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Sequence of events

1. First-stage decisions: decisions taken before uncertainty is revealed

Second-stage decisions: decisions taken after uncertainty is
revealed

3. Sequence of events: x - w = y(w)

Second stage

First stage Uncertainty

X




Mathematical formulation

(TSLP): miny ,c"x + E[q(w)"y]

s.t.Ax =b
T(w)x +W(w)y(w) = h(w),w € N
x=0,y=0

* First-stage decisions x € R™1, second-stage decisions y(w) € R"2
* First-stage parameters: c € R™, b € R™1, 4 € R"1*™

* Second-stage parameters: q(w) € R"2, h(w) € R™2, T(w) €
Rmzxnl’ W(a)) = Rmzxnz



Example 8.1: deterministic two-stage model

* Hydrothermal system
e Unit G1: 60 MW at 10 S/MWh
e Unit G2: 100 MW at 50 S/MWh
* Hydroelectric unit: efficiency n = 0.8

e Load:
* Period 1: 50 MW
* Period 2: 100 MW

* Express the model in the generic two-stage format

* Hint: introduce a decision variable that corresponds to the amount of energy
that is stored in the reservoir



Mathematical formulation of hydrothermal
scheduling

minp'dH,pH,e Z MCg . pgl + Z MCg . pgz
gEeG geG

Py <P,g€G

H
e]_:dHl—u

n
D1+dH1_Zpg1_pH1:0
geG

H
82 :dHZ_%‘l‘el

D2+dH2—ngz—pH2 =0
geaG
62=0
p,dH,pH,e = 0



Notation and assumptions

* Decision variables:
* Pgyt: production from thermal unit g € G at period ¢
* dH;: electricity demand from hydrothermal unit at period ¢t
* pH;: production from hydrothermal unit at period t
* e;: amount of hydro energy in the reservoir at the end of period t

* We assume that the amount of energy in the reservoir at the
beginning of period 1 is zero

* We require e, = 0
* Load must be fully served



First and second-stage decisions

* First-stage decisions: p,q, pHy, dHy, €4

* Second-stage decisions: p,,, pH,, dH;, e,

e Second-stage decisions are connected to first-stage decisions through
the fifth constraint

* All other constraints are either first- or second-stage



Optimal solution

* Unit G1 produces at its capacity in both periods

* The excess energy of period 1 is stored in the reservoir
* This is beneficial even if 20% of the stored energy is lost due to losses
* Because unit G2 is overly costly



General formulation of hydrothermal
programming

MaXy>0,d>0,dH>0,pH=0,e20" * dy — Z MCyq - pg1 + Z P, (V-dy(w)— Z MCy; - pg2 (w))
geG WEN geaG

e, =R1+dH1—%
el SE;d]_ SDl
dl‘l‘dHl_ngl—le :O
geG
Pg2(w) < P,g EG wEN

2(©) = Ry(@) + dH, (w) — P22

4,(©) + dHy (@) = ) Pga(@) = pHy (@) = 0,0 € 0

geG
62((1)) < E, dz((!)) < Dz,a) € ()




Characteristics of the general model

* Monthly time steps

* Representation of rainfall

e Uncertainty: e.g. in rainfall

* Hydro storage limits

* Temporal variations of fuel cost
* Load shedding



Notation of the hydrothermal scheduling
problem

* P,: probability of outcome w

* Possibility to represent uncertainty in:
 Rainfall, R, (w)
* Load, Dy (w)
* Availability of generation units, F; (w)
* Fuel cost, MC;;(w): computationally hard

* Ri:rainfall in period 1

* R,(w): uncertain rainfall in period 2

e IV: consumer valuation

* E: hydro reservoir limit

* MC,:: marginal cost of technology g in period t



Example 8.2: stochastic two-stage
hydrothermal scheduling model

e Consumer valuation: V = 1000 S/MWh
e Storage limit: £ = 10 MWh
* Rainfall of period 1: R; = 5 MWh

* Two scenarios of period 2, 2 = {1,2}:
¢ Rz(l) =0 MWh, P1 — 05




Optimal solution

* In period 1, unit G1 is used to the

greatest possible extent (until the
reservoir is full)

* In period 2, unit G2 is used for
covering the demand that is not
covered by G1 and the hydro unit
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’/- Ry = 5MWh -\‘
pt:l.] = 55 MWh
Pg,1 = 0 MWh
pH; = 0 MWh
dH, = 5 MWh
e, = 10 MWh

dy = 50 MWh
AN /

/" R,(1) = 0 MWh \

P, 2(1) = 60 MWh
Pe,2(1) = 32 MWh

pHy(1) = 8 MWh
dH; (1) = 0 MWh
e,(1) = 0 MWh

\_%2(1) = 100 MWh

/Rz(z) = 10Mwh \

Pg,2(2) = 60 MWh
Pe,2(2) = 24 MWh

pHy(2) = 16 MWh
dH,(2) = 0 MWh
e,(2) = 0 MWh

\_d2(2) = 100 MWh
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Two-stage stochastic linear programs

Modeling multi-period uncertainty
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Scenario trees

* A scenario tree is a graphical representation of a stochastic process
{Et}, t = 1, cer H

* A graph that includes a set of nodes N and a set of directed edged E,
where:

* Each node of the tree corresponds to a history of outcomes up to a stage t:
E[t] — {51! ) Et}

* Each edge of the tree corresponds to transitions from ) to ppy1



Root, ancestor and descendants

* The root of the tree corresponds to the first stage, t = 1

* The ancestor of a node ¢4, A(S[¢1), is the unique neighboring node in
the scenario tree that precedes $:

A(&1g) = {&1e-11: Epe—1p &e)) € E}

* The descendants of a node, C(E[t]), is the set of nodes that are
adjacent to ¢4 and occur at stage t + 1.

C(&1er) = Ere+n): 1ep Slesn)) € E

 Each node of the scenario tree has a time label



Structure of a scenario tree

 To each node of the scenario tree
corresponds a history &4

* To each edge of the tree corresponds a

transition probability P ($pe417[$1e7)
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Example 8.3: four-stage rainfall scenario tree

 Same setup as example 8.2, but
two more stages

* Numbers within nodes: rainfall at /@:n.z
the given node of the given stage (=2 07
* Numbers on edges: transition =1 o » 04
probabilities Gj” @*’“
 Red indicates descendants of

&n.?
node (5,10) " @ur )
* Green indicates ancestor of node :\)tz:

(5,10) \@



Scenarios and events

e Scenarios in stochastic programming are synonymous to outcomes in
probability theory

e Events are subsets of the set of events

* Set of events 2y of a scenario tree:
» Set of trajectories from period 1 to the end of the horizon H
* Set of nodes of the scenario tree at stage H

* Set (;: set of scenarios from period 1 until period t



Events encode information

.1
Il
.

* The setin the red box is an eventin (2,4

* |t is the event where there was plenty
of rain in periods 1, 2, 3
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Probability of a node

Probability of being at a node of the scenario tree = probability of
trajectory that lands on the node:

P(&ly) =P (&) P(&el) - P(&l]él-ry) @D



Markov processes

* Markov processes are stochastic processes where the conditional
distribution of ¢; depend sonly on the last outcome of the process,
$t—1, and not the history of the process, §jt—1] = ($1, -, $t—1):

P(Et‘f[t—l]) — P(€t|€t—1)
for all stages t and all possible trajectories ¢4

* Can be represented as scenario trees if transition probabilities obey
the Markov properties

* Can alternatively be represented as lattices



Lattices

A lattice is a special case of scenario tree, which can be used for
representing a Markov process E[t], t =1,.., H, where

* Each node of the lattice corresponds to an outcome ¢, and

* Each edge corresponds to a transition from &; to é;,4 and a transition
probability P(&¢11[$¢)



Graphical representation of a lattice

* Each node &; € N corresponds
to a realization of the stochastic
parameter

* Each edge corresponds to a
transition probability P(&p41|&¢)




Probability of each node of a lattice

* The probability of landing on a given node of a lattice can be computed recursively

* The root in period 1 has probability 1:
P(€1 — 5;11) =1

* For each &; in the set =} at period t:
P(¢,=n) = P({z =nl&),n € &,

PGe=m)= ) P =nlg1=m) Py =m),neS,

mEEt_l

Py =mn)= z P(¢y =nlég—y =m) -P(Ey_1 =m),n € Ey

mEEH_l



Scenario trees and lattices

 \WWe can unfold lattices to scenario trees
* Meaning we can represent Markov processes using scenario tress

* But we cannot always fold a scenario tree to a lattice
* Meaning that not all scenario trees are Markov processes



Example 8.4: a scenario tree that is not a

Markov process

e Consider the scenario tree of example 8.3
* Probability of £, = 10 given history (5,10,5):

P(&, = 10|¢[5; = (5,10,5)) = 0.4

* Probability that £, = 10 given last outcome of
history (5,10,5):

P(§4 = 10,83 =5)
P(¢3 =5)

~(05:03):0.4+(0.5-0.3)- 0.7 _
B 0.5:-0.3+4+0.5-0.3 B

P&, = 10[¢5 = 5) =

0.55
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Example 8.5: a four-stage scenario tree that is
Markov

» Condition for a scenario tree to be Markov: whenever & = &} in two
different nodes of the same stage, the transition probabilities from
that node to every node of the next stage must be equal

* Let’s slightly modify the scenario tree of the previous slide

» At stage 3 of the next slide, we have two possible paths that lead to
outcome {3 = 5

* In order for the Markov property to hold, the transition probabilities
from é; = 5 to all nodes of stage 4 must be equal



Example 8.5: unfolding a scenario tree into a
lattice

t=4

0

0.8
=2 ~
0.7
0.4
e

:;f _

~—® t=1 0s 0.3\

of /@:‘””‘ oy od
0.5 \CD:OB

Gray edges: zero probability
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Stagewise independence

* Stagewise independent processes are stochastic processes {&;, t =
1, ..., H} where the probability distribution of {; depends only on
stage t, meaning ¢, is independent of §j;_q;

* They are Markov processes

* Therefore they can be represented both as scenario trees as well as
lattices

* In the same way that scenario trees # lattices, also lattices #
stagewise independent



Example 8.6: lattice that is not stagewise
independent

* Returning to the lattice of slide 31, t=4
not stagewise independent . (=)
* For example, the probability of &, = o, /@u,zm
10 depends on &;: os
t=1 o 03 %
P(¢, =10[¢3=5) =04 @0_5 /K%
\®i‘;"7\00,2
P(§4 = 10[$3 = 15) = 0.2



Example 8.7: four-stage lattice that is
stagewise independent

* We require that the probability
leading to each &; should be
equal, regardless of the adjacent

nodeinstaget — 1

* For example, ¢, = 20 with
probability 0.1, regardless if
63 — 15, 5, 10




Multi-stage stochastic linear
programming

Two-stage stochastic linear programs

Modeling multi-period uncertainty

Multi-stage stochastic linear programs
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Multi-stage stochastic linear programs

* Linear programs
* Linear constraints
* Linear objective function

* Unfolding in multiple stages
* We decide at every stage



Multi-stage stochastic linear program in
extended form

H

(MSLP — ST): min,, Z Z P(n) - c,(n) x,(n)
t=1 ne.Qt
S. L. W1x1 — hl
Ti{(m)x, + Wo,(n)x,(n) = h,(n),n € 2,

Ti—1(M)xe—q(A(n)) + Wt:(n)xt(n) = h(n),n € £

Ty_1(M)xy_1(A(M)) + Wy(m)xy(n) = hy(n),n € 0y
x1=0,x;(n)=0,t=2,..,H,n €,



Model formulation in extended form

* The extended form of the model describes the overall decision
problem as a large-scale monolithic linear program

* Impossible to solve in practical scale

e But the model has interesting

* Mathematical properties that inspire the development of dynamic
programming algorithms

* Economic interpretations



Model notation and observations

« N =U{_; 0,: set of nodes of scenario tree

* P(n): probability of noden € N

* ¢¢, Ty, Wy sets of random variables (indexed by scenarion € (2;)

* x;: decisions also indexed by n € (2;, therefore corresponding to a policy

* This means that decision x;($[;) depends on stage t and the information
S1e] € {2 revealed so far

* Constraints connecting decisions of stage t to decisions of stage t — 1 only,
therefore the decision variables must summarize the state of the system
 Example: in hydrothermal scheduling, water levels in period t are expressed as a

function of water levels in period t — 1, and not decisions before period t — 1 that
led to this state



Non-anticipativity

* Non-anticipativity: decisions in stage t do not have access to future
information

* So they can depend on information n € (2, revealed so far (and not
future informationm € 2., 17 > t)

* Example: in a two-stage model, first-stage decisions must be identical
for all scenarios



H apxn Tou OUVALLKOU TIPOYPOUUATIOUOU

* The dynamic programming principle: the optimal solution of a
dynamic decision making problem under uncertainty is such that the
optimal policy is also optimal the sub-problem in which we only
consider a part of the horizon

* Intuition: what’s done is done, and we do the best we can from now
on

* This principle leads to the dynamic programming algorithm, which
(often) works from the end of the horizon backwards



Value function for stage H

* The value function of stage H is defined as:

Qu (xH—l: f[H]) = miny, Cy (f[H])TxH

Wy (E[H])xH = hy (E[H]) - TH—1(€[H])xH—1
Xy =0

* Itis a function of x5 _; and ¢y (which is all we need to know in order
to decide what to do in the last stage H)



Value function for stage H — 1

* Value function for stage H — 1:

Qr-1 (XH—z» f[H—1])
= miny,,_ cy—1(¢ H—1])TxH—1 + z P(Em|€m-11) * Qu(xu-1, &)

STHIE2H

Wy - 1('51{ 1)XH 1 = hy_ 1(’51{ 1]) Ty z(fH 1])XH 2
Xp-1 =0

 Balances

T
e cost of current period CH—l(E[H—l]) xH_1
e with expected future cost ZE[H]EQH P(&mlSu-11) * Qu (xH_l, E[H])



Dynamic programming equation

 Dynamic programming equation for any staget =1, ..., H:

Qt(xt—l»f[t])
= ming (&) %+ ) PEernl€ie) - Qees (Yo Elen)

STt+1]1€L2¢+1

Wt(f )xt ht(f ) Ty 1(5 )xt 1

xt>0

* Intuitively, the function Qt(xt_l, E[t]) quantifies
* the expected future cost of deciding x;_; at staget — 1
* given that the information available at stage t is [
* assuming that we will act optimally from stage t onwards



The hydrothermal planning
problem



Formulation of hydrothermal planning model

H
(Hydro = ST): maxy appan ) ) PO« (V- de(n) = ) MCyp - pe(m))

t=1ne; geG
pge(n) <P,g€G,t=1,.,Hneln,
pH:(n )

e;(n) =R;(n) +dH;(n) — - +e_1(A(n)),t=1,..,H,n €

d,(n) + dH,(n) — 2 pge(n) — pHy(n) = 0,6 = 1,..,H,n € 0,

et(n)<Et—1 LH,nen,
di(n) <D, t=1,..,Hne€E
p,d,pH,dH,e >0

* Input data: initially stored energy e,



Stochastic dual dynamic programming
algorith,

* The stochastic dual dynamic programming (SDDP) algorithm is the
most broadly used method for solving the problem in practical
applications

* The algorithm combines ideas from Monte Carlo simulation with
dynamic programming



The real problem

* Generalizations in real applications (that can be approximated linearly):
* Complex representation of hydroelectric production as a function of outflow and head
* Wide geographical coverage: river networks, where water management in certain dams
affects water flow in the same river system
* Horizon: a few years

* Monthly time steps = 120 time steps for a planning horizon of 10 years
* Practical applications: horizon > 120 stages

The problem is formulated on a lattice in practice (Markov process)
. S;cates of the art in research and industry applications: 100 outcomes of uncertainty per time
stage
* Dimension of state vector
* Academic research: 50
* Practical applications: much higher (but without performance guarantees)
* The state vector includes the water level of hydro dams, and rainfall in previous months



Risk neutrality and risk aversion

* One can prove the equivalence between (Hydro — ST) and a
decentralized economic equilibrium, where risk-neutral agents
maximize expected profit

* The result can be generalized to agents with risk aversion, under
certain (optimistic) assumptions about the availability of financial
instruments in the market



Representation in code

* Define a set of nodes N of the scenario tree
* Uncertain parameters indexed by node of the scenario tree

* Probability of a node is the probability corresponding to the history of
outcomes leading to this node

* Each node of the tree corresponds to a time period

* Redundant to define stochastic parameters per node and per time
stage, because time stage implied by node of the scenario tree

* Sufficient to define constraints per node of scenario tree, because
notationt = 1,...,H and n € (), is equivalentton € N



Example 8.8: four-stage hydrothermal planning
ONn a scenario tree

* We return to the scenario tree of example 8.3
* The hydro reservoir is initially empty

* Two thermal units:

e G1: 60 MW at 10 S/MWh

e G2: 100 MW at 50 S/MWh

* Load:
e Curtailment cost 1000 S/MWh
* Load in period 3: 120 MW
* Load in period 4: 180 MW

* Reservoir:
* Energy storage capacity 50 MWh
 Efficiency 0.8



Example 8.8: hydro storage level
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The hydrothermal planning
problem



Dynamic programming and the value of water

* The application of dynamic programming to hydrothermal scheduling
has interesting connections to duality

* The value of water is one of the outputs of the SDDP algorithm

 Computationally: slope of the value functions of the dynamic programming
algorithm

* Intuitively: opportunity cost of using water in hydro units

* Storing, let alone solving, (Hydro — ST) is impossible
* For a problem with 121 stage and 5 outcomes per stage, the number of nodes
in the last stage is 512° > number of atoms in the universe

* The dynamic programming algorithm decomposes the problem per
time stage and uncertainty outcome



Value function it the last stage

The value function of the last stage Qy depends on the rainfall outcome and
the level of stored hydro energy e+

QH(eH—lr ) = MaXy g4 pH,dieV d— Z MCgH "Pg

gea
(ug)ipg < Py g € GH
(AH):@ — +dH_pT+eH—1
():d + dH — ng pH =0
(6): e <E
(v):d < Dy

p,d,pH,dH,e = 0



What the value function does not depend on

* The value function does not depend directly on p, pH, dH, d in period
H-1

* The only thing that matters as far as decisions in stage H are
concerned is how these decisions in stage H — 1 affect the water
level eyy_4



Proposition 8.1: analytical characterization of
the value function

The value function QH(eH_l, E[H]) can be expressed as:
e Case 1 (load curtailment): if

Dy >1 - (Ry($1my) + en-1) + 2 Fy
geEG

then
Qu (eH—11 'f[H])

=V (z Py + 1+ (Ru($pm) + eHl)) - 2 MCyy - Fy

geG geaG



Proposition 8.1: analytical characterization of
the value function

* Denote the unit before g in the merit orderas g~
e Case 2 (using thermal units): if

N+ (Ry(§m) +en—1) + Z Py < Dy <7+ (Ry(&im) +en—1) + z Fy

9geEG:MCyy<MCg-H geEG:MCyg<MCgy
then

QH(eH—l:f[H]) =V Dy — Z MCgy - Fy
gEG:MCgH<MCgH

—MCyy - (DH — Z By—nm- (RH(f[H]) + eH—1)>

gEG:MCgH<MC§H



Proposition 8.1: analytical characterization of
the value function

e Case 3 (use of water): if

DH < n-: (RH(éT[H]) + eH_l) + 2 Pg
geEG

then
QH(eH—l»g[H]) =V Dy



Proof: dual of the last-stage problem

The dual of the linear program that defines QH(eH 1, ¢ ) iS:
mlnMAH/‘Lgvz‘ug P, — AH - (RH(E )‘l‘eH 1)+5 E4+v- DH
geEG
(pg)ing —A=—-MCyy,g €G
(d):v+A=V

AH
(pH):———-—12=20

n
(dH):AH+ 1= 0
(e):—AH+6=0
u=0v=00=0



Proof: sign of AH and A

e Suppose that AH > 0
*ThenA = —-AH and A < —AH /n

* Which is impossible, because 0 <n <1
e Thus AH <0,and A1 >0



Proof: optimal values of dual multipliers

* Arguing by contradiction we can prove that 6 = 0 at the optimal solution
* Similarly, we show that y; = max(4 — MCyy, 0) at the optimal solution
* And v = max(V — A4, 0) at the optimal solution
* Finally, AH = A -  at the optimal solution
* Thus the optimal objective value of the dual problem is

i = z max(A — MCy,0) - By + -1 - (Ru (&) + ex1)

geG
+max(VV —1,0) - Dy



Proof: optimal solution in case of water
oversupply

e For A = 0, we have

d* —_ V . DH
* None of the thermal units is producing, and demand is covered by

hydro units
* We can show this using KKT conditions

 The value of water is zero, because additional water is not useful



Proof: optimal solution when thermal units
are used

* For A = MCyy, where g the marginal thermal unit, we have

d* = —
—MCgy - | Dy — Z Py—n- (RH(f[H]) + eH—l)
gEGMCyyu<MCgy
e All , units cheaper than g produce at

, and g produces the rest

* The value of wateris ) - MC5p, because 1 MWh of additional water results
in producing n MWh less energy from unit g
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Proof: optimal solution in case of load
shedding

e ForA =V, we have

d*= —

* Demand only , all units producing at

* The value of waterisn - I/, because 1 MWh of additional water
reduces load shedding by n MWh



Structure of value function

* The value function is piecewise linear concave
* This is already foreseen by the theory (of appendix A.10 [1])

* From proposition 2.8 of [1] we know that the dual multiplier AH is the
value of water (and the slope of Qy_; with respect to ey _q)

e Structure of the value function:

* Geometric intuition: change of optimal basis as we change ey _4, so the slope
of Qy_1 changes

* Physical intuition: changes in ey_4 result in “phase changes”: hydro only —
hydro thermal — load shedding




Value function at stage t

* For any stage t, the value function is

Qt(et—pf[t]) = MaXy g pH,dHeV d— z MCgt "Pg T 2 P($t41 = n|5[t]) ' Qt+1(e: f[t+1])

gEG TlE.Qt+1

(,ug):pg < Pg,g €EG

H
(){H) e = Rt(g[t]) + dH - pT + €r—1

(/1):d+dH—ng—pH=0
gEeG
(6):e<E
(v):d < D;
p,d,pH,dH,e = 0

* Like Qp, Q¢ is piecewise linear concave



Example 8.9: value functions on a scenario
tree
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Example 8.9: load shedding

o If
Dy >1n- (Ry(&my) +ey_1) + z P, = 180 > 0.8 - (20 + e3) + (60 + 100)
gea
= e3 <5
then

Qu(en-1,.¢m) =V (z Py +1 - (Ry(&rm) + eHl)) - z MCgy - Fy
gea gea

= 1000 - (60 + 100 + 0.8 - (20 + e3)) — 10 - 60 — 50 - 100
= 170400 + 800 - e,

* For e; = 5, the value function is $174400



Example 8.9: the expensive thermal unit G2 is
marginal

o If

n- (RH(f[H]) + eH_l) + PG1 < DH < n- (RH(f[H]) + eH_l) + PGl + PGZ =
0.8 (20 + ;) + 60 < 180 < 0.8 - (20 + ;) + 60 + 100 =
5 < €3 < 130

then
Qu (eH—1» f[H])
=V Dy —MCg g Pg, —MCq,p - (DH — P, — 1 (RH(f[H]) + eH—l))
= 1000180 —10-60 — 50 - (180 — 60 — 0.8 - (20 + e3)) = 174200 + 40 - e,
* For e; = 5, the value function is $174400 (so indeed continuous)
* For e3 = 130, the value function is $179400



Example 8.9: cheap thermal unit G1 is
marginal

o If

n- (RH(E[H]) +ey_ 1) <Dy <n- (RH(E[H]) +ey_1) + P, =
0.8+ (20 + e;) < 180 < 0.8 - (20 + €3) + 60 =
130 < e; < 205

then
QH(eH—l:E[H]) =V Dy —MC¢q,y (DH —n: (RH(E[H]) + eH—l))
= 1000180 —10 - (180 —08-(20+ e3)) = 178360 + 8 - e4
* For e3 = 130, the value function is $179400 (so indeed continuous)
* For e; = 205, the value function is $180000



Example 8.9: the hydro unit is marginal

o If

Dy <n- (RH(E[H]) + eH—l) =
180 < 0.8 - (20 + €5) = e; > 205

then
Qu(en—1,&1) =V - Dy = 1000 - 180 = 180000

* For e; = 205, the value function is $180000 (so indeed continuous)



Example 8.9: graphical representation of the
value function

Value function in example 8.9
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Value functions for Markov processes

* If uncertainty is a Markov process, the value functions are identical
when the value of &; is the same in a given time stage

* Therefore, value functions do not depend on how we go there ($(4)),
but only where we are (&;)
* Intuitively consistent with behavior of Markov process, where what happens
in the future depends only on where we are, not how we got there

* Important computational savings: algorithms like SDDP estimate value
functions

* Makes a big difference if these functions need to be estimate for every node
of a scenario tree or



Example 8.10: value functions on a lattice ..

t=3 0-8

07/@0.2

* We return to a process that can be described on a lattice T )

* We use the process of example 8.9 to compute the @: ’@l
value function Gi

o
(9]
=] (
~
\
o
)

* The value functions in the blue/red nodes of the
scenario tree are identical, since O

\
ca0

* R, = 10 in both blue nodes ~(o)

* R, = 0in both red nodes .
* Therefore

0.4 - Q4(es, (5,10,5,10)) + 0.6 - Q4(e3, (5,10,5,0)) 5

= 0.4 - Q4(es,(5,0,5,10)) + 0.6 - Q4(e3,(5,0,5,0)) e B
* Thus, based on the dynamic programming equation, the Gj \@/

value functions in the orange nodes are identical @/ NG O

* Thus on a lattice it is enough to compute a value @\<

function per node of the lattice \@



Value functions for stagewise independent
Drocesses

* For stagewise independent processes, value functions are indeitical
for all nodes of the same stage t

* So they are only functions of water level, Q;(e;_1), and not amount
of rainfall, Q;(e;—1, &)



Example 8.11: value functions for stagewise
independent processes

t=3

All orange nodes of the lattice have the same value function



Performance of stochastic
Drograms



Alternatives for analyzing uncertainty

* Stochastic programs are computationally “heavy”

* We can analyze models under uncertainty with less computationally
demanding techniques (which are approximations):
e Performance when we have perfect foresight

* Performance when uncertain parameters are replaced by their expected
value



The function z(x, &)

* We focus on two-stage stochastic programs
* We define the function z(x, &) as:
z(x, ) =clx+0Q(x,&) +I(Ax = b,x = 0)
where
Q(x, ) = min, {q(w)"y|W(w)y = h(w) — T(w)x}
and I(x|K) equaltoOforx € K and +oo forx € K

* Interpretation of z(x, &): cost given
* That we have decided x in the first stage
* Qutcome ¢ occurs in the second stage
* We react optimally in the second stage

* Easy to compute for given (x, &) (small linear program)



Wait-and-see value

* The wait-and-see value is the expected value of reacting with perfect
foresight x* (&) to &

WS = E[minyz(x, §)] = E[z(x"(£),$)]
* The here-and-now value is the expected value of the stochastic program:
SP = min, E[z(x, §)]

* We have WS < SP, because we act with prior knowledge of what will
happen

* Expected value of perfect information:
EVPI =SP —-WS

* Interpretation of EVPI: how much we are willing to pay for a perfect
forecast



Computational requirements

* Computing SP requires solving a potentially massive scale linear
program (hard)

* Computing WS requires solving may small independent linear
programs (computationally )




Example 8.12: expected value of perfect
information in hydrothermal planning

Return to example 8.2
Difference: rainfall in period 2 under scenario 2: R,(2) = 55

Here and now value:
SP =$148110

Wait and see value:
WS = $148115

Expected value of perfect information:
EVP] = WS — SP = 148115 — 148110 = $5

The difference is that with perfect foresight we transfer less water to the
reservoir in scenario 2

* The policy without perfect foresight produces at full capacity in period 1
* Slightly inefficient due to efficiency losses (n = 0.8) of hydro plant
* But we protect ourselves from load shedding in the unfavorable scenario



Expected value problem and expected value
solution

* In the expected/mean value problem, we replace uncertain
parameters with their expected value, ¢ = [E[¢{]

* The expected value solution x* (&) is the optimal reaction to
expected uncertainty

* The expected value of using the expected value solution x*(f_) is:
EEV = E|z(x*(¢),¢)]

 The value of the stochastic solution is
VSS = EEV — SP



Computational aspects

* Computing x* (&) is relatively easy (small linear program)

» Computation of EEV sets first-stage decision to x*(£), and computes
the optimal decision of the second stage for every w € ()

 Computationally easy for a reasonable number of scenarios, w € {2 (set of
small linear programs)



Example 8.13: value of stochastic solution

* We return to example 8.12, with mean rainfall in period 2 equal to
¢§=05-04+05-55=275

* Optimal first-stage decision for & = &: store 10 MWh of hydro

* Expected value of using the expected value solution:
EEV =$148110

e Value of stochastic solution:
VSS =SP — EEV = 148110 — 148110 = $0

* In other models, VVSS is typically (very) positive



Sample average approximation

When computing the expected value is computationally hard (e.g. for
the case of a continuous random parameter ¢), we can estimate WS
and EEV using sample average approximation:
eFori=1,..,K

* Sample ¢;

 Compute x*(f_)

* Compute WS; = z(x*(&;),&;) and EEV; = ch*(a + Q(x*(é:), &)

* Estimate WS = %Z{il WS; and EEV = %Z{ilEEVi



The central limit theorem

* Intuition: the more samples K, the more accurate the estimation of WS and EEV
* This intuition can be made mathematically precise with the central limit theorem

Consider a sequence of independent, |dent|cally distributed random variables
X1, X5, ..., with E[X;] = H and Var(X) = g2 < 00. Then, as n goes to infinity, the

random varlable Jn - ( Nie () converges in distribution to a normal random
variable, N(0, 0%):

n
1
Vi 2D Xi— | SN (0,07)
=1



Importance sampling

* Sample average approximation can be “slow”, because it may take a long time to observe rare samples with
a large impact on the mean

e This issue can be mitigated with importance sampling:

 Suppose that we want to estimate E[C], where C is distributed according to a density function f
» Sample average approximation samples C; based on the distribution f and estimates E[C] wg %Zﬁvﬂ C;

* Inimportance sampling we sample C; based on the distribution

i
and estimate E[C] as N

I /() - x

N g(x)

where we use a reasonable estimation of [E[C] in the denominator g(x)



References

[1] A. Papavasiliou, Optimization Models in Electricity Markets,
Cambridge University Press

https://www.cambridge.org/highereducation/books/optimization-

models-in-electricity-
markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview

A. Papavasiliou, NTUA

90


https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview
https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview
https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview

	Hydrothermal Planning
	Outline
	Multi-stage stochastic linear programming
	Sequence of events
	Mathematical formulation
	Example 8.1: deterministic two-stage model
	Mathematical formulation of hydrothermal scheduling
	Notation and assumptions
	First and second-stage decisions
	Optimal solution
	General formulation of hydrothermal programming
	Characteristics of the general model
	Notation of the hydrothermal scheduling problem
	Example 8.2: stochastic two-stage hydrothermal scheduling model
	Optimal solution
	Multi-stage stochastic linear programming
	Scenario trees
	Root, ancestor and descendants
	Structure of a scenario tree
	Example 8.3: four-stage rainfall scenario tree
	Scenarios and events
	Events encode information
	Probability of a node
	Markov processes
	Lattices
	Graphical representation of a lattice
	Probability of each node of a lattice
	Scenario trees and lattices
	Example 8.4: a scenario tree that is not a Markov process
	Example 8.5: a four-stage scenario tree that is Markov
	Example 8.5: unfolding a scenario tree into a lattice
	Stagewise independence
	Example 8.6: lattice that is not stagewise independent
	Example 8.7: four-stage lattice that is stagewise independent
	Multi-stage stochastic linear programming
	Multi-stage stochastic linear programs
	Multi-stage stochastic linear program in extended form
	Model formulation in extended form
	Model notation and observations
	Non-anticipativity
	Η αρχή του δυναμικού προγραμματισμού
	Value function for stage 𝐻
	Value function for stage 𝐻−1
	Dynamic programming equation
	The hydrothermal planning problem
	Formulation of hydrothermal planning model
	Stochastic dual dynamic programming algorith,
	The real problem
	Risk neutrality and risk aversion
	Representation in code
	Example 8.8: four-stage hydrothermal planning on a scenario tree
	Example 8.8: hydro storage level
	The hydrothermal planning problem
	Dynamic programming and the value of water
	Value function it the last stage
	What the value function does not depend on
	Proposition 8.1: analytical characterization of the value function
	Proposition 8.1: analytical characterization of the value function
	Proposition 8.1: analytical characterization of the value function
	Proof: dual of the last-stage problem
	Proof: sign of 𝜆𝐻 and 𝜆
	Proof: optimal values of dual multipliers
	Proof: optimal solution in case of water oversupply
	Proof: optimal solution when thermal units are used
	Proof: optimal solution in case of load shedding
	Structure of value function
	Value function at stage 𝑡
	Example 8.9: value functions on a scenario tree
	Example 8.9: load shedding
	Example 8.9: the expensive thermal unit G2 is marginal
	Example 8.9: cheap thermal unit G1 is marginal
	Example 8.9: the hydro unit is marginal
	Example 8.9: graphical representation of the value function
	Value functions for Markov processes
	Example 8.10: value functions on a lattice
	Value functions for stagewise independent processes
	Example 8.11: value functions for stagewise independent processes
	Performance of stochastic programs
	Alternatives for analyzing uncertainty
	The function 𝑧 𝑥,𝜉 
	Wait-and-see value
	Computational requirements
	Example 8.12: expected value of perfect information in hydrothermal planning
	Expected value problem and expected value solution
	Computational aspects
	Example 8.13: value of stochastic solution
	Sample average approximation
	The central limit theorem
	Importance sampling
	References

