volume, minimize intra-area costs s.t. grid constraints.

✓ to construct a price – quantity curve.

Why revisit?

▶ Incremental export cost depends on uncertain & unobservable factors:
 – realization of imbalances all over the multi-area grid.
 – activation of balancing bids in external control-areas.
 – detailed topologies of external control-areas.

▶ Represented by a single “\textit{best-guess}” in [2, 3]:
 ☆ comes with the \textbf{risk} that the \textbf{disaggregation cost} may be greater than approximated by the RSF (a.k.a., disaggregation risk).
1. Proposal
Introducing boundary injection changes

The changes in the interconnector power flows, after the balancing market activations.

For any given export volume:
– depend on the unobservable state of external control-areas,
– also on the precise location of the demand for balancing power,
– translate into intra-area power flows,
– also into the minimum cost of exporting the considered volume.

We consider these a proxy of the external balancing demand.
Introducing boundary injection changes

- The changes in the interconnector power flows, after the balancing market activations.
- For any given export volume:
 - depend on the unobservable state of external control-areas,
 - also on the precise location of the demand for balancing power,
 - translate into intra-area power flows,
 - also into the minimum cost of exporting the considered volume.
- We consider these a **proxy** of the external balancing demand.
Worst-Case RSF approximation

- Assume a range of boundary injection changes, caused by the balancing market.
- Given any export volume, compute the upper bound of the intra-area minimum export cost within this assumed range.
 - to construct a price – quantity curve.
Intuition

Worst-Case RSF approximation

- A larger (smaller) range of boundary injection changes implies...
 - a larger (smaller) upper bound on the intra-area minimum export cost,
 - a smaller (larger) disaggregation risk.

✓ WcRSF also communicates the disaggregation risk aversion with the balancing market.
2. Mathematical formulation & solution approach
How to compute the WcRSF approximation?

For any market zone \bar{z} and export volume e_z

$$\max \{ \text{Operating Cost(Zonal Flexibility)} \};$$

s.t.

Boundary Injection Changes \in Plausible Range;

$$\min \{ \text{Operating Cost(Zonal Flexibility)} \};$$

s.t.

Nodal Balance(Boundary Injection Changes, Zonal Flexibility);

Zonal Flexibility \in Limits of Zonal Resources;

Intra-area power flows \in Branch Capacity Limits.
Defining a plausible range of boundary injection changes

- For any market zone $\bar{z} \in \mathcal{Z}$

 $\mathcal{N}_{a(\bar{z})}$: nodes with interconnectors outside the respective control area.

 ϕ_{nx}: is the boundary injection change towards external node $x \in \mathcal{X}_{n}^{a(\bar{z})}$.
Defining a plausible range of boundary injection changes

- For any market zone $\bar{Z} \in \mathcal{Z}$

 $\mathcal{N}_{a(\bar{z})}$: nodes with interconnectors outside the respective control area.

 ϕ_{nx}: is the boundary injection change towards external node $x \in \mathcal{X}_{n}^{a(\bar{z})}$.

- For any given target export quantity $e_{\bar{z}}$

 $$\phi_{nx}^{\min} \leq \phi_{nx} \leq \phi_{nx}^{\max}, \quad \forall n \in \mathcal{N}_{a(\bar{z})}, x \in \mathcal{X}_{n}^{a(\bar{z})}, \quad \# \text{lower/upper bounds} \quad (1)$$

 $$\sum_{n \in \mathcal{N}_{a(\bar{z})}} \sum_{x \in \mathcal{X}_{n}^{a(\bar{z})}} \phi_{nx} = e_{\bar{z}}. \quad \# \text{net change balances export quantity} \quad (2)$$

 N.b.: definition of boundary injection bounds to be discussed …
Minimizing the Intra-area Operating Cost

\[
\min_{p, \theta, s} \sum_{b \in B_\bar{z}} c_b \cdot p_b + \sum_{n \in \mathcal{N}_{a(\bar{z})}} pen \cdot (s_n^+ + s^-_n),
\]

(3)

subject to:

\[
\sum_{b \in B_n} p_b = \sum_{j \in \mathcal{N}_n} \frac{\theta_n - \theta_j}{X_{nj}} + \sum_{x \in \mathcal{X}_{n}^{a(\bar{z})}} \phi_{nx} + (s_n^+ - s_n^-), \quad \forall n \in \mathcal{N}_{a(\bar{z})},
\]

(4)

\[
p_{b}^{\text{min}} \leq p_b \leq p_{b}^{\text{max}}, \quad \forall b \in B_{\bar{z}},
\]

(5)

\[
p_b = 0, \quad \forall b \in B_{\bar{z}}, \forall z \in \mathcal{Z} \setminus \bar{z} : a(z) = a(\bar{z}),
\]

(6)

\[
- \bar{f}_{nj} \leq \frac{\theta_n - \theta_j}{X_{nj}} + f_{nj}^0 \leq \bar{f}_{nj}, \quad \forall n, j \in \mathcal{N}_{a(\bar{z})}
\]

(7)

\[
s_n^+, s_n^- \geq 0, \quad \forall n \in \mathcal{N}_{a(\bar{z})}.
\]

(8)
How do we solve the Bi-Level Optimization Problem?

▶ “The global maximum of a convex function over a closed bounded convex set is an extreme point.”
 - The optimal value of the lower level (3–8) is piece-wise convex in the upper level decision variable.
 ✓ The upper level maximizes a convex function in a closed bounded set (1–2).

▶ We can just exhaustively evaluate the lower level problem (3–8) over all corner points of (1–2):
 - the number of corner points depends on the number of interconnectors,
 - this is not prohibitively large for typical power grids,
 - it is also trivial to parallelize the solution of the respective linear programs.
The Non-convexity Issue

- The Worst-Case resource aggregation cost (i.e., the optimal value of the Bi-Level problem) is **non-convex in the target export quantity**.

![Graph showing non-convex behavior](image)

- In the PSCC paper, we added logical constraints in the balancing market clearing problem to represent price – quantity **ordered bids**.

- Since then, we also developed a translation into **exclusive block bids**.
3. Results & discussion
The test systems

The Chao-Peck example

The Nordic System (N44 BC) case
Chao-Peck example: intra-zonal resource aggregation

Northern-Zone WcRSF

Karangelos & Papavasiliou [NTUA] 18/ 24
ICEBERG Workshop, Athens, 14/06/24
Chao-Peck example: intra-zonal resource aggregation

Northern-Zone WcRSF

Alternative Corner Points
Chao-Peck example: Plausible Boundary Injection Range

Too narrow: WcRSF touches the resource cost curve (a.k.a. merit order).

Too wide: Sharing balancing resources looks infeasible!

Just-right: Recovering the eventual delivery cost for the Activated Quantity.
How to evaluate the WcRSF?

The process (_circle over 1000 samples):

0. Generate nodal imbalance sample.
1. Clear Zonal Balancing Market given the WcRSF for a zone of study.
2. Disaggregate Activated Balancing Quantity s.t. intra-area grid constrains.

The metrics (average values):

- \(Q_a \): the Activated Balancing Quantity (in MWh).
- \(CD_a \): the Disaggregation Cost (in money).
- \(CO_a \): the Activated Offer Cost as per the aggregated offer (in money).

The alternative: All bids from the zone of study sent to the market (merit order aggregation).

Karangelos & Papavasiliou [NTUA] 20/ 24 ICEBERG Workshop, Athens, 14/06/24
How to evaluate the WcRSF?

The process (outskirts over 1000 samples):

0. Generate nodal imbalance sample.
1. Clear Zonal Balancing Market given the WcRSF for a zone of study.
2. Disaggregate Activated Balancing Quantity s.t. intra-area grid constrains.

The metrics (average values):

\(Q_a \): the Activated Balancing Quantity (in MWh).

\(CD_a \): the Disaggregation Cost (in money).

\(CO_a \): the Activated Offer Cost as per the aggregated offer (in money).
How to evaluate the WCRSF?

The process (₽ over 1000 samples):

0. Generate nodal imbalance sample.
1. Clear Zonal Balancing Market given the WCRSF for a zone of study.
2. Disaggregate Activated Balancing Quantity s.t. intra-area grid constrains.

The metrics (average values):

- Q_a: the Activated Balancing Quantity (in MWh).
- CD_a: the Disaggregation Cost (in money).
- CO_a: the Activated Offer Cost as per the aggregated offer (in money).

The alternative: All bids from the zone of study sent to the market (merit order aggregation).

Karangelos & Papavasiliou [NTUA]
Chao-Peck example – simulation results overview

Average values over 1000 imbalance samples

- A moderate boundary injection range \(\pm 0.25 \bar{f} \) sufficient to recover the disaggregation cost.

- Too much risk aversion reduces the competitiveness of the balancing resources.
Nordic test case – simulation results overview

Even at a very conservative range ($\pm \bar{f}$) there is a negative gap between the average Disaggregation Cost and Aggregated Offer Cost!
Modified Nordic test case

- without imbalance realizations within aggregation area

- Grid congestion still possible while sharing balancing resources.

✓ the WcRSF hedges correctly against this risk.
Round-up & conclusions

- Flexibility resource aggregation in the context of zonal balancing markets.
- Proposal to evaluate the worst-case intra-area congestion cost over a plausible range of interconnection power flow changes.
- Purpose is to communicate intra-area grid constraints and congestion risk aversion with the market.
Round-up & conclusions

- Flexibility resource aggregation in the context of zonal balancing markets.
- Proposal to evaluate the worst-case intra-area congestion cost over a plausible range of interconnection power flow changes.
- Purpose is to communicate intra-area grid constraints and congestion risk aversion with the market.
 - Given a suitable range, hedging vs the risk of costly intra-area congestion.
Round-up & conclusions

- Flexibility resource aggregation in the context of zonal balancing markets.
- Proposal to evaluate the worst-case intra-area congestion cost over a plausible range of interconnection power flow changes.
- Purpose is to communicate intra-area grid constraints and congestion risk aversion with the market.
- Given a suitable range, hedging vs the risk of costly intra-area congestion.
 - further work on defining the range from historical data.
 - also on accounting for intra-area uncertainties.

Case studies – results over importing samples
Logical Constraints for Ordered (price, quantity) Bids

\[q_{k,z} = u_{k,z} \cdot dq_{k,z}^{\text{max}} + dq_{k,z}, \quad \forall k \in K_z, \forall z \in Z_{\tilde{a}}, \]
\[0 \leq dq_{k,z} \leq v_{k,z} \cdot dq_{k,z}^{\text{max}}, \forall k \in K_z, \forall z \in Z_{\tilde{a}}, \]
\[v_{k,z} + u_{k,z} \leq u_{k-1,z}, \quad \forall k \in K^+_z, \forall z \in Z_{\tilde{a}}, \]
\[v_{k,z} + u_{k,z} \leq u_{k+1,z}, \quad \forall k \in K^-_z, \forall z \in Z_{\tilde{a}}, \]
\[\sum_{k \in K_z} v_{k,z} \leq 1, \forall z \in Z_{\tilde{a}}, \]
\[u_{-1,z} + u_{1,z} \leq 1, \quad \forall z \in Z_{\tilde{a}}, \]
\[v_{k,z}, u_{k,z} \in \{0; 1\}, \quad \forall k \in K_z, z \in Z_{\tilde{a}}. \]