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Outline

• Multi-stage stochastic linear programming
• Two-stage stochastic linear programs
• Modeling multi-period uncertainty
• Multi-stage stochastic linear programs

• The hydrothermal planning problem
• Model formulation
• Value function

• Performance of stochastic programs
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Two-stage stochastic linear programs
Modeling multi-period uncertainty
Multi-stage stochastic linear programs

Multi-stage stochastic linear 
programming
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Sequence of events

1. First-stage decisions: decisions taken before uncertainty is revealed
2. Second-stage decisions: decisions taken after uncertainty is 

revealed
3. Sequence of events: 𝑥𝑥 → 𝜔𝜔 → 𝑦𝑦(𝜔𝜔)
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Mathematical formulation

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 : min𝑥𝑥,𝑦𝑦𝑐𝑐𝑇𝑇𝑥𝑥 + 𝔼𝔼[𝑞𝑞(𝜔𝜔)𝑇𝑇𝑦𝑦]
s. t.𝐴𝐴𝑥𝑥 = 𝑏𝑏

𝑇𝑇 𝜔𝜔 𝑥𝑥 + 𝑊𝑊 𝜔𝜔 𝑦𝑦 𝜔𝜔 = ℎ 𝜔𝜔 ,𝜔𝜔 ∈ 𝛺𝛺
𝑥𝑥 ≥ 0,𝑦𝑦 ≥ 0

• First-stage decisions 𝑥𝑥 ∈ ℝ𝑛𝑛1 , second-stage decisions 𝑦𝑦 𝜔𝜔 ∈ ℝ𝑛𝑛2

• First-stage parameters: 𝑐𝑐 ∈ ℝ𝑛𝑛1 , 𝑏𝑏 ∈ ℝ𝑚𝑚1 , 𝐴𝐴 ∈ ℝ𝑚𝑚1×𝑛𝑛1

• Second-stage parameters: 𝑞𝑞(𝜔𝜔) ∈ ℝ𝑛𝑛2 , ℎ(𝜔𝜔) ∈ ℝ𝑚𝑚2 , 𝑇𝑇(𝜔𝜔) ∈
ℝ𝑚𝑚2×𝑛𝑛1, 𝑊𝑊(𝜔𝜔) ∈ ℝ𝑚𝑚2×𝑛𝑛2
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Example 8.1: deterministic two-stage model

• Hydrothermal system
• Unit G1: 60 MW at 10 $/MWh
• Unit G2: 100 MW at 50 $/MWh
• Hydroelectric unit: efficiency 𝜂𝜂 = 0.8

• Load:
• Period 1: 50 MW
• Period 2: 100 MW

• Express the model in the generic two-stage format
• Hint: introduce a decision variable that corresponds to the amount of energy 

that is stored in the reservoir
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Mathematical formulation of hydrothermal 
scheduling

min𝑝𝑝,𝑑𝑑𝑑𝑑,𝑝𝑝𝑑𝑑,𝑒𝑒 �
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔 � 𝑝𝑝𝑔𝑔𝑔 + �
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔 � 𝑝𝑝𝑔𝑔𝑔

𝑝𝑝𝑔𝑔𝑔 ≤ 𝑇𝑇𝑔𝑔,𝑔𝑔 ∈ 𝐺𝐺

𝑒𝑒𝑔 = 𝑑𝑑𝑑𝑑𝑔 −
𝑝𝑝𝑑𝑑𝑔
𝜂𝜂

𝐷𝐷𝑔 + 𝑑𝑑𝑑𝑑𝑔 −�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔 − 𝑝𝑝𝑑𝑑𝑔 = 0

𝑝𝑝𝑔𝑔𝑔 ≤ 𝑇𝑇𝑔𝑔,𝑔𝑔 ∈ 𝐺𝐺

𝑒𝑒𝑔 = 𝑑𝑑𝑑𝑑𝑔 −
𝑝𝑝𝑑𝑑𝑔
𝜂𝜂 + 𝑒𝑒𝑔

𝐷𝐷𝑔 + 𝑑𝑑𝑑𝑑𝑔 −�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔 − 𝑝𝑝𝑑𝑑𝑔 = 0

𝑒𝑒𝑔 = 0
𝑝𝑝,𝑑𝑑𝑑𝑑, 𝑝𝑝𝑑𝑑, 𝑒𝑒 ≥ 0
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Notation and assumptions

• Decision variables: 
• 𝑝𝑝𝑔𝑔𝑔𝑔: production from thermal unit 𝑔𝑔 ∈ 𝐺𝐺 at period 𝑡𝑡
• 𝑑𝑑𝑑𝑑𝑔𝑔: electricity demand from hydrothermal unit at period 𝑡𝑡
• 𝑝𝑝𝑑𝑑𝑔𝑔: production from hydrothermal unit at period 𝑡𝑡
• 𝑒𝑒𝑔𝑔: amount of hydro energy in the reservoir at the end of period 𝑡𝑡

• We assume that the amount of energy in the reservoir at the 
beginning of period 1 is zero

• We require 𝑒𝑒𝑔 = 0
• Load must be fully served
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First and second-stage decisions

• First-stage decisions: 𝑝𝑝𝑔𝑔𝑔, 𝑝𝑝𝑑𝑑𝑔, 𝑑𝑑𝑑𝑑𝑔, 𝑒𝑒𝑔
• Second-stage decisions: 𝑝𝑝𝑔𝑔𝑔, 𝑝𝑝𝑑𝑑𝑔, 𝑑𝑑𝑑𝑑𝑔, 𝑒𝑒𝑔

• Second-stage decisions are connected to first-stage decisions through 
the fifth constraint

• All other constraints are either first- or second-stage
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Optimal solution

• Unit G1 produces at its capacity in both periods
• The excess energy of period 1 is stored in the reservoir

• This is beneficial even if 20% of the stored energy is lost due to losses
• Because unit G2 is overly costly
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General formulation of hydrothermal 
programming

max𝑝𝑝≥0,𝑑𝑑≥0,𝑑𝑑𝑑𝑑≥0,𝑝𝑝𝑑𝑑≥0,𝑒𝑒≥0𝑉𝑉 � 𝑑𝑑𝑔 −�
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑔 � 𝑝𝑝𝑔𝑔𝑔 + �
𝜔𝜔∈𝛺𝛺

𝑇𝑇𝜔𝜔 � (𝑉𝑉 � 𝑑𝑑𝑔 𝜔𝜔 −�
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑔 � 𝑝𝑝𝑔𝑔𝑔(𝜔𝜔))

𝑝𝑝𝑔𝑔𝑔 ≤ 𝑇𝑇𝑔𝑔,𝑔𝑔 ∈ 𝐺𝐺

𝑒𝑒𝑔 = 𝑅𝑅𝑔 + 𝑑𝑑𝑑𝑑𝑔 −
𝑝𝑝𝑑𝑑𝑔
𝜂𝜂

𝑒𝑒𝑔 ≤ 𝐸𝐸,𝑑𝑑𝑔 ≤ 𝐷𝐷𝑔
𝑑𝑑𝑔 + 𝑑𝑑𝑑𝑑𝑔 −�

𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔 − 𝑝𝑝𝑑𝑑𝑔 = 0

𝑝𝑝𝑔𝑔𝑔 𝜔𝜔 ≤ 𝑇𝑇𝑔𝑔,𝑔𝑔 ∈ 𝐺𝐺,𝜔𝜔 ∈ 𝛺𝛺

𝑒𝑒𝑔 𝜔𝜔 = 𝑅𝑅𝑔 𝜔𝜔 + 𝑑𝑑𝑑𝑑𝑔 𝜔𝜔 −
𝑝𝑝𝑑𝑑𝑔 𝜔𝜔

𝜂𝜂 + 𝑒𝑒𝑔,𝜔𝜔 ∈ 𝛺𝛺

𝑑𝑑𝑔(𝜔𝜔) + 𝑑𝑑𝑑𝑑𝑔(𝜔𝜔) −�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔 𝜔𝜔 − 𝑝𝑝𝑑𝑑𝑔(𝜔𝜔) = 0,𝜔𝜔 ∈ 𝛺𝛺

𝑒𝑒𝑔 𝜔𝜔 ≤ 𝐸𝐸, 𝑑𝑑𝑔(𝜔𝜔) ≤ 𝐷𝐷𝑔,𝜔𝜔 ∈ 𝛺𝛺
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Characteristics of the general model

• Monthly time steps
• Representation of rainfall
• Uncertainty: e.g. in rainfall
• Hydro storage limits
• Temporal variations of fuel cost
• Load shedding
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Notation of the hydrothermal scheduling 
problem
• 𝑇𝑇𝜔𝜔: probability of outcome 𝜔𝜔
• Possibility to represent uncertainty in:

• Rainfall, 𝑅𝑅𝑔 𝜔𝜔
• Load, 𝐷𝐷𝑔(𝜔𝜔)
• Availability of generation units, 𝑇𝑇𝑔𝑔(𝜔𝜔)
• Fuel cost, 𝑀𝑀𝑀𝑀𝑔𝑔𝑔𝑔(𝜔𝜔): computationally hard

• 𝑅𝑅𝑔: rainfall in period 1
• 𝑅𝑅𝑔 𝜔𝜔 : uncertain rainfall in period 2
• 𝑉𝑉: consumer valuation
• 𝐸𝐸: hydro reservoir limit
• 𝑀𝑀𝑀𝑀𝑔𝑔𝑔𝑔: marginal cost of technology 𝑔𝑔 in period 𝑡𝑡
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Example 8.2: stochastic two-stage 
hydrothermal scheduling model
• Consumer valuation: 𝑉𝑉 = 1000 $/MWh
• Storage limit: 𝐸𝐸 = 10 MWh
• Rainfall of period 1: 𝑅𝑅𝑔 = 5 MWh
• Two scenarios of period 2, 𝛺𝛺 = {1,2}:

• 𝑅𝑅𝑔 1 = 0 MWh, 𝑇𝑇𝑔 = 0.5
• 𝑅𝑅𝑔 2 = 10 MWh, 𝑇𝑇𝑔 = 0.5
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Optimal solution

• In period 1, unit G1 is used to the 
greatest possible extent (until the 
reservoir is full)

• In period 2, unit G2 is used for 
covering the demand that is not 
covered by G1 and the hydro unit
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Two-stage stochastic linear programs
Modeling multi-period uncertainty
Multi-stage stochastic linear programs

Multi-stage stochastic linear 
programming
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Scenario trees

• A scenario tree is a graphical representation of a stochastic process
𝜉𝜉𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑑𝑑

• A graph that includes a set of nodes 𝑁𝑁 and a set of directed edged 𝐸𝐸, 
where:

• Each node of the tree corresponds to a history of outcomes up to a stage 𝑡𝑡: 
𝜉𝜉[𝑔𝑔] = 𝜉𝜉𝑔, … , 𝜉𝜉𝑔𝑔

• Each edge of the tree corresponds to transitions from 𝜉𝜉[𝑔𝑔] to 𝜉𝜉[𝑔𝑔+𝑔]
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Root, ancestor and descendants

• The root of the tree corresponds to the first stage, 𝑡𝑡 = 1
• The ancestor of a node 𝜉𝜉[𝑔𝑔], 𝛢𝛢(𝜉𝜉[𝑔𝑔]), is the unique neighboring node in 

the scenario tree that precedes 𝜉𝜉[𝑔𝑔]:
𝛢𝛢 𝜉𝜉 𝑔𝑔 = 𝜉𝜉 𝑔𝑔−𝑔 : (𝜉𝜉 𝑔𝑔−𝑔 , 𝜉𝜉 𝑔𝑔 ) ∈ 𝛦𝛦

• The descendants of a node, 𝑀𝑀 𝜉𝜉 𝑔𝑔 , is the set of nodes that are 
adjacent to 𝜉𝜉 𝑔𝑔 and occur at stage 𝑡𝑡 + 1:

𝑀𝑀 𝜉𝜉 𝑔𝑔 = 𝜉𝜉 𝑔𝑔+𝑔 : 𝜉𝜉 𝑔𝑔 , 𝜉𝜉 𝑔𝑔+𝑔 ∈ 𝛦𝛦
• Each node of the scenario tree has a time label
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Structure of a scenario tree

• To each node of the scenario tree 
corresponds a history 𝜉𝜉 𝑔𝑔

• To each edge of the tree corresponds a 
transition probability 𝑇𝑇(𝜉𝜉 𝑔𝑔+𝑔 |𝜉𝜉 𝑔𝑔 )
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Example 8.3: four-stage rainfall scenario tree

• Same setup as example 8.2, but 
two more stages

• Numbers within nodes: rainfall at 
the given node of the given stage

• Numbers on edges: transition 
probabilities

• Red indicates descendants of 
node (5,10)

• Green indicates ancestor of node
(5,10)
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Scenarios and events

• Scenarios in stochastic programming are synonymous to outcomes in 
probability theory

• Events are subsets of the set of events
• Set of events 𝛺𝛺𝑑𝑑 of a scenario tree:

• Set of trajectories from period 1 to the end of the horizon 𝑑𝑑
• Set of nodes of the scenario tree at stage 𝑑𝑑

• Set 𝛺𝛺𝑔𝑔: set of scenarios from period 1 until period 𝑡𝑡
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Events encode information

• The set in the red box is an event in 𝛺𝛺4
• It is the event where there was plenty 

of rain in periods 1, 2, 3
• Events encode information in the 

sense that we can only tell them apart 
if we have enough information

• Event (5,10,15,20) (plenty of rain in all 
periods) is an event in 𝛺𝛺4, but not in
𝛺𝛺3

• Even if we know that we are in 
outcome (5,10,15) of 𝛺𝛺3, this does not 
guarantee which outcome of 𝛺𝛺4 we 
are in
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Probability of a node

Probability of being at a node of the scenario tree = probability of 
trajectory that lands on the node:

𝑇𝑇 𝜉𝜉 𝑔𝑔
𝑖𝑖 = 𝑇𝑇 𝜉𝜉 𝑔

𝑖𝑖 � 𝑇𝑇 𝜉𝜉𝑔𝑖𝑖 𝜉𝜉 𝑔
𝑖𝑖 � ⋯ � 𝑇𝑇 𝜉𝜉𝑔𝑔𝑖𝑖 𝜉𝜉 𝑔𝑔−𝑔

𝑖𝑖 (8.1)
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Markov processes

• Markov processes are stochastic processes where the conditional 
distribution of 𝜉𝜉𝑔𝑔 depend sonly on the last outcome of the process, 
𝜉𝜉𝑔𝑔−𝑔, and not the history of the process, 𝜉𝜉[𝑔𝑔−𝑔] = (𝜉𝜉𝑔, … , 𝜉𝜉𝑔𝑔−𝑔):

𝑇𝑇 𝜉𝜉𝑔𝑔 𝜉𝜉[𝑔𝑔−𝑔] = 𝑇𝑇 𝜉𝜉𝑔𝑔 𝜉𝜉𝑔𝑔−𝑔
for all stages 𝑡𝑡 and all possible trajectories 𝜉𝜉[𝑔𝑔]

• Can be represented as scenario trees if transition probabilities obey 
the Markov properties

• Can alternatively be represented as lattices
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Lattices

A lattice is a special case of scenario tree, which can be used for 
representing a Markov  process 𝜉𝜉[𝑔𝑔], 𝑡𝑡 = 1, … ,𝑑𝑑, where

• Each node of the lattice corresponds to an outcome 𝜉𝜉𝑔𝑔, and
• Each edge corresponds to a transition from 𝜉𝜉𝑔𝑔 to 𝜉𝜉𝑔𝑔+𝑔 and a transition 

probability 𝑇𝑇 𝜉𝜉𝑔𝑔+𝑔 𝜉𝜉𝑔𝑔
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Graphical representation of a lattice

• Each node 𝜉𝜉𝑔𝑔 ∈ 𝑁𝑁 corresponds 
to a realization of the stochastic 
parameter

• Each edge corresponds to a 
transition probability 𝑇𝑇(𝜉𝜉𝑔𝑔+𝑔|𝜉𝜉𝑔𝑔)
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Probability of each node of a lattice

• The probability of landing on a given node of a lattice can be computed recursively

• The root in period 1 has probability 1:
𝑇𝑇 𝜉𝜉𝑔 = 𝜉𝜉𝑔𝑔 = 1

• For each 𝜉𝜉𝑔𝑔 in the set 𝛯𝛯𝑔𝑔 at period 𝑡𝑡:
𝑇𝑇 𝜉𝜉𝑔 = 𝑛𝑛 = 𝑇𝑇(𝜉𝜉𝑔 = 𝑛𝑛|𝜉𝜉𝑔𝑔),𝑛𝑛 ∈ 𝛯𝛯𝑔

⋮

𝑇𝑇 𝜉𝜉𝑔𝑔 = 𝑛𝑛 = �
𝑚𝑚∈𝛯𝛯𝑡𝑡−1

𝑇𝑇(𝜉𝜉𝑔𝑔 = 𝑛𝑛|𝜉𝜉𝑔𝑔−𝑔 = 𝑚𝑚) � 𝑇𝑇 𝜉𝜉𝑔𝑔−𝑔 = 𝑚𝑚 ,𝑛𝑛 ∈ 𝛯𝛯𝑔𝑔

⋮

𝑇𝑇 𝜉𝜉𝑑𝑑 = 𝑛𝑛 = �
𝑚𝑚∈𝛯𝛯𝐻𝐻−1

𝑇𝑇(𝜉𝜉𝑑𝑑 = 𝑛𝑛|𝜉𝜉𝑑𝑑−𝑔 = 𝑚𝑚) � 𝑇𝑇 𝜉𝜉𝑑𝑑−𝑔 = 𝑚𝑚 ,𝑛𝑛 ∈ 𝛯𝛯𝑑𝑑
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Scenario trees and lattices

• We can unfold lattices to scenario trees
• Meaning we can represent Markov processes using scenario tress

• But we cannot always fold a scenario tree to a lattice
• Meaning that not all scenario trees are Markov processes
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Example 8.4: a scenario tree that is not a 
Markov process
• Consider the scenario tree of example 8.3
• Probability of 𝜉𝜉4 = 10 given history (5,10,5):

𝑇𝑇 𝜉𝜉4 = 10|𝜉𝜉 3 = (5,10,5) = 0.4

• Probability that 𝜉𝜉4 = 10 given last outcome of 
history (5,10,5):

𝑇𝑇 𝜉𝜉4 = 10|𝜉𝜉3 = 5 =
𝑇𝑇 𝜉𝜉4 = 10, 𝜉𝜉3 = 5

𝑇𝑇 𝜉𝜉3 = 5

=
0.5 � 0.3 � 0.4 + 0.5 � 0.3 � 0.7

0.5 � 0.3 + 0.5 � 0.3 = 0.55
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Example 8.5: a four-stage scenario tree that is 
Markov
• Condition for a scenario tree to be Markov: whenever 𝜉𝜉𝑔𝑔 = 𝜉𝜉𝑔𝑔𝑖𝑖 in two 

different nodes of the same stage, the transition probabilities from 
that node to every node of the next stage must be equal

• Let’s slightly modify the scenario tree of the previous slide
• At stage 3 of the next slide, we have two possible paths that lead to 

outcome 𝜉𝜉3 = 5
• In order for the Markov property to hold, the transition probabilities 

from 𝜉𝜉3 = 5 to all nodes of stage 4 must be equal
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Example 8.5: unfolding a scenario tree into a 
lattice

A. Papavasiliou, NTUA 31
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Stagewise independence

• Stagewise independent processes are stochastic processes {𝜉𝜉𝑔𝑔 , 𝑡𝑡 =
1, … ,𝑑𝑑} where the probability distribution of 𝜉𝜉𝑔𝑔 depends only on 
stage 𝑡𝑡, meaning 𝜉𝜉𝑔𝑔 is independent of 𝜉𝜉[𝑔𝑔−𝑔]

• They are Markov processes
• Therefore they can be represented both as scenario trees as well as 

lattices
• In the same way that scenario trees ⇏ lattices, also lattices ⇏

stagewise independent
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Example 8.6: lattice that is not stagewise 
independent
• Returning to the lattice of slide 31, 

not stagewise independent
• For example, the probability of 𝜉𝜉4 =

10 depends on 𝜉𝜉3:

𝑇𝑇 𝜉𝜉4 = 10|𝜉𝜉3 = 5 = 0.4

𝑇𝑇 𝜉𝜉4 = 10|𝜉𝜉3 = 15 = 0.2
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Example 8.7: four-stage lattice that is 
stagewise independent
• We require that the probability 

leading to each 𝜉𝜉𝑔𝑔 should be 
equal, regardless of the adjacent 
node in stage 𝑡𝑡 − 1

• For example, 𝜉𝜉4 = 20 with 
probability 0.1, regardless if 
𝜉𝜉3 = 15, 5, 10

A. Papavasiliou, NTUA 34



Two-stage stochastic linear programs
Modeling multi-period uncertainty
Multi-stage stochastic linear programs

Multi-stage stochastic linear 
programming
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Multi-stage stochastic linear programs

• Linear programs
• Linear constraints
• Linear objective function

• Unfolding in multiple stages
• We decide at every stage
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Multi-stage stochastic linear program in 
extended form

A. Papavasiliou, NTUA 37

𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 : min𝑥𝑥�
𝑔𝑔=𝑔

𝑑𝑑

�
𝑛𝑛∈𝛺𝛺𝑡𝑡

𝑇𝑇(𝑛𝑛) � 𝑐𝑐𝑔𝑔(𝑛𝑛)𝑇𝑇𝑥𝑥𝑔𝑔(𝑛𝑛)

s. t.𝑊𝑊𝑔𝑥𝑥𝑔 = ℎ𝑔
𝑇𝑇𝑔 𝑛𝑛 𝑥𝑥𝑔 + 𝑊𝑊𝑔 𝑛𝑛 𝑥𝑥𝑔 𝑛𝑛 = ℎ𝑔 𝑛𝑛 ,𝑛𝑛 ∈ 𝛺𝛺𝑔

⋮
𝑇𝑇𝑔𝑔−𝑔 𝑛𝑛 𝑥𝑥𝑔𝑔−𝑔 𝐴𝐴(𝑛𝑛) + 𝑊𝑊𝑔𝑔 𝑛𝑛 𝑥𝑥𝑔𝑔 𝑛𝑛 = ℎ𝑔𝑔 𝑛𝑛 ,𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔

⋮
𝑇𝑇𝑑𝑑−𝑔 𝑛𝑛 𝑥𝑥𝑑𝑑−𝑔 𝐴𝐴(𝑛𝑛) + 𝑊𝑊𝑑𝑑 𝑛𝑛 𝑥𝑥𝑑𝑑 𝑛𝑛 = ℎ𝑑𝑑 𝑛𝑛 ,𝑛𝑛 ∈ 𝛺𝛺𝑑𝑑

𝑥𝑥𝑔 ≥ 0, 𝑥𝑥𝑔𝑔 𝑛𝑛 ≥ 0, 𝑡𝑡 = 2, … ,𝑑𝑑,𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔



Model formulation in extended form

• The extended form of the model describes the overall decision 
problem as a large-scale monolithic linear program

• Impossible to solve in practical scale
• But the model has interesting

• Mathematical properties that inspire the development of dynamic 
programming algorithms

• Economic interpretations
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Model notation and observations

• 𝑁𝑁 =∪𝑔𝑔=𝑔𝑑𝑑 𝛺𝛺𝑔𝑔: set of nodes of scenario tree
• 𝑇𝑇(𝑛𝑛): probability of node 𝑛𝑛 ∈ 𝑁𝑁
• 𝑐𝑐𝑔𝑔 , 𝑇𝑇𝑔𝑔, 𝑊𝑊𝑔𝑔: sets of random variables (indexed by scenario 𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔)
• 𝑥𝑥𝑔𝑔: decisions also indexed by 𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔, therefore corresponding to a policy
• This means that decision 𝑥𝑥𝑔𝑔(𝜉𝜉[𝑔𝑔]) depends on stage 𝑡𝑡 and the information
𝜉𝜉[𝑔𝑔] ∈ 𝛺𝛺𝑔𝑔 revealed so far

• Constraints connecting decisions of stage 𝑡𝑡 to decisions of stage 𝑡𝑡 − 1 only, 
therefore the decision variables must summarize the state of the system

• Example: in hydrothermal scheduling, water levels in period 𝑡𝑡 are expressed as a 
function of water levels in period 𝑡𝑡 − 1, and not decisions before period 𝑡𝑡 − 1 that 
led to this state
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Non-anticipativity

• Non-anticipativity: decisions in stage 𝑡𝑡 do not have access to future 
information

• So they can depend on information 𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔 revealed so far (and not 
future information 𝑚𝑚 ∈ 𝛺𝛺𝜏𝜏, 𝜏𝜏 > 𝑡𝑡)

• Example: in a two-stage model, first-stage decisions must be identical 
for all scenarios
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Η αρχή του δυναμικού προγραμματισμού

• The dynamic programming principle: the optimal solution of a 
dynamic decision making problem under uncertainty is such that the 
optimal policy is also optimal the sub-problem in which we only 
consider a part of the horizon

• Intuition: what’s done is done, and we do the best we can from now 
on

• This principle leads to the dynamic programming algorithm, which 
(often) works from the end of the horizon backwards
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Value function for stage 𝑑𝑑

• The value function of stage 𝑑𝑑 is defined as:
𝑄𝑄𝑑𝑑 𝑥𝑥𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 = min𝑥𝑥𝐻𝐻𝑐𝑐𝑑𝑑 𝜉𝜉 𝑑𝑑

𝑇𝑇𝑥𝑥𝑑𝑑
𝑊𝑊𝑑𝑑 𝜉𝜉 𝑑𝑑 𝑥𝑥𝑑𝑑 = ℎ𝑑𝑑 𝜉𝜉 𝑑𝑑 − 𝑇𝑇𝑑𝑑−𝑔 𝜉𝜉 𝑑𝑑 𝑥𝑥𝑑𝑑−𝑔

𝑥𝑥𝑑𝑑 ≥ 0

• It is a function of 𝑥𝑥𝑑𝑑−𝑔 and 𝜉𝜉[𝑑𝑑] (which is all we need to know in order 
to decide what to do in the last stage 𝑑𝑑)

A. Papavasiliou, NTUA 42



Value function for stage 𝑑𝑑 − 1

• Value function for stage 𝑑𝑑 − 1:
𝑄𝑄𝑑𝑑−𝑔 𝑥𝑥𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑−𝑔

= min𝑥𝑥𝐻𝐻−1𝑐𝑐𝑑𝑑−𝑔 𝜉𝜉 𝑑𝑑−𝑔
𝑇𝑇𝑥𝑥𝑑𝑑−𝑔 + �

𝜉𝜉 𝐻𝐻 ∈𝛺𝛺𝐻𝐻

𝑇𝑇(𝜉𝜉 𝑑𝑑 |𝜉𝜉 𝑑𝑑−𝑔 ) � 𝑄𝑄𝑑𝑑 𝑥𝑥𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑

𝑊𝑊𝑑𝑑−𝑔 𝜉𝜉 𝑑𝑑−𝑔 𝑥𝑥𝑑𝑑−𝑔 = ℎ𝑑𝑑−𝑔 𝜉𝜉 𝑑𝑑−𝑔 − 𝑇𝑇𝑑𝑑−𝑔 𝜉𝜉 𝑑𝑑−𝑔 𝑥𝑥𝑑𝑑−𝑔
𝑥𝑥𝑑𝑑−𝑔 ≥ 0

• Balances
• cost of current period 𝑐𝑐𝑑𝑑−𝑔 𝜉𝜉 𝑑𝑑−𝑔

𝑇𝑇𝑥𝑥𝑑𝑑−𝑔
• with expected future cost ∑𝜉𝜉 𝐻𝐻 ∈𝛺𝛺𝐻𝐻 𝑇𝑇(𝜉𝜉 𝑑𝑑 |𝜉𝜉 𝑑𝑑−𝑔 ) � 𝑄𝑄𝑑𝑑 𝑥𝑥𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑
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Dynamic programming equation

• Dynamic programming equation for any stage 𝑡𝑡 = 1, … ,𝑑𝑑:
𝑄𝑄𝑔𝑔 𝑥𝑥𝑔𝑔−𝑔, 𝜉𝜉 𝑔𝑔

= min𝑥𝑥𝑡𝑡𝑐𝑐𝑔𝑔 𝜉𝜉 𝑔𝑔
𝑇𝑇𝑥𝑥𝑔𝑔 + �

𝜉𝜉 𝑡𝑡+1 ∈𝛺𝛺𝑡𝑡+1

𝑇𝑇(𝜉𝜉 𝑔𝑔+𝑔 |𝜉𝜉 𝑔𝑔 ) � 𝑄𝑄𝑔𝑔+𝑔 𝑥𝑥𝑔𝑔 , 𝜉𝜉 𝑔𝑔+𝑔

𝑊𝑊𝑔𝑔 𝜉𝜉 𝑔𝑔 𝑥𝑥𝑔𝑔 = ℎ𝑔𝑔 𝜉𝜉 𝑔𝑔 − 𝑇𝑇𝑔𝑔−𝑔 𝜉𝜉 𝑔𝑔 𝑥𝑥𝑔𝑔−𝑔
𝑥𝑥𝑔𝑔 ≥ 0

• Intuitively, the function 𝑄𝑄𝑔𝑔 𝑥𝑥𝑔𝑔−𝑔, 𝜉𝜉 𝑔𝑔 quantifies
• the expected future cost of deciding 𝑥𝑥𝑔𝑔−𝑔 at stage 𝑡𝑡 − 1
• given that the information available at stage 𝑡𝑡 is 𝜉𝜉 𝑔𝑔
• assuming that we will act optimally from stage 𝑡𝑡 onwards
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Model formulation
Value functions

The hydrothermal planning 
problem
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Formulation of hydrothermal planning model

(𝑑𝑑𝑦𝑦𝑑𝑑𝐻𝐻𝐻𝐻 − 𝑇𝑇𝑇𝑇): max𝑝𝑝,𝑑𝑑,𝑝𝑝𝑑𝑑,𝑑𝑑𝑑𝑑�
𝑔𝑔=𝑔

𝑑𝑑

�
𝑛𝑛∈𝛺𝛺𝑡𝑡

𝑇𝑇(𝑛𝑛) � (𝑉𝑉 � 𝑑𝑑𝑔𝑔 𝑛𝑛 −�
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑔𝑔 � 𝑝𝑝𝑔𝑔𝑔𝑔 𝑛𝑛 )

𝑝𝑝𝑔𝑔𝑔𝑔 𝑛𝑛 ≤ 𝑇𝑇𝑔𝑔,𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 = 1, … ,𝑑𝑑,𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔
𝑒𝑒𝑔𝑔 𝑛𝑛 = 𝑅𝑅𝑔𝑔 𝑛𝑛 + 𝑑𝑑𝑑𝑑𝑔𝑔 𝑛𝑛 −

𝑝𝑝𝑑𝑑𝑔𝑔 𝑛𝑛
𝜂𝜂

+ 𝑒𝑒𝑔𝑔−𝑔 𝐴𝐴(𝑛𝑛) , 𝑡𝑡 = 1, … ,𝑑𝑑,𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔

𝑑𝑑𝑔𝑔 𝑛𝑛 + 𝑑𝑑𝑑𝑑𝑔𝑔 𝑛𝑛 −�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔𝑔 𝑛𝑛 − 𝑝𝑝𝑑𝑑𝑔𝑔 𝑛𝑛 = 0, 𝑡𝑡 = 1, … ,𝑑𝑑,𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔

𝑒𝑒𝑔𝑔 𝑛𝑛 ≤ 𝐸𝐸, 𝑡𝑡 = 1, … ,𝑑𝑑,𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔
𝑑𝑑𝑔𝑔 𝑛𝑛 ≤ 𝐷𝐷𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑑𝑑,𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔

𝑝𝑝,𝑑𝑑,𝑝𝑝𝑑𝑑,𝑑𝑑𝑑𝑑, 𝑒𝑒 ≥ 0
• Input data: initially stored energy 𝑒𝑒0
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Stochastic dual dynamic programming 
algorith,
• The stochastic dual dynamic programming (SDDP) algorithm is the 

most broadly used method for solving the problem in practical 
applications

• The algorithm combines ideas from Monte Carlo simulation with 
dynamic programming
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The real problem

• Generalizations in real applications (that can be approximated linearly):
• Complex representation of hydroelectric production as a function of outflow and head
• Wide geographical coverage: river networks, where water management in certain dams 

affects water flow in the same river system
• Horizon: a few years

• Monthly time steps ⇒ 120 time steps for a planning horizon of 10 years
• Practical applications: horizon ≫ 120 stages

• The problem is formulated on a lattice in practice (Markov process)
• States of the art in research and industry applications: 100 outcomes of uncertainty per time 

stage
• Dimension of state vector

• Academic research: 50
• Practical applications: much higher (but without performance guarantees)
• The state vector includes the water level of hydro dams, and rainfall in previous months
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Risk neutrality and risk aversion

• One can prove the equivalence between (𝑑𝑑𝑦𝑦𝑑𝑑𝐻𝐻𝐻𝐻 − 𝑇𝑇𝑇𝑇) and a 
decentralized economic equilibrium, where risk-neutral agents 
maximize expected profit

• The result can be generalized to agents with risk aversion, under 
certain (optimistic) assumptions about the availability of financial 
instruments in the market
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Representation in code

• Define a set of nodes 𝛮𝛮 of the scenario tree
• Uncertain parameters indexed by node of the scenario tree
• Probability of a node is the probability corresponding to the history of 

outcomes leading to this node
• Each node of the tree corresponds to a time period
• Redundant to define stochastic parameters per node and per time 

stage, because time stage implied by node of the scenario tree
• Sufficient to define constraints per node of scenario tree, because 

notation 𝑡𝑡 = 1, … ,𝑑𝑑 and 𝑛𝑛 ∈ 𝛺𝛺𝑔𝑔 is equivalent to 𝑛𝑛 ∈ 𝑁𝑁
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Example 8.8: four-stage hydrothermal planning 
on a scenario tree
• We return to the scenario tree of example 8.3
• The hydro reservoir is initially empty
• Two thermal units:

• G1: 60 MW at 10 $/MWh 
• G2: 100 MW at 50 $/MWh 
• Load: 

• Curtailment cost 1000 $/MWh
• Load in period 3: 120 MW
• Load in period 4: 180 MW

• Reservoir: 
• Energy storage capacity 50 MWh
• Efficiency 0.8
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Example 8.8: hydro storage level
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Model formulation
Value functions

The hydrothermal planning 
problem

A. Papavasiliou, NTUA 53



Dynamic programming and the value of water

• The application of dynamic programming to hydrothermal scheduling 
has interesting connections to duality

• The value of water is one of the outputs of the SDDP algorithm
• Computationally: slope of the value functions of the dynamic programming 

algorithm
• Intuitively: opportunity cost of using water in hydro units

• Storing, let alone solving, (𝑑𝑑𝑦𝑦𝑑𝑑𝐻𝐻𝐻𝐻 − 𝑇𝑇𝑇𝑇) is impossible
• For a problem with 121 stage and 5 outcomes per stage, the number of nodes 

in the last stage is 5𝑔𝑔0 > number of atoms in the universe
• The dynamic programming algorithm decomposes the problem per 

time stage and uncertainty outcome
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Value function it the last stage

The value function of the last stage 𝑄𝑄𝑑𝑑 depends on the rainfall outcome 𝜉𝜉 𝑑𝑑 and 
the level of stored hydro energy 𝑒𝑒𝑑𝑑−𝑔

𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 = max𝑝𝑝,𝑑𝑑,𝑝𝑝𝑑𝑑,𝑑𝑑𝑑𝑑,𝑒𝑒𝑉𝑉 � 𝑑𝑑 −�
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 � 𝑝𝑝𝑔𝑔

𝜇𝜇𝑔𝑔 :𝑝𝑝𝑔𝑔 ≤ 𝑇𝑇𝑔𝑔,𝑔𝑔 ∈ 𝐺𝐺

𝜆𝜆𝑑𝑑 : 𝑒𝑒 = 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑑𝑑𝑑𝑑 −
𝑝𝑝𝑑𝑑
𝜂𝜂

+ 𝑒𝑒𝑑𝑑−𝑔

𝜆𝜆 :𝑑𝑑 + 𝑑𝑑𝑑𝑑 −�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑑𝑑 = 0

𝛿𝛿 : 𝑒𝑒 ≤ 𝐸𝐸
𝜈𝜈 :𝑑𝑑 ≤ 𝐷𝐷𝑑𝑑

𝑝𝑝,𝑑𝑑,𝑝𝑝𝑑𝑑,𝑑𝑑𝑑𝑑, 𝑒𝑒 ≥ 0
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What the value function does not depend on

• The value function does not depend directly on 𝑝𝑝,𝑝𝑝𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑 in period
𝑑𝑑 − 1

• The only thing that matters as far as decisions in stage 𝑑𝑑 are 
concerned is how these decisions in stage 𝑑𝑑 − 1 affect the water 
level 𝑒𝑒𝑑𝑑−𝑔
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Proposition 8.1: analytical characterization of 
the value function
The value function 𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 can be expressed as:
• Case 1 (load curtailment): if

𝐷𝐷𝑑𝑑 > 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝑔𝑔

then
𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑

= 𝑉𝑉 � �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝑔𝑔 + 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 − �
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 � 𝑇𝑇𝑔𝑔
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Proposition 8.1: analytical characterization of 
the value function
• Denote the unit before �̅�𝑔 in the merit order as �̅�𝑔−

• Case 2 (using thermal units): if

𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + �
𝑔𝑔∈𝐺𝐺:𝑀𝑀𝑀𝑀𝑔𝑔𝐻𝐻<𝑀𝑀𝑀𝑀�𝑔𝑔−𝐻𝐻

𝑇𝑇𝑔𝑔 ≤ 𝐷𝐷𝑑𝑑 ≤ 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + �
𝑔𝑔∈𝐺𝐺:𝑀𝑀𝑀𝑀𝑔𝑔𝐻𝐻<𝑀𝑀𝑀𝑀�𝑔𝑔𝐻𝐻

𝑇𝑇𝑔𝑔

then

𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 = 𝑉𝑉 � 𝐷𝐷𝑑𝑑 − �
𝑔𝑔∈𝐺𝐺:𝑀𝑀𝑀𝑀𝑔𝑔𝐻𝐻<𝑀𝑀𝑀𝑀�𝑔𝑔𝐻𝐻

𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 � 𝑇𝑇𝑔𝑔

−𝑀𝑀𝑀𝑀�𝑔𝑔𝑑𝑑 � 𝐷𝐷𝑑𝑑 − �
𝑔𝑔∈𝐺𝐺:𝑀𝑀𝑀𝑀𝑔𝑔𝐻𝐻<𝑀𝑀𝑀𝑀�𝑔𝑔𝐻𝐻

𝑇𝑇𝑔𝑔 − 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔
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Proposition 8.1: analytical characterization of 
the value function
• Case 3 (use of water): if

𝐷𝐷𝑑𝑑 < 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝑔𝑔

then
𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 = 𝑉𝑉 � 𝐷𝐷𝑑𝑑
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Proof: dual of the last-stage problem

The dual of the linear program that defines 𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 is:

min𝜇𝜇,𝜆𝜆𝑑𝑑,𝜆𝜆,𝛿𝛿,𝜈𝜈 �
𝑔𝑔∈𝐺𝐺

𝜇𝜇𝑔𝑔 � 𝑇𝑇𝑔𝑔 − 𝜆𝜆𝑑𝑑 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + 𝛿𝛿 � 𝛦𝛦 + 𝜈𝜈 � 𝐷𝐷𝑑𝑑

𝑝𝑝𝑔𝑔 : 𝜇𝜇𝑔𝑔 − 𝜆𝜆 ≥ −𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 ,𝑔𝑔 ∈ 𝐺𝐺
𝑑𝑑 : 𝜈𝜈 + 𝜆𝜆 ≥ 𝑉𝑉

𝑝𝑝𝑑𝑑 :−
𝜆𝜆𝑑𝑑
𝜂𝜂
− 𝜆𝜆 ≥ 0

𝑑𝑑𝑑𝑑 : 𝜆𝜆𝑑𝑑 + 𝜆𝜆 ≥ 0
𝑒𝑒 :−𝜆𝜆𝑑𝑑 + 𝛿𝛿 ≥ 0

𝜇𝜇 ≥ 0, 𝜈𝜈 ≥ 0, 𝛿𝛿 ≥ 0
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Proof: sign of 𝜆𝜆𝑑𝑑 and 𝜆𝜆

• Suppose that 𝜆𝜆𝑑𝑑 > 0
• Then 𝜆𝜆 ≥ −𝜆𝜆𝜆𝜆 and 𝜆𝜆 ≤ −𝜆𝜆𝑑𝑑/𝜂𝜂
• Which is impossible, because 0 < 𝜂𝜂 < 1
• Thus 𝜆𝜆𝑑𝑑 ≤ 0, and 𝜆𝜆 ≥ 0
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Proof: optimal values of dual multipliers

• Arguing by contradiction we can prove that 𝛿𝛿 = 0 at the optimal solution
• Similarly, we show that 𝜇𝜇𝑔𝑔 = max(𝜆𝜆 −𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 , 0) at the optimal solution
• And 𝜈𝜈 = max(𝑉𝑉 − 𝜆𝜆, 0) at the optimal solution
• Finally, 𝜆𝜆𝑑𝑑 = 𝜆𝜆 � 𝜂𝜂 at the optimal solution
• Thus the optimal objective value of the dual problem is

𝑑𝑑∗ = �
𝑔𝑔∈𝐺𝐺

max(𝜆𝜆 −𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 , 0) � 𝑇𝑇𝑔𝑔 + 𝜆𝜆 � 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔

+ max 𝑉𝑉 − 𝜆𝜆, 0 � 𝐷𝐷𝑑𝑑
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Proof: optimal solution in case of water 
oversupply
• For 𝜆𝜆 = 0, we have

𝑑𝑑∗ = 𝑉𝑉 � 𝐷𝐷𝑑𝑑
• None of the thermal units is producing, and demand is covered by 

hydro units
• We can show this using ΚΚΤ conditions

• The value of water is zero, because additional water is not useful
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Proof: optimal solution when thermal units 
are used
• For 𝜆𝜆 = 𝑀𝑀𝑀𝑀�𝑔𝑔𝑑𝑑, where �̅�𝑔 the marginal thermal unit, we have

𝑑𝑑∗ = 𝑉𝑉 � 𝐷𝐷𝑑𝑑 − �
𝑔𝑔∈𝐺𝐺:𝑀𝑀𝑀𝑀𝑔𝑔𝐻𝐻<𝑀𝑀𝑀𝑀�𝑔𝑔𝐻𝐻

𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 � 𝑇𝑇𝑔𝑔

−𝑀𝑀𝑀𝑀�𝑔𝑔𝑑𝑑 � 𝐷𝐷𝑑𝑑 − �
𝑔𝑔∈𝐺𝐺:𝑀𝑀𝑀𝑀𝑔𝑔𝐻𝐻<𝑀𝑀𝑀𝑀�𝑔𝑔𝐻𝐻

𝑇𝑇𝑔𝑔 − 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔

• All demand is satisfied, units cheaper than �̅�𝑔 produce at technical 
maximum, and �̅�𝑔 produces the rest

• The value of water is 𝜂𝜂 � 𝑀𝑀𝑀𝑀�𝑔𝑔𝑑𝑑, because 1 MWh of additional water results 
in producing 𝜂𝜂 MWh less energy from unit �̅�𝑔
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Proof: optimal solution in case of load 
shedding
• For 𝜆𝜆 = 𝑉𝑉, we have

𝑑𝑑∗ = 𝑉𝑉 � �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝑔𝑔 + 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 −�
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 � 𝑇𝑇𝑔𝑔

• Demand only partially satisfied, all units producing at full capacity
• The value of water is 𝜂𝜂 � 𝑉𝑉, because 1 MWh of additional water 

reduces load shedding by 𝜂𝜂 MWh
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Structure of value function

• The value function is piecewise linear concave
• This is already foreseen by the theory (of appendix Α.10 [1])
• From proposition 2.8 of [1] we know that the dual multiplier 𝜆𝜆𝑑𝑑 is the 

value of water (and the slope of 𝑄𝑄𝑑𝑑−𝑔 with respect to 𝑒𝑒𝑑𝑑−𝑔)
• Structure of the value function:

• Geometric intuition: change of optimal basis as we change 𝑒𝑒𝑑𝑑−𝑔, so the slope 
of 𝑄𝑄𝑑𝑑−𝑔 changes

• Physical intuition: changes in 𝑒𝑒𝑑𝑑−𝑔 result in “phase changes”: hydro only →
hydro thermal → load shedding
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Value function at stage 𝑡𝑡
• For any stage 𝑡𝑡, the value function is

𝑄𝑄𝑔𝑔 𝑒𝑒𝑔𝑔−𝑔, 𝜉𝜉 𝑔𝑔 = max𝑝𝑝,𝑑𝑑,𝑝𝑝𝑑𝑑,𝑑𝑑𝑑𝑑,𝑒𝑒𝑉𝑉 � 𝑑𝑑 −�
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑔𝑔 � 𝑝𝑝𝑔𝑔 + �
𝑛𝑛∈𝛺𝛺𝑡𝑡+1

𝑇𝑇(𝜉𝜉𝑔𝑔+𝑔 = 𝑛𝑛|𝜉𝜉 𝑔𝑔 ) � 𝑄𝑄𝑔𝑔+𝑔 𝑒𝑒, 𝜉𝜉 𝑔𝑔+𝑔

𝜇𝜇𝑔𝑔 :𝑝𝑝𝑔𝑔 ≤ 𝑇𝑇𝑔𝑔,𝑔𝑔 ∈ 𝐺𝐺

𝜆𝜆𝑑𝑑 : 𝑒𝑒 = 𝑅𝑅𝑔𝑔 𝜉𝜉 𝑔𝑔 + 𝑑𝑑𝑑𝑑 −
𝑝𝑝𝑑𝑑
𝜂𝜂 + 𝑒𝑒𝑔𝑔−𝑔

𝜆𝜆 :𝑑𝑑 + 𝑑𝑑𝑑𝑑 −�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑑𝑑 = 0

𝛿𝛿 : 𝑒𝑒 ≤ 𝐸𝐸
𝜈𝜈 :𝑑𝑑 ≤ 𝐷𝐷𝑔𝑔

𝑝𝑝,𝑑𝑑, 𝑝𝑝𝑑𝑑,𝑑𝑑𝑑𝑑, 𝑒𝑒 ≥ 0

• Like 𝑄𝑄𝑑𝑑, 𝑄𝑄𝑔𝑔 is piecewise linear concave

A. Papavasiliou, NTUA 67



Example 8.9: value functions on a scenario 
tree
• Recall the scenario tree of 

example 8.8 (see figure)
• We use proposition 8.1 to 

compute the value function
• We focus on the node in the red 

box
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Example 8.9: load shedding

• If

𝐷𝐷𝑑𝑑 > 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝑔𝑔 ⇒ 180 > 0.8 � 20 + 𝑒𝑒3 + 60 + 100

⇒ 𝑒𝑒3 < 5
then

𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 = 𝑉𝑉 � �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝑔𝑔 + 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 −�
𝑔𝑔∈𝐺𝐺

𝑀𝑀𝑀𝑀𝑔𝑔𝑑𝑑 � 𝑇𝑇𝑔𝑔

= 1000 � 60 + 100 + 0.8 � 20 + 𝑒𝑒3 − 10 � 60 − 50 � 100
= 170400 + 800 � 𝑒𝑒3

• For 𝑒𝑒3 = 5, the value function is $174400
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Example 8.9: the expensive thermal unit G2 is 
marginal
• If

𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + 𝑇𝑇𝐺𝐺1 ≤ 𝐷𝐷𝑑𝑑 ≤ 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + 𝑇𝑇𝐺𝐺1 + 𝑇𝑇𝐺𝐺2 ⇒
0.8 � 20 + 𝑒𝑒3 + 60 ≤ 180 ≤ 0.8 � 20 + 𝑒𝑒3 + 60 + 100 ⇒

5 ≤ 𝑒𝑒3 ≤ 130
then

𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑

= 𝑉𝑉 � 𝐷𝐷𝑑𝑑 −𝑀𝑀𝑀𝑀𝐺𝐺1𝑑𝑑 � 𝑇𝑇𝐺𝐺1 − 𝑀𝑀𝑀𝑀𝐺𝐺2𝑑𝑑 � 𝐷𝐷𝑑𝑑 − 𝑇𝑇𝐺𝐺1 − 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔
= 1000 � 180 − 10 � 60 − 50 � 180 − 60 − 0.8 � 20 + 𝑒𝑒3 = 174200 + 40 � 𝑒𝑒3
• For 𝑒𝑒3 = 5, the value function is $174400 (so indeed continuous)
• For 𝑒𝑒3 = 130, the value function is $179400
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Example 8.9: cheap thermal unit G1 is 
marginal
• If

𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 ≤ 𝐷𝐷𝑑𝑑 ≤ 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 + 𝑇𝑇𝐺𝐺1 ⇒
0.8 � 20 + 𝑒𝑒3 ≤ 180 ≤ 0.8 � 20 + 𝑒𝑒3 + 60 ⇒

130 ≤ 𝑒𝑒3 ≤ 205
then
𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 = 𝑉𝑉 � 𝐷𝐷𝑑𝑑 −𝑀𝑀𝑀𝑀𝐺𝐺1𝑑𝑑 � 𝐷𝐷𝑑𝑑 − 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔
= 1000 � 180 − 10 � 180 − 0.8 � 20 + 𝑒𝑒3 = 178360 + 8 � 𝑒𝑒3

• For 𝑒𝑒3 = 130, the value function is $179400 (so indeed continuous)
• For 𝑒𝑒3 = 205, the value function is $180000
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Example 8.9: the hydro unit is marginal

• If
𝐷𝐷𝑑𝑑 < 𝜂𝜂 � 𝑅𝑅𝑑𝑑 𝜉𝜉 𝑑𝑑 + 𝑒𝑒𝑑𝑑−𝑔 ⇒

180 < 0.8 � 20 + 𝑒𝑒3 ⇒ 𝑒𝑒3 > 205
then

𝑄𝑄𝑑𝑑 𝑒𝑒𝑑𝑑−𝑔, 𝜉𝜉 𝑑𝑑 = 𝑉𝑉 � 𝐷𝐷𝑑𝑑 = 1000 � 180 = 180000
• For 𝑒𝑒3 = 205, the value function is $180000 (so indeed continuous)
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Example 8.9: graphical representation of the 
value function
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Value functions for Markov processes

• If uncertainty is a Markov process, the value functions are identical 
when the value of 𝜉𝜉𝑔𝑔 is the same in a given time stage

• Therefore, value functions do not depend on how we go there (𝜉𝜉[𝑔𝑔]), 
but only where we are (𝜉𝜉𝑔𝑔)

• Intuitively consistent with behavior of Markov process, where what happens 
in the future depends only on where we are, not how we got there

• Important computational savings: algorithms like SDDP estimate value 
functions

• Makes a big difference if these functions need to be estimate for every node 
of a scenario tree or lattice
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Example 8.10: value functions on a lattice

• We return to a process that can be described on a lattice
• We use the process of example 8.9 to compute the 

value function
• The value functions in the blue/red nodes of the 

scenario tree are identical, since
• 𝑅𝑅4 = 10 in both blue nodes
• 𝑅𝑅4 = 0 in both red nodes

• Therefore
0.4 � 𝑄𝑄4 𝑒𝑒3, 5,10,5,10 + 0.6 � 𝑄𝑄4 𝑒𝑒3, 5,10,5,0
= 0.4 � 𝑄𝑄4 𝑒𝑒3, 5,0,5,10 + 0.6 � 𝑄𝑄4 𝑒𝑒3, 5,0,5,0

• Thus, based on the dynamic programming equation, the 
value functions in the orange nodes are identical

• Thus on a lattice it is enough to compute a value 
function per node of the lattice
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Value functions for stagewise independent 
processes
• For stagewise independent processes, value functions are indeitical 

for all nodes of the same stage 𝑡𝑡
• So they are only functions of water level, 𝑄𝑄𝑔𝑔(𝑒𝑒𝑔𝑔−𝑔), and not amount 

of rainfall, 𝑄𝑄𝑔𝑔(𝑒𝑒𝑔𝑔−𝑔, 𝜉𝜉𝑔𝑔)
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Example 8.11: value functions for stagewise 
independent processes
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All orange nodes of the lattice have the same value function



Performance of stochastic 
programs
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Alternatives for analyzing uncertainty

• Stochastic programs are computationally “heavy”
• We can analyze models under uncertainty with less computationally 

demanding techniques (which are approximations):
• Performance when we have perfect foresight
• Performance when uncertain parameters are replaced by their expected 

value
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The function 𝑧𝑧 𝑥𝑥, 𝜉𝜉
• We focus on two-stage stochastic programs
• We define the function 𝑧𝑧 𝑥𝑥, 𝜉𝜉 as:

𝑧𝑧 𝑥𝑥, 𝜉𝜉 = 𝑐𝑐𝑇𝑇𝑥𝑥 + 𝑄𝑄 𝑥𝑥, 𝜉𝜉 + 𝐼𝐼(𝐴𝐴𝑥𝑥 = 𝑏𝑏, 𝑥𝑥 ≥ 0)
where

𝑄𝑄 𝑥𝑥, 𝜉𝜉 = min𝑦𝑦{𝑞𝑞 𝜔𝜔 𝑇𝑇𝑦𝑦|𝑊𝑊 𝜔𝜔 𝑦𝑦 = ℎ 𝜔𝜔 − 𝑇𝑇(𝜔𝜔)𝑥𝑥}
and 𝐼𝐼(𝑥𝑥|𝐾𝐾) equal to 0 for 𝑥𝑥 ∈ 𝐾𝐾 and +∞ for 𝑥𝑥 ∉ 𝐾𝐾

• Interpretation of 𝑧𝑧 𝑥𝑥, 𝜉𝜉 : cost given
• That we have decided 𝑥𝑥 in the first stage
• Outcome 𝜉𝜉 occurs in the second stage
• We react optimally in the second stage

• Easy to compute for given 𝑥𝑥, 𝜉𝜉 (small linear program)
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Wait-and-see value

• The wait-and-see value is the expected value of reacting with perfect 
foresight 𝑥𝑥∗(𝜉𝜉) to 𝜉𝜉

𝑊𝑊𝑇𝑇 = 𝔼𝔼 min𝑥𝑥𝑧𝑧 𝑥𝑥, 𝜉𝜉 = 𝔼𝔼 𝑧𝑧 𝑥𝑥∗(𝜉𝜉), 𝜉𝜉
• The here-and-now value is the expected value of the stochastic program:

𝑇𝑇𝑇𝑇 = min𝑥𝑥𝔼𝔼 𝑧𝑧 𝑥𝑥, 𝜉𝜉
• We have 𝑊𝑊𝑇𝑇 ≤ 𝑇𝑇𝑇𝑇, because we act with prior knowledge of what will 

happen
• Expected value of perfect information:

𝐸𝐸𝑉𝑉𝑇𝑇𝐼𝐼 = 𝑇𝑇𝑇𝑇 −𝑊𝑊𝑇𝑇
• Interpretation of EVPI: how much we are willing to pay for a perfect 

forecast
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Computational requirements

• Computing 𝑇𝑇𝑇𝑇 requires solving a potentially massive scale linear 
program (hard)

• Computing WS requires solving may small independent linear 
programs (computationally easier)
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Example 8.12: expected value of perfect 
information in hydrothermal planning
• Return to example 8.2
• Difference: rainfall in period 2 under scenario 2: 𝑅𝑅𝑔 2 = 55
• Here and now value:

𝑇𝑇𝑇𝑇 = $148110
• Wait and see value:

𝑊𝑊𝑇𝑇 = $148115
• Expected value of perfect information:

𝐸𝐸𝑉𝑉𝑇𝑇𝐼𝐼 = 𝑊𝑊𝑇𝑇 − 𝑇𝑇𝑇𝑇 = 148115 − 148110 = $5
• The difference is that with perfect foresight we transfer less water to the 

reservoir in scenario 2
• The policy without perfect foresight produces at full capacity in period 1
• Slightly inefficient due to efficiency losses (𝜂𝜂 = 0.8) of hydro plant
• But we protect ourselves from load shedding in the unfavorable scenario
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Expected value problem and expected value 
solution
• In the expected/mean value problem, we replace uncertain 

parameters with their expected value, ̅𝜉𝜉 = 𝔼𝔼[𝜉𝜉]
• The expected value solution 𝑥𝑥∗( ̅𝜉𝜉) is the optimal reaction to 

expected uncertainty
• The expected value of using the expected value solution 𝑥𝑥∗( ̅𝜉𝜉) is:

𝐸𝐸𝐸𝐸𝑉𝑉 = 𝔼𝔼 𝑧𝑧 𝑥𝑥∗( ̅𝜉𝜉), 𝜉𝜉
• The value of the stochastic solution is

𝑉𝑉𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑉𝑉 − 𝑇𝑇𝑇𝑇
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Computational aspects

• Computing 𝑥𝑥∗( ̅𝜉𝜉) is relatively easy (small linear program)
• Computation of 𝐸𝐸𝐸𝐸𝑉𝑉 sets first-stage decision to 𝑥𝑥∗( ̅𝜉𝜉), and computes 

the optimal decision of the second stage for every 𝜔𝜔 ∈ 𝛺𝛺
• Computationally easy for a reasonable number of scenarios, 𝜔𝜔 ∈ 𝛺𝛺 (set of 

small linear programs)
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Example 8.13: value of stochastic solution

• We return to example 8.12, with mean rainfall in period 2 equal to
̅𝜉𝜉 = 0.5 � 0 + 0.5 � 55 = 27.5

• Optimal first-stage decision for 𝜉𝜉 = ̅𝜉𝜉: store 10 MWh of hydro
• Expected value of using the expected value solution:

𝐸𝐸𝐸𝐸𝑉𝑉 = $ 148110
• Value of stochastic solution:

𝑉𝑉𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 − 𝐸𝐸𝐸𝐸𝑉𝑉 = 148110 − 148110 = $0
• In other models, 𝑉𝑉𝑇𝑇𝑇𝑇 is typically (very) positive
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Sample average approximation

When computing the expected value is computationally hard (e.g. for 
the case of a continuous random parameter 𝜉𝜉), we can estimate 𝑊𝑊𝑇𝑇
and 𝐸𝐸𝐸𝐸𝑉𝑉 using sample average approximation:
• For 𝑖𝑖 = 1, … ,𝐾𝐾

• Sample 𝜉𝜉𝑖𝑖
• Compute 𝑥𝑥∗ ̅𝜉𝜉
• Compute 𝑊𝑊𝑇𝑇𝑖𝑖 = 𝑧𝑧(𝑥𝑥∗(𝜉𝜉𝑖𝑖), 𝜉𝜉𝑖𝑖) and 𝐸𝐸𝐸𝐸𝑉𝑉𝑖𝑖 = 𝑐𝑐𝑇𝑇𝑥𝑥∗ ̅𝜉𝜉 + 𝑄𝑄(𝑥𝑥∗ ̅𝜉𝜉 , 𝜉𝜉𝑖𝑖)

• Estimate 𝑊𝑊𝑇𝑇 = 𝑔
𝐾𝐾
∑𝑖𝑖=𝑔𝐾𝐾 𝑊𝑊𝑇𝑇𝑖𝑖  and 𝐸𝐸𝐸𝐸𝑉𝑉 = 𝑔

𝐾𝐾
∑𝑖𝑖=𝑔𝐾𝐾 𝐸𝐸𝐸𝐸𝑉𝑉𝑖𝑖
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The central limit theorem

• Intuition: the more samples 𝐾𝐾, the more accurate the estimation of 𝑊𝑊𝑇𝑇 and 𝐸𝐸𝐸𝐸𝑉𝑉
• This intuition can be made mathematically precise with the central limit theorem

Consider a sequence of independent, identically distributed random variables 
𝑋𝑋𝑔,𝑋𝑋𝑔, …, with 𝔼𝔼 𝑋𝑋𝑖𝑖 = 𝜇𝜇 and 𝑉𝑉𝑉𝑉𝐻𝐻 𝑋𝑋𝑖𝑖 = 𝜎𝜎𝑔 < ∞. Then, as 𝑛𝑛 goes to infinity, the 
random variable 𝑛𝑛 � (𝑔

𝑛𝑛
∑𝑖𝑖=𝑔𝑛𝑛 𝑋𝑋𝑖𝑖 − 𝜇𝜇) converges in distribution to a normal random 

variable, 𝑁𝑁(0,𝜎𝜎𝑔):

𝑛𝑛 �
1
𝑛𝑛
�
𝑖𝑖=𝑔

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝜇𝜇 →
𝑑𝑑
𝑁𝑁 0,𝜎𝜎𝑔
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Importance sampling
• Sample average approximation can be “slow”, because it may take a long time to observe rare samples with 

a large impact on the mean
• This issue can be mitigated with importance sampling:

• Suppose that we want to estimate 𝔼𝔼 𝑀𝑀 , where 𝑀𝑀 is distributed according to a density function 𝑓𝑓
• Sample average approximation samples 𝑀𝑀𝑖𝑖 based on the distribution 𝑓𝑓 and estimates 𝔼𝔼 𝑀𝑀 ως 𝑔

𝑁𝑁
∑𝑖𝑖=𝑔𝑁𝑁 𝑀𝑀𝑖𝑖

• In importance sampling we sample 𝑀𝑀𝑖𝑖 based on the distribution

𝑔𝑔 𝑥𝑥 =
𝑓𝑓(𝑥𝑥) � 𝑥𝑥
𝔼𝔼 𝑀𝑀

and estimate 𝔼𝔼 𝑀𝑀 as
1
𝑁𝑁�

𝑖𝑖=𝑔

𝑁𝑁
𝑓𝑓(𝑥𝑥𝑖𝑖) � 𝑥𝑥𝑖𝑖
𝑔𝑔(𝑥𝑥𝑖𝑖)

where we use a reasonable estimation of 𝔼𝔼 𝑀𝑀  in the denominator 𝑔𝑔 𝑥𝑥
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