
Efficient Dispatch in Cross-Border Balancing
Platforms: Elastic Demand through Parametric Cost

Function Approximation
Jacques Cartuyvels

CORE/LIDAM, UCLouvain
Louvain-la-Neuve, Belgium

jacques.cartuyvels@uclouvain.be

Gilles Bertrand
ACER

Ljubljana, Slovenia

Anthony Papavasiliou
NTUA

Athens, Greece

Abstract—We propose a method for rationalizing the deter-
mination of elastic demand curves for MARI, the mFRR cross-
border balancing paltform, in the integrated European balancing
process. Elastic demand curve for mFRR balancing energy has
been proposed due to their ability to reduce the overall balancing
cost compared to single-point inelastic demand. The problem is
modelled as a non-convex stochastic program, with the variables
of interest being the parametrization of the demand curve used
by the system operator for acquiring mFRR. The structure of
the model allows us to derive its gradient with respect to the
demand curve parameters. The problem is solved by applying a
randomized stochastic gradient scheme. A price parametrization
is shown to outperform a quantity parametrization.

Index Terms—MARI, elastic demand curve, cross-border bal-
ancing market, manual frequency restoration reserve

I. INTRODUCTION

The integrated European frequency restoration process is
composed of two sequential cross-border balancing platforms
: MARI for the trading of manual frequency restoration
reserve (mFRR) and PICASSO for the trading of automatic
frequency restoration reserve (aFRR). A few minutes before
the start of an imbalance settlement period (ISP), the MARI
platform clears mFRR balancing energy on a pan-European
level based on the demand curve of transmission system
operators (TSOs), the supply curve from the balancing service
providers (BSPs), and the available cross zonal capacities. As
the ISP unfolds over the next fifteen minutes, the PICASSO
platform optimizes every four seconds the dispatch of aFRR
balancing energy. The objective of this balancing process is
to cover the instantaneous system imbalance through the com-
bined activation of mFRR and aFRR balancing energy. This
can be conceptualized as a two-stage stochastic optimization
problem, where the activated mFRR balancing energy is a first-
stage decision and the activated aFRR balancing energy is a
recourse decision.

The cross-border balancing platforms went live in 2022
and are operational in Germany, the Czech Republic, and
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Austria. Other European TSOs are expected to join in 2024
after having delayed their connection. This study is motivated
by recurring instances of price spikes (periods when prices
exceed C7500/MWh) in Austria after their connection to
PICASSO. We explore how improved activation strategies for
mFRR can serve as mitigation measure, as recommended by
the European Union Agency for the Cooperation of Energy
Regulators (ACER) [1]. These price spikes may have resulted
from a saturation of the aFRR merit order, which could be
alleviated by the activation of slower reserve such as mFRR.

The potential benefit of proactively dispatching mFRR to
reduce balancing cost has been demonstrated in [2] . This
work determine a level of mFRR balancing energy that min-
imizes the expected cost of activation, accounting for the
realization of wind uncertainty during the ISP. This method
is not suitable for an integrated European setting due to
the interaction between the different TSOs’ mFRR activation
strategies. In addition to real-time uncertainty, TSOs connected
to the platforms have to consider the uncertainty caused by
the other TSOs. Their balancing cost will be impacted by
the demand for mFRR balancing energy in other zones and
inelastic demands for mFRR balancing energy render TSOs
vulnerable to increased mFRR balancing cost. mFRR demand
curves increase the control of TSOs over this cost, compared
to inelastic demands.

Another component of this analysis concerns the rational-
ization of the method to determine the mFRR demand curve.
The method applied here is part of the class of cost func-
tion approximation methods for tackling sequential decision-
making problems as defined by Powell in [3]. Cost function ap-
proximation is a reinforcement learning method that involves
finding a policy (i.e. a decision rule for determining the action
to take given the state of the system) by minimizing a cost
function based on a parametrically modified version of the
initial problem. This approach formalizes common industry
practices such as the introduction of reserve margin in unit
commitment problems [4]. Instead of solving a stochastic
unit commitment, which can be potentially computationally
expensive, an alternative method would consist of setting a
reserve margin in order to ensure the reliability of the system.



The cost function approximation method solves this type of
problem by endogenizing the characterization of the reserve
margin. In our case, the variable of interest that is endogenized
by the TSO is the parametrization of the mFRR demand curve.
The authors in [5], [6] have demonstrated the validity of this
method in a renewable energy storage problem. Covic [7] has
applied a similar method for the control of a microgrid.

The main contribution of this work is to propose a frame-
work for rationalizing the determination of demand curves
for mFRR balancing energy on the cross-border balancing
platform MARI.

The remainder of the paper is structured as follows: section
II describes the modelling of the parametrized cost function
approximation, section III describes the randomized stochas-
tic gradient algorithm that is used for finding the optimal
parametrization, section IV illustrates our method on a toy
model, and section V concludes.

II. MINIMIZING BALANCING ACTIVATION COST

This section describes the cost-minimization problem of a
system operator as a function of the parametrization of the
mFRR demand curve. Two parametrizations are discussed:
the price parametrization in which the variable of interest
is the TSO’s valuation of mFRR in MARI, and the quantity
parametrization whose demand curve is composed of demand
segments with fixed values and variable quantities.

A. TSO’s Cost Minimization

The objective of a benevolent system operator is to minimize
the expected cost of balancing activation, F (·), as a function
of the parametrization of the mFRR demand curve, θ. The
objective of a benevolent system operator is to minimize the
activation cost of balancing the entire integrated European
system. It can be contrasted with a patriotic system operator
whose goal is to minimize the procurement cost of balancing
energy in its own zone. This cost is composed of stochastic
mFRR and aFRR balancing energy components, that are
indexed by the scenario for the demand of mFRR balancing
energy in other zones, ω, and the scenario for the actual
realization of system imbalance in real time, ϕ. The aggregated
cost for balancing energy as a function of the TSO’s demand
for mFRR balancing energy cleared by MARI, xω(θ), is
denoted as CmFRR

ω (·) and CaFRR
ω,ϕ (·) for mFRR and aFRR

respectively. The problem of the system operator is described
in (1):

min
θ

{F (θ) = Eω,ϕ[F̄ (θ, ω, ϕ)]}, (1)

where the balancing cost is expressed in (2):

F̄ (θ, ω, ϕ) = CmFRR
ω (xω(θ)) + CaFRR

ω,ϕ (xω(θ)). (2)

The stochastic cost functions for aFRR and mFRR balancing
energy are determined based on initial aggregated aFRR and
mFRR merit order curve, CaFRR(·) and CmFRR(·) respec-
tively. The stochastic demand for mFRR balancing energy
in other zones and the realized system imbalance are then
accounted for, in conjunction with the grid topology. The

simplest case without congestion, and with an inelastic demand
for mFRR balancing energy in other zones, Xω , and an
aggregated realized system imbalance, XSI

ϕ , can be described
as follows:

CmFRR
ω (x) = CmFRR(Xω + x), (3)

CaFRR
ω,ϕ (x) = CaFRR(XSI

ϕ −Xω − x). (4)

As there is no congestion, the initial merit order curve pools
the aFRR and mFRR balancing energy bids from both zones.

The optimization variable of the model is the demand
curve’s parametrization, θ. It defines a policy for determining
the stochastic demand for mFRR balancing energy cleared in
MARI. The expected cost of this policy is then computed by
estimating F . The next two subsections will describe a price-
based and a quantity-based policy.

B. Price Parametrization

The price parametrization is a function of the valuation of
the TSO for mFRR balancing energy, θ. The TSO’s demand
for mFRR balancing energy cleared by MARI is obtained by
solving the parametrized economic dispatch is presented in
(5) - (7) in function of the variables x and d representing the
activated mFRR balancing energy and the cleared demand for
balancing energy:

xω(θ) = argmin CmFRR
ω (x)− θd (5)

s.t. 0 ≤ d (6)
x = d (7)

Under this parametrization, the total demand for mFRR
balancing energy cleared by MARI in an uncongested system
with strictly monotonic increasing marginal cost function for
mFRR is invariant to the scenario ω. Solving the economic
dispatch (5) - (7) states that for every θ there exists a unique
total demand for mFRR balancing energy cleared by MARI,
x(θ), defined as the sum of the stochastic demand for mFRR
by the other TSOs and the TSO’s demand cleared by MARI,

x(θ) = Xω + xω(θ) ∀ω, (8)

such that the marginal cost of the total demand for mFRR
balancing energy is equal to θ1,

θ = (CmFRR)′(x(θ)). (9)

If, additionally, the scenarios ϕ for the aggregated system
imbalance are independent from the scenarios ω for the
demand for mFRR balancing energy by the other TSOs, the
system operator cost-minization problem in (1) can be reduced
to

min
θ

CmFRR(x(θ)) + Eϕ[C
aFRR(XSI

ϕ − x(θ))]. (10)

The bijection function from θ to x(θ) in (9) follows from the
strict monotonicity of the marginal cost function of mFRR and
allows us to state the existence of an optimal θ∗ for the reduced

1This assumes that the marginal cost of the stochastic demand for mFRR
balancing by the other TSOs does not exceed θ.



problem in (10). The first order condition for characterizing
θ∗ is characterized in (11).

(CmFRR)′(x(θ∗)) = Eϕ[(C
aFRR)′(XSI

ϕ − x(θ∗))]. (11)

An implication of (11) is the equivalence of the system
operator problem parametrized through the price and the
foresighted system operator problem. A foresighted system
operator sets its demand for mFRR balancing energy given the
other TSOs’ demand for mFRR balancing energy. In practice,
this can be formulated as minimizing the expectation of the
balancing costs as functions of the foresighted TSO’s demands
for mFRR balancing energy, xω , as displayed in (12).

min
x

Eω,ϕ[C
mFRR
ω (xω) + CaFRR

ω,ϕ (xω)] (12)

In that formulation, every scenario ω is independent and
this problem can be reformulated as the expectation of the
minimum over the balancing cost in scenario ω.

Eω[min
xω

CmFRR
ω (xω) + Eϕ[C

aFRR
ω,ϕ (xω)]] (13)

The first order conditions of (13) are characterized in (14) and
are equivalent to the one of the price parametrization (11) for
scenarios ϕ independent from ω.

(CmFRR)′(Xω+xω) = Eϕ[(C
aFRR)′(XSI

ϕ −Xω−xω)] ∀ω
(14)

To summarize the price parametrization, the system operator
aims to find the valuation of mFRR balancing energy that,
when cleared by MARI, minimizes the expected cost of
balancing the system. If the marginal cost function of mFRR
is strictly monotonic increasing, and the scenarios ω and ϕ
are independent, the TSO’s valuation ensures that the price
of mFRR is equal to the expected price of aFRR, irrespective
of the other TSOs demand for mFRR balancing energy. The
outcome of that price parametrization is then equivalent to the
one resulting from a foresighted TSO.

C. Quantity Parametrization

The quantity parametrization is an alternative to the price
parametrization. It is characterized by N segments of fixed
value Vi and variable quantity θi. It is obtained by solving the
parametrized economic dispatch in (15) to (17):

xω(θ) = argmin CmFRR
ω (x)−

∑
i=1...N

Vidi (15)

s.t. 0 ≤ di ≤ θi ∀i = 1 . . . N (16)

x =
∑

i=1...N

di (17)

Inelastic demand for mFRR is a special case of this formu-
lation. It consists of one segment with a high value V and a
variable quantity θ corresponding to the requested demand for
mFRR.

Other parametrization methods include a mix of quantity
and price. Linear demand curve can be mentioned.

III. RANDOMIZED STOCHASTIC GRADIENT

Problem (1) is a non-convex stochastic program, the
stochastic gradient of which can be computed. This allows us
to use a randomized stochastic gradient (RSG) scheme to solve
it [8]. The chain rule allows us to decompose the gradient of
cost as follows for given scenarios ω and ϕ, and for a given
optimal clearing of the parametrized economic dispatch, x∗

and d∗:

∂F̄ (θ, ω, ϕ)

∂θi
=

∂F̄

∂x∗
∂x∗

∂θi
. (18)

The first component is identical for both parametrizations, and
can be formulated as follows:

∂F̄

∂x∗ = (CmFRR
ω )′(x∗) + (CaFRR

ω,ϕ )′(x∗), (19)

The second component can exploit the structure of the prob-
lem. The price parametrization is derived in (20) based on
(5)-(7):

∂x∗

∂θi
= (CmFRR

ω )′′(x∗) (20)

The quantity parametrization depends on whether the demand
for mFRR balancing energy in segment i is binding and is
shown (21):

∂x∗

∂θi
=

{
1 if d∗i = θi

0 else.
(21)

Combining (19) with (20) or (21) allows us to compute the
gradient.

The randomized stochastic gradient method for solving the
problem can be divided into two phases.

1) Optimization phase: S independent randomized
stochastic gradient runs are launched independently.
For each run s, a random stopping criterion, Rs, is
drawn, and the following iteration is performed for
k = 1 . . . Rs:

θk+1 = θk − γ∇θF̄ (θk, ωk, ϕk), (22)

with γ, ωk and ϕk being respectively the fixed descent
stepsize, a random realisation of ω, and a random
realization of ϕ. The last iteration is the output of the
randomized stochastic gradient run and is denoted as θ̃s.

2) Post-optimization phase: The optimal solution θ∗ is
chosen from the candidates {θ̃1 . . . θ̃S} by minimizing
the stochastic balancing cost over T random realizations:

θ∗ = arg min
s=1...S

1

T

∑
i=1...T

F̄ (θ̃s, ωi, ϕi) (23)

The two main components of this method are the random
stopping criterion and the multiple independent run. They
compensate for the inability to find the minimum of F (θk) in
an independent stochastic gradient run as only F̄ is available.
Further details on the algorithm are given in [8]



IV. RESULTS

The cost function approximation method is applied to a toy
model in this section. Throughout this section, a piecewise
linear approximation of the aFRR and mFRR merit orders of
Austria on the fourth of February 2022 is used for representing
the initial aggregated aFRR and mFRR merit orders. They are
illustrated in Fig. 1.

Fig. 1. aFRR and mFRR initial merit orders, CaFRR(·) and CmFRR(·).

This section shows the convergence of the algorithm, com-
pares the price and quantity parametrization and tests the
sensitivity of the method to the cost of saturating the aFRR
merit order.

A. Convergence of the Randomized Stochastic Gradient

We assume that there is no congestion, the demand for
mFRR balancing energy is fixed, and the aggregated realized
system imbalance is the sum of two uniform random variables
between 0 MWh and 200 MWh, XSI

ϕ = U [0, 200]+U [0, 200].
This represents the aggregation of two zones that are exposed
to uniformly distributed system imbalances. Without uncer-
tainty on the demand for mFRR balancing energy in other
zones, there exist an optimal demand for mFRR balancing
energy that minimizes the balancing cost. Figure 2 shows the
evolution of the mFRR demand for balancing energy in inde-
pendent RSG runs for a one-segment quantity parametrization.
Figure 3 displays the balancing cost induced by the cleared
mFRR balancing energy at the stopping criterion in the inde-
pendent RSG runs.

B. Price versus Quantity Parametrization

Let now assume that the inelastic demand for mFRR bal-
ancing energy in other zones is distributed according to a
uniform distribution between 0 MWh and 100 MWh, Xω =
U [0, 100], We compare four possible parametrizations: (1) a
price parametrization, (2) a quantity parametrization with one
segment of value 3000 C/MWh (essentially representing an
inelastic demand for mFRR balancing energy), (3) a quantity
parametrization with three segments of value 1000 C/MWh,
750 C/MWh and C/500 MWh, and, (4) a second quantity
parametrization, with three segments, of value 2000 C/MW,

Fig. 2. Cleared mFRR demand for balancing energy for independent RSG
runs.

Fig. 3. Balancing cost for independent RSG runs.

1000 C/MW and 500 C/MW. The resulting parametrized
mFRR demand curves are presented in Fig. 4.

Fig. 4. Parametrized mFRR demand curves.

Fig. 5 presents the demand for mFRR balancing energy due
to the TSO demand curve as a function of the demand for
balancing energy in other zones. The different parametrizations
are compared with a foresighted TSO that can react to the
demand for mFRR balancing energy in other zones. As shown
in (8), the total cleared mFRR balancing energy is invariant
with respect to the demand for mFRR balancing energy in
other zones.

Fig. 6 presents the balancing cost from the parametrization



Fig. 5. Cleared mFRR balancing energy as a function of the demand for
mFRR balancing energy in other zones.

again as a function of the demand for mFRR balancing
energy in other zones. The TSO with foresight and the price
parametrization have constant balancing cost, since they adapt
to the demand for mFRR balancing energy in other zones.
The other parametrization classes generate higher costs. In
the case of low demand for mFRR balancing energy in
other zones, expensive aFRR assets can be activated and this
can even saturate the aFRR merit order, thereby affecting
frequency quality. Exhausting the aFRR merit order does not
automatically trigger loss of load due to the system’s inertia
and its final safeguard: frequency containment reserve (FCR).
High demand for mFRR balancing energy in other zones
results in an an over-activation of the mFRR assets.

The efficiency of the quantity parametrization with three
demand segments depends heavily on the valuation of the
demand segments, which is chosen ex-ante. Utilizing the quan-
tity parametrization with V = (1000; 750; 500) leads to a 2%
increase in cost compared to the foresighted problem, while
with V = (2000; 1000; 500) results in a 9% cost increase.
Inelastic demand exhibits an increase of 11%. The difference
between the price parametrization and the foresighted system
operator is negligible.

Fig. 6. Balancing cost as a function of the demand for mFRR balancing
energy in other zones.

C. Sensitivity to the Most Expensive aFRR Bid

The impact of the price of the last aFRR bid in the merit
order is now discussed. This corresponds to the price paid by
the system operator when the aFRR merit order is depleted
Figure 7 presents the sensitivity of the valuation of the mFRR
balancing energy in the price parametrization with respect to
the most expensive aFRR bid. It also shows the induced total
mFRR balancing energy cleared by MARI. The higher the
price of the highest bid in the aFRR merit order, the more
the TSO should proactively activate mFRR. An increase from
5,000 to 20,000 C/MWh translates to a 20% increase in the
valuation of mFRR balancing energy and a 33% increase in
activated mFRR balancing energy. The non-smooth increase
in figure 7 is due to the randomness of the RSG method that
is used for finding the optimal valuation.

Fig. 7. Total cleared mFRR balancing energy and value of the price
parametrization as a function of the cost of saturating the aFRR merit order.

V. CONCLUSION

This paper analyses the use of a parametrized mFRR
demand curve in the context of the sequential clearing of
cross-border balancing platforms in an integrated European
balancing market. The system operator problem of finding
the optimal parametrization is formulated as a cost function
approximation problem. It is a non-convex stochastic pro-
gram solved using a randomized stochastic gradient method.
Parametrizations based on quantity and on price are investi-
gated. The price parametrization is equivalent to the system
operator problem with foresight for the simple case without
congestion and with independent demand for mFRR balancing
energy in other zones and aggreagated system imbalance. The
method is validated on a toy example and the impact of the
cost of saturating the aFRR merit order on the form of the
demand curve is discussed.

Further research will consider realistic systems with con-
gestion. Another question of interest concerns the benevolent
assumption. Future research will also consider TSOs whose
objective is to minimize the procurement cost of reserve in
their own zone instead of the overall balancing activation cost
in the integrated European balancing market.
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