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Outline

* Inexistence of a clearing price

* Measuring deviation from equilibrium

* Alternative pricing proposals

* The European exchange and EUPHEMIA



Inexistence of a clearing price



Example 7.6: a uniform price always exists in
convex markets

Price (S/MWh)

e L
MWh S/MWh
10

B (buy)
C (sell)

10 15
Quantity (MWh)

14
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13

300
10
40

100
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* Definition of economic
equilibrium:
* Surplus maximization
(quantity adjustment)

* Market clearing (price
adjustment)

* For this example: 40
S/MWh

* A market clearing price can
be proven to exist in convex
models (proposition 4.11)

* Corresponds to welfare
maximization



Example 7.6: in markets with “complicated”
products uniform clearing prices may not exist

“Complicated” orders: non-convex
_ In practice:

= * Block orders

., « MICs

£ * PUNs

SZ I
' . 0 s » 25 Uniform price does not exist for this
Quantity (MWh) exam ple

* At 40 S/MWh, supply # demand

Q because of min acceptance
uantity Price Minimum
(MWh) ($/MWh) acceptance * Below 40 S/MWh: supply <
MWh demand
| A(buy) 300 * Above 40 S/MWh: supply >

demand
12 40 11

13 100 0

A. Papavasiliou, NTUA 5



The model of example 7.6

max, 4,300 - dy + 10 - dg — 40 - pc — 100 - pp
dg +dp —pc—pp =0
11’uC Sp(: < 12‘uC
dA < 10, dB < 14‘,pD <13
dA»dB»pD >0
Uc € {0,1}

* Optimal solution:

Bid A: d = 10 MWh

Bid B: dj, = 1 MWh

Bid C: ps = 11 MWh, u; =1
Bid D: p;, = 0 MWh

 Surplus: $2570



Two solutions to the existence problem

Uniform pricing and paradoxically rejected blocks
(PRBs)

Same price for all, but allow some paradoxically
rejected orders
Rationale:

 Paradoxically rejected orders: no losses incurred, more
tolerable, no need for side payments

 Paradoxically accepted orders: losses are incurred, not
acceptable in European design

Mathematically:

. Maxi;nize welfare, subject to extra constraints (allow
PRBs

e Extra constraints: lower welfare
Practice in EUPHEMIA
Very complex problem, not solved to optimality

Uplifts

Rationale: maximize welfare, uses uplift payments to
“make everybody happy”

Mathematically:
* Solve for optimal selection of orders
* Solve for price
* Compute uplifts separately

Practice in the US



Approach 1: paradoxically rejected bids
(example 7.7)

Welfare maximization Euphemia Solution
350 A

300
250
200
150
100

50

Quantity Price Min acceptance _
MWh $/MWh ratio (MWh * For this example, we showed that we cannot
0

| A(buy) | 300 accept C
14 10 0 * So, if we reject C, the price becomes 100

12 40 11 S/MWh
* Welfare: $2000
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Mathematical model of example 7.7

max, 4300 -d, +10-dg — 100 - pp
(/’{):dA‘FdB — Pp = 0
dA < 10, dB < 14‘,pD <13
dA, dB'pD >0

Solution:
e 1=100S/MWh
* Welfare: $2000 (loss of $570 of welfare)



Approach 2: separate computation of
matches and prices

Step 1: ﬁ
maximize Order

welfare quantities
Order Step 3:
uantities compute lost
) opportunity
cost
Step 2:

compute a Price
uniform price Q




Approach 2: separate computation of
matches and prices

Welfare maximization

» Step 1: select quantities by matching
welfare

* Bid A: 10 MWh
* Bid B: 1 MWh
* Bid C: 11 MWh
* Bid D: 0 MWh

1INV = opfimal acoepied volume * Step 2: find a uniform price, let’s try 40

EEFarans
MWh $/MWh) | g
10 300 0 * Step 3: pay lost opportunity cost, if
14 10 0 needed
* Bids A, C, D: SO, no lost opportunity cost
Il 12 4 11 ’ ’
0 . Bid B: $30
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Measuring deviation from
equilibrium



Self-scheduling and lost opportunity cost

* Although the existence of an equilibrium price is not guaranteed, we
want a price that “approximates” this goal

* How do we quantify “approximates”?

* Given a market price 4, the lost opportunity cost is
LOCA) =1T"(A) — 1I(A)

e Where:

* [I"(A): profit of an agent that self-schedules its production
e [1(1): the profit of an agent if it follows the instruction of the auction



Mathematical definition of lost opportunity
cost

* Consider a general agent which decides (x, q), a benefit function f(x), and a set of constraints
glx) <0andh(x) =q

* Given a market clearing price A%, the surplus maximization problem of the agent is expressed as:

maxy q (f(x) _ (A*)TCI)
gx) <0
h(x) =q

Denote:
* (x,q) the instruction of the market
* (x*,q") the optimal self-scheduling decision

* IT*: the surplus of the agent given (x*, g*)
« [I: the surplus of the agent given (%, q)



Computation of lost opportunity cost

» Suppose that we price at 40 S/MWh (see slide 11)

e For 1* =40 S/MWh we have II of offer B:

(1)[MWh] - (10 — 40) [MWh —$30

 For A* =40 S/MWh we have IT* for offer B: ;
(0)[MWh] - (10 — 40) lMWh] $0

* So the lost opportunity cost is S30



Make-whole payments

Make-whole payments: payment that compensates an agent if the agent is exposed to a
negative surplus when following the market schedule (x, q), given market price A*

MWP = max (0, —(f () — (1)77))

Clarifying terminology:
* Lost opportunity cost sometimes referred to as uplift
e Other publications reserve the term uplift for make-whole payments

. Diffgrlence in terminology reflects deeper divide regarding pricing in non-convex market
models

* Some experts argue that uplift payments should be minimized
e Others argue in favor of minimizing lost opportunity cost



Example 7.8: lost opportunity cost depends

on the market price

LOC per order

L
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Alternative pricing proposals



Alternative pricing proposals

Alternatives for step 2:
e Convex hull pricing (MISO)
* Integer programming pricing
(California)

* Linear programming relaxation
(PIM)

Step 1:
maximize
welfare

quantities

Step 2:
compute a
uniform price

Order I

.

J/

Order i

quantities

Step 3:
compute lost
opportunity

cost

Price ’



Mathematical definition

* conv(X): convex hull of set X
e f**: the tightest convex approximation of f



Convex hull pricing

Energy and reserve prices (A, AR) are computed from the solution of the following problem:

(CHP): min ., Z TC: (ug,py)
geG

(Pg ug 1y) € conv(X,),g €G
(A): Z pge =Dt =1,..,T

gEeG

(AR): z Tgt — Rt,t — 1, ...,T

geG

where X, = {(pg,ug,rg): hg(pg,rg,ug) < 0,uy € {0,1}"}

Intuition: the equilibrium price that would emerge from a convex economy that the “closest
possible” to our non-convex economy



Example 7.11: convex hull pricing

Minimum cost for supplying Q MWh

/\

0o 2 4 6 8 10 12 14 16 18 20 22 24
Q (MWh)

= \in cost Convex hull of min cost

0 5 10 15 20 25

Quantity (MWh)

Black curve: what is the cheapest
way to produce Q MWh?

Gray curve: the convex hull is the
largest convex function that sits
under the black curve

If offers were not “complicated” (i.e.
if they were convex) we would get
the orange total cost function

Convex hull prices are the prices
that would emerge in this convex
model, which is closest convex
approximation to the true setting



Convex hull pricing minimizes lost opportunity
cost

* Lost opportunity cost is the duality gap of the market model when we
relax market clearing constraints

* The convex hull price minimizes lost opportunity cost
Mathematically:

p*—d' = ) My AR") = ) My(A",AR") = LOCQ', 2R")
geaG geaG



Convex hull pricing minimizes lost opportunity
cost

Convex hull price (CHP): price
that minimizes lost

I 3100 .
—i 2600 opportunlty cost
; 2700

e AR AT R EIRRENIE RN For our example, the CHP is 40
Market price ($/MWh) $/MWh

—Potential surplus Actual surplus

The minimum lost opportunity
cost is $30



Integer programming pricing
Energy and reserve prices (4, AR) are computed by solving the following problem:

(IP): min, , z TCy(ug,pg)
gEeG
hg(pg,rg,ug) <0,g€q

(/1): z pgt — Dt,t — 1, ...,T

geG

(AR) Z Tgt — Rt,t — 1, ,T
gEeG

where u* are the optimal commitments that are computed in step 1 of slide 19



Example 7.12: integer programming pricing

* From slide 6, we have that u; = 1

* So the IP price is the dual multiplier A of the following model:
max, 4300 -dy +10-dg — 40 -p, — 100 - pp
(AD:dy +dg —pc—pp =0
dA < 10, dB < 40,pD <13
dA, dB'pD >0



Graphical interpretation of integer

programming pricing

300

N
(%3]
o

Price (S/MWh)

193]
o o

o

o

_—
10 15

Quantity (MWh)

20

25

* Due to the constraint p. = 11,
the supply curve of Cand D
essentially “starts” at 11 MWh

* In other words, at this point, the
supply curve moves from minus

infinity to 40 S/MWh

* The IP price is the intersection of
this supply curve with the
demand curve, thus equal to 10
S/MWh



Linear programming relaxation pricing

The prices of energy and reserve (A, AR) are computed from the solution of
the following problem:

(LPR): miny 4 , TC, (ug, pg)
€G

hg(pg,rg,ugjl <0,g€eda
(A)' z pgt — Dt,t — 1, ,T

gEeG

(AR):zTgt — Rt,t — 1,...,T
geG
0 < Uge < l,geda, t=1,..,T



Some advantages of linear programming
relaxation pricing

* Simple implementation (+)
* Computationally easy (+)

* The method leads to the exact same solution as convex hull pricing in
certain cases (+)



Equivalence of linear programming relaxation
and convex hull pricing (in simple cases)

* Upper left: the feasible set of bid
C

e Upper right: the convex hull of the
feasible set of bid C

e Lower: linear relaxation of bid C

=Y

Important observation: the upper
right and lower sets are equivalent




Example 7:13: linear programming relaxation
pricing

The linear programming relaxation price is the dual multiplier A of the
following model:

max, ;4300 - dg + 10 - d — 40 - pe — 100 - py,
(AD:dg +dp —pc —pp =0
11'uC SpC < 12'U,C
dA < 10, dB < 40,pD <13
dA’dB’pD >0
0< Uc <1

Clearing price: 40 S/MWh (same as CHP)



The European exchange and
EUPHEMIA



Products in the European power exchange

* Aggregated hourly orders
* Linear orders
* Stepwise orders

* Complex orders
* Load gradients
e Minimum income conditions

* Block orders

* Merit orders and unique national price (Prezzo Unico Nazionale, PUN)
orders



To mpoPAnpa ekkaBapLonc TN EUPWTTOLKNC
AyOPAC NAEKTPLOLOU

* Integer quadratic program subject to complementarity constraints
e Quadratic objective function: surplus from trading energy
* Integer variables: accept or reject block orders and other products

* Complementarity constraints: pricing business rules in the European
market



Formulation of the model (in words) for the
running example

Maximize surplus, subject to the following constraints:

 Pricing rules for continuous offers (bids A, B, and D): maximize surplus given
market prices

 Pricing rules for block orders (bid C): cannot be paradoxically accepted, but
can be paradoxically rejected



Pricing rules of continuous offers

Surplus maximization problem of bid A is expressed as follows:

maxg, (300 — 1) - dj4
(ta):dy < 10

Equivalent to the following KKT conditions:

0<d,LA1—300+u, >0
0<u, L10—d, >0



Confirming the pricing rules

* If the bid is fully accepted (d4, = 10), then it is in the money or at the
money (300 = A1)

* If the bid is partially accepted (0 < dy < 10) then it is on the money
(300 = A)

* If the bid is rejected (d, = 0), then it is on the money or out of the
money (300 < 1)



Block order pricing rules

We work with the linear relaxation of the block order profit
maximization problem:

maxy, . ,.(4 —40) - p¢
(We)ipe —12-uc <0
(Vc): 11 *Uc — Pc <0
(sc)ius <1
PDe, Uc >0



KKT conditions of linear relaxation

The KKT conditions of the previous slide are:

OSpCJ-Ll'O_A_I_MC_vCZO
OSU,CJ_—].Z'MC+11'VC+SCzO
O0<ucl12-ur.—p-=0
0<velpc-—11-u =0
0<scll—-u-=90

In order to express the pricing rules, we remove the complementarity operator
from the last condition:

0<scX1—-ur=0 - sc=20u:<1



What is the effect of removing the
complementarity operator?

The complementarity operator prevents
* that the offer has positive surplus (s > 0) and
* thatitis not fully accepted (u, < 1)

Lifting complementarity is precisely the essence of paradoxically
rejected orders



Full model for the running example

Maximize surplus (EUDA): maxy, 4y

) ) )

Auv,s300-dy +10-dg —40 - pc — 100 - pp

Pricing rules of 0<dy LA-300+u, 200=<py L10-dy =20
continuous orders 0<dg1lA—-10+u=00<puglL14—-dg =0
0<ppL100—A+up=200<pup L13—pp =0

Ospcl40_ﬂ.+ﬂc_1/c20
OSuCJ_—12-,uC-I—11-vC+SCZO
0<pel12 up —pg =0
O<velp-—11-u-=0
sc = 0,uc; € {0,1}

Pricing rules of block
orders

dy+dg —pc—pp =0
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Some observations

* The model is expressed in both primal and dual variables
* The problem is mixed integer (binary variable u,)

* The problem is subject to complementarity constraints (pricing rules)

* Mixed integer = hard
* Complementarity conditions = extremely hard
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EUPHEMIA

. Primal .
problem
Branch and
explore other
nodes
Integer No |
Explore solution?
other
nodes
Is pricing No Add cut excluding

A

problem
feasible?

proposed solution




EUPHEMIA

* EUPHEMIA is a branch and bound algorithm

* Developed by N-SIDE, spinoff of the Center for Operations Research
and Econometrics (CORE) at the Université catholiqgue de Louvain

* Clears the pan-European day-ahead electricity market



The EUPHEMIA algorithm

* Primal problem function: convex integer program (computationally
easy)

* Binary variables are replaced by their linear relaxations

* Integer solution check: (easy) check if the solution of the problem
results in integer values for u

* Feasible pricing problem check: can be expressed as a linear program

* Add cut excluding proposed solution function: one of the strong
points of the EUPHEMIA algorithm



Feasible pricing problem

* Corresponds to the complementarity system that implements the
pricing rules

* We use constant values for primal variables (u, p, d) from the optimal
solution of the primal problem

 Computationally easy step

* The only free variables in this computation are the dual variables, i.e.
(,ll, V, A, S)



Adding cuts

 Cuts exploit the structure of the problem

* They cut off not only the current candidate solution but also many
other alternatives that will never need to be explored in the branch
and bound tree

* Such “deep” cuts exploit the special structure of the problem that is
tackled by EUPHEMIA
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Aggregated hourly orders

 Specific to each hour within
a bidding area

e Supply orders are sorted in

Increasing price

* Demand orders are sorted in Linear piecewise aggregated curve
decreasing price | #

I

* Stepwise curves: two
consecutive points always i
have same price or same i L
guantity 2 HHGHE

Stepwise aggregated curve



Acceptance of aggregated orders

* Definition of ITM/ATM/OTM:

A demand (resp. supply) hourly order is said to be in-the-money (ITM) when the
market clearing price is lower (resp. higher) than the price of the hourly order

* A demand or supply hourly order is said to be at-the-money (ATM) when the price of
the hourly order is equal to the market clearing price

A demand (resp. supply) hourly order is said to be out-of-the-money (OTM) when
the market clearing price is higher (resp. lower) than the price of the hourly order

* Acceptance rules:
* Any in-the-money order must be fully accepted
* Any out-of-the money order must be rejected
* At-the-money orders can be either accepted (fully or partially) or rejected



Complex orders

» Used for representing
dependencies across time periods

* Two types of complex conditions:

* Minimum Income Condition (with or
without scheduled stop)

e Load Gradient

COMPLEX ORDER #1

- ;JUIpEID PEOT , \

YAMINY3 OF = Wug) ajqoroa .

30 = wiag paxiy .
:BWOoU| WNWIUIA 4 |
‘SNOILIANOD X31dINOD |




Minimum income conditions (MIC)

* Minimum income conditions mean that the order should cover
* a fixed (startup) cost and
* a variable (fuel) cost

* If MIC is activated, each of the hourly sub-orders is
* accepted if in-the-money
* rejected if out-of-the-money
e can be either accepted (fully or partially) or rejected if at-the-money

* If a MIC order is deactivated, every sub-order is fully rejected (even if
in-the-money)

* No paradoxically accepted MICs



Load gradient orders

e Used to represent ramp
constraints

* Ramp limited by an

increment/decrement limit (same

value for all periods)

Hourly
suborder #5(h=1}

Hourly

Hourly 4 suborder #4/h+1}
suborder #5(h} '
+ INCREASE
= dm e — — GRADIENT Hourly
Hourly suborder #3(h+1) Gh+1
subarder #4(h) lwm bz
imite
h-
Q Hourly — N @ by the
border #3(h e ralue of
suborde| (h] . DECREASE \aaﬁo
1T — — GRADIENT ™.
= Hourly 1 Hourly
; subarder #2(h) suborder #2({h:1)
Hourly T TOUE 1
subarder #1{h) suborder #1ih+1)
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Block orders

* A block order is defined by:
* Sense (supply or demand)
Price limit
Number of periods
Volume (can be different for every period)
Minimum acceptance ratio

* Regular (fill-or-kill) block order:
* Block order defined for a consecutive set of periods
e Same volume
* A minimum acceptance ratio of 1

* The periods of the block order can be non-consecutive
* The volume can differ over the periods
 Curtailable Block Orders: the minimum acceptance ratio can be less than 1



Example block order

Example block order:

* Sense: supply

* Price: 40 €/MWh

* Minimum acceptance ratio: 0.5

* Intervals: hours (3-7), hours (8-19)
and hours (22-24)

e Volume: 80 MWh in the first interval,
220 MWh in the second one, and 40
MWh in the third one

BLOCK ORDER #1

c'0 :onel 3dandy _'12":"

YMIN/3 OF :31d
*43QU0 X2019 |



Acceptance of block orders

* Block orders that are out-of-the-money must be rejected

* If the block is in-the-money (or at-the-money), then the block can be
entirely accepted

* If the block is in-the-money (or at-the-money), then the block can be
fully rejected => Paradoxically Rejected Bid (PRB)

* If the block is in-the-money (or at-the-money), then the block can be
partially accepted => Partially Paradoxically Rejected Bid (PPRB)



Linked block orders

* The child can never be accepted “more” than
the parent

A child which is individually generating losses
cannot be accepted, unless it is itself a
parent of another order

* Rules in a single link:
* The parent can be accepted alone

* The child can “save” the parent with its surplus,
but not the opposite
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Block orders in an exclusive group

* An exclusive group is a set of block orders for which the sum of the
accepted ratios cannot exceed 1

* When blocks have a minimum acceptance ratio of 1, at most one of
the blocks in the exclusive group can be accepted




Flexible hourly block order

* A flexible “hourly” order is a block order with a fixed price limit, a
fixed volume, minimum acceptance ratio of 1, with duration of 1 hour

* The hour is not defined by the participant but is determined by the
algorithm (hence the name “flexible”)



Merit orders

* Merit orders are individual step orders defined at a given period that
have an associated so-called merit order number

* A merit order number is unique per period and order type (demand,
supply, PUN)

* The merit order number is used for ranking merit orders in the
bidding areas containing this order type

* The lower the merit order number, the higher the priority for
acceptance



Merit order examples

Example 1 Example 2
-“"-.'-—-H""\ f"-'-—-.‘.“\ ,“#—_-h"‘\- ,f“"——_.--"h
VA _ . _ y - ’ >
7 ?Idgmg :;\r:f%ﬂ \‘\ /o Ifld;mg Tr\:é:iﬂ \‘\ ¢ - Bidding Area A: \\ ,° - Bidding Area A: \\

4 ML‘::i Yt 30eMWh; [ Mﬁﬁ ytéu@mwrr \ / SRR ! * Supply 1: 70 MWh
| MO: 1a ‘ MO: 1:a ' ! MWh at 30EMWh; at 30€/MWh; MO: :
* Demand 1: 0 MWh » Demand 1- 0 MWh ! MO: 1 I 1 p

at DE/MWh; MO: 1 at DEMWh; MO: 1 = Demand 1:0 MWh « Demand 1: 0 MWh

-~
P

Bidding Area B:

* Supply 2: 100
MWh at 30€/MWh;
MO: 2

= Demand 2: 120

MWh at 50E/MWh;

MO: 2

.

Bidding Area B:
= Supply 2: 20 MWh LY
! at 30€/MWh; MO: \

= Demand 2: 120
MWh at 30€MWh;
MO: 2

2 |

at 0EMWh; MO: 1

-

- ~
# -+ Bidding Area B: ~
/ = Supply 2 100 \
/ MWh at 306/MWh: \
MO: 2 |

» Demand 2: 120
MWh at S0EMWh;
MO: 2
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at 0EMWh; MO: 1

-~
# + Bidding Area B:

/ * Supply2:50 MWh
! at 306/MWh: MO: \
! 2 l

* Demand 2: 120 i
MWh at 306MWh;

MO: 2
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PUN orders

* PUN orders are a particular type of demand merit orders

* Cleared at the PUN price (“Prezzo Unico Nazionale”) rather than the
bidding area market clearing price

* For each period, financial balance needs to hold:

Poun ) Q2= ) P+ Qz A
Z Z

* ),: volumes consumed in bidding area z

* Poyn: PUN price

* P,: price of bidding area z
* A: PUN imbalance (has to be near-zero)
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