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Lagrange dual problem



Lagrange function

Standard form problem (not necessarily convex):

min f, (x)
s.t.fi(x)<0,i=1,..,m
hi(x)=0,i=1,..,p

x € R™, D is the domain of f,), optimal value p*
Lagrange function: L: R™ X R™ X R? - R,dom L = D x R™ x RP

m p
LAY = fol®) + ) AfiG) + ) vily(®)
i=1 i=1

* Weighted sum of the objective function and constraint functions
» ]; is the Lagrange multiplier associated with inequality constraint f;(x) < 0

* v; is the Lagrange multiplier associated with equality constraint h;(x) = 0



Dual function

Lagrange dual function: g: R™ X R? - R

g4, v) = mnilnxeD L(x, A, 12;)

= mingep (fo() + ) Afi@) + ) vihi(x)
=1

1=1

g is concave, can be —oo for some A, v



Dual function is a lower bound
If A = 0then g(1,v) < p*

Proof: If x is feasible and A = 0 then:

fo(kx) = L(x,A,v) = min,epL(x,A,v) = g(4,v)

Minimizing over all feasible x gives p* = g(4,v)



Dual function is concave

Consider any (14,v;), (4,,v,) and a € [0,1]:

glar, + (1 —a)A,, avy + (1 — a@)v,)

m p
= Minyedom 7, (fo (0 + ) ad ify(0) + (L= @Ay i) + ) vy thy () + (1 - a)vz,l-hioo)
i=1 i=1

m p
> @ minyegom , <fo (0 + ) MifiCo + ) vaghy (x>>
i=1 i=1

m p
+(1 = @) Minedon , <fo (0 + D) Dpifi0) + ) vaihy (x>>
i=1 i=1

=ag(A,v1) + (1 —a)g(Ayv,)
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Example 2.1: coordinating agents

* Consider set of agents G with private cost f, (xg), private constraints h2, (xg) <0
min Z fq (xg)

gEeG
S. t. z hlg(xg) =0

geG
hzg(xg) <0,gea

* Relax coordination constraints Y. ;¢ h1, (xg) = 0:

L(x, 1) = z (fg(xg) +Th1y(x,))

gEeG

g) = 2 iNf x yh24(xq)<0 ((fg(xg) T AThlg(xg)))

gEeG



Weak and strong duality



The dual problem

Lagrange dual problem:

max,, g(4,v)
s.t.A >0

* Finds best lower bound on p™ from Lagrangian dual function

* Convex optimization problem with optimal value d*
* (A,v) are dual feasibleif A = 0,(4,v) € dom g



Weak and string duality

Weak duality: d* < p*
* Always holds (for convex and non-convex problems)
* Can be used for finding non-trivial bounds to difficult problems

Strong duality: p* = d”
* Does not hold in general
* Usually holds for convex problems

* Conditions that guarantee strong duality in convex problems are
called constraint qualifications



Example 2.2: linear programming duality

Primal Minimize Maximize Dual
Constraints > b; >0 Variables
< b; <0
= b; Free
Variables >0 < ¢ Constraints
<0 > ¢
Free = (j

Prove the mnemonic table using Lagrange relaxation



Example 2.3: dual problem of unit
commitment

Satisfy demand of 200 MW using the following technologies

Generator Activation cost Marginal cost Capacity (MW)

($/h) ($/MWh)
Low cost 500 0 20
Moderate cost 1000 10 100

High cost 2000 80 100




Example 2.3: dual problem of unit
commitment

Introduce the following variables:
* p;: power production of unit i
* u; (binary): indicator variable for activation of unit i

min,, ,, 500 - 1, + 1000 - 1, + 10 - p, + 2000 - u + 80 - ps
(A):py +p2 +p3 =200 (1)
0 < p1 =< 20 - u,q
uiE{O,l}

* Which constraint makes generator decisions depend on each other?



Example 2.3: dual problem of unit
commitment

e Dual function obtained by relaxing constraint (1):
gd)
= miny ,;, 500 - u; + 1000 - u, + 10 - p, + 2000 - u3 + 80 - p3 — 1
- (p1 + p2 + p3 —200)
S.t.p1 <20-uq,pp; <100 -u,,p3 <100 - us
p; = 0, u; € {0,1}

* Thus,
g =g:(1) + g.(1) + g3(4) + 200 - 4
where
g1(4) = min, ,,{500-u; —A-p;,0 <p; <20-u,,u, € {0,1}}
g2(A) = min, ,,{1000 - u, + (10 — 4) - p,,0 < p, < 100 - uy, u, € {0,1}}
g3(4) = min, ,,{2000 - uz + (80 — 4) - p3,0 < p3 < 100 - uz, u3 € {0,1}}



Example 2.3: dual of unit commitment
problem

« Computing g,(A) (similarly for g, (1), g3(1))

1>25-u; =1,p; =20
A<25-u;=0,p; =0
91(’1)‘{500—20-1, 1> 25

e Finally:
naty ( 200 - 4, 1< 20

() — 200041002, 20 <A<25
9 =12500+80- 1, 25 < 1< 100
. 12500 — 20 - A, 100 < A




Example 2.3: dual problem of unit
commitment

e Sanity check: g(A4) is concave

12000
10000
8000
6000

4000

Dual function g{A)

2000

mmmmmmmmmmmmmmmmmmmmmmmmmm

@@@@@@@@@@@@@@@@@@@@@@
HHHHHHHHH

Dual multiplier A

. E(r)lgr%%l optimal solution: u* = (1,1,1) and p* = (20,100,80) = primal optimal equal to

e Dual optimal equal to 10500 < 12000 = strong duality does not hold



Optimality conditions



Complementary slackness

* |f strong duality holds, x* primal optimal, A*, v* dual optimal

m p
folx) = g, v7) = mine | fo() + ) AifiG) + ) vihy(x)
i=1 i=1

m p
< ol + D A+ ) vik()

=1 =1
< fo(x™)

Therefore, the two inequalities above hold with equality and

* X" minimizes Lagrange function L(x, A*,v™)

e A filx")=0fori=1,.. m

This is known as complementary slackness:
A>0= fi(x*)=0 fi(x")<0=24 =0



KKT conditions

KKT conditions for a problem with differentiable f;, h;:

* Primal constraints: f;(x) <0,i=1,..,mh;(x)=0,i=1,..,p
* Dual constraints: 4; = 0,i =1,...,m

* Complementary slackness: 4; - f;(x) =0,i=1,...,m

e Gradient of the LagrangiannIunction with rgspect to x vanishes:

VF,(x) + z ALVF GO + 2 v Vh(x) = 0
=1

1=1

* From previous slide, if strong duality holds and x, A, v are optimal, then
they must satisfy the KKT conditions



KKT conditions for convex problems

 Strong duality usually holds for convex problems (but not always)

* Conditions that ensure strong duality are called constraint
qualifications

* If (i) constraints are linear equalities and inequalities and (ii) dom f,
is open, then strong duality holds



KKT conditions of with linear
constraints

* Consider a maximization problem with linear constraints:
xy Cx X + )y
s.t. (1):Ax+By <b
(u):Cx+Dy=d
x=0

* Then the KKT conditions have the following form:
Cx+Dy—d=0
0<ALlLAx+By—b<0
O<x1lAMA+u'Cc—-cl >0
AMB+u"™D —cf =0

and are necessary and sufficient for an optimal solution



KKT conditions of with linear
constraints

* Consider a maximization problem with linear constraints:
xy CxX + 3y
s.t. (1):Ax+By <b
(u):Cx+Dy=d
x=0

* Then the KKT conditions have the following form:
Cx+Dy—d=0
0<ALlLAx+By—b<0
O<x1lAMA+ulCc+cl =0
AMB+u"™D +cf =0

and are necessary and sufficient for an optimal solution



Example 2.4: KKT conditions for dispatch
problem

Consider previous example, without activation costs

Generator Marginal cost Capacity (MW)
(€/MWh)
Low cost 0 20
Moderate cost 10 100
High cost 80 100

min 10 ) +80'p3
(A):py + p2 +p3 = 200
(M) p1 <20
(42):p2 <100

(#3):p3 < 100
pi =0



Example 2.4: KKT conditions for dispatch
problem

KKT conditions:

* Primal equality constraints
* Primal inequality constraints L (complementary to) non-negative dual variables

* Primal non-negative variables 1 (complementary to) dual inequality constraints
p1+p2 +p3 =200 (2)
0<u L20—p; =0 (3)
0<u, L100—p, =20 (4)
0<u; L100—p3 =0 (5)
0<piLA+pu, =20 (6)
0<p, L10+A+u, =20 (7)
0<p3L80+A+u; =0 (8)
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Example 2.4: KKT conditions for dispatch
problem

p1 +p2 +p3 =200 & —p; —p, —p3 = —200

* Therefore, three last conditions can be replaced by:
0<p, L10—A+u, =20 (10)
0<p; L80—-—A+u3;=0 (11)

* Easy to see that (p*)! = (20,100,80) is primal optimal
e Claim: A* = 80 and (u*)" = (80,70,0) are dual optimal
* Proof: verify that p*, A" and u* satisfy equations (2)-(5) and (9)-(11)



KKT conditions for non-differentiable
optimization problems

What if f,, f;, h; are convex but non-differentiable?

If strong duality holds, then:
e i(x)<0,i=1,....mh;(x)=0,i=1,..,p
*1=0
Aifi(x) =0,i=1,.
e Subgradient of the Lagranglan function with respect to x vanishes:

3f, (x) + 2/1 3f;(x) + zvlah (x) = 0

where df (x) denotes a subgradlent of f atx




Sensitivity



Subgradients

Consider a function g,  is a subgradient of g at u if
gw) =g +nl(w—u)forallw

Subgradients generalize gradients for non-differentiable functions
Subdifferential dg(u): set of all subgradients at u

Subgradients are useful for:
* Generalizing KKT conditions to non-differentiable optimization problems

* Deriving sensitivity results



Geometric interpretation of subgradients

Subgradient determines linear under-estimator of a function

gle) k

* 711 and 1,: subgradients at u,



Subgradient calculus

Suppose g is convex, then:

* dg(u) = {Vg(u)}if g is differentiable at u

* Conversely, if dg(u) = {m}, then g is differentiable at u and m = Vg(u)
* d(ag) = adg

* (g, + g,) = dg; + 0g,, where the right-hand side corresponds to
addition of sets

* If f(u) = g(Au + b) then af (u) = ATdg(Au + b)
* If g = max;=1 . m9; then

dg(u) = Co(U{ag;(w)g;(w) = gw)})
where Co(-) is the convex hull



Sensitivity result

Define c(u) as the optimal value of the following mathematical program:

c(u) = min fy(x)
fl(x) <u,i=1,..m
x € dom f,

and suppose that dom f, is a convex set and f,, f; are convex functions

Then:
* c(u) is a convex function

* If strong duality holds and A* maximizes the dual function
MiNyedqom f, (fo(x) — AT (f (x) —w)) for 1 < 0, then 1* € dc(u)



* If c(u) is differentiable at a certain point u, then for a given constraint

i:
_dc(uw)

i

aui

* Conclusion: 4; is equal to the sensitivity of the objective function c(u)
to a marginal change in the right-hand side of the constraint

corresponding to A;



Example 2.5: convexity of c(u)

Generator Marginal cost Capacity (MW)
($/MWh)
Low cost 0 20
Moderate cost 10 100
High cost 80 100

We return to example 2.4

Denote u as the capacity of generator 1

Generally, generator 1 will be used to the greatest possible extent, followed by generator 2,
followed by generator 3

For0 <u <100,c(u) =10-100+ 80 (100 — u)



Example 2.5: convexity of c(u)

Following the same reasoning for u = 100:

2000 — 10 - u, 100 < u < 200

9000 — 80 - u, 0<u<100
c(u) =
0, 200 <u

1000

100 200



Example 2.6: slope of c(u)

Recall the solution of the KKT conditions (equations (2)-(5) and (9)-
(11)):

(p")T'=(20,100,80),2* = 80, (u*)''= (80,70,0)

Sensitivity interpretation of A™:

Right-hand side of p; + p,+ p3 = 200 increases by one unit =
generator 3 increases output by 1 MW = additional cost of S80



Example 2.6: sensitivity

KKT conditions can also be expressed using equations (2)-(8)

Solution of the KKT system is:
(p*)T= (20,100,80), 1* = —80, (u*)T = (80,70,0)

Note the change in the sign of 1!



Dual multipliers in AMPL



Mn-povaokotnta Twyv cuvOnkwyv KKT

* The KKT conditions of a problem depend on how we define the
Lagrangian function

* The sign of dual multipliers depends on the KKT conditions (therefore,
how we define the Lagrangian function)

* The sensitivity interpretation of dual multipliers depends on the KKT
conditions (therefore, how we define the Lagrangian function)

* Different software interprets user syntax differently!

A



Dual multipliers in AMPL

In order to be able to anticipate the sign of multipliers that AMPL will assign
to constraints, note that:

* A constraint of the form f; (x) <,=,> f,(x) is equivalently expressed as
filx) = f2(x) £=20

* The constraints are relaxed by subtracting their product with their
corresponding multiplier from the Lagrangian function

* The sign of the dual multiplier is such that the Lagrangian function provides
a bound to the optimization problem

* The primal-dual optimal pair is such that the KKT conditions corresponding
to this Lagrangian function are satisfied

* |n this way, the dual multipliers reported by AMPL can always be
interpreted as sensitivities




Example
{minx,y x+2ys.t.0<x,(1),x<2 ),y =1, ()}

Objective function f(x,y) = x + 2y, inequality constraints f;(x,y) =
— x < 0 (i.e. a < constraint), ,(x,y) =x—2,h(x,y) =y — 2

AMPL Lagrangian:
Leq,y) = (x+2y) — A (—x) —A,(x—=2) —u(y— 1)



KKT conditions in AMPL

KKT conditions:

* Primal feasibility: g, (x,y) <0,g9,(x,y) <0,h(x,y) =0
* Dual feasibility: 1 < 0,4, <0

* Complementarity: 1; L g(x,y),4, L g,(x,y)

* Stationarity:
Vf(xy) —41Vg1(x,y) — 4,V g(x,y) — uVh(x,y) =0

Solution:x =0, v=1,4, =-1,4, =0,u =2
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