Power System Operations

Anthony Papavasiliou, National Technical University of Athens (NTUA)

Source: chapter 3.1, Papavasiliou [1]

Outline

- Production
- Transmission and distribution
- Consumption
- Actors
- Uncertainty and reserve
- Stages of decision making

Production

Power system supply chain

- Different components of power systems:
 - Production
 - Transmission and distribution
 - Consumption

Production

- Non-renewable energy sources:
 - Fossil fuels (coal, oil, natural gas)
 - Nuclear
- Renewable energy sources:
 - Hydroelectric (run of river, dams, pumped storage)
 - Geothermal
 - Wind
 - Solar
 - Biomass
 - Other (wave, tidal)

Units of measurement

- Energy is measured in megawatt hours (denoted MWh)
- Power is energy per unit time:
 - Rate of energy production
 - Rate of energy consumption
 - Energy flow
- Power is measured in MW

The pool analogy

Who is supplying the load in node 3;

Production constraints

- Fossil fuel constraints:
 - Min/max production
 - Ramp constraints
 - Min up/down times

- Hydro constraints:
 - Max production
 - Max storage

Ramp constraints

Min up/down time constraints

- Min up time: 5 hours
- Min down time: 6 hours
- Red dots: constrained decisions
- Blue dots: free decisions

Variable and marginal cost

Variable/operating/fuel cost: cost that depends on amount of output

- Measured in \$/h
- Hourly cost of producing a certain amount of power

Marginal cost: derivative of fuel cost with respect to output

- Measured in \$/MWh
- Increase in fuel cost if an additional MW of power were produced/saving if one less MW is produced

Merit order curve

Merit order curve: (increasing) system marginal cost curve

What is the impact of renewable energy on the system?

Marginal cost range

If variable cost is non-differentiable, define

- Left-hand marginal cost: left-hand side derivative of marginal cost
- Right-hand marginal cost: right-hand side derivative of marginal cost (when is it infinite?)
- Marginal cost range: set of values between and including left- and right-hand marginal cost

Horizontal summation of marginal costs

Aggregate marginal cost is obtained by horizontal summation

Example

Consider quadratic fuel cost with:

- MC(0 MW) = 20 \$/MWh
- MC(200 MW) = 100 \$/MWh
- MC(Q) = 1000 \$/MWh, 200 MW ≤ Q ≤ 220 MW
- VC(0 MW) = 0 \$/h

Summation of marginal cost curves

This is the marginal cost of n generators from previous slide, n=?

Investment cost

- Fixed/investment cost: cost that is independent of output
 - Overnight cost (\$/kW): cost that needs to be paid upfront per kW of investment
 - Annualized fixed cost (\$/kWy): cost that needs to be paid per year per kW of investment
 - Hourly fixed cost (\$/MWh): cost that needs to be paid per hour per MW of investment

Conversion of investment cost

Denote:

- *T* (years): investment lifetime
- r: interest rate

Annualized fixed cost FC (\$/kWy) given annual discounting

$$FC = \frac{r \cdot OC}{1 - 1/(1 + r)^T}$$

Annualized fixed cost FC (\$/kWy) given continuous discounting

$$FC = \frac{r \cdot OC}{1 - e^{-rT}}$$

Hourly fixed cost (\$/MWh): divide annualized fixed cost by 8.76 (why 8.76?)

Example

Gas turbine lifetime: 25 years

Coal generator lifetime: 45 years

• Continuous discounting with interest rate r=12%

	<i>OC</i> (\$/kW)	FC (\$/kWy)	<i>FC</i> (\$/MWh)
Gas turbine	400	50.5	5.8
Coal	1200	144.7	16.5

Average cost

Average cost: total cost per unit of output

- Definition of average cost generalizes to the case of an industry that produces Q at minimum cost
- Economies of scale are realized when average cost decreases
- Average cost influences whether an industry is a natural monopoly or not

Intersection of average cost curve and marginal cost curve

• By definition:

$$AC(Q) = \frac{TC(Q)}{Q} = \frac{FC + VC(Q)}{Q}$$

 The minimum of the average cost curve is characterized by the following condition:

$$AC'(Q^*) = 0 \Rightarrow$$

$$\frac{MC(Q^*) \cdot Q^* - (FC + VC(Q^*))}{(Q^*)^2} = 0 \Rightarrow$$

$$MC(Q^*) = \frac{FC + VC(Q^*)}{Q^*} \Rightarrow$$

$$MC(Q^*) = AC(Q^*)$$

Average cost curve: single generator

Why is there a jump in average cost at Q = 0 MW?

Average cost curve: multiple generators

Average cost at unit capacity (200 – 220 MW) is lower for n=3 generators

Minimum efficient scale and natural monopoly

- The point at which average cost is minimized is called minimum efficient scale
- If the minimum efficient scale is comparable to the level of demand in the system, this is an indication of a natural monopoly
- Natural monopolies require government intervention/regulation
- Natural monopolies tend to emerge in industries where fixed cost dominates variable cost
- Electric power systems exhibited natural monopoly characteristics until recently

Transmission and distribution

Transmission and distribution

- Transmission: higher voltage, lower losses
- Distribution: lower voltage, higher losses
- Transformers reduce voltage at the interface

Power balance

- Buses: nodes of the transmission network
- Branches/lines: edges of the transmission network
- Power balance at each bus (same as transportation models)
- Physical intuition: electricity is «lazy»

Power flow equations

- Power networks are more complex than transportation networks
- **Kirchhoff's laws**: physical laws that govern flow of electricity in circuits, can be used to derive power flow equations
- Power flow equations determine a mapping f = P(r) of power injections r in buses to power flows f on lines
- Direct current (DC) power flow equations: approximation of power flow equations by a linear mapping

Proportionality of power flows

Additivity of power flows

Consumption

Valuation and benefit

Consumer benefit: benefit that depends on amount of consumption

- Measured in \$/h
- Hourly benefit of consuming a certain amount of power
- Marginal benefit/valuation: derivative of benefit with respect to consumption
 - Measured in \$/MWh
 - Willingness to pay (why?)

What is the supply-side analog of consumer benefit? of valuation?

Inverse demand/marginal benefit function

Inverse demand/marginal benefit function: mapping of power consumption Q to marginal benefit MB(Q)

Do we expect an inverse demand function to be increasing/decreasing?

Illustration of marginal benefit function

Which graph corresponds to consumer benefit? inverse demand function?

Example: household

Tranche	Demand	Valuation	Demand	Valuation
	morning (kW)	morning	evening	evening
		(\$/MWh)	(kW)	(\$/MWh)
Inflexible	0.2	1500	0.3	1000
Medium	0.5	120	0.3	80
Flexible	0.2	30	0.1	20

Devices can move from tranche to tranche (which devices could belong to the inflexible tranche?)

Morning

Evening

Demand function

Demand function Q(v): inverse mapping of inverse demand function

Maps price of power v to quantity Q that would be procured

Elasticity of demand

Elasticity: sensitivity of demand Q(v) to changes in price v:

$$\varepsilon = \frac{dQ/dv}{Q/v}$$

Steep inverse demand function \Leftrightarrow flat demand function \Leftrightarrow low $\varepsilon \Leftrightarrow$ inelastic (insensitive) demand

Average value of lost load and VOLL

- Average value of lost load: long-run average amount of load shed due to random disturbances (failures of generators and lines, forecast errors of renewable resources and load, etc.)
- Value of lost load (VOLL): marginal change in average value of lost load due to marginal increase in system capacity, divided by marginal decrease in the amount of shed load
- VOLL useful in capacity expansion planning studies for quantifying marginal benefit of investment in generation capacity

Example: VOLL

Consider the following demand function:

$$Q(v) = 30000 - 2v$$

Lost value from 1% in service with random rationing
$$\int_{v=0}^{15000} Q(v) dv - \int_{v=0}^{15000} 0.99 Q(v) dv = 0.01 \cdot \frac{15000 \cdot 30000}{2} = 2.25 \cdot 10^6 \in$$

Energy shed from 1% rationing: 300 MWh

$$VOLL = \frac{2250000}{300} = 7500 \frac{\text{€}}{\text{MWh}}$$

More sophisticated computation of VOLL via simulation

Actors

Actors

Uncertainty and reserves

Uncertainty

- Rainfall (affects hydro)
- Load forecast errors
- Renewable supply forecast errors
- Generator failures
- Transmission line failures
- Load failures

Contingency: failure of any system element (generator, line, transformer, load)

- * Which of these uncertainties are short-term (hours ahead or in real time)?
- Which of these uncertainties are continuous/discrete?

Frequency control and restoration

System frequency is an indicator of supply-demand balance

Sequential activation of reserves

Reserves in Belgium

Cost minimization with reserves

Consider n generators, operating cost f_i , capacity C_i , power demand D

$$\min_{p,r} \sum_{i=1}^{n} f_i(p_i)$$

s. t.
$$p_i + r_i \le C_i$$
, $i = 1, ..., n$

$$\sum_{i=1}^{n} p_i = D$$

$$\sum_{i=1}^{n} r_i \ge \max_{i=1,\dots,n} C_i$$

$$p_i, r_i \geq 0$$

Stages of decision-making

Flow chart of operations

Analyzing the flow chart

- Which decisions are binding before the day ahead/in the day ahead/in real time?
- What happens if the system operator demand forecast is much higher than traded power in day-ahead market?
- What parts of the supply chain are not actively controlled, according to the flow chart?
- Where would demand response enter in this flow chart?
- How many optimization models are shown in the flow chart?
- What would happen if each optimization model ignored future time periods?

Example: looking ahead in operations

Consider the following example with three generators:

- Real-time economic dispatch: solved every 5 minutes for the next 5 minutes
- Initial conditions: 50 MW from expensive and 50 MW from moderate
- Demand: Gaussian with mean 100 MW, standard deviation 15 MW

Generator	Marginal cost (\$/MWh)	Max (MW)	Ramp (MW/minute)
Cheap	0	20	+∞
Moderate	10	+∞	1
Expensive	80	+∞	5

• Cost 5-minute lookahead: \$1738

• Cost 10-minute lookahead: \$1406

Why is the second policy doing better?

References

[1] A. Papavasiliou, Optimization Models in Electricity Markets, Cambridge University Press

https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview