Zonal Pricing

Anthony Papavasiliou, National Technical University of Athens (NTUA)

Source: section 5.3, Papavasiliou [1]

1

Outline

- Motivations for zonal pricing
- Zonal pricing models
- Redispatch
- INC-DEC gaming

Motivations for zonal pricing

Zonal pricing throughout the world

- Original design in the US, transition to nodal pricing in early 2000
- Dominant design in Europe (despite problems in Germany and Great Britain)
- Candidate design in China, India

Criticisms of nodal pricing

Criticisms	Counter-arguments
 Institutional compatibility: Exchange of sensitive information about national infrastructure Keeping low energy cost for some consumers 	The fact that some consumers prefer to pay a low price for energy does not mean that neighbors should bear transmission costs
Implementation complexity:Technological complexityPortfolio offers	 Implementation in the US proves that it is technologically feasible Unit-based offers allow for better scheduling and market monitoring

Criticisms of nodal pricing

Criticisms	Counter-arguments
Market power: geographic splitting of the market leads to firms with a dominant position	All designs are exposed to manipulation due to market power, ignoring physical constraints of the network does not render a firm less able to exert market power
Cash transfers: zonal pricing achieves the same result with lower cash flows between market agents	But it does not achieve the same result if market participants deviate from truthful bidding
Non-intuitive price behavior	The behavior of prices is due to physical laws that cannot be ignored
Risk management and liquidity: too many pairs of nodes, difficult to hedge against transmission price differences between any pair of locations	Contract networks

Zonal pricing models

Two basic zonal pricing paradigms

(ZP):

$$\max_{p,d,r,f} \sum_{l \in L} \int_{0}^{d_{l}} MB_{l}(x) dx - \sum_{g \in G} \int_{0}^{p_{g}} MC_{g}(x) dx$$

$$(\rho_{z}):$$

$$r_{z} = \sum_{g \in G_{z}} p_{g} - \sum_{l \in L_{z}} d_{l}, z \in Z$$

$$r \in \mathcal{R}$$

$$p_{g} \ge 0, g \in G$$

$$d_{l} \ge 0, l \in L$$

Two dominant models:

- Transportation network (ATC market coupling)
- Flow-based market coupling

Same underlying mathematical model

 \mathcal{R} : set of feasible zonal injections

Zonal pricing auction

Zonal pricing is a uniform price auction that is conducted as follows:

- Sellers and buyers submit price/quantity pairs
- The market operator solves (ZP) and announces ρ_z as the market clearing price for zone z

Transportation-based zonal pricing

Ignores Kirchhoff's laws completely

Assume a transportation network on which we have perfect control over line flows

Crucial design choices:

- Bidding zone configuration
- Available transfer capacities

Set of feasible injections:

$$\begin{aligned} \mathcal{R} &= \{r: r_z = \sum_{\substack{a = (z, \cdot) \\ -ATC_a \leq f_a \leq ATC_a, a \in A\}} f_a \,, z \in Z, \end{aligned}$$

The model

(ZPT): $\max_{p,d,r,f} \sum_{l \in I} \int_{0}^{a_{l}} MB_{l}(x) dx - \sum_{g \in G} \int_{0}^{p_{g}} MC_{g}(x) dx$ (ρ_z) : $r_z = \sum_{g \in G_z} p_g - \sum_{l \in L_z} d_l , z \in Z$ $r_z = \sum_{a=(z,\cdot)} f_a - \sum_{a=(\cdot,z)} f_a , z \in Z$ $-ATC_a \leq f_a \leq ATC_a, a \in A$ $p_g \ge 0, g \in G$ $d_l \geq 0, l \in L$

6-node example

6-node example: LMPs

	Node 1	Node 2	Node 3	Node 4	Node 5	
Line 1-6	0.625	0.5	0.5625	0.0625	0.125	PTD
Line 2-5	0.375	0.5	0.4375	-0.0625	-0.125	

Suppose that $T_{1-6} = 200 \text{ MW}$, $T_{2-5} = 250 \text{ MW}$

Locational marginal pricing:

- Welfare: 23000 €/h
- Different price at each node: $\rho_1 = 25 \frac{\$}{\text{MWh}}, \rho_2 = 30 \frac{\$}{\text{MWh}}, \rho_3 = 27.5 \frac{\$}{\text{MWh}}, \rho_4 = 47.5 \frac{\$}{\text{MWh}}, \rho_5 = 45 \frac{\$}{\text{MWh}}, \rho_6 = 50 \frac{\$}{\text{MWh}}$
- Line flows: $f_{1-6} = f_{2-5} = 200 \text{ MW}$

Zonal pricing model:

- $Z = \{N, S\}$
- $A = \{N S\}$
- The north zone includes nodes 1, 2, 3
- The south zone includes nodes 4, 5, 6
- Zonal pricing with $ATC_{N-S} = 200 \text{ MW}$
 - Welfare: 18520 €/h

•
$$\rho_N = 24.17 \frac{\$}{\text{MWh}}, \rho_S = 50.83 \frac{\$}{\text{MW}}$$

- Flows: $f_{1-6} = 109.38$ MW, $f_{2-5} = 90.63$ MW
- Zonal pricing with $ATC_{N-S} = 450 \text{ MW}$
 - Welfare: 24145 €/h

•
$$\rho_N = 28.33 \frac{\$}{\text{MWh}}, \rho_S = 46.77 \frac{\$}{\text{MWh}}$$

• Flows: $f_{1-6} = 234.38$ MW, $f_{2-5} = 215.63$ MW

How do we confirm that these are market clearing prices for the zonal model?

Zonal model is either:

- Too conservative (ATC = 200 MW)
 - Flow constraints are respected
 - ... but zonal pricing welfare < nodal pricing welfare
- Too aggressive (ATC = 450 MW)
 - Zonal pricing welfare > nodal pricing welfare
 - ... but flow constraints are violated

Loop flows and transit flows

- Loop flows: flows within a zone that are caused by transactions within a neighboring zone
- **Transit flows**: flows within a zone that are caused by transactions *between* neighboring zones

Left: transit flows. Right: loop flows.

The idea of flow-based zonal pricing

- Flow-based market coupling attempts to approximate Kirchhoff laws through
 - **Critical branches** *CB*: set of network elements on which flow constraints are imposed
 - Zone-to-line PTDFs *PTDF_{zl}*
 - **Remaining available margin** (RAM), the estimation of which requires a **base case**
- All these parameters are problematic because their definition is circular (the choice of base case, and therefore RAM, affects the dispatch of the system, which affects the base case)

$$\begin{aligned} \mathcal{R} &= \{r : \sum_{z \in Z} PTDF_{zl} \cdot r_z \leq RAM_l, l \in CB \\ &\sum_{z \in Z} r_z = 0 \} \end{aligned}$$

The model

(ZPFB):

$$\max_{p,d,r,f} \sum_{l \in L} \int_{0}^{d_{l}} MB_{l}(x) dx - \sum_{g \in G} \int_{0}^{p_{g}} MC_{g}(x) dx$$

$$(\rho_{z}):$$

$$r_{z} = \sum_{g \in G_{z}} p_{g} - \sum_{l \in L_{z}} d_{l} = 0, z \in Z$$

$$f_{k} = \sum_{z \in Z} PTDF_{zk} \cdot r_{z}, k \in CB$$

$$f_{k} \leq RAM_{k}, k \in CB$$

$$\sum_{z \in Z} r_{z} = 0$$

$$p_{g} \geq 0, g \in G$$

$$d_{l} \geq 0, l \in L$$

Flow-based feasible set

Critical branch AB: $\frac{1}{3}r_A - \frac{1}{3}r_B \le 1000$ Critical branch BA: $-\frac{1}{3}r_A + \frac{1}{3}r_B \le 1000$ Critical branch BC: $\frac{1}{3}r_A + \frac{2}{3}r_B \le 1000$ Critical branch CB: $-\frac{1}{3}r_A - \frac{2}{3}r_B \le 1000$ Critical branch AC: $\frac{2}{3}r_A + \frac{1}{3}r_B \le 1000$ Critical branch CA: $-\frac{2}{3}r_A - \frac{1}{3}r_B \le 1000$ $r_A + r_B + r_C = 0$

	Α	В
AB	1/3	-1/3
BA	-1/3	1/3
BC	1/3	2/3
СВ	-1/3	-2/3
AC	2/3	1/3
СА	-2/3	-1/3

Zone-to-line PTDFs PTDF_{lz}

A zonal pricing model without circular parameter definitions

$$\begin{aligned} (FBP): \max_{p,d,\rho} \sum_{l \in L} \int_{0}^{d_{l}} MB_{l}(x) dx - \sum_{g \in G} \int_{0}^{p_{g}} MC_{g}(x) dx \\ & 0 \leq p_{g} \perp MC_{g}(p_{g}) - \rho_{z(g)} \geq 0, g \in G \\ & 0 \leq d_{l} \perp -MB_{l}(p_{g}) + \rho_{z(l)} \geq 0, l \in L \\ & \sum_{g \in G} p_{g} - \sum_{l \in L} d_{l} = 0 \\ & -T_{k} \leq \sum_{n \in N} F_{kn} \cdot \left(\sum_{g \in G_{n}} p_{g} - \sum_{l \in L_{n}} d_{l}\right) \leq T_{k}, k \in K \end{aligned}$$

Returning to the 6-node example

Recall that $T_{1-6} = 200 \text{ MW}$, $T_{2-5} = 250 \text{ MW}$

• Welfare: 22806.6 \$/h

•
$$\rho_N = 27.19 \frac{\$}{\text{MWh}}, \rho_S = 47.81 \frac{\$}{\text{MWh}}$$

• Flows:
$$f_{1-6} = 200$$
 MW, $f_{2-5} = 181.25$ MW

How do these results compare to nodal pricing? To ATC-based zonal pricing?

Redispatch

Redispatch

Redispatch: Pay-as-bid auction conducted after zonal pricing

- Sellers submit increment (inc) and decrement (dec) bids
- Inc bids: price producers are asking to provide additional power relative to zonal pricing auction
- Dec bids: price producers are willing to pay to market operator for decreasing production relative to zonal pricing auction
- Inc bids cleared to minimize payment to bidders
- Dec bids cleared to maximize payment to market operator

Example

- Under truthful bidding, zonal pricing followed by re-dispatch achieves the same result as nodal pricing with
 - Fewer prices
 - (Potentially) lower charges to consumers

$$T_{1-2} = 800 \text{ MW}$$

$$40 + Q/50 \longrightarrow 1 \longrightarrow 2 \longleftarrow 60 + Q/50$$

$$\%/\text{MWh} \longrightarrow 1 \longrightarrow 2 \longleftarrow \%/\text{MWh}$$

$$1200 \text{ MW}$$

- LMP solution:
 - $p_1 = 800$ MW, $p_2 = 400$ MW

•
$$\rho_1 = 56 \frac{\$}{\text{MWh}}, \rho_2 = 68 \frac{\$}{\text{MWh}}$$

- 9600 \$/h remain to market operator
- Zonal pricing (one zone):
 - $p_1 = 1100$ MW, $p_2 = 100$ MW (παραβίαση ορίου γραμμής)
 - $\rho = 62 \frac{\$}{\text{MWh}}$
 - Zero surplus for market operator

Re-dispatching under truthful bidding:

- 300 MW of inc bids cleared from node 2
- 300 MW of dec bids cleared from node 1
- Payment to market operator from dec bids: 17700 \$/h
- Payment from operator to cleared inc bids: 19500 \$/h
- Difference: 1800 \$/h

INC-DEC gaming

Gaming zonal pricing

Zonal pricing with re-dispatch can be gamed easily

ENRON and other forms exploited INC-DEC gaming and other market manipulation trategies during the California market crisis of 2001

The idea of INC-DEC gaming

- A serious weakness of zonal pricing + redispatch is that it creates an inconsistency on the pricing of the same product in two different moments in time
- If agents can anticipate this price behavior, they can easily manipulate the mechanism:
 - Offer more power than the network can handle in the day-ahead market
 - And buy back the electricity that the network cannot absorb in redispatch at whatever price they want (even negative!)

INC-DEC gaming

- Zonal day-ahead auction
 - G1: 50 MWh, G2: 50 MWh, G3: 50 MWh
 - Zonal price zone A: 40 \$/MWh
 - Congestion within zone A on line 1-2
 - Congestion between zones on line 2-3
- Redispatch offer of G1: -250 €/MWh
- For the 50 MWh that G1 over-schedules, it gets paid

 $(50 \text{ MWh}) \cdot (40 + 250 \text{ }/\text{MWh})$

[1] A. Papavasiliou, Optimization Models in Electricity Markets, Cambridge University Press

https://www.cambridge.org/highereducation/books/optimizationmodels-in-electricitymarkets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview