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Graph Laplacian



Incidence matrix

Consider a graph G = (N, E), where N is the set of nodes and E is the
set of edges

The incidence matrix of the graph is defined as A = (4;;),i,j € N,
where
a {1, if (i,j) € Eor (j,i) EE
2 0, otherwise



Degree matrix

Consider a graph G = (N, E)

The degree matrix is definedas D = (Dl-j), i,] €N, where
D = d;, ifi =j
Y0, otherwise

d; is the degree of node i, which is the number of edges that are incident to
the node

For weiﬁhted graphs the degree generalizes to the sum of the weights of the
edges that are indecent to the node



Graph Laplacian

Consider a graph G = (N, E), where A is its incidence matrix and D is
its degree matrix

The Laplacian of the graph is defined as

L=D-A4



Example: three-node graph
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Laplacian theorem

The multiplicity of the eigenvalue A = 0 in the Laplacian of a graph is
equal to the number of connected components of the graph



Example: three-node graph

Laplacian:

Laplacian eigenvalues: 4 = 0,1, = 3 katd; = 3

As long as the graph is connected, it has a unique eigenvalue that is equal to zero



Circults



Circults

Electric circuits consist of

» passive elements (transmission lines, transformers, loads represented as
impedances)

 active elements that generate or consume power (generators or loads
represented as constant consumptions of apparent power)

State of a circuit can be described by the voltage between each node
and a reference point, referred to as ground

When voltages are known, we know everything about the circuit



Representation of a sinusoidal signal as a
complex number

Signal at
t=5ms
Amplitude
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Signal at Phase ¢ 5 0 ms
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Alternating current (AC) electric power
systems

AC power systems have voltage and current that fluctuate sinusoidally
(50 Hz in Europe, 60 Hz in USA)

Sinusoidal signals can be described as complex numbers:
 Amplitude: magnitude of the complex number
* Phase angle: angle of the complex number

The sinusoidal signal can be represented equivalently by its phasor,
which is characterized by the phase angle and root mean square value,

which is the amplitude divided by V2



Impedance and admittance

—

I=YV,S=VI"',=P+Qi

A passive electric element is characterized by a complex number, the impedance Z,
or equivalently the admittance Y, which is the inverse of impedance

What characterizes a passive element is the fact that current I flowing through the
element as a result of voltage V applied on the terminals of the element is

I =YV



Example: current flowing through a passive
element

Consider applying a voltage with an RMS of 230 V on a passive element
withY = 0.01 — 0.01i Q1

By definition of impedance
[ =VY =230-(0.01—-0.01i)) =23—-23iA
The RMS of current is v2.32 + 2.32 = 3.25 Ampere

The phase angle difference between current and voltage is

arctan (_ZL;) = —45°

Current lags voltage by % of a full cycle (where a full cycle lasts 20

ms), thus current peaks 2.5 ms after voltage




Example: current flowing through a passive
element
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Power flow

Consider a branch (m, n) of a circuit, V.., the voltage applied along the
branch, L,,,, the current flowing through the branch

We can define (i) apparent power S.,,,,, (ii) real power P,.,,, and (iii)
reactive power (.,,,, consumed on the line as:

Smn = Pnn + Qmnl = Vinnlmn



Resistors, inductors, capacitors

Classification of passive electrical equipment based on admittanceY = G +
Bi, where G is the conductance, and B is the susceptance

e Resistors: positive conductance (G > 0, B = 0), consume real power
(Pmn > 0)

* Inductors: negative susceptance (B < 0, G = 0), consume reactive power
(Q@mn > 0)
e Capacitors: positive susceptance (G = 0, B > 0), produce reactive power

Typically, transmission lines and transformers are reactive (bnAadn B < 0)
and slightly resistive (i.e. G > 0 but ¢ < |B|)



The power flow equations



Kirchhoff’s [aws

Kirchhoff’s current law: the total current flowing into a node equals
the total current flowing out of a node

Kirchhoff’s voltage law: accumulated voltage change across any loop of
an electrical circuit equals zero



Model of a circuit with N + 1 buses

OJ0,

=

S =V, I =Pn+Qnim=1,.., N
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Performance equations in admittance form

Denote bus currents as Iyys = (I1, I, ..., Iy)T, bus voltages as Vi, ys =
T
(Vl, VZ, nan VN)

Define the admittance matrix ¥, ;s € CV*V of the matrix:

* The non-diagonal element Y,,,,, is the negative of the admittance between bus
mand busnform #n

* The diagonal element Y,,,,,, is the sum of the admittance between node m
and the ground plus the admittance between node m and all of its adjacent

nodes

* Performance equations in admittance form:
Iyus = YbusVbus



Power flow equations

For bus m the following holds:

N
— z YinVn

n=

N
Sm = Vbin = Vi ) Y&
n=1

Separating into real and imaginary parts, we get the power flow equations

P, = Re(V,,I%) = Re Z Y.V | (B.1)

=

Conjugating this equation, we get

"N
0, = Im(V,,I%) = Im| V, Z V| (B.2)



Power flow equations in polar coorindates

In polar coordinates

N
P = WVanl ) 1Vl (G €05(Brnn) + B SIn(Orn))  (B.3)

n=1

N
O = WVl ) 1Vl G S1n(Orn) = By 05Orn)) (B 4)
n=1

where Y,,,,, = G, + Byl and 8,,,,, is the phase angle difference of
voltages V,,, and V,



Slack bus, PQ buses, PV buses

There are N equations in complex numbers, thus 2N equations in real
numbers, for a system with N nodes

There are 2N complex variables (apparent power and voltage at every
node), which translate into 4N real variables

In a power flow problem, 2N of these variables are fixed, according to
the following rule:

* There is a unique swing bus or slack bus, in which the voltage magnitude and
voltage phase are fixed (with the phase commonly set equal to zero)

 The are M load buses or P-Q buses, for which the real and reactive power
withdrawal are fixed

e There are N — M — 1 production buses or P-V buses, for which the real
power and voltage magnitude are fixed



Tabular representation of the problem

P Q \4 6 MARBog
Slack bus V V 1
(generator)
PV buses V V N—-—M-1
(generators)
PQ buses V V M
(loads)

e The non-trivial system has N + M — 1 variables (the red parts, 0, ..., Oy, |V |n—m+1, - [V|n) In
N + M — 1 equalities (power flow equations)

* The remaining (green) variables are solved for easily once we have computed the red ones (from
the remaining equalities/power flow equations)



Two-node example

System buses:

 Bus 1: slack
e Bus 2:load/PQ

Admittance matrix:

Yous =

1 1

207001101 ~001+0.1s

1

. 0.01+ 0.1i

_ [0.99 — 10.4i
~ [-0.99 +9.9i

1

1

0.01 + 0.1i -

—0.99 + 9.9i
0.99 —9.9i

‘ Z1, = 0.01+ 0.1

2

le == 2[

All values are in per unit

——
Il



Example: power flow equations

P, = Gy + |V3](G13 cos(—6;) + By, sin(—6,))
= 0.99 + |I5|(—0.99 cos(—6,) + 9.9sin(—0,))

1 = —B11 + [V3|(G13 sin(—=6;) — By, cos(—6;))
= 10.4 + |V,|(—0.99 sin(—0,) — 9.9 cos(—6,))

P, = |V,|%Goy + |V5](G2q cos(6,) + B,y sin(6,)) =
—1 = 0.99|V,|? + |V,|(—=0.99 cos(8,) + 9.9 sin(8,))

Q, = [V,|(Gyq sin(0;) — By cos(6;)) — |V,|*Byy =
0 = |V,](—=0.995in(0,) — 9.9 cos(8,)) + 9.9|V;,|?



Example: solution

The solution of the power flow is:

P, = 1.010
01 = 0.603

[V, = 0.985 \V/;J
6, = —5.83° o= 0980 553

Losses are:
Pi+P,=1010—-1=0.010



From power injections to bus
angles



Relations between injections, voltage angles
and flows

Section B4 Section B5

N N

Real power injections

Voltage angles
(6,,n=1,..,|N|)

Line flows

(Pon=1,..,|N|) (P, k=1,..,|4])

N A

Power transfer distribution factors (PTDFs)
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From line flows to injections and from
injections to line flows

A (non-radial) network has at least as many lines as nodes
Therefore, there are more flows than injections
If flows are given, we know what the injections are

The converse is typically not true: injections do not imply flows in a
unique way

But they do imply them in the case of linearized power flow (we will
see why now)



Linearized power flow equations

Consider the following approximations:
* Resistance is negligible: G,;;, = 0

* Phase angle differences across branches 6,,,,, = 6,,, — 6,, are small, so that
sin(6,,,,,) = 6., and cos(0,,,,) = 1

* Voltage magnitude on each bus is approximately equal to nominal: |V,,| = 1

This leads to the linearized power flow equations

N
Pn = ;an(gm —6,) (B.D)



Two-node example

Returning to the 2-node example of slide 28,
we have:

Py = By(6; — 6,) =9.9(0 — 6,)
Pz — 321(92 — 91) = —1 — 99(92 — 0)

Solution:
Pl —_ 1
92 —_ _5790
Recall that the AC solution is 8, = —5.83°

Lossesare P, + P, =0

Zi, = 0.01 + 0.1i

le - 2[



Further simplification of the linearization

e Since we ignore resistance on passive elements, let us assume that all
conductances only have an imaginary part

1 _
*Thus Y, = —Vin = — = iX 1, where X, is the susceptance

Xmnl

of line mn
e And since Y,,,, = B,,,,,i, we conclude that B,,,,, = X}
* Thus the Imearlzedl\Joower flow equat|ons are further simplified:

Z me Z me (B.6)

n=1n+m n=1n+m



Two-node example

Returning to the two-node example:

6, -6, 0-6,

P, = =
1T Ty, 0.1 ! 2
02 _01 92 _O le 2001"‘011
P, = = —1= I ‘
X1 0.1 O |
The solution is I 7 =9 | \
11 —
P1 =1 T ¢ =1
62 = _5730 -

Less accurate than the solution of slide 35 (—5.79°), where the
exact AC solution is —5.839, but still quite accurate

Losses: P, + P, =0



The matrix T*

The injections of real power P, are linearly dependent on voltage angles, 6,,

This dependence is described by the weighted Laplacian of the network
graph, where the weights of lines are given by the parameters B,,,,

Define T = (T,,,,,), m,n € {1, ..., N}, where T is a symmetric N X N matrix

.
— ,(mn) EAm+n
an
. N
Tmn = < z 1 = n (B. 7)
/ an ’
n'=1nr+m
\ 0,(m,n) ¢ A



Relation between injections and voltage
angles

The linear mapping from voltage angles 8% € R to injections P € R" at each bus is

described as:
pF =TFgF (B.8)

The proposition of slide 9 guarantees that, if the graph is connected, then the degree of
the Laplacian TFis N — 1

Thus there are N — 1 constraints that contain the full information of the linear mapping,
and therefore one constraint can be removed from the linear system

Any choice of N — 1 constraints keeps the full information of the mapping, because any
line equals minus the sum of the rest of the lines (conservation of energy):

N
Z P =0 (B.9)

m=1



Hub node

Given that T = (TF)T, this means that column i is minus the sum of the other columns of
the matrix

We can therefore select a sub-matrix of T¥ of dimension (N — 1) X (N — 1), which we
denote as T, by removing row and column i of T*

Since the degree of the remaining matrix is N — 1, the matrix T is invertible

The node corresponding to the column/row that is removed is the hub node, which is the
analog of the slack bus in power flow:

* Its voltage angle is zero, 8, = 0
* The injection of real power in this bus is:

Ph - 2 Pn
ne{1,.,N}—{h}



One-to-one relation between net injections
and voltage angles

The power flow equations can be expressed equivalently by ignoring
the voltage angle of the hub node (set equal to zero) and the injection
of real power at the hub node (since it is implied from the injections of
all other buses)

This leads to the following (N — 1) X (N — 1) linear system:
P=T6, (B.10)

\{A;gere P=(L,)mef{l,..,N}—{h}and 8 = (0,,)), m € {1, .., N} —



From voltage angles to line flows



Line flows as a function of angles

Proposition: The power flow across line (m, n) is

— L(Hm —6,) (B.11)

P
mn an



Power transfer distribution factors

Given a line k and a bus n, the power transfer distribution factor
(PTDF) is the amount of power flow induced on line k by a tranfer of 1
MW of power from bus n to the hub node

The value of a PTDF depends on the choice of hub node



Computing PTDFs

Define the matrix M as M = (M,,),k € A,n € {1,...,N} — {h}, where

= ifk=m,),n+h
Xk) 1 _n; )n

M. = 1 B.12
fon <——, ifk=(,n),n#h ( )
Xk

L 0, otherwise

By the definition of M, and from equation (B.11) we conclude that
P, =M6 (B.13)

where P; is the vector of power flows along the lines of the network



Computing PTDFs

From equation (B.10)
P, =MT P (B.14)

This is the desired mapping from injections P to line flows P,
The PTDF of bus n on line k (denoted as Fj,,) is:
Fin = MZ(T_l)n:

where M/ is the k-th row of M, and (T™1),, is the n-th column of T~



Example: 4-bus network

The numbers on lines correspond to line inductances X,,,,

The numbers next to arrows correspond to real power injections



Example: 4-bus network

Compute the PTDF of node 1 on line 2-3, where node 0 is the hub node

Matrix T is:
1 N 1 1 0
1 1.5 1
T = 1 1 N 1 N 1 1
B 1 1 252 2
0 1 1 N 1
2 2 3
Inverting T':




For power injection P = (0.2,0.5, —0.25)7, bus angles are

0 =T71p =

0.96 06 036
0.6
0.36 06 156

The power flow on each line is

0.402 — 0.

| BEARK

47

P,., = = = —0.068
12 X12 1
p _01=60_0402-0
10 X10 - 15 e
6, -0, 0.47—(0.018)
P23 == == == 0244
X23 2
b 0= _047-0
20 — XZO B 25 -
6, -6, —0018—0
By =~ =~ = 0006

0.402
0.470
0.018

|



Representing MT € R3 as the k-th row of matrix M, the matrix M that determines line
flows as a functlon of bus angles, P, = M@, is

1 0 O
1.5

Ml | 1,

MmT 1 1
M = M;B =10 = —-—
2 2 2

My, 1
Mgl |0 —35 O
0O 0 —-=

The change in flow on line (2, 3) caused by the injection of one MW of power in node 1 is

Fps1 = MI(T™1);= (0,0.5,—0.5)(0.96,0.6,0.36)= 0.12



Example: symmetric 3-node network

Denote X as the reactance of each line

Compute the PTDF matrix of the network when node 3 is the hub node



Example: symmetric 3-node network

Matrix T':
11 1
XX X =1[2 —1]
1 1 1 x|-1 2
—_ _+_
X X X

Inverting, we compute matrix T~ 1:

7-1— y [0.667 0.333

0.333 0.667
Matrix M:

1 1

AN E
M=|Mz|=| 0 X
Mi; 1 )

| X |




PTDF computation:

1 1
Fip1 = (E’U?) (0.667X,0.333X)T = 0.333

1
Fizq = <)—(, 0) (0.667X,0.333X)T = 0.667
1
Fpsq = (o, }> (0.667X,0.333X)T = 0.333

1 1
Fipp = (}—(,—)—() (0.333X,0.667X)T = —0.333
1
Fizp = <)—(, 0) (0.333X, 0.667X)T = 0.333

1
Fpsp = (o, }> (0.333X,0.667X)T = 0.667

Physical intuition: current splits in a way that is inversely proportional to reactance



Losses



Losses on a line

* Complex power losses along a line:
Sk = Vindlmn + Vnlnm = Vinlppn — VI (V — )I;;’m
— (Vm — )Ymn(v ) = |Vin — | Vmn
» After algebraic manipulations:
Vi = Vl? = [Vinl? + V|2 = 2|V |1V cos(Br, — 6,)

* [solating the real part of S, :
Lk — gmn(lv‘mlz + |Vn|2 — 2|Vm||Vn| COS(Hm o Hn))



Approximating losses

* Taylor expansion of cos(6,,, — 6,)) = 1 — (Om ”)2
Lie = Gn(WVinl? + V2 = 20V Vel + Vo1V (B — 6)2)
* And since |V,,,| = |V,,| = 1 in linearized power flow:
Lk = gmn(‘gm _ Hn)z
* Further assumptions of linearized power flow imply:
Rmn ~ Rmn
Imn. = Rim + Xy X

* Finally arriving to
Lk = Rmnpnzm



Example: approximating losses

e Returning to the two-node example of slide 28:
L12 —_ R12P122 —_ 001 * 12 —_ 001

* Here, we use the line flow solution Py, of the linearized model (slide
37)



Losses as a function of power injections

* First-order Taylorfpproxi_mation o_f square_of Iosses_on line k:
* Here, Py, is the base dispatch point of the system
* Since P, = ),,eny PTDE,,,, - B,, we finally have

L:Z:Lk=zRR-(—P,f+Z-I3k-EPTDF,m-Pn)

keK keK nenN
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