



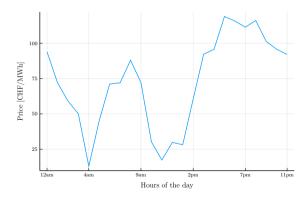
# Flexibility Activation with Direct Load Control in Distribution Grids

**Quentin Lété,** Davide Berti, Gabriela Hug ICEBERG workshop, Athens June 14, 2024

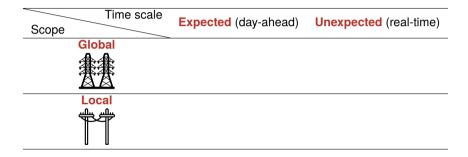
# Outline

### 1. Introduction

- 2. Mechanism
- 3. Illustrative example
- 4. Case study: Losone
- 5. Discussion

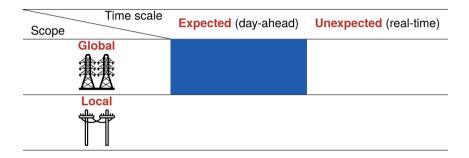



# Flexibility

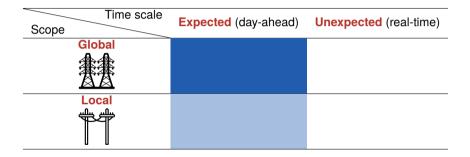

#### Definition

Ability of the system to react to variability in supply and demand.

#### Variability is increasing




# Different types of flexibility

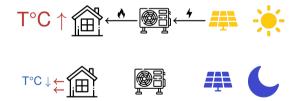





# Different types of flexibility

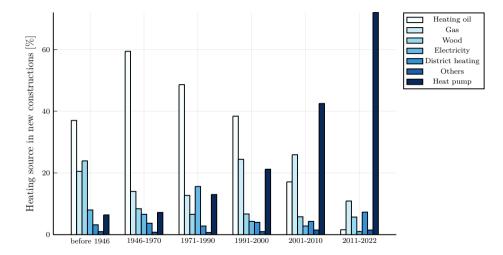


# Different types of flexibility




# Controllable load

In this talk, focus on:


#### **Heat Pumps**

- Flexibility through thermal inertia
- Similar to a battery, without discharging





# Increasing installation of heat pumps



#### Source: FSO - Buildings and dwellings statistics

**ETH** zürich

# Demand Response approaches

Smart tariffs

Local markets

**Direct load control** 



In this talk

**Smart tariffs** 

Local markets

**Direct load control** 

ETH zürich

**Direct load control** 



**Direct load control** 

• How to compensate users for controlling them?

#### **Direct load control**

- How to compensate users for controlling them?
- How to incentivize consumers to reveal their key information to DSO?

#### **Direct load control**

- How to compensate users for controlling them?
- How to incentivize consumers to reveal their key information to DSO?
- How to incentivize consumers to participate?

#### **Direct load control**

- How to compensate users for controlling them?
- How to incentivize consumers to reveal their key information to DSO?
- How to incentivize consumers to participate?

 $\rightarrow$  Mechanism design

#### **Priority Service Pricing**

• Chao & Wilson (1987)



#### **Priority Service Pricing**

• Chao & Wilson (1987)

| Reliability (%) | Price (€/MWh) |
|-----------------|---------------|
| 21.6            | 0.0           |
| 94.2            | 46            |
| 98.2            | 52.8          |
| 99.7            | 57.3          |
| 100.0           | 58.3          |

#### **Priority Service Pricing**

• Chao & Wilson (1987)

| Reliability (%) | Price (€/MWh) |
|-----------------|---------------|
| 21.6            | 0.0           |
| 94.2            | 46            |
| 98.2            | 52.8          |
| 99.7            | 57.3          |
| 100.0           | 58.3          |

• Gérard & Papavasiliou (2022)

#### **Priority Service Pricing**

• Chao & Wilson (1987)

| Reliability (%) | Price (€/MWh) |
|-----------------|---------------|
| 21.6            | 0.0           |
| 94.2            | 46            |
| 98.2            | 52.8          |
| 99.7            | 57.3          |
| 100.0           | 58.3          |

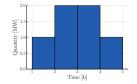
• Gérard & Papavasiliou (2022)

#### Assets with intertemporal constraints

- Power and energy constraints matter
- E.g. (battery, shiftable load)

#### **Priority Service Pricing**

• Chao & Wilson (1987)


| Reliability (%) | Price (€/MWh) |
|-----------------|---------------|
| 21.6            | 0.0           |
| 94.2            | 46            |
| 98.2            | 52.8          |
| 99.7            | 57.3          |
| 100.0           | 58.3          |
|                 |               |

• Gérard & Papavasiliou (2022)

#### Assets with intertemporal constraints

- Power and energy constraints matter
- E.g. (battery, shiftable load)

#### Day-ahead market = combinatorial auction



#### **Multi-Level Demand Subscription**

• Chao et al. (1986)

| Reliability (%) | Duration (%) | Price (€/MWh) |
|-----------------|--------------|---------------|
|                 | 33.3         | 14.9          |
| 58.5            | 66.7         | 22.9          |
|                 | 100.0        | 26.4          |
|                 | 33.3         | 22.1          |
| 85.3            | 66.7         | 34.1          |
|                 | 100.0        | 39.3          |
|                 | 33.3         | 27.3          |
| 100             | 66.7         | 42.1          |
|                 | 100.0        | 48.5          |

• Gérard et al. (2022)

#### In this work

• Can we do better if we focus on Heat Pumps?

ETH zürich

# Outline

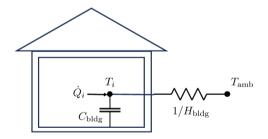
### 1. Introduction

# 2. Mechanism

3. Illustrative example

4. Case study: Losone

5. Discussion




#### Wholesale market

- Multi-part bids
  - Piecewise linear cost curve
  - No-load/Startup offer
  - Ramp rate
  - Min up and down time

#### **Direct control mechanism**

• Linear model of HP control (RC dynamics)

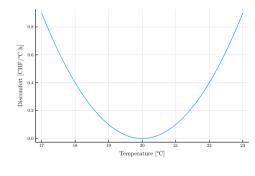


#### Wholesale market

- Multi-part bids
  - Piecewise linear cost curve
  - No-load/Startup offer
  - Ramp rate
  - Min up and down time

#### **Direct control mechanism**

• Linear model of HP control (RC dynamics)


$$C_{\mathsf{bldg}}(T_j - T_{j-1}) = -H_{\mathsf{bldg}}(T_j - T_{\mathsf{amb}}) + q_j$$

#### Wholesale market

- Multi-part bids
  - Piecewise linear cost curve
  - No-load/Startup offer
  - Ramp rate
  - Min up and down time

### **Direct control mechanism**

• Quadratic temperature discomfort



Discomfort =  $V_{\text{discom}}(T - \bar{T})^2$ 



#### Wholesale market

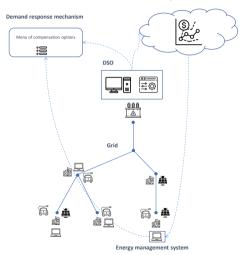
- Multi-part bids
  - Piecewise linear cost curve
  - No-load/Startup offer
  - Ramp rate
  - Min up and down time

#### **Direct control mechanism**

Illustrative menu

| H <sub>bldg</sub><br>[kW/K] | C <sub>bldg</sub><br>[kWh/K] | $V_{\text{discom}}$<br>[CHF/K <sup>2</sup> ] | Compensation<br>[CHF/day] |
|-----------------------------|------------------------------|----------------------------------------------|---------------------------|
| 0.24                        | 31.5                         | 0.1                                          | 1.5                       |
| 1.71                        | 83.8                         | 0.05                                         | 3.6                       |
| 2.14                        | 174.3                        | 0.15                                         | 2.2                       |

How can user know how they will be activated?  $\rightarrow$  Use price information


#### Wholesale market

• Used extensively by traders (Cramton et al. 2006)

#### **Direct control mechanism**

• The DSO publishes a forecast available for every participant

### Direct load control mechanism



Probabilistic price forecast



#### Objective

- Minimize procurement cost on wholesale market
- While controlling the heat pumps

#### Objective

- · Minimize procurement cost on wholesale market
- While controlling the heat pumps

For each consumer who selected option with parameters  $H_{\text{bldg}}, C_{\text{bldg}}, V_{\text{discom}}$ :

#### Objective

- · Minimize procurement cost on wholesale market
- While controlling the heat pumps

For each consumer who selected option with parameters  $H_{\text{bldg}}, C_{\text{bldg}}, V_{\text{discom}}$ :

 $\begin{array}{l} \min \ {\sf Procurement\ cost\ } + {\sf Discomfort\ cost}(V_{\sf discom}) \\ {\sf s.t.\ Technical\ constraints\ of\ heat\ pump}(H_{\sf bldg},C_{\sf bldg}) \end{array}$ 



#### Objective

- Minimize procurement cost on wholesale market
- While controlling the heat pumps

For each consumer who selected option with parameters  $H_{\text{bldg}}, C_{\text{bldg}}, V_{\text{discom}}$ :

$$\begin{split} \min_{q_j, T_j} & \sum_{j \in \mathcal{J}} \rho_j q_j + V_{\mathsf{discom}} (T_j - \bar{T})^2 \\ \text{s.t.} & C_{\mathsf{bldg}} (T_j - T_{j-1}) = -H_{\mathsf{bldg}} (T_j - T_{\mathsf{amb}}) + q_j \end{split} \tag{1}$$



### Consumer decision problem

#### Objective

- Select its preferred menu option
- While minimize its cost, facing the retail price



### Consumer decision problem

#### Objective

- Select its preferred menu option
- While minimize its cost, facing the retail price

#### Key idea

Thanks to the price forecast, the consumer knows how they will be activated when selecting a certain option.

### Consumer decision problem

#### Objective

- Select its preferred menu option
- While minimize its cost, facing the retail price

#### Key idea

Thanks to the price forecast, the consumer knows how they will be activated when selecting a certain option.

$$\begin{split} \min_{\substack{H_{\mathsf{bldg}}, C_{\mathsf{bldg}}, V_{\mathsf{discom}}, \gamma \in \mathcal{M} } \mathcal{O}_m(H_{\mathsf{bldg}}, C_{\mathsf{bldg}}, \gamma) &\equiv \sum_{j \in \mathcal{J}} \bar{\rho} q_j^*(H_{\mathsf{bldg}}, C_{\mathsf{bldg}}) + V_{\mathsf{discom}}(T_j - \bar{T})^2 - \gamma_i \\ \mathbf{s.t.} \ C_{\mathsf{bldg}}(T_j - T_{j-1}) &= -H_{\mathsf{bldg}}(T_j - T_{\mathsf{amb}}) + q_j^*(H_{\mathsf{bldg}}, C_{\mathsf{bldg}}) \end{split}$$

## Compensation computation

How to compute optimal compensations  $\gamma$ ?

## Compensation computation

How to compute optimal compensations  $\gamma$ ?

### Objective

- Minimize DSO payement to conusmers, such that:
- · Incentive to reveal their true preferences; and
- Incentive to participate.

## Compensation computation

How to compute optimal compensations  $\gamma$ ?

#### Objective

- Minimize DSO payement to conusmers, such that:
- · Incentive to reveal their true preferences; and
- Incentive to participate.

### Interpretation

- The first constraint is the incentive compatibility constraint.
- The second constraint is the individual rationality constraint.

## Compensation computation

How to compute optimal compensations  $\gamma$ ?

#### Objective

- Minimize DSO payement to conusmers, such that:
- · Incentive to reveal their true preferences; and
- Incentive to participate.

### Interpretation

- The first constraint is the incentive compatibility constraint.
- The second constraint is the individual rationality constraint.

### **Key question**

Is it always possible?

ETH zürich

We assume that the DSO price at average cost:

$$\bar{\rho} = \frac{\sum_{i \in \mathcal{I}, j \in \mathcal{J}} \rho_j q_{ij}}{\sum_{i \in \mathcal{I}, j \in \mathcal{J}} q_{ij}}$$

This implies that users have a tiny interest in reacting to the price if they do not participate.

# Truthful implementation

#### Theorem

If the retail price is equal to the average price, then the direct control mechanism is truthfully implementable.

#### Proof.

The social choice function is ex post efficient.

# Outline

1. Introduction

2. Mechanism

## 3. Illustrative example

4. Case study: Losone

5. Discussion



Simple example with three consumers

**Building characteristics** 

**Building 1:** 

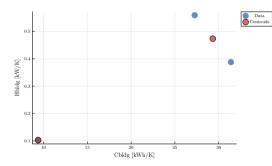


**Building 2:** 







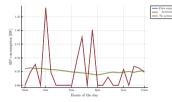

 $C_{\mathsf{bldg}} = 9.4 \text{ kWh/K}$  $H_{\mathsf{bldg}} = 0.1 \text{ kW/K}$   $C_{\rm bldg} = 31.4 \ {\rm kWh/K}$   $H_{\rm bldg} = 0.4 \ {\rm kW/K}$ 

 $C_{\text{bldg}} = 27.2 \text{ kWh/K}$  $H_{\text{bldg}} = 0.6 \text{ kW/K}$ 

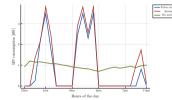


# Menu design

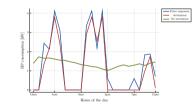





#### Menu


| H <sub>bldg</sub><br>[kW/K] | C <sub>bldg</sub><br>[kWh/K] | $V_{\text{discom}}$<br>[CHF/K <sup>2</sup> ] | Compensation<br>[CHF/day] |
|-----------------------------|------------------------------|----------------------------------------------|---------------------------|
| 0.47                        | 29.3                         | 0.1                                          | 0.0                       |
| 0.1                         | 9.4                          | 0.1                                          | 0.0                       |

Impact of activation


**Building 1** 



**Building 2** 



**Building 3** 



# Results

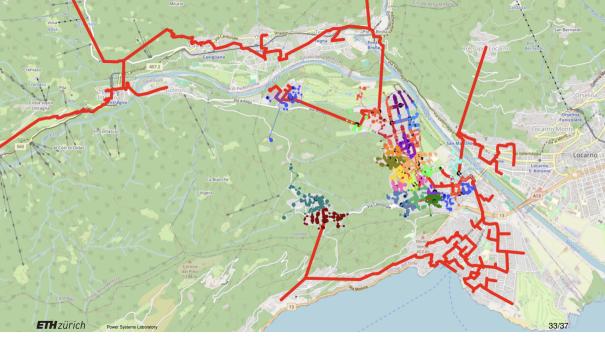
### Efficiency

|                                      | Bldg 1 | Bldg 2 | Bldg 3 | Total |
|--------------------------------------|--------|--------|--------|-------|
| Min. cost [CHF/day]                  | 0.32   | 0.84   | 1.61   | 2.77  |
| Cost with activation [CHF/day]       | 0.34   | 1.58   | 1.73   | 3.65  |
| Cost without activation [CHF/day]    | 0.44   | 1.64   | 2.37   | 4.45  |
| Max. cost reduction [%]              |        |        |        | 37.8  |
| Cost reduction achieved [%]          |        |        |        | 18    |
| Payment with activation [CHF/day]    | 0.3    | 1.63   | 1.62   |       |
| Payment without activation [CHF/day] | 0.44   | 1.65   | 2.37   |       |

# Outline

1. Introduction

2. Mechanism


3. Illustrative example

## 4. Case study: Losone

## 5. Discussion



- Goal: Apply the mechanism on realastic data from a Swiss municipality (Losone).
- Assumptions and parameters:
  - The DSO has statistical knowledge of the approximate parameters (H,C,V) in its control area.
  - 2409 buildings, 351 with heat pump.
  - 130 MV nodes, 1569 LV nodes
  - 5 selected days across winter with different characteristics (price and temperature).



# Efficiency

#### With low congestion

|                             | Day 1 | Day 2 | Day 3  | Day 4  | Day 5  |
|-----------------------------|-------|-------|--------|--------|--------|
| (2023/2024)                 | 19.11 | 31.12 | 08.01  | 20.01  | 05.03  |
| Min. Cost [CHF/day]         | 517.3 | 177.9 | 1595.9 | 1850.9 | 1161.9 |
| Act. Cost [CHF/day]         | 622.5 | 197.5 | 1632.5 | 1859.9 | 1183.2 |
| Base Cost [CHF/day]         | 904.5 | 232.0 | 2074.1 | 1892.3 | 1232.0 |
| Max cost reduction [%]      | 42.8  | 23.3  | 23.1   | 2.2    | 5.7    |
| Achieved cost reduction [%] | 31.2  | 14.9  | 21.3   | 1.7    | 4.0    |

#### **Observations**

- $\rightarrow$  The most important driver for efficiency is the price variation, more that the outside temperature.
- $\rightarrow$  Tends to be less accurate when the temperature is very cold.

# Efficiency

### With high congestion

|                             | Day 1  | Day 2 | Day 3  | Day 4  | Day 5  |
|-----------------------------|--------|-------|--------|--------|--------|
| (2023/2024)                 | 19.11  | 31.12 | 08.01  | 20.01  | 05.03  |
| Min. Cost [CHF/day]         | 655.1  | 177.9 | 1595.9 | 1974.9 | 1161.9 |
| Act. Cost [CHF/day]         | 777.4  | 197.5 | 1632.5 | 3436.1 | 1188.0 |
| Base Cost [CHF/day]         | 1195.6 | 232.0 | 2074.1 | 4942.3 | 1307.9 |
| Max cost reduction [%]      | 45.2   | 23.3  | 60.0   | 2.2    | 11.2   |
| Achieved cost reduction [%] | 35.0   | 14.9  | 30.5   | 1.7    | 9.4    |

#### **Observations**

 $\rightarrow$  Large efficiency increase when the grid is congested in some instances.



# Outline

1. Introduction

2. Mechanism

3. Illustrative example

4. Case study: Losone

## 5. Discussion



## Discussion

### Key messages

- Important drivers of efficiency are price variability and network congestion.
- $\rightarrow~$  Both expected to increase in the future.
- Important challenge is with consumers engagement in view of low consumers benefit.
- ightarrow Participation bonus can easily be integrated endogenously in this setting.

### **Future research**

- Efficiency losses with the nonlinear building dynamics.
- Multi-market participation from DSO.



# Thank you



Power Systems Laboratory Quentin Lété

qulete@ethz.ch https://qlete.github.io