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Flexibility

Definition
Ability of the system to react to variability in supply and demand.

Variability is increasing
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Different types of flexibility

Scope
Time scale Expected (day-ahead) Unexpected (real-time)

Global

Local
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Controllable load

In this talk, focus on:

Heat Pumps
• Flexibility through thermal inertia
• Similar to a battery, without discharging

T°C ↑

T°C ↓
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Increasing installation of heat pumps

before 1946 1946-1970 1971-1990 1991-2000 2001-2010 2011-2022
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Source: FSO – Buildings and dwellings statistics
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Demand Response approaches

Smart tariffs Local markets Direct load control
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In this talk

Smart tariffs Local markets Direct load control
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Design

Direct load control

• How to compensate users for controlling them?
• How to incentivize consumers to reveal their key information to DSO?
• How to incentivize consumers to participate?

→ Mechanism design
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Existing literature

Priority Service Pricing
• Chao & Wilson (1987)

Reliability (%) Price (€/MWh)
21.6 0.0
94.2 46
98.2 52.8
99.7 57.3
100.0 58.3

• Gérard & Papavasiliou (2022)

Assets with intertemporal constraints
• Power and energy constraints matter
• E.g. (battery, shiftable load)

Day-ahead market = combinatorial auction
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Existing literature

Multi-Level Demand Subscription
• Chao et al. (1986)

Reliability (%) Duration (%) Price (€/MWh)

58.5
33.3 14.9
66.7 22.9
100.0 26.4

85.3
33.3 22.1
66.7 34.1
100.0 39.3

100
33.3 27.3
66.7 42.1
100.0 48.5

• Gérard et al. (2022)

In this work
• Can we do better if we focus on Heat Pumps?
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Menu design

Wholesale market
• Multi-part bids

– Piecewise linear cost curve
– No-load/Startup offer
– Ramp rate
– Min up and down time

Direct control mechanism
• Linear model of HP control (RC

dynamics)
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Menu design

Wholesale market
• Multi-part bids

– Piecewise linear cost curve
– No-load/Startup offer
– Ramp rate
– Min up and down time

Direct control mechanism
• Quadratic temperature discomfort
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Discomfort = Vdiscom(T − T̄ )2
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Menu design

Wholesale market
• Multi-part bids

– Piecewise linear cost curve
– No-load/Startup offer
– Ramp rate
– Min up and down time

Direct control mechanism
• Illustrative menu

Hbldg Cbldg Vdiscom Compensation
[kW/K] [kWh/K] [CHF/K2] [CHF/day]
0.24 31.5 0.1 1.5
1.71 83.8 0.05 3.6
2.14 174.3 0.15 2.2
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Menu design

How can user know how they will be activated?
→ Use price information

Wholesale market
• Used extensively by traders

(Cramton et al. 2006)

Direct control mechanism
• The DSO publishes a forecast available

for every participant
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Direct load control mechanism

Menu of compensation options

Demand response mechanism

DSO

Probabilistic price forecast

Energy management system

Grid

Power Systems Laboratory 19/37



DSO activation problem

Objective
• Minimize procurement cost on wholesale market
• While controlling the heat pumps

For each consumer who selected option with parameters Hbldg, Cbldg, Vdiscom:

min Procurement cost + Discomfort cost(Vdiscom)
s.t. Technical constraints of heat pump(Hbldg, Cbldg)
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DSO activation problem

Objective
• Minimize procurement cost on wholesale market
• While controlling the heat pumps

For each consumer who selected option with parameters Hbldg, Cbldg, Vdiscom:

min
qj ,Tj

∑
j∈J

ρjqj + Vdiscom(Tj − T̄ )2 (1)

s.t. Cbldg(Tj − Tj−1) = −Hbldg(Tj − Tamb) + qj (2)
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Consumer decision problem

Objective
• Select its preferred menu option
• While minimize its cost, facing the retail price

Key idea
Thanks to the price forecast, the consumer knows how they will be activated when selecting a certain
option.

min
Hbldg,Cbldg,Vdiscom,γ∈M

Om(Hbldg, Cbldg, γ) ≡
∑
j∈J

ρ̄q∗
j (Hbldg, Cbldg) + Vdiscom(Tj − T̄ )2 − γi

s.t. Cbldg(Tj − Tj−1) = −Hbldg(Tj − Tamb) + q∗
j (Hbldg, Cbldg)
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Compensation computation

How to compute optimal compensations γ?

Objective
• Minimize DSO payement to conusmers, such that:
• Incentive to reveal their true preferences; and
• Incentive to participate.

Interpretation
• The first constraint is the incentive compatibility constraint.
• The second constraint is the individual rationality constraint.

Key question
Is it always possible?
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Counterfactual

We assume that the DSO price at average cost:

ρ̄ =
∑

i∈I,j∈J ρjqij∑
i∈I,j∈J qij

This implies that users have a tiny interest in reacting to the price if they do not participate.
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Truthful implementation

Theorem
If the retail price is equal to the average price, then the direct control mechanism is truthfully
implementable.

Proof.
The social choice function is ex post efficient.
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Simple example with three consumers

Building characteristics

Building 1:

Cbldg = 9.4 kWh/K
Hbldg = 0.1 kW/K

Building 2:

Cbldg = 31.4 kWh/K
Hbldg = 0.4 kW/K

Building 3:

Cbldg = 27.2 kWh/K
Hbldg = 0.6 kW/K
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Menu design

Clustering
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Hbldg Cbldg Vdiscom Compensation
[kW/K] [kWh/K] [CHF/K2] [CHF/day]
0.47 29.3 0.1 0.0
0.1 9.4 0.1 0.0
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Impact of activation

Building 1
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Results

Efficiency

Bldg 1 Bldg 2 Bldg 3 Total
Min. cost [CHF/day] 0.32 0.84 1.61 2.77

Cost with activation [CHF/day] 0.34 1.58 1.73 3.65
Cost without activation [CHF/day] 0.44 1.64 2.37 4.45

Max. cost reduction [%] 37.8
Cost reduction achieved [%] 18

Payment with activation [CHF/day] 0.3 1.63 1.62
Payment without activation [CHF/day] 0.44 1.65 2.37
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Case study overview

• Goal: Apply the mechanism on realastic data from a Swiss municipality (Losone).
• Assumptions and parameters:

– The DSO has statistical knowledge of the approximate parameters (H,C,V) in its control
area.

– 2409 buildings, 351 with heat pump.
– 130 MV nodes, 1569 LV nodes
– 5 selected days across winter with different characteristics (price and temperature).
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Efficiency

With low congestion

Day 1 Day 2 Day 3 Day 4 Day 5
(2023/2024) 19.11 31.12 08.01 20.01 05.03

Min. Cost [CHF/day] 517.3 177.9 1595.9 1850.9 1161.9
Act. Cost [CHF/day] 622.5 197.5 1632.5 1859.9 1183.2
Base Cost [CHF/day] 904.5 232.0 2074.1 1892.3 1232.0

Max cost reduction [%] 42.8 23.3 23.1 2.2 5.7
Achieved cost reduction [%] 31.2 14.9 21.3 1.7 4.0

Observations
→ The most important driver for efficiency is the price variation, more that the outside temperature.
→ Tends to be less accurate when the temperature is very cold.
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Efficiency

With high congestion

Day 1 Day 2 Day 3 Day 4 Day 5
(2023/2024) 19.11 31.12 08.01 20.01 05.03

Min. Cost [CHF/day] 655.1 177.9 1595.9 1974.9 1161.9
Act. Cost [CHF/day] 777.4 197.5 1632.5 3436.1 1188.0
Base Cost [CHF/day] 1195.6 232.0 2074.1 4942.3 1307.9

Max cost reduction [%] 45.2 23.3 60.0 2.2 11.2
Achieved cost reduction [%] 35.0 14.9 30.5 1.7 9.4

Observations
→ Large efficiency increase when the grid is congested in some instances.
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Discussion

Key messages
• Important drivers of efficiency are price variability and network congestion.

→ Both expected to increase in the future.
• Important challenge is with consumers engagement in view of low consumers benefit.

→ Participation bonus can easily be integrated endogenously in this setting.

Future research
• Efficiency losses with the nonlinear building dynamics.
• Multi-market participation from DSO.
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Thank you
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