Demand Response

Anthony Papavasiliou, National Technical University of Athens (NTUA) Source: chapter 10, Papavasiliou [1]

Aлóкрıon Зク́tnons

Demand response: active participation of consumers in (i) efficient consumption of electricity and (ii) provision of ancillary services

Types of demand response:

1. Efficiency
2. Peak load shaving
3. Load shifting

Retail pricing

Mechanisms for retail pricing of electricity:

- Real-time pricing
- Time of use pricing (ToU)
- Critical peak pricing: ToU + critical peak events
- Interruptible service

Outline

- Time of use pricing
- Priority service pricing

Time of use pricing

Motivation of time of use pricing

- Electricity service consists of (i) fuel cost for producing power, and (ii) investment cost for building capacity
- If electricity were priced at marginal fuel cost, demand in peak periods would be too high
- ToU pricing breaks bill into two parts:

1. Energy component: charge proportional to amount of power consumption, differs depending on the time of day
2. Capacity component: applied to consumers who contribute to need of installing additional capacity to the system

- Goal is to flatten demand across time periods

Simple two-period model

- Consider the following system:
- Decreasing marginal benefit functions:
- Peak: $M B_{1}(d)$, lasts fraction τ_{1} of the time
- Off-peak: $M B_{2}(d)$, lasts fraction τ_{2} of the time
- Increasing marginal investment cost $M I(x)$, with $M I(x)>0$ for all x
- Increasing marginal fuel cost $M C(p)$
- Suppose $M B_{1}(0)>M C(0)+\frac{M I(0)}{\tau_{1}}$

Welfare maximization model

- Denote
- x : amount of constructed capacity
- p_{1} / p_{2} : production in peak/off peak hours

$$
\begin{gathered}
\max _{p, x} \tau_{1} \cdot \int_{0}^{p_{1}} M B_{1}(q) d q+\tau_{2} \cdot \int_{0}^{p_{2}} M B_{2}(q) d q \\
-\int_{0}^{x} M I(q) d q-\tau_{1} \cdot \int_{0}^{p_{1}} M C(q) d q-\tau_{2} \cdot \int_{0}^{p_{2}} M C(q) d q \\
\left(\rho_{1} \cdot \tau_{1}\right): p_{1} \leq x \\
\left(\rho_{2} \cdot \tau_{2}\right): p_{2} \leq x \\
p_{1}, p_{2}, x \geq 0
\end{gathered}
$$

Note: since $M I(x)>0$, in the optimal solution $p_{1}=x, p_{2}=x$, or both

KKT conditions

$$
\begin{gathered}
0 \leq \rho_{1} \perp x-p_{1} \geq 0 \\
0 \leq \rho_{2} \perp x-p_{2} \geq 0 \\
\\
0 \leq p_{1} \perp-M B_{1}\left(p_{1}\right)+M C\left(p_{1}\right)+\rho_{1} \geq 0 \\
0 \leq p_{2} \perp-M B_{2}\left(p_{2}\right)+M C\left(p_{2}\right)+\rho_{2} \geq 0 \\
0 \leq x \perp M I(x)-\rho_{1} \cdot \tau_{1}-\rho_{2} \cdot \tau_{2} \geq 0
\end{gathered}
$$

Note: dual multipliers have been scaled by τ_{i}

Short-term marginal cost pricing is suboptimal

- Proposition: Suppose that electricity is priced at the marginal variable cost $M C\left(p_{i}\right)$ for each period i. This results in suboptimal investment if the system is built so as to make sure that no demand can be left unserved.

Mathematically: Optimal solution cannot satisfy all of the following conditions

- $M C\left(p_{1}\right)=M B_{1}\left(p_{1}\right)$
- $M C\left(p_{2}\right)=M B_{2}\left(p_{2}\right)$
- $x=\max \left(p_{1}, p_{2}\right)$

Proof: by contradiction, using KKT conditions

We first show that $\rho_{1}=\rho_{2}=0$:

- Since $M B_{1}(0)>M C(0)+M I(0) / \tau_{1}$, optimal investment must be such that $x>0$
- Suppose that $\rho_{i}>0$, then $p_{i}=x>0$
- Since $p_{i}>0, M B_{i}\left(p_{i}\right)=M C\left(p_{i}\right)+\rho_{i}>M C\left(p_{i}\right)$
- But short-term marginal cost pricing requires that $M B_{i}\left(p_{i}\right)=M C\left(p_{i}\right)$
- Therefore $\rho_{1}=\rho_{2}=0$, otherwise there is a contradiction

We then show that $\rho_{i}>0$ for some i :

- Since $x>0$, by complementarity

$$
M I(x)=\rho_{1} \cdot \tau_{1}+\rho_{2} \cdot \tau_{2}
$$

- Since $M I(x)>0$ for all $x \geq 0, \rho_{i}>0$ for $i=1$, or $i=2$, or both

Peak charges

Interpretation of multiplier ρ_{i} : charge above the marginal cost of the marginal technology, $M C\left(p_{i}\right)$

- For constant marginal investment cost, $M I(x)=M I$, additional charges are exactly equal to capital investment costs

Example: pricing on and off peak

Consider the following market:

- $M I(x)=5 \$ / \mathrm{MWh}$
- $M C(p)=80 \$ / \mathrm{MWh}$
- Peak demand $M B_{1}(d)=\max (1000-d, 0) \$ / M W h$, with $\tau_{1}=20 \%$
- Off-peak demand $M B_{2}(d)=\max (500-d, 0) \$ / \mathrm{MWh}$, with $\tau_{2}=80 \%$

Problem: you are told that the optimal investment is $x=895 \mathrm{MW}$, what are the optimal ToU prices?

- Since optimal x is 895 MW , then either $p_{1}=895 \mathrm{MW}$, or $p_{2}=895$ MW, or both
- Check that $M B_{1}(895)=105 \$ / \mathrm{MWh}$ and $M B_{2}(895)=0 \$ / \mathrm{MWh}$
- Obviously $p_{2}<x$ (marginal benefit at 895 MW is zero, marginal cost is $80 \$ / \mathrm{MWh}$)
- Therefore, $p_{1}=895 \mathrm{MW}$
- Price in peak periods: $105 \$ / \mathrm{MWh}$
- From KKT conditions,

$$
M B_{2}\left(p_{2}\right)=M C\left(p_{2}\right)
$$

- Price in off-peak periods: $80 \$ / \mathrm{MWh}$

Graphical illustration of tariff

Consider the fixed retail tariff which is the average ToU tariff:
$0.2 \cdot 105+0.8 \cdot 80=85 \$ / \mathrm{MWh}$

Figure: Demand under fixed retail pricing (black solid curve) and time of use pricing (gray dashed curve). Effect of ToU pricing: depresses consumption in peak hours, increases consumption in off-peak hours.

Example: sharing peak charges

Consider the previous example, with $M B_{2}(d)=\max (980-d, 0) \$ / \mathrm{MWh}$ (and everything else as in slide 14)

Price of $80 \$ / \mathrm{MWh}$ in off-peak hours results in demand that violates installed capacity

Optimal solution: $x=899 \mathrm{MW}, p_{1}=p_{2}=899 \mathrm{MW}$

Sharing of capital costs among peak and off-peak consumers:

- $\frac{\rho_{1}}{\tau_{1}}=21 \$ / \mathrm{MWh}$
- $\frac{\rho_{2}}{\tau_{2}}=1 \$ / \mathrm{MWh}$

Priority service pricing

System reliability

- We analyze the function $F(D(v))$
where
- $D(v)$: demand function (power demand from consumers who value power at v or more)
- $F(L)$: probability of having L MW or more of available power
- Interpretation of $F(D(v))$: probability of being able to satisfy consumers with valuation v or higher

Example 10.3: computing $F(D(v))$

Consider the following system:

- Reliable technology: 295 MW
- Unreliable technology: 1880 MW
- Demand function: $D(v)=1620-4 v$

Unreliable technology described by Markov chain

Stationary distribution: $\pi_{\text {off }}=0.167$ and $\pi_{\text {on }}=0.833$

- Generator availability:

$$
F(L)=\left\{\begin{array}{ccc}
& 1, & L \leq 295 \mathrm{MW} \\
0.833, & 295 \mathrm{MW}<L \leq 2175 \mathrm{MW} \\
& 0, & L>2175 \mathrm{MW}
\end{array}\right.
$$

- Service reliability:

$$
F(D(v))=\left\{\begin{array}{lr}
0.833, & 0 \frac{\$}{\mathrm{MWh}} \leq v \leq 331.25 \frac{\$}{\mathrm{MWh}} \\
1, & 331.25 \frac{\$}{\mathrm{MWh}}<v \leq 405 \frac{\$}{\mathrm{MWh}}
\end{array}\right.
$$

Priority service contracts

Priority service contracts are defined as $p(r)$, where r is the reliability of the services, and $p(r)$ is the price paid for r

Note: $p(r)$ determines reliability chosen by customers

- Goal: design $p(r)$ so that customers with higher valuation receive more reliable service

Steering customer choice

Load with valuation v selects reliability by solving

$$
\max _{0 \leq r \leq 1} r \cdot v-p(r)
$$

First-order condition:

$$
v-p^{\prime}(r)=0
$$

Suppose $p(r)$ satisfies:

$$
\begin{gather*}
v-p^{\prime}(r)=0 \\
r \cdot v-p(r) \geq 0 \tag{2}
\end{gather*}
$$

Load with valuation v

- Is willing to procure a reliability contract
- Chooses reliability level $F(D(v))$

Computing the price menu

Integrating equation (1):

$$
\begin{equation*}
\hat{p}(v)=p_{0}+\int_{v_{0}}^{v} y \cdot d r(y) \tag{3}
\end{equation*}
$$

where v_{0} is cutoff valuation: valuation of consumer with lowest willingness to pay who chooses to subscribe

Parametrizing with respect to v, the menu $p(r)$ is

$$
\left\{F(D(v)), \hat{p}(v), v \in\left[v_{0}, V\right]\right\}
$$

where V is maximum valuation

Fixed charge

Fixed charge p_{0} determines cutoff valuation v_{0} :

$$
\begin{equation*}
v_{0} \cdot r\left(v_{0}\right)-p_{0}=0 \tag{4}
\end{equation*}
$$

Customers with $v<v_{0}$ do not procure reliability contracts

Example 10.4: optimal pricing of a menu

$$
F(D(v))=\left\{\begin{array}{lr}
0.833, & 0 \frac{\$}{\mathrm{MWh}} \leq v \leq 331.25 \frac{\$}{\mathrm{MWh}} \\
1, & 331.25 \frac{\$}{\mathrm{MWh}}<v \leq 405 \frac{\$}{\mathrm{MWh}}
\end{array}\right.
$$

Suppose $v_{0}=10 \$ / \mathrm{MWh}$, then from equation (4):

$$
p_{0}=10 \cdot 0.833=8.33 \frac{\$}{\mathrm{MWh}}
$$

Example 10.4

From equation (3):

$$
\begin{gathered}
\hat{p}(v)=p_{0}+\int_{v_{0}}^{v} u \cdot d r(u)= \\
=\left\{\begin{array}{cc}
8.33 \frac{\$}{\mathrm{MWh}}, & 10 \frac{\$}{\mathrm{MWh}} \leq v \leq 331.25 \frac{\$}{\mathrm{MWh}} \\
8.33+331.25 \cdot 0.167 \frac{\$}{\mathrm{MWh}}, \quad 331.25 \frac{\$}{\mathrm{MWh}}<v \leq 405 \frac{\$}{\mathrm{MWh}} \\
=\left\{\begin{array}{rr}
8.33 \frac{\$}{\mathrm{MWh}}, & 10 \frac{\$}{\mathrm{MWh}} \leq v \leq 331.25 \frac{\$}{\mathrm{MWh}} \\
63.65 \frac{\$}{\mathrm{MWh}}, & 331.25 \frac{\$}{\mathrm{MWh}}<v \leq 405 \frac{\$}{\mathrm{MWh}}
\end{array}\right.
\end{array} . \begin{array}{l}
8
\end{array}\right.
\end{gathered}
$$

Example 10.4

Parametrizing with respect to v :

$$
p(r)=\left\{\begin{array}{lc}
8.33 \frac{\$}{\mathrm{MWh}}, & r=0.833 \\
63.65 \frac{\$}{\mathrm{MWh}}, & r=1
\end{array}\right.
$$

This is a menu with 2 options

Example 10.4: consumer self-selection

Consider the choice of a load with valuation v :

$$
\max (0,0.833 \cdot v-8.33, v-63.65)
$$

- $r=0$ is optimal if $0.833 \cdot v-8.33 \leq 0$ and $v-63.65 \leq 0$, i.e. $v \leq$ 10
- $r=0.833$ is optimal if $0 \leq 0.833 \cdot v-8.33$ and $v-63.65 \leq$ $0.833 \cdot v-8.33$, i.e. $10 \leq v \leq 331.25$
$\cdot r=1$ is optimal if $0 \leq v-63.65$ and $0.833 \cdot v-8.33 \leq v-63.65$, i.e. $v \geq 331.25$

Example 10.4: different choice of fixed charge

- If menu designer would like all customers to procure reliability contracts, i.e. $v_{0}=0$, then $p_{0}=0$ and

$$
p(r)=\left\{\begin{array}{lr}
0 \frac{\$}{\mathrm{MWh}}, \quad r=0.833 \\
55.32 \frac{\$}{\mathrm{MWh}}, \quad r=1
\end{array}\right.
$$

Service policy

In case of shortage, customers with higher r served first

Note: in order to design the menu, we used aggregate information ($F(L)$ and $D(v)$)

Menu selections allow us to dispatch individual customers efficiently!

References

[1] A. Papavasiliou, Optimization Models in Electricity Markets, Cambridge University Press
https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-
markets/OD2D36891FB5EB6AAC3A4EFC78A8F1D3\#overview

