
Mathematical Programming 
in AMPL

Anthony Papavasiliou, National Technical University of Athens (NTUA)

1



Outline

• Downloading and getting started with AMPL
• Modeling mathematical programs

• Sets
• Parameters
• Decision variables
• Constraints
• Objective function

• Entering data
• Solving mathematical progams
• Resolving bugs
• The display and print commands
• Implementing algorithms
• Analyzing the solution

A. Papavasiliou, NTUA 2



Downloading and getting started 
with AMPL

A. Papavasiliou, NTUA 3



Download instructions

• Your instructor has the rights to a free academic version of AMPL
• The academic license gives access to the full functionalities of AMPL
• Contact your instructor for a link to the software

A. Papavasiliou, NTUA 4



The AMPL IDE

We navigate 
here

We “converse”
with the model 

here

We write the 
model here

A. Papavasiliou, NTUA 5



Types of AMPL files

• Model files: .mod
• Here we describe the structure of the mathematical program (sets, 

parameters, decision variables, objective function and constraints)

• Data files: .dat
• Here we describe the input data of the problem

• Complex program files: .run
• Here we implement complex iterative algorithms

A. Papavasiliou, NTUA 6



Modeling mathematical 
programs
Sets
Parameters
Decision variables
Constraints
Objective function

A. Papavasiliou, NTUA 7



Definition of an optimization problem

• An optimization problem is defined as follows:

max𝑥𝑥𝑓𝑓 𝑥𝑥
𝑥𝑥 ∈ 𝑋𝑋

• In words:
• We want to maximize an objective function 𝑓𝑓 𝑥𝑥 :ℝ𝑛𝑛 → ℝ
• We can control the decision variables 𝑥𝑥 ∈ ℝ𝑛𝑛

• The decision variables obey the constraints 𝑋𝑋 ⊆ ℝ𝑛𝑛

A. Papavasiliou, NTUA 8



Mathematical programming languages and 
algorithms
• The definition of the previous slide is quite abstract
• We can use mathematical programming languages that encode these problems in computers

• AMPL
• GAMS
• Julia/JuMP
• Python/Pyomo

• These languages send the problem to specialized algorithms that are extremely powerful
• CPLEX (linear programs, mixed integer programs)
• Gurobi (linear programs, mixed integer programs)
• Knitro (non-linear programs)

• In order to encode a mathematical program we need to determine the following:
• Sets
• Decision variables
• Parameters
• Objective function
• Constraints

A. Papavasiliou, NTUA 9



Example: economic dispatch

Suppose that we would like to match the following offers in order to 
maximize welfare:
• Producer/seller 1: 30 MW at 12 $/MWh
• Producer/seller 2: 35 MW at 28 $/MWh
• Producer/seller 3: 25 MW at 80 $/MWh
• Consumer/buyer 1: 10 MW at 90 $/MWh
• Consumer/buyer 2: 40 MW at 40 $/MWh
• Consumer/buyer 3: 25 MW at 20 $/MWh

A. Papavasiliou, NTUA 10



Building blocks of the linear program

• Sets:
• Loads 𝐿𝐿
• Generators 𝐺𝐺

• Decision variables:
• Demand of load 𝑖𝑖, 𝑑𝑑𝑖𝑖
• Production of generator 𝑖𝑖, 𝑝𝑝𝑖𝑖

• Parameters:
• Marginal benefit of load 𝑖𝑖, 𝑀𝑀𝑀𝑀𝑖𝑖
• Marginal cost of generator 𝑖𝑖, 𝑀𝑀𝐶𝐶𝑖𝑖
• Maximum demand of load 𝑖𝑖, 𝐷𝐷𝑖𝑖+
• Maximum capacity of generator 𝑖𝑖, 𝑃𝑃𝑖𝑖+

A. Papavasiliou, NTUA 11



Economic dispatch as a linear program

max𝑝𝑝,𝑑𝑑�
𝑖𝑖∈𝐿𝐿

𝑀𝑀𝑀𝑀𝑖𝑖 � 𝑑𝑑𝑖𝑖 −�
𝑖𝑖∈𝐺𝐺

𝑀𝑀𝐶𝐶𝑖𝑖 � 𝑝𝑝𝑖𝑖

𝑑𝑑𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖+, 𝑖𝑖 ∈ 𝐿𝐿
𝑝𝑝𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖+, 𝑖𝑖 ∈ 𝐺𝐺

�
𝑖𝑖∈𝐿𝐿

𝑑𝑑𝑖𝑖 −�
𝑖𝑖∈𝐺𝐺

𝑝𝑝𝑖𝑖 = 0

𝑑𝑑𝑖𝑖 ≥ 0, 𝑖𝑖 ∈ 𝐿𝐿
𝑝𝑝𝑖𝑖 ≥ 0, 𝑖𝑖 ∈ 𝐺𝐺

Maximization of social welfare

Production/demand limits

Supply/demand equilibrium

Non-negative variables

A. Papavasiliou, NTUA 12



Graphical solution

The solution of the economic dispatch problem is at the intersection of the inverse supply 
and demand curves

A. Papavasiliou, NTUA 13



Sets

• Sets describe the entities over which indices run (indices of 
parameters, decisions and constraints)

• Usually we define sets of integers or sets of strings
• We declare sets in the .mod file

• And we populate the data of the sets in the .dat file

A. Papavasiliou, NTUA 14



Decision variables

• Decision variables are the decisions that we want to reach
• Decision variables can be defined over sets (e.g. production of each

generator in the market), in which case we use braces
• Decision variables are declared in the .mod file
• Decision variables can have a sign (≥ 0 or ≤ 0)

Every producer generates a non-
negative amount of energy

A. Papavasiliou, NTUA 15



Parameters
• Parameters are used for determining the objective function 𝑓𝑓(𝑥𝑥) and the constraints 𝑋𝑋
• For instance, in a linear program:

• The objective function is linear, 

𝑓𝑓 𝑥𝑥 = �
𝑖𝑖=1

𝑛𝑛

𝑐𝑐𝑖𝑖 � 𝑥𝑥𝑖𝑖

And the parameters are the constants 𝑐𝑐𝑖𝑖
• The set of constraints is a polyhedron

𝑋𝑋 = 𝑥𝑥:�
𝑖𝑖=1

𝑛𝑛

𝐴𝐴𝑖𝑖𝑖𝑖 � 𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚

And the parameters are the constants 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑗𝑗

A. Papavasiliou, NTUA 16



Parameters

• Parameters are numerical values
• We declare parameters in the .mod file

• We assign values to the parameters in the.dat file

A. Papavasiliou, NTUA 17



Constraints

• Constraints describe the set in which our decision must belong
• Constraints are declared in the.mod file
• The syntax for describing constraints reproduces how we would 

express these constraints mathematically on paper:
• Each constraint has a name
• Each constraint is defined over a set
• Each constraint is described though a mathematical expression

𝑝𝑝𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖+, 𝑖𝑖 ∈ 𝐺𝐺

A. Papavasiliou, NTUA 18



Constraint syntax

• The declaration of constraints starts 
with the expression subject to

• We use a colon symbol after the 
declaration of the set over which 
the constraint is defined

• We use a semi colon to complete 
the declaration of the constraint

A. Papavasiliou, NTUA 19



Objective function

• The objective function determines what it is we are trying to achieve 
with the optimization problem that we are solving

• The optimization problem is often either a maximization problem, 
max𝑥𝑥𝑓𝑓(𝑥𝑥), or a minimization problem, min𝑥𝑥𝑓𝑓(𝑥𝑥), (although both can 
be expressed equivalently: max𝑥𝑥𝑓𝑓 𝑥𝑥 ⇔ min𝑥𝑥 − 𝑓𝑓(𝑥𝑥))

• In the .mod file we declare our objective function, if it is a 
maximization or minimization, and we describe it mathematically 
using the same syntax as constraints

• . max�
𝑖𝑖∈𝐿𝐿

𝑀𝑀𝑀𝑀𝑖𝑖 � 𝑑𝑑𝑖𝑖 −�
𝑖𝑖∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑖𝑖 � 𝑝𝑝𝑖𝑖

A. Papavasiliou, NTUA 20



Entering data

A. Papavasiliou, NTUA 21



The .dat file

• We call the.dat file from within the.mod file

• But we first need to declare any set or parameter to which we assign 
values

• The suffix .dat switches AMPL to “data input mode”, and the return 
from the.dat file switches it back to “model mode”

• If we want to assign values to parameters in the .mod file without re-
entering a .dat file, an easy way is using the “let” command

A. Papavasiliou, NTUA 22



The .dat file

• In the .dat file we can enter numerical data for our problem
• We can enter data directly in the .dat file for small problems

• Or we can refer the program to separate files for larger problems

Part of the file ThermalUnits.txt

A. Papavasiliou, NTUA 23



Syntax for assigning values to one-
dimensional data
• For sets, we assign values using the word set, the assignment 

operator :=, we then enter the data (strings or numerical values), and 
we conclude with a semi-colon

• For one-dimensional parameters, we use a similar syntax:
• But replace “set” with param
• And we enter the data as a two-column matrix

A. Papavasiliou, NTUA 24



Syntax for assigning values to multi-
dimensional data
• For two-dimensional parameters, after we define the name of the parameter we 

use:
• The sequence [*, *]:
• We then enter the values of the columns followed by :=
• We then enter the data where the name of each line is placed in the first column

• This syntax makes it very easy to input data from excel or other databases
• We can go a long way with two dimensions, but if you want details about entering 

data in higher dimensions you can find them in [1]

A. Papavasiliou, NTUA 25



Solving mathematical programs

A. Papavasiliou, NTUA 26



Selecting an algorithm

• For linear programming, mixed integer linear programming, or convex 
quadratic programming problems you can use Gurobi and CPLEX

• For non-linear (non-convex) programming problems, a stable 
algorithm is ipopt

• You can access these algorithms, and many others, for free with an 
AMPL academic license

• In order to choose the algorithm that we want to use, we use the 
following syntax in the .mod file

A. Papavasiliou, NTUA 27



The solve command

• Once we define our problem (declarations and data input), we can solve it 
using the solve command with the following syntax in the.mod file

• In order to run the program, we enter the model command on the AMPL
terminal:

• The program will give us information about the size of the prlblem and its 
resolution in the IDE terminal

• The information that is printed on the terminal depends on the solver that 
we have selected

• a

A. Papavasiliou, NTUA 28



Resolving bugs

A. Papavasiliou, NTUA 29



Resolving bugs

• There are simple syntax errors (easy to resolve) and more complex 
errors where the model does not behave “right” despite running 
(harder to resolve)

• The terminal gives us messages when something goes wrong in the 
first case, and we can iteratively correct our bugs

A. Papavasiliou, NTUA 30



Resolving bugs: example

We “forget” to declare the set of 
generators

When we declare the parameter 
MargCost, we define it over a set 
that has not been previously 
defined

A. Papavasiliou, NTUA 31



Display and print commands

A. Papavasiliou, NTUA 32



The display command

• An important advantage of AMPL is that we can “discuss” with the 
model after we solve it (or after we attempt to solve it and get a bug)

• The display command allows us to print parameters and variables on 
the terminal

• We can directly print a parameter (or variable) using the following 
syntax

A. Papavasiliou, NTUA 33



The display command

• Μπορούμε να εισάγουμε συνθήκες για να στοχεύσουμε την 
απεικόνιση των παραμέτρων ή μεταβλητών του προβλήματος

• Αυτό είναι πολύ χρήσιμο για τη «συνομιλία» με το μοντέλο όταν 
προσπαθούμε να καταλάβουμε τη συμπεριφορά της λύσης ή όταν 
πιστεύουμε ότι υπάρχει λάθος στον κώδικα και ας είναι σωστό το 
συντακτικό

A. Papavasiliou, NTUA 34



The printf command

• When we want to print with a format that we can control, we use the 
printf command

• Useful when we want to ask the user for input

A. Papavasiliou, NTUA 35



Printing in output files: the print and read
commands
• The print command is not very human-readable, but is useful for passing output from 

one model as input to another
• For instance, a model that runs the Greek balancing market determines how units are 

activated (RTBM.mod), and then another model (RTBMPricing.mod) which determines
prices reads the setpoints of units, based on the solution of the first model

• Careful about reading data in the same order in both the input and output, because the 
print command only prints numerical values without labels

A. Papavasiliou, NTUA

Command at the end of the 
RTBM.mod file

We run this after the 
RTBM.mod has executed

36



Implementing algorithms

A. Papavasiliou, NTUA 37



The problem command

• When we implement optimization algorithms, we often use a subset 
of decision variables, constraints, and objective functions for defining 
different problems

A. Papavasiliou, NTUA 38



The for loop

The for loop allows us to implement iterative algorithms, such as 
Lagrange relaxation, Benders decomposition, or Monte Carlo
simulations

A. Papavasiliou, NTUA 39



The include command

• The include command allows us to run iterative algorithms on the 
terminal

A. Papavasiliou, NTUA 40



The if-then-else logical checks

• The implementation of iterative algorithms often requires checking a 
logical condition

• The syntax follows the structure of the example

A. Papavasiliou, NTUA 41



Receiving data interactively from the user

• The read command allows the user to assign values to parameters 
that affect the execution of the program (e.g. which electricit market 
we are clearing)

• The syntax uses the symbols < - in order to request input from the 
user, which are assigned as values to a parameter

A. Papavasiliou, NTUA 42



The exit command

• If something goes wrong during the execution of an algorithm, we can 
exit a loop and the entire program using the exit command

A. Papavasiliou, NTUA 43



Analyzing the solution

A. Papavasiliou, NTUA 44



Displaying decision variables

• After we solve our problem, we can use the display command to 
present the optimal value of decision variables

• The syntax is display x, where x is the name of the decision variable
• For the auction that we saw in the beginning of the presentation, the 

optimal production of electricity is displayed as follows:

A. Papavasiliou, NTUA 45



Displaying dual values

• After we solve our problem, we can also use the display command in 
order to present the optimal value of dual variables, which admit an 
economic interpretation

• The syntax is display constraint, or display constaint.dual, where 
constraint is the name of the relevant constraint

• For instance, the market clearing price of the auction is given as:

A. Papavasiliou, NTUA 46



Displaying results under conditions

We can use logical conditions to filter the kind of information that is 
displayed

A. Papavasiliou, NTUA

Show me the optijmal 
production of those generators 
that have a marginal cost lower 
than 30 $/MWh

47



References

[1] Robert Fourer, David M. Gay, and Brian W. Kernighan, “AMPL: A 
Modeling Language for Mathematical Programming” 
https://ampl.com/resources/the-ampl-book/ 

A. Papavasiliou, NTUA 48

https://ampl.com/resources/the-ampl-book/

	Mathematical Programming in AMPL
	Outline
	Downloading and getting started with AMPL
	Download instructions
	The AMPL IDE
	Types of AMPL files
	Modeling mathematical programs
	Definition of an optimization problem
	Mathematical programming languages and algorithms
	Example: economic dispatch
	Building blocks of the linear program
	Economic dispatch as a linear program
	Slide Number 13
	Sets
	Decision variables
	Parameters
	Parameters
	Constraints
	Constraint syntax
	Objective function
	Entering data
	The .dat file
	The .dat file
	Syntax for assigning values to one-dimensional data
	Syntax for assigning values to multi-dimensional data
	Solving mathematical programs
	Selecting an algorithm
	The solve command
	Resolving bugs
	Resolving bugs
	Resolving bugs: example
	Display and print commands
	The display command
	The display command
	The printf command
	Printing in output files: the print and read commands
	Implementing algorithms
	The problem command
	The for loop
	The include command
	The if-then-else logical checks
	Receiving data interactively from the user
	The exit command
	Analyzing the solution
	Displaying decision variables
	Displaying dual values
	Displaying results under conditions
	References

