Mathematical Background

Anthony Papavasiliou, National Technical University of Athens (NTUA)

Source: chapter 2 Papavasiliou [1], chapter 5 Boyd [2]

Contents

- Lagrange dual problem
- Weak and strong duality
- Optimality conditions
- Sensitivity
- Dual multipliers in AMPL

Lagrange dual problem

Lagrange function

Standard form problem (not necessarily convex):

$$\min f_0(x)$$
s. t. $f_i(x) \le 0, i = 1, ..., m$

$$h_i(x) = 0, i = 1, ..., p$$

 $x \in \mathbb{R}^n$, D is the domain of f_0 , optimal value p^*

Lagrange function: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, dom $L = D \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- Weighted sum of the objective function and constraint functions
- λ_i is the Lagrange multiplier associated with inequality constraint $f_i(x) \leq 0$
- v_i is the Lagrange multiplier associated with equality constraint $h_i(x) = 0$

Dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) = \min_{x \in D} L(x, \lambda, \nu)$$

=
$$\min_{x \in D} (f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x))$$

g is concave, can be $-\infty$ for some λ, ν

Dual function is a lower bound

If
$$\lambda \geq 0$$
 then $g(\lambda, \nu) \leq p^*$

Proof: If \bar{x} is feasible and $\lambda \geq 0$ then:

$$f_0(\bar{x}) \ge L(\bar{x}, \lambda, \nu) \ge \min_{x \in D} L(x, \lambda, \nu) = g(\lambda, \nu)$$

Minimizing over all feasible \bar{x} gives $p^* \geq g(\lambda, \nu)$

Dual function is concave

Consider any (λ_1, ν_1) , (λ_2, ν_2) and $\alpha \in [0,1]$:

$$g(\alpha\lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha\nu_{1} + (1 - \alpha)\nu_{2})$$

$$= \min_{x \in \text{dom } f_{0}} \left(f_{0}(x) + \sum_{i=1}^{m} \alpha\lambda_{1,i}f_{i}(x) + (1 - \alpha)\lambda_{2,i}f_{i}(x) + \sum_{i=1}^{p} \alpha\nu_{1,i}h_{i}(x) + (1 - \alpha)\nu_{2,i}h_{i}(x) \right)$$

$$\geq \alpha \min_{x \in \text{dom } f_{0}} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{1,i}f_{i}(x) + \sum_{i=1}^{p} \nu_{1,i}h_{i}(x) \right)$$

$$+ (1 - \alpha) \min_{x \in \text{dom } f_{0}} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{2,i}f_{i}(x) + \sum_{i=1}^{p} \nu_{2,i}h_{i}(x) \right)$$

$$= \alpha g(\lambda_{1}, \nu_{1}) + (1 - \alpha)g(\lambda_{2}, \nu_{2})$$

Example 2.1: coordinating agents

• Consider set of agents G with private cost $f_g(x_g)$, private constraints $h2_g(x_g) \leq 0$ $\min \sum_{g \in G} f_g(x_g)$ s. t. $\sum_{g \in G} h1_g(x_g) = 0$ $h2_g(x_g) \leq 0, g \in G$

• Relax coordination constraints $\sum_{g \in G} h1_g(x_g) = 0$:

$$L(x,\lambda) = \sum_{g \in G} \left(f_g(x_g) + \lambda^T h 1_g(x_g) \right)$$
$$g(\lambda) = \sum_{g \in G} \inf_{x_g : h 2_g(x_g) \le 0} \left(\left(f_g(x_g) + \lambda^T h 1_g(x_g) \right) \right)$$

Weak and strong duality

The dual problem

Lagrange dual problem:

$$\max_{\lambda,\nu} g(\lambda,\nu)$$

s. t. $\lambda \ge 0$

- ullet Finds best lower bound on p^* from Lagrangian dual function
- ullet Convex optimization problem with optimal value d^*
- (λ, ν) are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$

Weak and string duality

Weak duality: $d^* \leq p^*$

- Always holds (for convex and non-convex problems)
- Can be used for finding non-trivial bounds to difficult problems

Strong duality: $p^* = d^*$

- Does not hold in general
- Usually holds for convex problems
- Conditions that guarantee strong duality in convex problems are called constraint qualifications

Example 2.2: linear programming duality

Primal	Minimize	Maximize	Dual
Constraints	$\geq b_i$	≥ 0	Variables
	$\leq b_i$	≤ 0	
	$=b_i$	Free	
Variables	≥ 0	$\leq c_j$	Constraints
	≤ 0	$\geq c_j$	
	Free	$= c_j$	

Prove the mnemonic table using Lagrange relaxation

Satisfy demand of 200 MW using the following technologies

Generator	Activation cost	Marginal cost	Capacity (MW)
	(\$/h)	(\$/MWh)	
Low cost	500	0	20
Moderate cost	1000	10	100
High cost	2000	80	100

Introduce the following variables:

- p_i : power production of unit i
- u_i (binary): indicator variable for activation of unit i

$$\min_{p,u} 500 \cdot u_1 + 1000 \cdot u_2 + 10 \cdot p_2 + 2000 \cdot u_3 + 80 \cdot p_3$$

$$(\lambda): p_1 + p_2 + p_3 = 200 \quad (1)$$

$$0 \le p_1 \le 20 \cdot u_1$$

$$0 \le p_2 \le 100 \cdot u_2$$

$$0 \le p_3 \le 100 \cdot u_3$$

$$u_i \in \{0,1\}$$

Which constraint makes generator decisions depend on each other?

• Dual function obtained by relaxing constraint (1):

$$\begin{split} g(\lambda) \\ &= \min_{p,u} 500 \cdot u_1 + 1000 \cdot u_2 + 10 \cdot p_2 + 2000 \cdot u_3 + 80 \cdot p_3 - \lambda \\ &\cdot (p_1 + p_2 + p_3 - 200) \\ &\quad \text{s. t. } p_1 \leq 20 \cdot u_1, p_2 \leq 100 \cdot u_2, p_3 \leq 100 \cdot u_3 \\ &\quad p_i \geq 0, u_i \in \{0,1\} \end{split}$$

• Thus,

$$g(\lambda) = g_1(\lambda) + g_2(\lambda) + g_3(\lambda) + 200 \cdot \lambda$$

where

$$\begin{split} g_1(\lambda) &= \min_{p,u} \{500 \cdot u_1 - \lambda \cdot p_1, 0 \leq p_1 \leq 20 \cdot u_1, u_1 \in \{0,1\}\} \\ g_2(\lambda) &= \min_{p,u} \{1000 \cdot u_2 + (10 - \lambda) \cdot p_2, 0 \leq p_2 \leq 100 \cdot u_2, u_2 \in \{0,1\}\} \\ g_3(\lambda) &= \min_{p,u} \{2000 \cdot u_3 + (80 - \lambda) \cdot p_3, 0 \leq p_3 \leq 100 \cdot u_3, u_3 \in \{0,1\}\} \end{split}$$

Example 2.3: dual of unit commitment problem

• Computing $g_1(\lambda)$ (similarly for $g_2(\lambda)$, $g_3(\lambda)$)

$$\lambda \ge 25 \to u_1^* = 1, p_1^* = 20$$

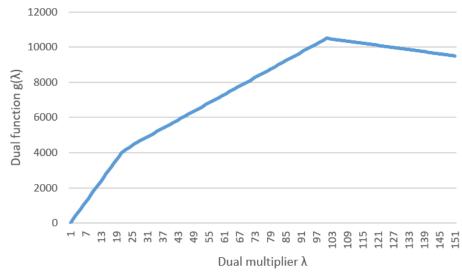
$$\lambda < 25 \to u_1^* = 0, p_1^* = 0$$

$$g_1(\lambda) = \begin{cases} 0, & \lambda \le 25 \\ 500 - 20 \cdot \lambda, & \lambda > 25 \end{cases}$$

• Finally:

$$g(\lambda) = \begin{cases} 200 \cdot \lambda, & \lambda \le 20 \\ 2000 + 100 \cdot \lambda, & 20 < \lambda \le 25 \\ 2500 + 80 \cdot \lambda, & 25 < \lambda \le 100 \\ 12500 - 20 \cdot \lambda, & 100 < \lambda \end{cases}$$

• Sanity check: $g(\lambda)$ is concave



- Primal optimal solution: $u^*=(1,1,1)$ and $p^*=(20,100,80)\Rightarrow$ primal optimal equal to 10900
- Dual optimal equal to $10500 < 12000 \Rightarrow$ strong duality does not hold

Optimality conditions

Complementary slackness

• If strong duality holds, x^* primal optimal, λ^* , ν^* dual optimal $f_0(x^*) = g(\lambda^*, \nu^*) = \min_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$ $\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$ $< f_0(x^*)$

Therefore, the two inequalities above hold with equality and

- x^* minimizes Lagrange function $L(x, \lambda^*, \nu^*)$
- $\lambda_i^* \cdot f_i(x^*) = 0$ for i = 1, ..., m

This is known as **complementary slackness**:

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0$$
 $f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$

KKT conditions

KKT conditions for a problem with differentiable f_i , h_i :

- Primal constraints: $f_i(x) \le 0$, i = 1, ..., m, $h_i(x) = 0$, i = 1, ..., p
- Dual constraints: $\lambda_i \geq 0$, i = 1, ..., m
- Complementary slackness: $\lambda_i \cdot f_i(x) = 0$, i = 1, ..., m
- Gradient of the Lagrangian function with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

• From previous slide, if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problems

- Strong duality usually holds for convex problems (but not always)
- Conditions that ensure strong duality are called constraint qualifications
- If (i) constraints are linear equalities and inequalities and (ii) dom f_0 is open, then strong duality holds

KKT conditions of maximization with linear constraints

Consider a maximization problem with linear constraints:

$$\max_{x,y} c_x^T x + c_y^T y$$
s. t. (λ) : $Ax + By \le b$
 (μ) : $Cx + Dy = d$
 $x \ge 0$

Then the KKT conditions have the following form:

$$Cx + Dy - d = 0$$

$$0 \le \lambda \perp Ax + By - b \le 0$$

$$0 \le x \perp \lambda^{T}A + \mu^{T}C - c_{x}^{T} \ge 0$$

$$\lambda^{T}B + \mu^{T}D - c_{y}^{T} = 0$$

and are necessary and sufficient for an optimal solution

KKT conditions of minimization with linear constraints

Consider a maximization problem with linear constraints:

$$\min_{x,y} c_x^T x + c_y^T y$$
s. t. (λ) : $Ax + By \le b$
 (μ) : $Cx + Dy = d$
 $x \ge 0$

Then the KKT conditions have the following form:

$$Cx + Dy - d = 0$$

$$0 \le \lambda \perp Ax + By - b \le 0$$

$$0 \le x \perp \lambda^{T}A + \mu^{T}C + c_{x}^{T} \ge 0$$

$$\lambda^{T}B + \mu^{T}D + c_{y}^{T} = 0$$

and are necessary and sufficient for an optimal solution

Example 2.4: KKT conditions for dispatch problem

Consider previous example, without activation costs

Generator	Marginal cost (€/MWh)	Capacity (MW)
Low cost	0	20
Moderate cost	10	100
High cost	80	100

$$\min 10 \cdot p_2 + 80 \cdot p_3$$

$$(\lambda): p_1 + p_2 + p_3 = 200$$

$$(\mu_1): p_1 \le 20$$

$$(\mu_2): p_2 \le 100$$

$$(\mu_3): p_3 \le 100$$

$$p_i \ge 0$$

Example 2.4: KKT conditions for dispatch problem

KKT conditions:

- Primal equality constraints
- Primal inequality constraints ⊥ (complementary to) non-negative dual variables
- Primal non-negative variables ⊥ (complementary to) dual inequality constraints

```
p_{1} + p_{2} + p_{3} = 200 \quad (2)
0 \le \mu_{1} \perp 20 - p_{1} \ge 0 \quad (3)
0 \le \mu_{2} \perp 100 - p_{2} \ge 0 \quad (4)
0 \le \mu_{3} \perp 100 - p_{3} \ge 0 \quad (5)
0 \le p_{1} \perp \lambda + \mu_{1} \ge 0 \quad (6)
0 \le p_{2} \perp 10 + \lambda + \mu_{2} \ge 0 \quad (7)
0 \le p_{3} \perp 80 + \lambda + \mu_{3} \ge 0 \quad (8)
```

Example 2.4: KKT conditions for dispatch problem

$$p_1 + p_2 + p_3 = 200 \Leftrightarrow -p_1 - p_2 - p_3 = -200$$

• Therefore, three last conditions can be replaced by:

$$0 \le p_1 \perp -\lambda + \mu_1 \ge 0 \quad (9)$$

$$0 \le p_2 \perp 10 - \lambda + \mu_2 \ge 0 \quad (10)$$

$$0 \le p_3 \perp 80 - \lambda + \mu_3 \ge 0 \quad (11)$$

- Easy to see that $(p^*)^T=(20,100,80)$ is primal optimal
- Claim: $\lambda^*=80$ and $(\mu^*)^T=(80,70,0)$ are dual optimal
- Proof: verify that p^* , λ^* and μ^* satisfy equations (2)-(5) and (9)-(11)

KKT conditions for non-differentiable optimization problems

What if f_0 , f_i , h_i are convex but non-differentiable?

If strong duality holds, then:

•
$$f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$$

- $\lambda \geq 0$
- $\lambda_i f_i(x) = 0, i = 1, ..., m$
- Subgradient of the Lagrangian function with respect to \boldsymbol{x} vanishes:

$$\partial f_0(x) + \sum_{i=1}^m \lambda_i \partial f_i(x) + \sum_{i=1}^p \nu_i \partial h_i(x) = 0$$

where $\partial f(x)$ denotes a subgradient of f at x

Sensitivity

Subgradients

Consider a function g, π is a **subgradient** of g at u if $g(w) \ge g(u) + \pi^T(w - u)$ for all w

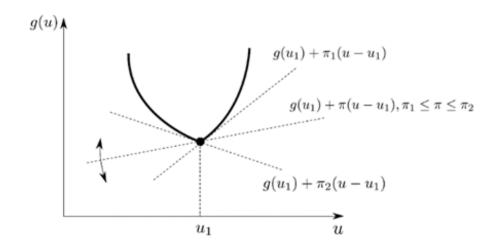
Subgradients generalize gradients for non-differentiable functions **Subdifferential** $\partial g(u)$: set of all subgradients at u

Subgradients are useful for:

- Generalizing KKT conditions to non-differentiable optimization problems
- Deriving sensitivity results

Geometric interpretation of subgradients

Subgradient determines linear under-estimator of a function



• π_1 and π_2 : subgradients at u_1

Subgradient calculus

Suppose *g* is convex, then:

- $\partial g(u) = \{ \nabla g(u) \}$ if g is differentiable at u
- Conversely, if $\partial g(u) = \{\pi\}$, then g is differentiable at u and $\pi = \nabla g(u)$
- $\partial(ag) = a\partial g$
- $\partial(g_1+g_2)=\partial g_1+\partial g_2$, where the right-hand side corresponds to addition of sets
- If f(u) = g(Au + b) then $\partial f(u) = A^T \partial g(Au + b)$
- If $g = \max_{i=1,\dots,m} g_i$, then $\partial g(u) = \operatorname{Co}(\cup \{\partial g_i(u) | g_i(u) = g(u)\})$

where $Co(\cdot)$ is the convex hull

Sensitivity result

Define c(u) as the optimal value of the following mathematical program:

$$c(u) = \min f_0(x)$$

$$f_i(x) \le u_i, i = 1, ..., m$$

$$x \in \text{dom } f_0$$

and suppose that dom f_0 is a convex set and f_0 , f_i are convex functions

Then:

- c(u) is a convex function
- If strong duality holds and λ^* maximizes the dual function $\min_{x \in \text{dom } f_0} (f_0(x) \lambda^T (f(x) u))$ for $\lambda \leq 0$, then $\lambda^* \in \partial c(u)$

• If c(u) is differentiable at a certain point u, then for a given constraint i:

$$\lambda_i = \frac{\partial c(u)}{\partial u_i}$$

• Conclusion: λ_i is equal to the *sensitivity* of the objective function c(u) to a marginal change in the right-hand side of the constraint corresponding to λ_i

Example 2.5: convexity of c(u)

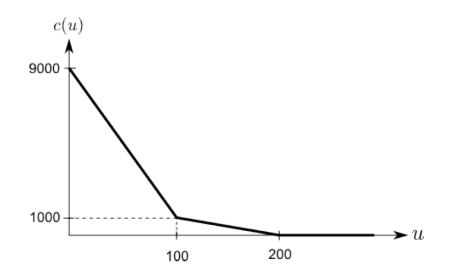
Generator	Marginal cost (\$/MWh)	Capacity (MW)
Low cost	0	20
Moderate cost	10	100
High cost	80	100

- We return to example 2.4
- Denote u as the capacity of generator 1
- Generally, generator 1 will be used to the greatest possible extent, followed by generator 2, followed by generator 3
- For $0 \le u \le 100$, $c(u) = 10 \cdot 100 + 80 \cdot (100 u)$

Example 2.5: convexity of c(u)

Following the same reasoning for $u \ge 100$:

$$c(u) = \begin{cases} 9000 - 80 \cdot u, & 0 \le u < 100 \\ 2000 - 10 \cdot u, & 100 \le u < 200 \\ 0, & 200 \le u \end{cases}$$



Example 2.6: slope of c(u)

Recall the solution of the KKT conditions (equations (2)-(5) and (9)-(11)):

$$(p^*)^T = (20,100,80), \lambda^* = 80, (\mu^*)^T = (80,70,0)$$

Sensitivity interpretation of λ^* :

Right-hand side of $p_1 + p_2 + p_3 = 200$ increases by one unit \Rightarrow generator 3 increases output by 1 MW \Rightarrow additional cost of \$80

Example 2.6: sensitivity

KKT conditions can also be expressed using equations (2)-(8)

Solution of the KKT system is:

$$(p^*)^T = (20,100,80), \lambda^* = -80, (\mu^*)^T = (80,70,0)$$

Note the change in the sign of λ^* !

Dual multipliers in AMPL

Μη-μοναδικότητα των συνθηκών ΚΚΤ

- The KKT conditions of a problem depend on how we define the Lagrangian function
- The sign of dual multipliers depends on the KKT conditions (therefore, how we define the Lagrangian function)
- The sensitivity interpretation of dual multipliers depends on the KKT conditions (therefore, how we define the Lagrangian function)
- Different software interprets user syntax differently!

Dual multipliers in AMPL

In order to be able to anticipate the sign of multipliers that AMPL will assign to constraints, note that:

- A constraint of the form $f_1(x) \le = \ge f_2(x)$ is equivalently expressed as $f_1(x) f_2(x) \le = \ge 0$
- The constraints are relaxed by <u>subtracting</u> their product with their corresponding multiplier from the Lagrangian function
- The sign of the dual multiplier is such that the Lagrangian function provides a bound to the optimization problem
- The primal-dual optimal pair is such that the KKT conditions corresponding to this Lagrangian function are satisfied
- In this way, the dual multipliers reported by AMPL can always be interpreted as sensitivities

Example

$$\{\min_{x,y} x + 2y \text{ s. t. } 0 \le x, (\lambda_1), x \le 2, (\lambda_2), y = 1, (\mu)\}$$

Objective function
$$f(x,y) = x + 2y$$
, inequality constraints $f_1(x,y) = -x \le 0$ (i.e. a \le constraint), $f_2(x,y) = x - 2$, $h(x,y) = y - 2$

AMPL Lagrangian:

$$L(x,y) = (x+2y) - \lambda_1(-x) - \lambda_2(x-2) - \mu(y-1)$$

KKT conditions in AMPL

KKT conditions:

- Primal feasibility: $g_1(x,y) \le 0$, $g_2(x,y) \le 0$, h(x,y) = 0
- Dual feasibility: $\lambda_1 \leq 0$, $\lambda_2 \leq 0$
- Complementarity: $\lambda_1 \perp g_1(x,y)$, $\lambda_2 \perp g_2(x,y)$
- Stationarity:

$$\nabla f(\mathbf{x}, \mathbf{y}) - \lambda_1 \nabla g_1(\mathbf{x}, \mathbf{y}) - \lambda_2 \nabla g_2(\mathbf{x}, \mathbf{y}) - \mu \nabla h(\mathbf{x}, \mathbf{y}) = 0$$

Solution:
$$x = 0, v = 1, \lambda_1 = -1, \lambda_2 = 0, \mu = 2$$

References

[1] A. Papavasiliou, Optimization Models in Electricity Markets, Cambridge University Press

https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview

[2] Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.