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Forward contracts

Forward contracts: financial instruments for trading a commodity in a 
price fixed in advance

Characterized by:
• Selling price 𝑓𝑓𝑡𝑡
• Quantity 𝑥𝑥 of traded commodity
• Delivery time 𝛵𝛵 of commodity/expiration date of forward contract
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Definition

Seller: Seller of a forward contract with expiration date 𝑇𝑇 sells contract 
at 𝑡𝑡 < 𝑇𝑇 for a price 𝑓𝑓𝑡𝑡. Seller has a short position.

Buyer: Buyer of a forward contract with expiration date 𝑇𝑇 buys contract 
at 𝑡𝑡 < 𝑇𝑇 for a price 𝑓𝑓𝑡𝑡. Buyer has a long position.

Obligations and payoffs: At time 𝑡𝑡 < 𝑇𝑇, buyer pays seller 𝑓𝑓𝑡𝑡 � 𝑥𝑥. At time
𝑡𝑡 = 𝑇𝑇, seller pays buyer 𝑝𝑝𝑇𝑇 � 𝑥𝑥. The price 𝑝𝑝𝑇𝑇 is the real-time price of the 
underlying commodity.
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Payments
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Virtues of forward contracts

• Hedging

• Forward contracts do not distort real-time incentives

• Forward contracts can be traded
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Trading at fixed prices through forward 
contracts
• Producers: sell forward, produce in real time

• +𝑓𝑓𝑡𝑡 � 𝑥𝑥 (from selling forward contract)
• +𝑝𝑝𝑇𝑇 � 𝑥𝑥 (from producing in real-time market)
• −𝑝𝑝𝑇𝑇 � 𝑥𝑥 (from settling forward contract)

• Consumers: buy forward, consume in real time
• −𝑓𝑓𝑡𝑡 � 𝑥𝑥 (from buying forward contract)
• −𝑝𝑝𝑇𝑇 � 𝑥𝑥 (from consuming in real-time market)
• +𝑝𝑝𝑇𝑇 � 𝑥𝑥 (from settling forward contract)

A. Papavasiliou, NTUA 9



Hedging risk without distorting real-time 
incentives
Suppose producer buys forward contact for 𝑥𝑥 units at price 𝑓𝑓𝑡𝑡 and produces
𝑞𝑞 in real time

Producer is paid:
𝑅𝑅 = 𝑓𝑓𝑡𝑡 � 𝑥𝑥 + 𝑝𝑝𝑇𝑇 � 𝑞𝑞 − 𝑥𝑥

where 𝑝𝑝𝑇𝑇 is real-time price

• At 𝑇𝑇, producer only influences 𝑝𝑝𝑇𝑇 � 𝑞𝑞 ⇒ correct incentives, because the 
real-time price 𝑝𝑝𝑇𝑇 is applied to the real-time decision 𝑞𝑞

• By producing 𝑞𝑞 = 𝑥𝑥, producer receives price 𝑓𝑓𝑡𝑡 ⇒ hedging
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Futures contracts

Futures contracts: standardized forward contracts with rigid terms that 
are exchanged in a clearing house

• Default risk is reduced, carried by clearing house (+)
• Enhanced liquidity (+)
• No concerns of credit-worthiness for traders (+)
• Less flexibility (-)
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Integration with power system operations

• Forward contracts
• Suppliers and consumers can enter a forward contract in advance
• In real time

• Suppliers submit bid at price floor
• Consumes submit demand bid at price ceiling

• Futures contracts can be traded with the system operator
• Sellers of futures pay system operator
• Buyers of futures get paid by system operator
• System operator gets information about supply-demand balance from the 

contracts
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Price of a forward contract

• Given risk neutral market agents with same beliefs about the 
distribution of future real-time price 𝑝𝑝𝑇𝑇:

𝑓𝑓𝑡𝑡 = 𝔼𝔼[𝑝𝑝𝑇𝑇|𝜉𝜉[𝑡𝑡]]

𝜉𝜉[𝑡𝑡]: available information at time 𝑡𝑡
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Example

• Linear demand function: 
𝐷𝐷 𝑝𝑝 = 1620 − 4𝑝𝑝

• Generator 1
• Capacity: 295 MW
• Marginal cost: 65.1 $/MWh

• Generator 2
• Capacity: 1880 MW
• Marginal cost: 11.8 $/MWh
• Failures described by Markov chain
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Computing forward prices

• Period 2 (you should compute this)
• Generator 2 off: 295 MW at 331.25 $/MWh
• Generator 2 on: 1572.8 MW at 11.8 $/MWh

• Period 1

𝑓𝑓1 =
0.9 � 11.8 + 0.1 � 331.25 = 43.745

$
MWh

, 𝜉𝜉[1] = On

0.5 � 11.8 + 0.5 � 331.25 = 171.525
$

MWh
, 𝜉𝜉[1] = Off

• Period 0 (assuming generator 2 is on)
𝑓𝑓0 = 0.9 � 43.745 + 0.1 � 171.525 = 56.5275

$
MWh
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Contracts for differences

• Contracts for differences (CfDs): Alternative derivatives that serve same 
function as forward contract

Seller: A seller sells a CfD with expiration date 𝑇𝑇 at time 𝑡𝑡 < 𝑇𝑇 for 𝑥𝑥 units of a 
commodity

Buyer: A buyer buys a CfD with expiration date 𝑇𝑇 at time 𝑡𝑡 < Τ for 𝑥𝑥 units of 
a commodity

Obligations and payoffs: At time 𝑇𝑇 the buyer pays the seller (𝑓𝑓𝑡𝑡 − 𝑝𝑝𝑇𝑇) � 𝑥𝑥, 
where 𝑝𝑝𝑇𝑇 is the price of the commodity at time 𝛵𝛵
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Trading at fixed prices though CfDs

Buyer of CfD (consumer) consumes 𝑥𝑥 at 𝛵𝛵:
• Pays (𝑓𝑓𝑡𝑡 − 𝑝𝑝𝑇𝑇) � 𝑥𝑥 for CfD
• Pays 𝑝𝑝𝑇𝑇 � 𝑥𝑥 to spot market

Seller of CfD (supplier) produces 𝑥𝑥 at 𝛵𝛵:
• Paid (𝑓𝑓𝑡𝑡 − 𝑝𝑝𝑇𝑇) � 𝑥𝑥 for CfD
• Paid 𝑝𝑝𝑇𝑇 � 𝑥𝑥 from spot market
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Power purchase agreements

Power purchase agreements (PPAs): bilateral agreements for trading 
electricity at a fixed price

In practice PPAs are often used for financing renewable energy 
projects:

• Sellers of PPAs: owners of existing or potential renewable projects
• Buyers of PPAs: large electricity consumers, such as corporations with 

stewardship goals in the shift towards consuming renewable energy
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Financial transmission rights
FTR auctions
The virtues of FTRs
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The need for financial transmission rights

Forward contracts are adequate for trading electricity at a fixed price in 
a market without congestion

What happens if there is congestion?
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Example

Generator Α wants to trade 400 MW with consumer Β at 40 $/MWh
Generator sells forward contract for 400 MW at 40 $/MWh στο φορτίο
Suppose 𝑝𝑝𝐴𝐴 = 𝑝𝑝𝐵𝐵 = 50 $/MWh
Cash flows to producer:

• +40 � 400 = +$16000 (sell forward)
• +50 � 400 = +$20000 (produce in real-time market)
• −50 � 400 = −$20000 (settle forward)

Cash flows to load: −40 � 400 − 50 � 400 + 50 � 400 = −$16000
Result: parties trade at 40 $/MWh

A. Papavasiliou, NTUA 24



Suppose 𝑝𝑝𝐴𝐴 = 36 $/MWh, 𝑝𝑝𝐵𝐵 = 45 $/MWh
Suppose generator sells forward contract for 400 MW in location Α
Cash flows to producer: +40 � 400 + 36 � 400 − 36 � 400 = +$16000
Cash flows to load: −40 � 400 − 45 � 400 + 36 � 400 = −$19600
Result: generator paid 40 $/MWh, load pays 49 $/MWh ⇒ load pays 
transportation cost 𝑝𝑝𝐵𝐵 − 𝑝𝑝Α = 9 €/MWh
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Transmission rights

In order to develop financial instruments that hedge against locational 
price differences it is necessary to define rights for the usage of lines

• Contract paths: right to ship power over paths
• Ignores Kirchhoff’s laws
• Failed

• Financial transmission rights (FTRs) (Hogan, 1992 [2]): rights to ship 
power between nodes
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Failure of contract paths (Hogan, 1992)

• Line 1-3 limit: 600 MW
• Line 2-3 limit: 150 MW
• Lines have identical characteristics
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Why contact paths fail

Suppose that we wish to define transmission rights from producers to 
consumers

How many rights for path 1-3?
• Option 1: 300 MW (capacity of line 1-3)

• Could overload line 2-3
• Disadvantage: inefficient (suppose that cheaper generators are in node 2)

• Option 2: 300 MW (to avoid overloading line 1-3)
• But if there are loads in node 2 trading with generators in node 3 then line 1-3 can handle 

more than 300 MW of trade on the path 1-3

Conclusion: the network capacity that is traded in contract paths is not given, 
but depends on the state of the system
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Financial transmission rights

Seller: At time 𝑡𝑡 < 𝛵𝛵 the seller sells a financial transmission right for 
shipping 𝑥𝑥 units of power from location Α to location Β with expiration 
date 𝑇𝑇

Buyer: At time 𝑡𝑡 < 𝛵𝛵 the buyer of an FTR with expiration date 𝑇𝑇 buys 
the contract

• Obligations and payoffs: At time 𝑇𝑇 the seller pays the buyer of the 
FTR (𝑝𝑝𝐵𝐵 − 𝑝𝑝𝐴𝐴) � 𝑥𝑥 (𝑝𝑝𝐴𝐴,𝑝𝑝𝐵𝐵 are the LMPs)
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Example revisited

Load B buys forward contract from generator A and FTR from A to B

Cash flows to load:
• −40 � 400 = −$16000 (buying forward)
• −45 � 400 = −$18000 (consuming in real-time market)
• +36 � 400 = +$14400 (settling forward)
• +9 � 400 = +$3600 (settling FTR)

Result: load pays 40 $/MWh
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Bilateral trade at fixed prices

Producer sells forward contract to load and load buys FTR from generator 
location (A) to load location (B)
Cash flows to producer:

• +𝑓𝑓𝑡𝑡 � 𝑥𝑥 (selling forward)
• +𝑝𝑝𝐴𝐴 � 𝑥𝑥 (producing in real-time market)
• −𝑝𝑝𝐴𝐴 � 𝑥𝑥 (settling forward)

Cash flows to consumer:
• −𝑓𝑓𝑡𝑡 � 𝑥𝑥 (buying forward)
• −𝑝𝑝𝛣𝛣 � 𝑥𝑥 (consuming in real-time market)
• +𝑝𝑝𝐴𝐴 � 𝑥𝑥 (settling forward)
• +(𝑝𝑝𝐵𝐵 − 𝑝𝑝𝐴𝐴) � 𝑥𝑥 (settling FTR)

Result: trade in fixed price 𝑓𝑓𝑡𝑡 which is known in advance

A. Papavasiliou, NTUA 31



Financial transmission rights
FTR auctions
The virtues of FTRs
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FTR auctions

Default seller of FTRs: system operators

Simultaneous feasibility of FTRs: Allocation of FTRs must respect transmission 
constraints

Recall congestion rent: LMP auction payments

Revenue adequacy: LMP auction payments are enough to cover FTR payments if 
FTRs are simultaneously feasible

Proof: we first recall that congestion rent is non-negative, then show it exceeds FTR 
payments
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Recall OPF
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(DCOPF):
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𝜆𝜆𝑘𝑘− : −𝑓𝑓𝑘𝑘 ≤ 𝑇𝑇𝑘𝑘 ,𝑘𝑘 ∈ 𝐾𝐾

𝜓𝜓𝑘𝑘 :
𝑓𝑓𝑘𝑘 − �

𝑛𝑛∈𝑁𝑁

𝐹𝐹𝑘𝑘𝑛𝑛 � 𝑟𝑟𝑛𝑛 = 0,𝑘𝑘 ∈ 𝐾𝐾

𝜌𝜌𝑛𝑛 :
𝑟𝑟𝑛𝑛 − �

𝑔𝑔∈𝐺𝐺𝑛𝑛
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𝑑𝑑𝑙𝑙 ≥ 0, 𝑙𝑙 ∈ 𝐿𝐿



Congestion rent is non-negative

Congestion rent is non-negative, and given by the following expression:

𝑀𝑀𝑅𝑅 = �
𝑛𝑛∈𝑁𝑁

𝜌𝜌𝑛𝑛 � (�
𝑙𝑙∈𝐿𝐿𝑛𝑛

𝑑𝑑𝑙𝑙 − �
𝑔𝑔∈𝐺𝐺𝑛𝑛

𝑝𝑝𝑔𝑔) = �
𝑘𝑘∈𝐾𝐾

(𝜆𝜆𝑘𝑘+ + 𝜆𝜆𝑘𝑘−) � 𝑇𝑇𝑘𝑘

Proof: If identity is true, then since 𝜆𝜆𝑘𝑘+ ≥ 0, 𝜆𝜆𝑘𝑘− ≥ 0 congestion rent is 
non-negative
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𝑔𝑔∈𝐺𝐺𝑛𝑛

𝑝𝑝𝑔𝑔) =
By definition of 𝑟𝑟𝑛𝑛

−�
𝑛𝑛∈𝑁𝑁

𝜌𝜌𝑛𝑛 � 𝑟𝑟𝑛𝑛 =
Since 𝜌𝜌𝑛𝑛 = ∑𝑘𝑘∈𝐾𝐾 𝐹𝐹𝑘𝑘𝑛𝑛 � 𝜓𝜓𝑘𝑘 − 𝜑𝜑 and 𝜓𝜓𝑘𝑘 = 𝜆𝜆𝑘𝑘− − 𝜆𝜆𝑘𝑘+ and
∑𝑛𝑛∈𝑁𝑁 𝑟𝑟𝑛𝑛 = 0

�
𝑘𝑘∈𝐾𝐾

𝜆𝜆𝑘𝑘+ − 𝜆𝜆𝑘𝑘− � �
𝑛𝑛∈𝑁𝑁

𝐹𝐹𝑘𝑘𝑛𝑛 � 𝑟𝑟𝑛𝑛 =
By definition of 𝑓𝑓𝑘𝑘

�
𝑘𝑘∈𝐾𝐾

𝜆𝜆𝑘𝑘+ − 𝜆𝜆𝑘𝑘− � 𝑓𝑓𝑘𝑘 =
From 0 ≤ 𝜆𝜆𝑘𝑘+ ⊥ 𝑇𝑇𝑘𝑘 − 𝑓𝑓𝑘𝑘 ≥ 0 and
0 ≤ 𝜆𝜆𝑘𝑘− ⊥ 𝑇𝑇𝑘𝑘 + 𝑓𝑓𝑘𝑘 ≥ 0

�
𝑘𝑘∈𝐾𝐾

(𝜆𝜆𝑘𝑘+ + 𝜆𝜆𝑘𝑘−) � 𝑇𝑇𝑘𝑘



Congestion rent and FTR payments

FTRs pay to their holders

−�
𝑛𝑛∈𝑁𝑁

𝜌𝜌𝑛𝑛 � �𝑟𝑟𝑛𝑛

where �𝑟𝑟𝑛𝑛 is a feasible (not necessarily optimal) dispatch

Congestion rent is adequate to cover FTR payments:

−�
𝑛𝑛∈𝑁𝑁

𝜌𝜌𝑛𝑛 � 𝑟𝑟𝑛𝑛 ≥ −�
𝑛𝑛∈𝑁𝑁

𝜌𝜌𝑛𝑛 � �𝑟𝑟𝑛𝑛
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Proof: from slide 36,

−�
𝑛𝑛∈𝑁𝑁

𝜌𝜌𝑛𝑛 � 𝑟𝑟𝑛𝑛 − �𝑟𝑟𝑛𝑛 = �
𝑘𝑘∈𝐾𝐾

(𝜆𝜆𝑘𝑘+ − 𝜆𝜆𝑘𝑘−) � 𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘

where:
• 𝜆𝜆𝑘𝑘+, 𝜆𝜆𝑘𝑘− are dual optimal multipliers
• 𝑓𝑓𝑘𝑘 are flows corresponding to 𝑟𝑟𝑛𝑛
• 𝑓𝑓𝑘𝑘 are flows corresponding to �̃�𝑟𝑛𝑛

Consider three cases:
• 𝑓𝑓𝑘𝑘 = 𝑇𝑇𝑘𝑘 (which implies 𝜆𝜆𝑘𝑘− = 0)
• 𝑓𝑓𝑘𝑘 = −𝑇𝑇𝑘𝑘 (which implies 𝜆𝜆𝑘𝑘+ = 0)
• −𝑇𝑇𝑘𝑘 < 𝑓𝑓𝑘𝑘 < 𝑇𝑇𝑘𝑘 (which implies 𝜆𝜆𝑘𝑘+ = 𝜆𝜆𝑘𝑘− = 0)
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Financial transmission rights
FTR auctions
The virtues of FTRs
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Physical transmission rights

Physical transmission rights (PTRs): provide exclusive access to the 
holder of the rights, no financial payoff

FTRs are purely financial, do not interfere with efficient dispatch ≠
PTRs can lead to inefficiency
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Callable forward contracts
The price of callable forward contracts
The virtues of callable forward contracts
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Call options

Seller: Seller of a call option with expiration date 𝑇𝑇 and strike price 𝑘𝑘 
sells option at 𝑡𝑡 < 𝑇𝑇 for amount 𝑥𝑥 of underlying commodity

Buyer: Buyer of call option with expiration date 𝑇𝑇 and strike price 𝑘𝑘
buys contract at 𝑡𝑡 < 𝑇𝑇 for amount 𝑥𝑥 of underlying commodity

• Obligations and payoffs: At 𝑡𝑡 < 𝑇𝑇 buyer pays seller the price of the 
call option. At 𝑇𝑇 seller pays buyer max(𝑝𝑝𝑇𝑇 − 𝑘𝑘, 0) � 𝑥𝑥, where 𝑝𝑝𝑇𝑇 is 
spot price of the underlying commodity.
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The function of call options

The buyer of the option has the right, 
but not the obligation, to buy the 
commodity at strike price 𝑘𝑘 at expiration

• 𝑝𝑝𝑇𝑇 ≤ 𝑘𝑘: no value from call option
• 𝑝𝑝𝑇𝑇 > 𝑘𝑘: buyer receives 𝑝𝑝𝑇𝑇 − 𝑘𝑘, can buy 

the commodity in the spot market with 
net expense of 𝑘𝑘
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Reliability options

• Call options can be used as instruments for hedging the risk for 
buyers who do not want to be exposed to high real-time prices of 
commodities, as well as investors who build generation capacity

• Call options can specifically be bundled with capacity markets in order 
to allow generators to trade the payoff of the market during periods 
of stress with a forward payment

• Call options that serve this purpose are referred to as reliability 
options
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Callable forward

Seller: Seller of a callable forward with expiration date 𝑇𝑇 and strike 
price 𝑘𝑘 sells contract at 𝑡𝑡 < 𝑇𝑇 for amount 𝑥𝑥 of underlying commodity

Buyer: Buyer of a callable forward with expiration date 𝑇𝑇 and strike 
price 𝑘𝑘 buys contract at 𝑡𝑡 < 𝑇𝑇 for amount 𝑥𝑥 of underlying commodity

Obligations and payoffs: At 𝑡𝑡 < 𝑇𝑇 buyer pays seller the price of the 
callable forward, at 𝑇𝑇 seller pays buyer min(𝑝𝑝𝑇𝑇 , 𝑘𝑘) � 𝑥𝑥, where 𝑝𝑝𝑇𝑇 is the 
spot price of the underlying commodity
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The function of callable forward contracts

Curtail the provision of a 
commodity to the buyer of the 
contract when 𝑝𝑝𝑇𝑇 ≥ 𝑘𝑘:

• If 𝑝𝑝𝑇𝑇 ≤ 𝑘𝑘, buyer receives 𝑝𝑝𝑇𝑇 from 
seller and can buy the commodity in 
the spot market

• If 𝑝𝑝𝑇𝑇 > 𝑘𝑘, buyer receives 𝑘𝑘
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Callable forward contracts
The price of callable forward contracts
The virtues of callable forward contracts
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Price of callable forward contracts

Define
𝑄𝑄𝑡𝑡 𝑝𝑝 = ℙ[𝑝𝑝𝑇𝑇 ≤ 𝑝𝑝|𝜉𝜉[𝑡𝑡]]

where 𝜉𝜉[𝑡𝑡] is information at time 𝑡𝑡
Assuming density of 𝑄𝑄𝑡𝑡 𝑝𝑝 exists,

𝑞𝑞𝑡𝑡 𝑝𝑝 =
𝑑𝑑𝑄𝑄𝑡𝑡 𝑝𝑝
𝑑𝑑𝑝𝑝

Price of forward/callable forward at time 𝑡𝑡:
𝑓𝑓𝑡𝑡 = 𝔼𝔼 𝑓𝑓𝑇𝑇 𝜃𝜃𝑡𝑡 = �

0

∞
𝑝𝑝 � 𝑞𝑞𝑡𝑡 𝑝𝑝 𝑑𝑑𝑝𝑝  1

𝑗𝑗𝑡𝑡 𝑘𝑘 = 𝔼𝔼 𝑗𝑗𝑇𝑇(𝑘𝑘) 𝜃𝜃𝑡𝑡 = �
0

∞
min(𝑝𝑝, 𝑘𝑘) � 𝑞𝑞𝑡𝑡 𝑝𝑝 𝑑𝑑𝑝𝑝  (2)
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𝑞𝑞𝑡𝑡(𝑝𝑝) implies 𝑗𝑗𝑡𝑡(𝑘𝑘) and vice versa

Integrating by parts:

𝑗𝑗𝑡𝑡 𝑘𝑘 = 𝑘𝑘 − �
0

𝑘𝑘
𝑄𝑄𝑡𝑡 𝑝𝑝 𝑑𝑑𝑝𝑝 = �

0

𝑘𝑘
1 − 𝑄𝑄𝑡𝑡 𝑝𝑝 𝑑𝑑𝑝𝑝  (3)

Differentiating with respect to 𝑘𝑘:
𝑑𝑑𝑗𝑗𝑡𝑡 𝑘𝑘
𝑑𝑑𝑘𝑘

= 1 − 𝑄𝑄𝑡𝑡 𝑘𝑘 (4)

Differentiating again with respect to 𝑘𝑘:

𝑞𝑞𝑡𝑡 𝑘𝑘 = −
𝑑𝑑2𝑗𝑗𝑡𝑡 𝑘𝑘
𝑑𝑑𝑘𝑘2

 (5)
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Properties of callable forward price

• 𝑗𝑗𝑡𝑡 𝑘𝑘 is non-decreasing, concave in 𝑘𝑘
• Proof: follows from equations (4), (5)
• Intuition: higher strike price increases payoff for holder

• 𝑗𝑗𝑡𝑡 𝑘𝑘 ≤ 𝑘𝑘 for all 𝑘𝑘
• Proof: follows from equation (3)
• Intuition: callable forward cannot pay more than 𝑘𝑘

• lim𝑘𝑘→∞𝑗𝑗𝑡𝑡 𝑘𝑘 = 𝑓𝑓𝑡𝑡
• Proof: follows from equations (1), (2)
• Intuition: as 𝑘𝑘 increases, likelihood of 𝑝𝑝𝑇𝑇 ≤ 𝑘𝑘 decreases
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Example

• Consider a market with the following prices:
• 1000 $/MWh for hours 1-20
• 880.04 $/MWh for hour 21
• 160 $/MWh for hours 22-328
• 120.06 $/MWh for hour 329
• 80 $/MWh for hours 330-1752
• 25.21 $/MWh for hour 1753
• 25 $/MWh for hours 1754-7576
• 10.81 $/MWh for hour 7577
• 6.5 $/MWh for hours 7578-8760

A. Papavasiliou, NTUA 51



Prices of derivatives in the market of the 
example
• Price of forward contract:
𝑓𝑓𝑡𝑡 = (20 � 1000 + 1 � 880.04 + 307 � 160 + 1 � 120.06 + 1423 � 80 +
 1 � 25.21 + 5823 � 25 + 1 � 10.81 + 1183 � 6.5)/8760 = 38.5 $/MWh

• Price of callable forward contract with strike price of 300 $/MWh
𝑗𝑗𝑡𝑡(300) = (20 � 300 + 1 � 300 + 307 � 160 + 1 � 120.06 + 1423 � 80 +
 1 � 25.21 + 5823 � 25 + 1 � 10.81 + 1183 � 6.5)/8760 = 36.84 $/MWh

• Price of call option with strike price of 300 $/MWh:
𝑓𝑓𝑡𝑡 − 𝑗𝑗𝑡𝑡 𝑘𝑘 = 1.66 $/MWh
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Price of forward contract for different strike 
prices

We confirm the three properties of slide 50
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Callable forward contracts
The price of callable forward contracts
The virtues of callable forward contracts
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Virtues of callable forward contracts

• Useful for integrating demand response
• Consumers self-select the «right» contract
• Callable forward contracts can be traded
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Integration of demand response

Mutual benefits from callable forward contracts for loads and system 
operator:

• Loads with valuation 𝑣𝑣 always receive full value of power supply, regardless of 
real-time price of electricity, by selecting 𝑘𝑘 = 𝑣𝑣

• If 𝑝𝑝𝑇𝑇 ≤ 𝑣𝑣, loads consume power
• If 𝑝𝑝𝑇𝑇 > 𝑣𝑣, loads receive compensation 𝑘𝑘 = 𝑣𝑣 (equivalent to consuming power)

• System operator receives information about demand function, beneficial for 
system planning
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Consumer self-selection

Assuming risk-neutral consumers, callable forward contracts priced according to 
the following payoff:

𝔼𝔼 𝑀𝑀𝑡𝑡 𝑘𝑘 𝜉𝜉 𝑡𝑡 = 𝑄𝑄𝑡𝑡 𝑘𝑘 � 𝑣𝑣 + 1 − 𝑄𝑄𝑡𝑡 𝑘𝑘 � 𝑘𝑘 − 𝑗𝑗𝑡𝑡 𝑘𝑘
= 𝑘𝑘 + 𝑄𝑄𝑡𝑡 𝑘𝑘 � 𝑣𝑣 − 𝑘𝑘 − 𝑗𝑗𝑡𝑡 𝑘𝑘 (6)

where 𝑀𝑀𝑡𝑡 𝑘𝑘 is consumer benefit

From equation (4) it follows that

𝑑𝑑𝔼𝔼 𝑀𝑀𝑡𝑡 𝑘𝑘 𝜉𝜉 𝑡𝑡

𝑑𝑑𝑘𝑘
= 1 −

𝑑𝑑𝑗𝑗𝑡𝑡 𝑘𝑘
𝑑𝑑𝑘𝑘

− 𝑄𝑄𝑡𝑡 𝑘𝑘 + 𝑣𝑣 − 𝑘𝑘 � 𝑞𝑞𝑡𝑡 𝑘𝑘 = 𝑣𝑣 − 𝑘𝑘 � 𝑞𝑞𝑡𝑡 𝑘𝑘 (7)
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Suppose that 𝑞𝑞𝑡𝑡 𝑘𝑘 > 0 for all 𝑘𝑘 > 0

• 𝑘𝑘 = 𝑣𝑣 is the unique solution that maximizes expected consumer 
benefit

•
𝑑𝑑𝔼𝔼 𝑀𝑀𝑡𝑡 𝑘𝑘 𝜉𝜉 𝑡𝑡

𝑑𝑑𝑘𝑘
= 0 για 𝑘𝑘 = 𝑣𝑣

•
𝑑𝑑𝔼𝔼 𝑀𝑀𝑡𝑡 𝑘𝑘 𝜉𝜉 𝑡𝑡

𝑑𝑑𝑘𝑘
> 0 για 𝑘𝑘 < 𝑣𝑣

•
𝑑𝑑𝔼𝔼 𝑀𝑀𝑡𝑡 𝑘𝑘 𝜉𝜉 𝑡𝑡

𝑑𝑑𝑘𝑘
< 0 για 𝑘𝑘 > 𝑣𝑣

• Buying callable forward contracts is better than not buying them
• From equation (6), expected payoff for 𝑘𝑘 = 𝑣𝑣 is 𝑣𝑣 − 𝑗𝑗𝑡𝑡 𝑣𝑣
• From equation (3) and 𝑞𝑞𝑡𝑡 𝑘𝑘 > 0, 𝑣𝑣 − 𝑗𝑗𝑡𝑡 𝑣𝑣 > 0
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Modeling risk aversion
Value at risk and conditional value at risk
Worst-case characterization of coherent risk measures
Back-propagation
Other ways of representing risk aversion
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Risk measure

A risk measure is a mapping from a real-valued random variable 𝜉𝜉:Ω →
ℝ to a real number

Intuition: risk measures score lotteries accounting for the risk of the 
lotteries
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Example: forward contract as a lottery

Consider a forward contract for future delivery of one MW of electricity 
during the winter

States of the world: 𝛺𝛺 = {Cold, Hot}
• Cold ⇒ electric heating ⇒ high electricity prices (100 $/MWh)
• Hot ⇒ no electric heating ⇒ low electricity prices (50 $/MWh)

The forward contract is an obligation of the seller to pay the price of 
electricity on the date of delivery:

• 𝜉𝜉(Cold) = 100 $/MWh
• 𝜉𝜉(Hot) = 50 $/MWh
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Example: call option as a lottery

Consider an agent that has sold a call option with a strike price of 𝑘𝑘 =
70 $/MWh

• 𝜉𝜉(Cold) = max 100 − 70,0 = 30 $/MWh
• 𝜉𝜉(Hot) = max 50 − 70,0 = 0 $/MWh

A. Papavasiliou, NTUA 62



Example: expected value as a risk measure

Expected value ℛ 𝜉𝜉 = 𝔼𝔼[𝜉𝜉] is the most commonly used risk measure

Returning to the previous examples:
• Forward contract: ℛ 𝜉𝜉 = 75 $/MWh
• Call option: ℛ 𝜉𝜉 = 15 $/MWh
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Example: worst-case payoff as a risk measure

Consider the risk measure ℛ 𝜉𝜉 = max𝜔𝜔∈𝛺𝛺 𝜉𝜉(𝜔𝜔), i.e. the worst 
possible payoff

• Forward contract: ℛ 𝜉𝜉 = 100 $/MWh
• Call option: ℛ 𝜉𝜉 = 30 $/MWh
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Coherent risk measure

ℛ � is a coherent risk measure (CRM) if the following hold:
1. Subadditivity: ℛ 𝜉𝜉 + 𝜁𝜁 ≤ ℛ 𝜉𝜉 + ℛ 𝜁𝜁 for any random variables 𝜉𝜉 and

𝜁𝜁
• Intuition: pooling risk is good

2. Positive homogeneity of degree one: ℛ 𝜆𝜆 � 𝜉𝜉 = 𝜆𝜆 � ℛ 𝜉𝜉 for all 𝜆𝜆 ≥ 0
• Intuition: discounting costs discounts risk

3. Monotonoicity: ℛ 𝜉𝜉 ≤ ℛ 𝜁𝜁 whenever 𝜉𝜉 ≾ 𝜁𝜁, where ≾ denotes first-
order stochastic dominance, i.e. ℙ 𝜉𝜉 ≤ 𝑡𝑡 ≥ ℙ[𝜁𝜁 ≤ 𝑡𝑡], for all 𝑡𝑡 ∈ ℝ
• Intuition: lower costs imply lower risk

4. Translation invariance: ℛ 𝜉𝜉 + 𝑡𝑡 = ℛ 𝜉𝜉 + 𝑡𝑡 for any 𝑡𝑡 ∈ ℝ
• Intuition: fixed costs add a fixed amount of risk
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Example: stochastic dominance of electricity 
prices
Consider the price distribution of the example of slide 61

And consider the electricity price 𝜁𝜁 of another market for which
• The price is 50 $/ΜWh with probability 0.25
• The price is 120 $/MWh with probability 0.75

We have that 𝜉𝜉 ≾ 𝜁𝜁 (you should check this)
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Some risk measures that are and that are not 
coherent
Some coherent risk measures:

• Expected value
• Worst-case payoff

Some risk measures that are not coherent:
• Value at risk
• Markowitz risk measure
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Convex risk measures

The function ℛ is a convex risk measure if it satisfies conditions 1-3 of 
the definition of coherent risk measures

Subadditivity and positive homoegeneity (conditions 1 and 2) imply 
that ℛ is convex

• Intuition: the marginal cost of risk is increasing
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Modeling risk aversion
Value at risk and conditional value at risk
Worst-case characterization of coherent risk measures
Back-propagation
Other ways of representing risk aversion
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Value at risk

Value at risk (VaR) is the greatest loss in portfolio value that can occur with 
probability 𝑎𝑎:

𝑉𝑉𝑎𝑎𝑅𝑅𝛼𝛼 𝜉𝜉 = min{𝑡𝑡|ℙ 𝜉𝜉 ≤ 𝑡𝑡 ≥ 𝑎𝑎}
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Example: value at risk

Consider the forward contract of slide 61

• 𝑉𝑉𝑎𝑎𝑅𝑅0.1 𝜉𝜉 = 50 $/MWh
• Intuition: if an investor observes the payoff of the forward contract that it is 

obliged to settle for 1000 market outcomes and picks the best 100 among 
them, then the cost it is required to pay off can be as high as 50 $/MWh

• 𝑉𝑉𝑎𝑎𝑅𝑅0.9 𝜉𝜉 = 100 $/MWh
• Intuition: state it
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Drawbacks of value at risk

• Highly sensitive/unstable with respect to market data
• Rockafellar: “This degree of instability is distressing for a measure of risk on 

which enormous sums might be riding”

• Not a coherent risk measure (not subadditive)
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Example: value at risk is not subadditive

Consider two possible states of the world: 𝛺𝛺 = {1,2}, with equal 
probabilities
And consider two random variables:

• 𝜉𝜉(1) = 10, 𝜉𝜉(2) = 100
• 𝜁𝜁(1) = 100, 𝜁𝜁(2) = 10

We have that 𝑉𝑉𝑎𝑎𝑅𝑅0.1 𝜉𝜉 = 10, 𝑉𝑉𝑎𝑎𝑅𝑅0.1 𝜁𝜁 = 10
But we have that 𝑉𝑉𝑎𝑎𝑅𝑅0.1 𝜉𝜉 + 𝜁𝜁 = 110 > 𝑉𝑉𝑎𝑎𝑅𝑅0.1 𝜉𝜉 + 𝑉𝑉𝑎𝑎𝑅𝑅0.1 𝜁𝜁
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Conditional value at risk

Conditional value at risk (CVaR) is the expectation of losses, 
conditional on losses being greater than VaR:

𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅𝛼𝛼 𝜉𝜉 = 𝔼𝔼𝑃𝑃𝛼𝛼 𝜉𝜉
where

𝑃𝑃𝛼𝛼 𝑡𝑡 = �
0, if 𝑡𝑡 < 𝑉𝑉𝑎𝑎𝑅𝑅𝛼𝛼 𝜉𝜉

ℙ 𝜉𝜉 ≤ 𝑡𝑡 − 𝛼𝛼
1 − 𝛼𝛼

, if 𝑡𝑡 ≥ 𝑉𝑉𝑎𝑎𝑅𝑅𝛼𝛼 𝜉𝜉
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Advantages of CVaR relative to VaR

• More stable with respect to data
• Coherent risk measure
• Can be represented as a linear program
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Representation of CVaR as a linear program 
(Rockafellar and Uryasev [3])
We have

𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅𝛼𝛼 𝜉𝜉 = min𝑡𝑡{𝑡𝑡 +
1

1 − 𝛼𝛼
𝔼𝔼𝑃𝑃[(𝜉𝜉 − 𝑡𝑡)+]}

where the optimal solution equals 𝑉𝑉𝑎𝑎𝑅𝑅𝛼𝛼
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Example: computation of CVaR

Consider the payoffs in the table

We will show that
• 𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅0.96 = $1000
• 𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅0.86 = 4

14
� 1000 + 10

14
� 0 =

$285.7
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Cost ($) Probability (%)
1000 4

0 10
-1000 12
-2000 14
-3000 60



Computation by hand

• For 𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅0.96:
• The 4% least favorable outcomes correspond to the unique realization where 

cost equals $1000
• The conditional probability of this event occurring is 100%

• For 𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅0.86:
• If the least 14% favorable outcomes occur, this corresponds to the outcomes 

with cost $1000 and $0
• The conditional distribution then assigns a probability of (4/14) to the 

outcome with cost $1000, and a probability of (10/14) to the outcome with 
cost $0
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Computation as a linear program

Using the result of slide 76:

min𝑡𝑡,𝑦𝑦𝑡𝑡 +
1

1 − 0.86 0.04 � 𝑦𝑦1 + 0.1 � 𝑦𝑦2 + 0.12 � 𝑦𝑦3 + 0.14 � 𝑦𝑦4 + 0.6 � 𝑦𝑦5

𝑦𝑦1 ≥ 1000 − 𝑡𝑡
𝑦𝑦2 ≥ 0 − 𝑡𝑡

𝑦𝑦3 ≥ −1000 − 𝑡𝑡
𝑦𝑦4 ≥ −2000 − 𝑡𝑡
𝑦𝑦5 ≥ −3000 − 𝑡𝑡

𝑦𝑦 ≥ 0

If our solver computes an objective function of 285.7 and an optimal value 𝑡𝑡 equal to 0, 
what can we conclude about 𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅0.86 and 𝑉𝑉𝑎𝑎𝑅𝑅0.86?
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Modeling risk aversion
Value at risk and conditional value at risk
Worst-case characterization of coherent risk measures
Back-propagation
Other ways of representing risk aversion
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Worst-case characterization of coherent risk 
measures
ℛ is a coherent risk measure if and only if there exists a class of 
probability measures ℳ such that ℛ(𝜉𝜉) equals the highest expectation 
of 𝜉𝜉 with respect to members of this class:

ℛ 𝜉𝜉 = max𝑞𝑞∈ℳ𝔼𝔼𝑃𝑃 𝜉𝜉 = max𝑞𝑞∈ℳ �
𝜔𝜔∈𝛺𝛺

𝑞𝑞𝜔𝜔 � 𝜉𝜉 𝜔𝜔

The vector �𝑞𝑞 that maximizes this expression is the risk-adjusted 
probability measure
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Example: CVaR

Consider the following class of probability measures:

ℳ = 𝑞𝑞: 𝑞𝑞𝜔𝜔 ≤
𝑃𝑃𝜔𝜔
𝛼𝛼

, �
𝜔𝜔∈𝛺𝛺

𝑞𝑞𝜔𝜔 = 1, 𝑞𝑞 ≥ 0

Interpretation: we allow ourselves to redistribute the probability of all outcomes by 
increasing the original probabilities 𝑃𝑃𝜔𝜔 by a factor 1/𝛼𝛼

If our goal is to maximize the damage caused by 𝜉𝜉(𝜔𝜔), we “push” as much 
probability as possible to the higher values of 𝜉𝜉(𝜔𝜔) ⇒ distribution of slide 74

So CVaR is a coherent risk measure with risk-adjusted probability that of slide 74
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Subgradient of risk-adjusted payoff

The vector �𝑞𝑞 is a subgradient of ℛ 𝜉𝜉

Moreover, the subgradient of a risk measure with respect to a 
parameter 𝑎𝑎 can be derived using the chain rule:

𝜕𝜕ℛ 𝜉𝜉
𝜕𝜕𝑎𝑎

= �
𝜔𝜔∈𝛺𝛺

𝜕𝜕ℛ
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝑎𝑎

= 𝔼𝔼�𝑞𝑞
𝜕𝜕𝜉𝜉
𝜕𝜕𝑎𝑎
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Example: sugradient of risk-adjusted payoff

Consider an agent that sells 𝑎𝑎 MW of electricity in a forward market

The cost of settling the forward contract in real time is
𝜉𝜉 𝜔𝜔 = 𝜆𝜆𝑅𝑅𝑇𝑇 𝜔𝜔 � 𝛼𝛼

Suppose that prices are uniformly distributed between 
{10,20, … , 1000} $/MWh

And suppose that the risk aversion of the agent is 𝑀𝑀𝑉𝑉𝑎𝑎𝑅𝑅0.8
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Example (continued)

The risk-adjusted probability measure increases the probability of the worst 
outcomes by a factor of 1.25: 

�𝑞𝑞 = {0,0,0.125, … , 0.125}

Proof: slide 82

The subgradient of the payoff 𝜉𝜉 with respect to the forward position 𝑎𝑎 is 𝜆𝜆𝑅𝑅𝑇𝑇 𝜔𝜔 :
𝜕𝜕𝜉𝜉
𝜕𝜕𝑎𝑎

= 𝜆𝜆𝑅𝑅𝑇𝑇

Intuition: selling an extra MW in the forward day-ahead market costs the agent 
𝜆𝜆𝑅𝑅𝑇𝑇 𝜔𝜔 if outcome 𝜔𝜔 materializes
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Παράδειγμα (συνέχεια)

The risk-adjusted cost of selling one more MW in the forward market is

𝜕𝜕ℛ 𝜉𝜉
𝜕𝜕𝑎𝑎

= 𝔼𝔼�𝑞𝑞
𝜕𝜕𝜉𝜉
𝜕𝜕𝑎𝑎

= 𝔼𝔼�𝑞𝑞 𝜆𝜆𝑅𝑅𝑇𝑇 = 0.125 � 30 + 40 + ⋯+ 100 = $65

The expected real-time price is $55

The risk aversion of the agent means that it assigns a cost of $65 for 
selling one MW in the forward market (higher)
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Modeling risk aversion
Value at risk and conditional value at risk
Worst-case characterization of coherent risk measures
Back-propagation
Other ways of representing risk aversion
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Trick question

The day-ahead market is the most important electricity market, 
because this is where the greatest volumes are transacted

And the real-time market is of secondary importance, because that is 
where corrections take place with a small amount of traded volumes

Right or wrong?
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Back-propagation

Back-propagation is the process by which forward prices are formed as 
a function of the distribution of real-time prices

And not the opposite!
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Intuition of back-propagation

We have the tools to prove back-propagation (and will do so next)

But the intuition is the following:
• If the forward price of electricity is higher than the expected real-time price, 

then
• Agents sell forwards and close their position in real time, thereby achieving a positive 

expected profit
• The sale of forward contracts exerts downward pressure on forward prices (and has the 

contrary effect on real-time prices)
• ⇒ alignment of forward prices to expected real-time prices

• Develop the argument in the opposite case
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Quantitative argument
Consider an agent that decides how much electricity to sell in the forward day-ahead market

And assume virtual trading: 
• We can sell even if we do not own generating assets
• We can buy even if we are not serving loads

Profit maximization:
max𝑎𝑎𝜆𝜆𝐷𝐷𝐴𝐴 � 𝑎𝑎 − ℛ 𝜉𝜉 𝑎𝑎

where 𝜉𝜉 𝑎𝑎 = 𝜆𝜆𝑅𝑅𝑇𝑇 � 𝑎𝑎

First-order optimality condition: 

𝜆𝜆𝐷𝐷𝐴𝐴 =
𝜕𝜕ℛ
𝜕𝜕𝑎𝑎

= 𝔼𝔼�𝑞𝑞 𝜆𝜆𝑅𝑅𝑇𝑇
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Example

We return to the example of slide 84

If the price in the day-ahead energy market exceeds 65 $/MWh, what 
position would the agent take in the day-ahead market (short or long)?

If the price in the day-ahead energy market is less than 65 $/MWh, what 
position would the agent take in the day-ahead market (short or long)?

If all agents have the same attitude towards risk, what is the equilibrium 
price of the day-ahead market?
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So what?

Back-propagation proves the central role of balancing markets/real-time 
markets in electricity market design

This central role was not recognized adequately in the original design of the 
European market:

• There was disproportionate emphasis on the design of the day-ahead market
• And the real-time market was considered of secondary importance, and not 

designed carefully

We are in the midst of important reforms in the European real-time 
electricity markets (TERRE, MARI, PICASSO, IGCC, imbalance settlement)

A. Papavasiliou, NTUA 93



Modeling risk aversion
Value at risk and conditional value at risk
Worst-case characterization of coherent risk measures
Back-propagation
Other ways of representing risk aversion
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Utility functions

Convex utility functions are a common way for representing risk 
aversion in eocnomics

ℛ 𝜉𝜉 = 𝔼𝔼 𝑈𝑈 𝜉𝜉 𝜔𝜔

where 𝑈𝑈 is a convex utility function 𝑈𝑈:ℝ → ℝ
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Example

Consider a lottery 𝜉𝜉 that requires its owner to pay $100 or -$100 with 
equal probability
And consider the alternative 𝜁𝜁 of a certain payment of $0
Consider a utility function max(0.5 � 𝑥𝑥, 𝑥𝑥)
We have

• ℛ 𝜉𝜉 = 0.5 � 100 − 50 = 25
• ℛ 𝜁𝜁 = 0

Since ℛ 𝜉𝜉 ≥ ℛ 𝜁𝜁 , the certain payment is preferable

A. Papavasiliou, NTUA 96



A. Papavasiliou, NTUA 97



Markowitz risk measure

The Markowitz risk measure is defined as:

ℛ 𝜉𝜉 = 𝔼𝔼 𝜉𝜉 + 𝛽𝛽 � 𝑣𝑣𝑎𝑎𝑟𝑟 𝜉𝜉

where 𝛽𝛽 is a fixed parameter and 𝑣𝑣𝑎𝑎𝑟𝑟 𝜉𝜉 is the variance of 𝜉𝜉
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Example

Consider the lottery of slide 92

We have
𝔼𝔼 𝜉𝜉 = 0.5 � 100 + 0.5 � −100 = 0

𝑣𝑣𝑎𝑎𝑟𝑟 𝜉𝜉 = 0.5 � 100 − 0 2 + 0.5 � −100 − 0 2 = 10000

For 𝛽𝛽 = 0.05 we have
ℛ 𝜉𝜉 = 0 + 0.05 � 10000 = 500
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