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Inexistence of a clearing price
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Example 7.6: a uniform price always exists in 
convex markets
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• Definition of economic 
equilibrium:

• Surplus maximization 
(quantity adjustment)

• Market clearing (price 
adjustment)

• For this example: 40 
$/MWh

• A market clearing price can 
be proven to exist in convex 
models (proposition 4.11)

• Corresponds to welfare 
maximization

Bid Quantity
(MWh)

Price
($/MWh)

Α (buy) 10 300

Β (buy) 14 10

C (sell) 12 40

D (sell) 13 100



Example 7.6: in markets with “complicated”
products uniform clearing prices may not exist

“Complicated” orders: non-convex
In practice:

• Block orders
• MICs
• PUNs

Uniform price does not exist for this 
example

• At 40 $/MWh, supply ≠ demand
because of min acceptance

• Below 40 $/MWh: supply < 
demand

• Above 40 $/MWh: supply >
demand
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Bid Quantity
(MWh)

Price
($/MWh)

Minimum
acceptance

(MWh)
Α (buy) 10 300 0
Β (buy) 14 10 0
C (sell) 12 40 11
D (sell) 13 100 0



The model of example 7.6

max𝑝𝑝,𝑑𝑑,𝑢𝑢300 � 𝑑𝑑𝐴𝐴 + 10 � 𝑑𝑑𝐵𝐵 − 40 � 𝑝𝑝𝐶𝐶 − 100 � 𝑝𝑝𝐷𝐷
𝑑𝑑𝐴𝐴 + 𝑑𝑑𝐵𝐵 − 𝑝𝑝𝐶𝐶 − 𝑝𝑝𝐷𝐷 = 0
11 � 𝑢𝑢𝐶𝐶 ≤ 𝑝𝑝𝐶𝐶 ≤ 12 � 𝑢𝑢𝐶𝐶

𝑑𝑑𝐴𝐴 ≤ 10,𝑑𝑑𝐵𝐵 ≤ 14,𝑝𝑝𝐷𝐷 ≤ 13
𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵 ,𝑝𝑝𝐷𝐷 ≥ 0
𝑢𝑢𝐶𝐶 ∈ {0,1}

• Optimal solution:
• Bid A: 𝑑𝑑𝐴𝐴∗ = 10 MWh
• Bid Β: 𝑑𝑑𝐵𝐵∗ = 1 MWh
• Bid C: 𝑝𝑝𝐶𝐶∗ = 11 MWh, 𝑢𝑢𝐶𝐶∗ = 1
• Bid D: 𝑝𝑝𝐷𝐷∗ = 0 MWh

• Surplus: $2570
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Two solutions to the existence problem
Uniform pricing and paradoxically rejected blocks 

(PRBs)

Same price for all, but allow some paradoxically 
rejected orders
Rationale:

• Paradoxically rejected orders: no losses incurred, more 
tolerable, no need for side payments

• Paradoxically accepted orders: losses are incurred, not 
acceptable in European design

Mathematically:
• Maximize welfare, subject to extra constraints (allow 

PRBs)
• Extra constraints: lower welfare

Practice in EUPHEMIA
Very complex problem, not solved to optimality

Uplifts

Rationale: maximize welfare, uses uplift payments to 
“make everybody happy”

Mathematically:
• Solve for optimal selection of orders
• Solve for price
• Compute uplifts separately

Practice in the US
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Approach 1: paradoxically rejected bids 
(example 7.7)
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Bid Quantity 
(MWh)

Price
($/MWh)

Min acceptance 
ratio (MWh)

Α (buy) 10 300 0
Β (buy) 14 10 0
C (sell) 12 40 11
D (sell) 13 100 0

• For this example, we showed that we cannot 
accept C

• So, if we reject C, the price becomes 100 
$/MWh

• Welfare: $2000



Mathematical model of example 7.7

max𝑝𝑝,𝑑𝑑300 � 𝑑𝑑𝐴𝐴 + 10 � 𝑑𝑑𝐵𝐵 − 100 � 𝑝𝑝𝐷𝐷
𝜆𝜆 :𝑑𝑑𝐴𝐴 + 𝑑𝑑𝐵𝐵 − 𝑝𝑝𝐷𝐷 = 0

𝑑𝑑𝐴𝐴 ≤ 10,𝑑𝑑𝐵𝐵 ≤ 14, 𝑝𝑝𝐷𝐷 ≤ 13
𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵 , 𝑝𝑝𝐷𝐷 ≥ 0

Solution:
• 𝜆𝜆 = 100 $/MWh
• Welfare: $2000 (loss of $570 of welfare)
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Approach 2: separate computation of 
matches and prices

A. Papavasiliou, NTUA 10



Approach 2: separate computation of 
matches and prices

• Step 1: select quantities by matching 
welfare

• Bid Α: 10 MWh
• Bid B: 1 MWh
• Bid C: 11 MWh
• Bid D: 0 MWh

• Step 2: find a uniform price, let’s try 40 
$/MWh

• Step 3: pay lost opportunity cost, if 
needed

• Bids Α, C, D: $0, no lost opportunity cost
• Bid Β: $30
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Bid Quantity
(MWh)

Price 
($/MWh)

Minimum 
quantity (MWh)

Α (buy) 10 300 0

Β (buy) 14 10 0

C (sell) 12 40 11

D (sell) 13 100 0



Measuring deviation from 
equilibrium
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Self-scheduling and lost opportunity cost

• Although the existence of an equilibrium price is not guaranteed, we 
want a price that “approximates” this goal

• How do we quantify “approximates”?
• Given a market price 𝜆𝜆, the lost opportunity cost is

𝐿𝐿𝐿𝐿𝐿𝐿(𝜆𝜆) = 𝛱𝛱∗(𝜆𝜆) − �𝛱𝛱(𝜆𝜆)

• Where:
• 𝛱𝛱∗(𝜆𝜆): profit of an agent that self-schedules its production
• �𝛱𝛱(𝜆𝜆): the profit of an agent if it follows the instruction of the auction
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Mathematical definition of lost opportunity 
cost
• Consider a general agent which decides (𝑥𝑥, 𝑞𝑞), a benefit function 𝑓𝑓(𝑥𝑥), and a set of constraints 
𝑔𝑔 𝑥𝑥 ≤ 0 and ℎ(𝑥𝑥) = 𝑞𝑞

• Given a market clearing price 𝜆𝜆∗, the surplus maximization problem of the agent is expressed as:

max𝑥𝑥,𝑞𝑞(𝑓𝑓 𝑥𝑥 − 𝜆𝜆∗ 𝑇𝑇𝑞𝑞)
𝑔𝑔 𝑥𝑥 ≤ 0
ℎ 𝑥𝑥 = 𝑞𝑞

Denote:
• (�̅�𝑥, �𝑞𝑞) the instruction of the market
• (𝑥𝑥∗, 𝑞𝑞∗) the optimal self-scheduling decision

• 𝛱𝛱∗: the surplus of the agent given 𝑥𝑥∗, 𝑞𝑞∗

• �𝛱𝛱: the surplus of the agent given (�̅�𝑥, �𝑞𝑞)
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Computation of lost opportunity cost

• Suppose that we price at 40 $/MWh (see slide 11)

• For 𝜆𝜆∗ = 40 $/MWh we have �𝛱𝛱 of offer Β:

1 MWh � 10 − 40
$

MWh
= −$30

• For 𝜆𝜆∗ = 40 $/MWh we have 𝛱𝛱∗ for offer Β:

0 MWh � 10 − 40
$

MWh
= $0

• So the lost opportunity cost is $30

A. Papavasiliou, NTUA 15



Make-whole payments

Make-whole payments: payment that compensates an agent if the agent is exposed to a 
negative surplus when following the market schedule (�̅�𝑥, �𝑞𝑞), given market price 𝜆𝜆∗

𝑀𝑀𝑀𝑀𝑀𝑀 = max 0,− 𝑓𝑓 �̅�𝑥 − 𝜆𝜆∗ 𝑇𝑇 �𝑞𝑞

Clarifying terminology:
• Lost opportunity cost sometimes referred to as uplift
• Other publications reserve the term uplift for make-whole payments
• Difference in terminology reflects deeper divide regarding pricing in non-convex market 

models
• Some experts argue that uplift payments should be minimized
• Others argue in favor of minimizing lost opportunity cost
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Example 7.8: lost opportunity cost depends 
on the market price
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Alternative pricing proposals
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Alternative pricing proposals

Alternatives for step 2:
• Convex hull pricing (MISO)
• Integer programming pricing

(California)
• Linear programming relaxation 

(PJM)
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Mathematical definition

• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋): convex hull of set 𝑋𝑋
• 𝑓𝑓∗∗: the tightest convex approximation of 𝑓𝑓
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Convex hull pricing
Energy and reserve prices (𝜆𝜆, 𝜆𝜆𝑅𝑅) are computed from the solution of the following problem:

(𝐿𝐿𝐶𝐶𝑀𝑀): min𝑝𝑝,𝑢𝑢,𝑟𝑟 �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝐿𝐿𝑔𝑔∗∗(𝑢𝑢𝑔𝑔,𝑝𝑝𝑔𝑔)

(𝑝𝑝𝑔𝑔,𝑢𝑢𝑔𝑔, 𝑟𝑟𝑔𝑔) ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋𝑔𝑔 ,𝑔𝑔 ∈ 𝐺𝐺

𝜆𝜆 : �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔𝑔 = 𝐷𝐷𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑇𝑇

𝜆𝜆𝑅𝑅 : �
𝑔𝑔∈𝐺𝐺

𝑟𝑟𝑔𝑔𝑔𝑔 = 𝑅𝑅𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑇𝑇

where 𝑋𝑋𝑔𝑔 = { 𝑝𝑝𝑔𝑔,𝑢𝑢𝑔𝑔, 𝑟𝑟𝑔𝑔 :ℎ𝑔𝑔 𝑝𝑝𝑔𝑔, 𝑟𝑟𝑔𝑔,𝑢𝑢𝑔𝑔 ≤ 0,𝑢𝑢𝑔𝑔 ∈ 0,1 𝑇𝑇}

Intuition: the equilibrium price that would emerge from a convex economy that the “closest 
possible” to our non-convex economy
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Example 7.11: convex hull pricing

• Black curve: what is the cheapest 
way to produce Q MWh?

• Gray curve: the convex hull is the 
largest convex function that sits 
under the black curve

• If offers were not “complicated” (i.e. 
if they were convex) we would get 
the orange total cost function

• Convex hull prices are the prices 
that would emerge in this convex 
model, which is closest convex 
approximation to the true setting
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Convex hull pricing minimizes lost opportunity 
cost
• Lost opportunity cost is the duality gap of the market model when we 

relax market clearing constraints

• The convex hull price minimizes lost opportunity cost

Mathematically:

𝑝𝑝∗ − 𝑑𝑑∗ = �
𝑔𝑔∈𝐺𝐺

𝛱𝛱𝑔𝑔∗ 𝜆𝜆∗, 𝜆𝜆𝑅𝑅∗ − �
𝑔𝑔∈𝐺𝐺

�𝛱𝛱𝑔𝑔 𝜆𝜆∗, 𝜆𝜆𝑅𝑅∗ = 𝐿𝐿𝐿𝐿𝐿𝐿 𝜆𝜆∗, 𝜆𝜆𝑅𝑅∗
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Convex hull pricing minimizes lost opportunity 
cost

Convex hull price (CHP): price 
that minimizes lost 
opportunity cost

For our example, the CHP is 40 
$/MWh

The minimum lost opportunity 
cost is $30
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Integer programming pricing
Energy and reserve prices (𝜆𝜆, 𝜆𝜆𝑅𝑅) are computed by solving the following problem:

(𝐼𝐼𝑀𝑀): min𝑝𝑝,𝑟𝑟 �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝐿𝐿𝑔𝑔(𝑢𝑢𝑔𝑔∗ ,𝑝𝑝𝑔𝑔)

ℎ𝑔𝑔 𝑝𝑝𝑔𝑔, 𝑟𝑟𝑔𝑔,𝑢𝑢𝑔𝑔∗ ≤ 0,𝑔𝑔 ∈ 𝐺𝐺

𝜆𝜆 : �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔𝑔 = 𝐷𝐷𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑇𝑇

𝜆𝜆𝑅𝑅 : �
𝑔𝑔∈𝐺𝐺

𝑟𝑟𝑔𝑔𝑔𝑔 = 𝑅𝑅𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑇𝑇

where 𝑢𝑢∗ are the optimal commitments that are computed in step 1 of slide 19
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Example 7.12: integer programming pricing

• From slide 6, we have that 𝑢𝑢𝐶𝐶∗ = 1
• So the IP price is the dual multiplier 𝜆𝜆 of the following model:

max𝑝𝑝,𝑑𝑑300 � 𝑑𝑑𝐴𝐴 + 10 � 𝑑𝑑𝐵𝐵 − 40 � 𝑝𝑝𝐶𝐶 − 100 � 𝑝𝑝𝐷𝐷
𝜆𝜆 :𝑑𝑑𝐴𝐴 + 𝑑𝑑𝛣𝛣 − 𝑝𝑝𝐶𝐶 − 𝑝𝑝𝐷𝐷 = 0

11 ≤ 𝑝𝑝𝐶𝐶 ≤ 12
𝑑𝑑𝐴𝐴 ≤ 10,𝑑𝑑𝐵𝐵 ≤ 40, 𝑝𝑝𝐷𝐷 ≤ 13

𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵 , 𝑝𝑝𝐷𝐷 ≥ 0
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Graphical interpretation of integer 
programming pricing

• Due to the constraint 𝑝𝑝𝐶𝐶 ≥ 11, 
the supply curve of C and D 
essentially “starts” at 11 MWh

• In other words, at this point, the 
supply curve moves from minus 
infinity to 40 $/MWh

• The IP price is the intersection of 
this supply curve with the 
demand curve, thus equal to 10 
$/MWh
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Linear programming relaxation pricing

The prices of energy and reserve (𝜆𝜆, 𝜆𝜆𝑅𝑅) are computed from the solution of 
the following problem:

(𝐿𝐿𝑀𝑀𝑅𝑅): min𝑢𝑢,𝑝𝑝,𝑟𝑟 �
𝑔𝑔∈𝐺𝐺

𝑇𝑇𝐿𝐿𝑔𝑔(𝑢𝑢𝑔𝑔,𝑝𝑝𝑔𝑔)

ℎ𝑔𝑔 𝑝𝑝𝑔𝑔, 𝑟𝑟𝑔𝑔,𝑢𝑢𝑔𝑔 ≤ 0,𝑔𝑔 ∈ 𝐺𝐺

𝜆𝜆 : �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔𝑔𝑔 = 𝐷𝐷𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑇𝑇

𝜆𝜆𝑅𝑅 : �
𝑔𝑔∈𝐺𝐺

𝑟𝑟𝑔𝑔𝑔𝑔 = 𝑅𝑅𝑔𝑔 , 𝑡𝑡 = 1, … ,𝑇𝑇

0 ≤ 𝑢𝑢𝑔𝑔𝑔𝑔 ≤ 1,𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 = 1, … ,𝑇𝑇

A. Papavasiliou, NTUA 28



Some advantages of linear programming 
relaxation pricing
• Simple implementation (+)
• Computationally easy (+)
• The method leads to the exact same solution as convex hull pricing in 

certain cases (+)
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Equivalence of linear programming relaxation 
and convex hull pricing (in simple cases)

• Upper left: the feasible set of bid 
C

• Upper right: the convex hull of the 
feasible set of bid C

• Lower: linear relaxation of bid C

Important observation: the upper 
right and lower sets are equivalent
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Example 7:13: linear programming relaxation 
pricing
The linear programming relaxation price is the dual multiplier 𝜆𝜆 of the 
following model:

max𝑝𝑝,𝑢𝑢,𝑑𝑑300 � 𝑑𝑑𝐴𝐴 + 10 � 𝑑𝑑𝐵𝐵 − 40 � 𝑝𝑝𝐶𝐶 − 100 � 𝑝𝑝𝐷𝐷
𝜆𝜆 :𝑑𝑑𝐴𝐴 + 𝑑𝑑𝛣𝛣 − 𝑝𝑝𝐶𝐶 − 𝑝𝑝𝐷𝐷 = 0

11 � 𝑢𝑢𝐶𝐶 ≤ 𝑝𝑝𝐶𝐶 ≤ 12 � 𝑢𝑢𝐶𝐶
𝑑𝑑𝐴𝐴 ≤ 10,𝑑𝑑𝐵𝐵 ≤ 40,𝑝𝑝𝐷𝐷 ≤ 13

𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵 , 𝑝𝑝𝐷𝐷 ≥ 0
0 ≤ 𝑢𝑢𝐶𝐶 ≤ 1

Clearing price: 40 $/MWh (same as CHP)
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The European exchange and 
EUPHEMIA
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Products in the European power exchange

• Aggregated hourly orders
• Linear orders
• Stepwise orders

• Complex orders
• Load gradients
• Minimum income conditions

• Block orders
• Merit orders and unique national price (Prezzo Unico Nazionale, PUN) 

orders
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Το πρόβλημα εκκαθάρισης της ευρωπαϊκής 
αγοράς ηλεκτρισμού
• Integer quadratic program subject to complementarity constraints
• Quadratic objective function: surplus from trading energy
• Integer variables: accept or reject block orders and other products
• Complementarity constraints: pricing business rules in the European 

market

A. Papavasiliou, NTUA 34



Formulation of the model (in words) for the 
running example
Maximize surplus, subject to the following constraints:

• Pricing rules for continuous offers (bids A, B, and D): maximize surplus given 
market prices

• Pricing rules for block orders (bid C): cannot be paradoxically accepted, but 
can be paradoxically rejected
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Pricing rules of continuous offers

Surplus maximization problem of bid A is expressed as follows:

max𝑑𝑑𝐴𝐴 300 − 𝜆𝜆 � 𝑑𝑑𝐴𝐴
𝜇𝜇𝛢𝛢 :𝑑𝑑𝐴𝐴 ≤ 10

Equivalent to the following ΚΚΤ conditions:

0 ≤ 𝑑𝑑𝐴𝐴 ⊥ 𝜆𝜆 − 300 + 𝜇𝜇𝛢𝛢 ≥ 0
0 ≤ 𝜇𝜇𝛢𝛢 ⊥ 10 − 𝑑𝑑𝐴𝐴 ≥ 0
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Confirming the pricing rules

• If the bid is fully accepted (𝑑𝑑𝐴𝐴 = 10), then it is in the money or at the 
money (300 ≥ 𝜆𝜆)

• If the bid is partially accepted (0 < 𝑑𝑑𝐴𝐴 < 10) then it is on the money 
(300 = 𝜆𝜆)

• If the bid is rejected (𝑑𝑑𝐴𝐴 = 0), then it is on the money or out of the 
money (300 ≤ 𝜆𝜆)
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Block order pricing rules

We work with the linear relaxation of the block order profit
maximization problem:

max𝑢𝑢𝐶𝐶,𝑝𝑝𝐶𝐶 𝜆𝜆 − 40 � 𝑝𝑝𝐶𝐶
𝜇𝜇𝐶𝐶 :𝑝𝑝𝐶𝐶 − 12 � 𝑢𝑢𝐶𝐶 ≤ 0
𝜈𝜈𝐶𝐶 : 11 � 𝑢𝑢𝐶𝐶 − 𝑝𝑝𝐶𝐶 ≤ 0

𝑠𝑠𝐶𝐶 :𝑢𝑢𝐶𝐶 ≤ 1
𝑝𝑝𝐶𝐶 ,𝑢𝑢𝐶𝐶 ≥ 0
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ΚΚΤ conditions of linear relaxation

The ΚΚΤ conditions of the previous slide are:

0 ≤ 𝑝𝑝𝐶𝐶 ⊥ 40 − 𝜆𝜆 + 𝜇𝜇𝐶𝐶 − 𝜈𝜈𝐶𝐶 ≥ 0
0 ≤ 𝑢𝑢𝐶𝐶 ⊥ −12 � 𝜇𝜇𝐶𝐶 + 11 � 𝜈𝜈𝐶𝐶 + 𝑠𝑠𝐶𝐶 ≥ 0

0 ≤ 𝜇𝜇𝐶𝐶 ⊥ 12 � 𝑢𝑢𝐶𝐶 − 𝑝𝑝𝐶𝐶 ≥ 0
0 ≤ 𝜈𝜈𝐶𝐶 ⊥ 𝑝𝑝𝐶𝐶 − 11 � 𝑢𝑢𝐶𝐶 ≥ 0

0 ≤ 𝑠𝑠𝐶𝐶 ⊥ 1 − 𝑢𝑢𝐶𝐶 ≥ 0

In order to express the pricing rules, we remove the complementarity operator 
from the last condition:

0 ≤ 𝑠𝑠𝐶𝐶 ⊥ 1 − 𝑢𝑢𝐶𝐶 ≥ 0 → 𝑠𝑠𝐶𝐶 ≥ 0,𝑢𝑢𝐶𝐶 ≤ 1
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What is the effect of removing the 
complementarity operator?
The complementarity operator prevents

• that the offer has positive surplus (𝑠𝑠𝐶𝐶 > 0) and
• that it is not fully accepted (𝑢𝑢𝐶𝐶 < 1)

Lifting complementarity is precisely the essence of paradoxically 
rejected orders
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Full model for the running example

𝐸𝐸𝐸𝐸𝐷𝐷𝐸𝐸 : max𝑝𝑝,𝑑𝑑,𝑢𝑢,𝜆𝜆,𝜇𝜇,𝜈𝜈,𝑠𝑠300 � 𝑑𝑑𝐴𝐴 + 10 � 𝑑𝑑𝐵𝐵 − 40 � 𝑝𝑝𝐶𝐶 − 100 � 𝑝𝑝𝐷𝐷

0 ≤ 𝑑𝑑𝐴𝐴 ⊥ 𝜆𝜆 − 300 + 𝜇𝜇𝛢𝛢 ≥ 0,0 ≤ 𝜇𝜇𝛢𝛢 ⊥ 10 − 𝑑𝑑𝐴𝐴 ≥ 0
0 ≤ 𝑑𝑑𝐵𝐵 ⊥ 𝜆𝜆 − 10 + 𝜇𝜇𝐵𝐵 ≥ 0,0 ≤ 𝜇𝜇𝐵𝐵 ⊥ 14 − 𝑑𝑑𝐵𝐵 ≥ 0

0 ≤ 𝑝𝑝𝐷𝐷 ⊥ 100 − 𝜆𝜆 + 𝜇𝜇𝐷𝐷 ≥ 0,0 ≤ 𝜇𝜇𝐷𝐷 ⊥ 13 − 𝑝𝑝𝐷𝐷 ≥ 0

0 ≤ 𝑝𝑝𝐶𝐶 ⊥ 40 − 𝜆𝜆 + 𝜇𝜇𝐶𝐶 − 𝜈𝜈𝐶𝐶 ≥ 0
0 ≤ 𝑢𝑢𝐶𝐶 ⊥ −12 � 𝜇𝜇𝐶𝐶 + 11 � 𝜈𝜈𝐶𝐶 + 𝑠𝑠𝐶𝐶 ≥ 0

0 ≤ 𝜇𝜇𝐶𝐶 ⊥ 12 � 𝑢𝑢𝐶𝐶 − 𝑝𝑝𝐶𝐶 ≥ 0
0 ≤ 𝜈𝜈𝐶𝐶 ⊥ 𝑝𝑝𝐶𝐶 − 11 � 𝑢𝑢𝐶𝐶 ≥ 0

𝑠𝑠𝐶𝐶 ≥ 0,𝑢𝑢𝐶𝐶 ∈ {0,1}

𝑑𝑑𝐴𝐴 + 𝑑𝑑𝐵𝐵 − 𝑝𝑝𝐶𝐶 − 𝑝𝑝𝐷𝐷 = 0
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Some observations

• The model is expressed in both primal and dual variables
• The problem is mixed integer (binary variable 𝑢𝑢𝐶𝐶)
• The problem is subject to complementarity constraints (pricing rules)

• Mixed integer ⇒ hard
• Complementarity conditions ⇒ extremely hard
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EUPHEMIA
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EUPHEMIA

• EUPHEMIA is a branch and bound algorithm
• Developed by N-SIDE, spinoff of the Center for Operations Research 

and Econometrics (CORE) at the Université catholique de Louvain
• Clears the pan-European day-ahead electricity market
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The EUPHEMIA algorithm

• Primal problem function: convex integer program (computationally 
easy)

• Binary variables are replaced by their linear relaxations

• Integer solution check: (easy) check if the solution of the problem 
results in integer values for 𝑢𝑢

• Feasible pricing problem check: can be expressed as a linear program
• Add cut excluding proposed solution function: one of the strong 

points of the EUPHEMIA algorithm
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Feasible pricing problem

• Corresponds to the complementarity system that implements the 
pricing rules

• We use constant values for primal variables 𝑢𝑢, 𝑝𝑝,𝑑𝑑 from the optimal 
solution of the primal problem

• Computationally easy step
• The only free variables in this computation are the dual variables, i.e.

(𝜇𝜇, 𝜈𝜈, 𝜆𝜆, 𝑠𝑠)
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Adding cuts

• Cuts exploit the structure of the problem
• They cut off not only the current candidate solution but also many 

other alternatives that will never need to be explored in the branch 
and bound tree

• Such “deep” cuts exploit the special structure of the problem that is 
tackled by EUPHEMIA
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Appendix
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Aggregated hourly orders

• Specific to each hour within 
a bidding area

• Supply orders are sorted in 
increasing price

• Demand orders are sorted in 
decreasing price

• Stepwise curves: two 
consecutive points always 
have same price or same 
quantity
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Acceptance of aggregated orders

• Definition of ITM/ATM/OTM:
• A demand (resp. supply) hourly order is said to be in-the-money (ITM) when the 

market clearing price is lower (resp. higher) than the price of the hourly order
• A demand or supply hourly order is said to be at-the-money (ATM) when the price of 

the hourly order is equal to the market clearing price
• A demand (resp. supply) hourly order is said to be out-of-the-money (OTM) when 

the market clearing price is higher (resp. lower) than the price of the hourly order

• Acceptance rules:
• Any in-the-money order must be fully accepted
• Any out-of-the money order must be rejected
• At-the-money orders can be either accepted (fully or partially) or rejected
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Complex orders

• Used for representing 
dependencies across time periods

• Two types of complex conditions:
• Minimum Income Condition (with or 

without scheduled stop)
• Load Gradient
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Minimum income conditions (MIC)

• Minimum income conditions mean that the order should cover
• a fixed (startup) cost and
• a variable (fuel) cost

• If MIC is activated, each of the hourly sub-orders is
• accepted if in-the-money
• rejected if out-of-the-money
• can be either accepted (fully or partially) or rejected if at-the-money

• If a MIC order is deactivated, every sub-order is fully rejected (even if 
in-the-money)

• No paradoxically accepted MICs
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Load gradient orders

• Used to represent ramp 
constraints

• Ramp limited by an 
increment/decrement limit (same 
value for all periods)
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Block orders

• A block order is defined by:
• Sense (supply or demand)
• Price limit
• Number of periods
• Volume (can be different for every period)
• Minimum acceptance ratio

• Regular (fill-or-kill) block order:
• Block order defined for a consecutive set of periods
• Same volume
• A minimum acceptance ratio of 1

• The periods of the block order can be non-consecutive
• The volume can differ over the periods
• Curtailable Block Orders: the minimum acceptance ratio can be less than 1
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Example block order

Example block order:
• Sense: supply
• Price: 40 €/MWh
• Minimum acceptance ratio: 0.5
• Intervals: hours (3-7), hours (8-19) 

and hours (22-24)
• Volume: 80 MWh in the first interval, 

220 MWh in the second one, and 40 
MWh in the third one
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Acceptance of block orders

• Block orders that are out-of-the-money must be rejected
• If the block is in-the-money (or at-the-money), then the block can be 

entirely accepted
• If the block is in-the-money (or at-the-money), then the block can be 

fully rejected => Paradoxically Rejected Bid (PRB)
• If the block is in-the-money (or at-the-money), then the block can be 

partially accepted => Partially Paradoxically Rejected Bid (PPRB)
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Linked block orders

• The child can never be accepted “more” than 
the parent

• A child which is individually generating losses 
cannot be accepted, unless it is itself a 
parent of another order

• Rules in a single link:
• The parent can be accepted alone
• The child can “save” the parent with its surplus, 

but not the opposite
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Block orders in an exclusive group

• An exclusive group is a set of block orders for which the sum of the 
accepted ratios cannot exceed 1

• When blocks have a minimum acceptance ratio of 1, at most one of 
the blocks in the exclusive group can be accepted
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Flexible hourly block order

• A flexible “hourly” order is a block order with a fixed price limit, a 
fixed volume, minimum acceptance ratio of 1, with duration of 1 hour

• The hour is not defined by the participant but is determined by the 
algorithm (hence the name “flexible”)
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Merit orders

• Merit orders are individual step orders defined at a given period that 
have an associated so-called merit order number

• A merit order number is unique per period and order type (demand, 
supply, PUN)

• The merit order number is used for ranking merit orders in the 
bidding areas containing this order type

• The lower the merit order number, the higher the priority for 
acceptance
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Merit order examples
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PUN orders

• PUN orders are a particular type of demand merit orders
• Cleared at the PUN price (“Prezzo Unico Nazionale”) rather than the 

bidding area market clearing price
• For each period, financial balance needs to hold:

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ��
𝑧𝑧

𝑄𝑄𝑧𝑧 = �
𝑧𝑧

𝑀𝑀𝑧𝑧 � 𝑄𝑄𝑧𝑧 ± Δ

• 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃: PUN price
• 𝑄𝑄𝑧𝑧: volumes consumed in bidding area 𝑧𝑧
• 𝑀𝑀𝑧𝑧: price of bidding area 𝑧𝑧
• Δ: PUN imbalance (has to be near-zero)
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