Mathematical Programming
In AMPL

Anthony Papavasiliou, National Technical University of Athens (NTUA)

Outline

Downloading and getting started with AMPL

Modeling mathematical programs
* Sets
* Parameters
e Decision variables

Constraints

Objective function

Entering data

Solving mathematical progams
Resolving bugs

The display and print commands
Implementing algorithms
Analyzing the solution

Downloading and getting started
with AMPL

Download instructions

* Your instructor has the rights to a free academic version of AMPL
* The academic license gives access to the full functionalities of AMPL
e Contact your instructor for a link to the software

The AMPL IDE

4 AMPL IDE
File Edit Commands Window Help
(HCs
”Current Directory Ev@e & Congble =2
Al

C:\Users\papavasiliou\Dropbox\Teaching\BSc'
5 ED.dat
= ED.mod

We navigate
here

J

A Type here to search

anpl:

We “converse”
with the model
here

G X

AR

option solver 'gurobi';

set Generators;
set Loads;

We write the
model here

param MargBenefit{Loads};
param MargCost{Generators};
param DMax{Loads};

param PMax{Generators};

var production{Generators} >= @;
var demand{Loads} >= ©;

subject to PMaxConstraint{g in Generators}:
production[g] <= PMax[g]

H

subject to DMaxConstraint{l in Loads}:
demand[1] <= DMax[1]

H

subject to PowerBalance:
sum{1l in Loads} demand[l] - sum{g in Generators} production[g] = @

H

maximize Welfare:
sum{1l in Loads} MargBenefit[1l]*demand[1]
- sum{g in Generators} MargCost[g]*production[g]

H

data ED.dat;

solve;

‘ Insert

0 2z

| Wiritable

a» 1 ~

) ENG

A. Papavasiliou, NTUA

2/24/2022

B

Types of AMPL files

 Model files: .mod

* Here we describe the structure of the mathematical program (sets,
parameters, decision variables, objective function and constraints)

* Data files: .dat
* Here we describe the input data of the problem

 Complex program files: .run
* Here we implement complex iterative algorithms

Modeling mathematical
programs

Definition of an optimization problem

* An optimization problem is defined as follows:

max, f (x)
x€EX

* In words:
* We want to maximize an objective function f(x): R" - R
* We can control the decision variables x € R"
* The decision variables obey the constraints X € R"

Mathematical programming languages and
algorithms

* The definition of the previous slide is quite abstract

* We can use mathematical programming languages that encode these problems in computers
« AMPL
* GAMS
e Julia/JuMP
* Python/Pyomo

* These languages send the problem to specialized algorithms that are extremely powerful
e CPLEX (linear programs, mixed integer programs)
* Gurobi (linear programs, mixed integer programs)
* Knitro (non-linear programs)

* In order to encode a mathematical program we need to determine the following:
* Sets
* Decision variables
* Parameters
e Objective function
* Constraints

Example: economic dispatch

Suppose that we would like to match the following offers in order to
maximize welfare:

e Producer/seller 1: 30 MW at 12 S/MWh
* Producer/seller 2: 35 MW at 28 S/MWh
e Producer/seller 3: 25 MW at 80 S/MWh
* Consumer/buyer 1: 10 MW at 90 S/MWh
* Consumer/buyer 2: 40 MW at 40 S/MWh
* Consumer/buyer 3: 25 MW at 20 S/MWh

Building blocks of the linear program

e Sets:
e Loads L
e Generators G

* Decision variables:
* Demand of load i, d;
* Production of generator i, p;

* Parameters:
* Marginal benefit of load i, MB;
* Marginal cost of generator i, M(;
* Maximum demand of load i, D;*
* Maximum capacity of generator i, Pl-+

Economic dispatch as a linear program

maxp’d z MBi . di — z MCl- * Di Maximization of social welfare

LEL IEG

+ .
di < Di , 1 EL Production/demand limits
p; <PYi€EG

Z di B z Pi = Supply/demand equilibrium

D; ; 0i€eG Non-negative variables
I —)

Graphical solution

$/MWh
A
90
80
40
P* =28 [----1-=-------
20
12
> MW
10 30 50 65 75 90

The solution of the economic dispatch problem is at the intersection of the inverse supply
and demand curves

A. Papavasiliou, NTUA

Sets

 Sets describe the entities over which indices run (indices of
parameters, decisions and constraints)

* Usually we define sets of integers or sets of strings
* We declare sets in the .mod file

set Generators;
set Loads;

* And we populate the data of the sets in the .dat file

set Generators := Gl G2 G3;
set Loads := L1 L2 L3;

Decision variables

e Decision variables are the decisions that we want to reach

 Decision variables can be defined over sets (e.g. production of each
generator in the market), in which case we use braces

e Decision variables are declared in the .mod file
 Decision variables can have a sign (= 0 or < 0)

Every producer generates a non-

[var production{Generators} >= B;] negative amount of energy

var demand{Loads} >= ©;

Parameters

* Parameters are used for determining the objective function f(x) and the constraints X

* Forinstance, in a linear program:
* The objective function is linear,

n

FO)=) x

i=1

And the parameters are the constants ¢;
* The set of constraints is a polyhedron

n
X = X:ZAL']' * X < b],_] = 1,...,m
i=1

And the parameters are the constants 4;; and b;

Parameters

* Parameters are numerical values
* We declare parameters in the .mod file

param MargBenefit{Loads};
param MargCost{Generators};
param DMax{Loads};

param PMax{Generators};

* We assign values to the parameters in the.dat file

param MargBenefit := param PMax :=
L1 90 Gl 3@
L2 48 G2 35

L3 20 G3 25

param MargCost : param DMax :=

Gl 12 L1 1e
G2 28 L2 48

G3 88 L3 25

L
A. Papavasiliou, NTUA

Constraints

* Constraints describe the set in which our decision must belong
* Constraints are declared in the.mod file

* The syntax for describing constraints reproduces how we would
express these constraints mathematically on paper:
e Each constraint has a name
* Each constraint is defined over a
* Each constraint is described though a mathematical expression

subject to| PMaxConstraintflg in Generators]}: p; < pt
production[g] <= PMax[g] L=7"1i

.

A. Papavasiliou, NTUA

18

Constraint syntax

* The declaration of constraints starts
with the expression subject to

* We use a symbol after the

dECIa ration Of the set over Wh|Ch subject_to P]"laannstraint{g in Generators}:
the constraint is defined ﬁ‘f’d“*tm[gl <= PMax[g]

* We use a semi colon to complete
the declaration of the constraint

A. Papavasiliou, NTUA 19

Objective function

* The objective function determines what it is we are trying to achieve
with the optimization problem that we are solving

* The optimization problem is often either a maximization problem,
max, f (x), or a minimization problem, min, f (x), (although both can
be expressed equivalently: max,. f(x) © min, — f(x))

* In the .mod file we declare our objective function, if it is a
maximization or minimization, and we describe it mathematically
using the same syntax as constraints

maximize Welfare: maxz MB: - d: — z MC; - p;
sum{l in Loads} MargBenefit[l]*demand[1] L LR

- sum{g in Generators} MargCost[g]*production[g] iEL i€EG

Entering data

The .dat file

 We call the.dat file from within the.mod file

data ED.dat;

* But we first need to declare any set or parameter to which we assign
values

* The suffix .dat switches AMPL to “data input mode”, and the return
from the.dat file switches it back to “model mode”

* If we want to assign values to parameters in the .mod file without re-
entering a .dat file, an easy way is using the “let” command

The .dat file

* In the .dat file we can enter numerical data for our problem
* We can enter data directly in the .dat file for small problems

set Generators := Gl G2 G3;

* Or we can refer the program to separate files for larger problems

lset ThermalUnits :=

AG_DIMITRIOS1

AG DIMITRIOS2 , _

AG DIMITRIOS3 Part of the file ThermalUnits.txt

data ThermalUnits.txt; AG_DIMITRIOS4
AG_DIMITRIOSS

KARDIA3
KARDIA4

Syntax for assigning values to one-
dimensional data

* For sets, we assign values using the word set, the assignment
operator :=, we then enter the data (strings or numerical values), and
we conclude with a

set|Generators |:= |G1 G2 Ga;
* For one-dimensional parameters, we use a similar syntax:

* But replace “set” with param
e And we enter the data as a two-column matrix

paramjMargCost :=
Gl 12
G2 28
G3 86

Syntax for assigning values to multi-
dimensional data

* For two-dimensional parameters, after we define the name of the parameter we
use:
* The sequence [*, *]:
* We then enter the

+tho Aat h +h f h i | A
* Wethen entep the s M RS b feAanar et a2 Noe T Yuerauif 26" 'n the first column

param uSoa

1 2 3
AG_DIMITRIOSI
AG_DIMITRIOS2
AG_DIMITRIOS3
AG_DIMITRIOS4

7

CRCRCRC S
®0®awun
®O0® a0
OO0 ® @~
oo oahr
RN N
co® o

* This syntax makes it very easy to input data from excel or other databases

* We can go a long way with two dimensions, but if you want details about entering
data in higher dimensions you can find them in [1]

Solving mathematical programs

Selecting an algorithm

* For linear programming, mixed integer linear programming, or convex
quadratic programming problems you can use Gurobi and CPLEX

* For non-linear (non-convex) programming problems, a stable
algorithm is ipopt

* You can access these algorithms, and many others, for free with an
AMPL academic license

* In order to choose the algorithm that we want to use, we use the
following syntax in the .mod file

option solver 'gurobi';

The solve command

* Once we define our problem (declarations and data input), we can solve it
using the solve command with the following syntax in the.mod file

solve;

* |n order to run the program, we enter the model command on the AMPL
terminal:

ampl: model ED.mod;

* The program will give us information about the size of the prlblem and its
resolution in the IDE terminal

* The information that is printed on the terminal depends on the solver that
we have selected

Gurobi 9.0.0: optimal solution; objective 1586
1 simplex iterations

Resolving bugs

Resolving bugs

* There are simple syntax errors (easy to resolve) and more complex
errors where the model does not behave “right” despite running
(harder to resolve)

* The terminal gives us messages when something goes wrong in the
first case, and we can iteratively correct our bugs

Resolving bugs: example

1 simplex iterations
ampl: model ED.mod;

ED.mod, line 9 (offset 94):

Generators is not defined
context: param >>> MargCost{Generators} <<< ;
ampl: |

We “forget” to declare the set of

#set Generators: ——

;d_]set Toads; generators
param MargBenefit{Loads};

param MargCost{Generators};

i Pt LI When we declare the parameter
var production{Generators} >= ©; Ma rgCOSt, we def'ne |t over a Set

var demand{Loads} >= ©;

_ o that has not been previously
subject to PMaxConstraint{g in Generators}:
?roduction[g] <= PMax[g] (jEEfir163(j

3

subject to DMaxConstraint{l in Loads}:
demand[1] <= DMax[1]

’

subject to PowerBalance:
sum{l in Loads} demand[l] - sum{g in Generators} production[g] = @

X

maximize Welfare:
sum{l in Loads} MargBenefit[1l]*demand[1]
- sum{g in Generators} MargCost[g]*production[g]

data ED.dat;

solve;

A. Papavasiliou, NTUA 31

Display and print commands

The display command

* An important advantage of AMPL is that we can “discuss” with the
model after we solve it (or after we attempt to solve it and get a bug)

* The display command allows us to print parameters and variables on
the terminal

* We can directly print a parameter (or variable) using the following
syntax

ampl: display MargCost;
MargCost [*] :=

Gl 12

G2 28

G3 8@

The display command

* MTopoUlE VA ELOAYOUE CUVONKEC yLoL va. OTOXEUCOUE TNV
QTTELKOVLON TWV TIAPOUETPWV N LETAPANTWYV TOU MPOoBANUATOC
ampl: display{g in Generators: MargCost[g] > 38} MargCost[g];
MargCost[g] [*] :=
G3 8@

>

e AUTO €lvol TTOAU XprioLUO YLa TN «CUVOLLLALO UE TO LOVTEAO OTOV
npoonaBoupe va kataAdfoupe tTn cuuneptdopd TNG Avong n otav
TLOTEVOUE OTL UTTIAPXEL AdB0C oToV KWOLKO KLl O¢ Elval CWOTO TO
OUVTOKTLKO

The printf command

* When we want to print with a format that we can control, we use the
printf command

printf "\nWhat day is it?\n" ;

e Useful when we want to ask the user for input

Printing in output files: the print and read
commands

* The print command is not very human-readable, but is useful for passing output from
one model as input to another

* For instance, a model that runs the Greek balancing market determines how units are
activated (RTBM mod), and then another model (RTBMPrlcmﬁ .mod) which determines
prices reads the setpoints of units, based on the solution of the first model

Command at the end of the

print{g in MultimodeGenerators, t in Qs} u[g, t] > (DayDirectory & "\uFixed.out"); RTBM d fil
.moatiie

We run this after the

read{g in MultimodeGenerators, t in Qs} uFixed[g, t] < (DayDirectory & "uFixed.out");
RTBM.mod has executed

e Careful about reading data in the same order in both the input and output, because the
print command only prints numerical values without labels

A. Papavasiliou, NTUA 36

Implementing algorithms

The problem command

 When we implement optimization algorithms, we often use a subset
of decision variables, constraints, and for defining
different problems

irstStage:
X, theta
s CostStagel
R uts
>

roblem FirstStage®:
X
, CostStagel

problem SecondStage:

y
[PowerBalance, CapacityLimit, |CostStage2;
A. Papavasiliou, NTUA 38

The for loop

The for loop allows us to implement iterative algorithms, such as
Lagrange relaxation, Benders decomposition, or Monte Carlo
simulations

for {s in Scenarios} {

let ScenarioChoice := s;

printf "Solving second stage problem for scenarioc %s, vCount = %d\n",
ScenarioChoice, vCount;

solve SecondStage;

display y;

display SSConstr;

let CutRHSPerScenario[ScenarioChoice, sCount+1]
:= sum{i in SSConstraints} SSConstr[i]*h[i, ScenarioChoice];

let{j in FSDecisions} CutCoeffPerScenario[j, ScenarioChoice, sCount+1]
:= sum{i in SSConstraints} SSConstr[i]*T[i, j, ScenarioChoice];

The include command

* The include command allows us to run iterative algorithms on the
terminal

ampl: include CapExLR.mod;

Solving first scenario subproblem, iteration 1

The if-then-else logical checks

* The implementation of iterative algorithms often requires checking a
logical condition

* The syntax follows the structure of the example

if (sCount == @) then {

printf('Solving first stage problem for first time\n');
solve FirstStage®;

display x;

let thetaHist[vCount] := -1leeeeee;

let{j in FSDecisions} xHist[j, vCount] := x[j];

} else {

printf "\nSolving first stage problem, vCount = %d\n", vCount;
solve FirstStage;

expand FirstStage;

display x;

display theta;

let thetaHist[vCount] := theta;

let{j in FSDecisions} xHist[j, vCount] := x[j];

A. Papavasiliou, NTUA

41

Receiving data interactively from the user

* The read command allows the user to assign values to parameters
that affect the execution of the program (e.g. which electricit market
we are clearing)

* The syntax uses the symbols < - in order to request input from the
user, which are assigned as values to a

printf "\nWhat dai is it?\n" ;
{-

read |DayChoice .

The exit command

* If something goes wrong during the execution of an algorithm, we can
exit a loop and the entire program using the exit command

if (solve_result != "solved") then {

printf "\nProblem solving the RTBM, program should exit\n";
exit;

Analyzing the solution

Displaying decision variables

» After we solve our problem, we can use the display command to
present the optimal value of decision variables

* The syntax is display x, where x is the name of the decision variable

* For the auction that we saw in the beginning of the presentation, the
optimal production of electricity is displayed as follows:

ampl: |display production;
production [*] :=

Gl 30

G2 20

G3 e

Displaying dual values

» After we solve our problem, we can also use the display command in

order to present the optimal value of dual variables, which admit an
economic interpretation

* The syntax is display constraint, or display constaint.dual, where
constraint is the name of the relevant constraint

* For instance, the market clearing price of the auction is given as:

ampl: |display PowerBalance;
PowerBalance = 28

ampl: |display PowerBalance.dual;
PowerBalance.dual = 28

A. Papavasiliou, NTUA 46

Displaying results under conditions

We can use logical conditions to filter the kind of information that is

displayed

ampl: display production;
production [*] :=

Gl 3@

G2 20

G3 e

2

ampl: display{g in Generators:
production[g] [*] :=

Gl 38

G2 20

L]

MargCost[g] < 3@}

production[g];

Show me the optijmal
production of those generators
that have a marginal cost lower
than 30 S/MWh

A. Papavasiliou, NTUA

47

References

[1] Robert Fourer, David M. Gay, and Brian W. Kernighan, “AMPL: A
Modeling Language for Mathematical Programming”
https://ampl.com/resources/the-ampl-book/

A. Papavasiliou, NTUA

48

https://ampl.com/resources/the-ampl-book/

	Mathematical Programming in AMPL
	Outline
	Downloading and getting started with AMPL
	Download instructions
	The AMPL IDE
	Types of AMPL files
	Modeling mathematical programs
	Definition of an optimization problem
	Mathematical programming languages and algorithms
	Example: economic dispatch
	Building blocks of the linear program
	Economic dispatch as a linear program
	Slide Number 13
	Sets
	Decision variables
	Parameters
	Parameters
	Constraints
	Constraint syntax
	Objective function
	Entering data
	The .dat file
	The .dat file
	Syntax for assigning values to one-dimensional data
	Syntax for assigning values to multi-dimensional data
	Solving mathematical programs
	Selecting an algorithm
	The solve command
	Resolving bugs
	Resolving bugs
	Resolving bugs: example
	Display and print commands
	The display command
	The display command
	The printf command
	Printing in output files: the print and read commands
	Implementing algorithms
	The problem command
	The for loop
	The include command
	The if-then-else logical checks
	Receiving data interactively from the user
	The exit command
	Analyzing the solution
	Displaying decision variables
	Displaying dual values
	Displaying results under conditions
	References

