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Mathematical programming 
models
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Mathematical programming models

• Mathematical programming models are decision-making tools in 
complex systems

• Decision variables: denoted typically as 𝑥𝑥
• Belong to a feasible set 𝑋𝑋 which is a subset of ℝ𝑛𝑛, 𝑥𝑥 ∈ 𝑋𝑋 ⊆ ℝ𝑛𝑛

• The goal that we wish to optimize can be expressed in the form of a 
function, with 𝑓𝑓:ℝ𝑛𝑛 → ℝ an objective function that scores the 
performance of decision 𝑥𝑥

• Math programs aim at either minimizing or maximizing the objective function
𝑓𝑓
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Minimization problem

• Minimization problem:

min𝑥𝑥𝑓𝑓(𝑥𝑥)
s. t. 𝑥𝑥 ∈ 𝑋𝑋

• The 𝑥𝑥 under the «min» operator indicates decision variables
• The «s.t.» which precedes 𝑥𝑥 ∈ 𝑋𝑋 corresponds to the expression 

«subject to», and indicates that the constraints of the problem follow
• Sometimes «s.t.» is written out as «subject to», or ommitted
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Maximization problem

• Maximization problem:

max𝑥𝑥𝑔𝑔(𝑥𝑥)
s. t. 𝑥𝑥 ∈ 𝑋𝑋

• Equivalent to the minimization problem of the previous slide if 
𝑔𝑔 𝑥𝑥 = −𝑓𝑓(𝑥𝑥)
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Feasible, infeasible and unbounded problems

• A solution is feasible if 𝑥𝑥 ∈ 𝑋𝑋
• A solution 𝑥𝑥∗ is optimal if it is better than all other feasible solutions, 

which means 𝑓𝑓 𝑥𝑥∗ ≤ 𝑓𝑓(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋 in the case of minimization
• or 𝑓𝑓 𝑥𝑥∗ ≥ 𝑓𝑓(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋 in the case of maximization

• A math program is infeasible if 𝑋𝑋 = ∅
• A math program is unbounded if the value of its objective function can 

become arbitrarily low in the space of feasible solutions (in the case of 
minimization)

• or arbitrarily high (in the case of maximization)
• Infeasible and unbounded math programs are indications that the 

underlying problem is not well-defined
• There is no optimal solution for infeasible and unbounded math programs
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Example Α.1: continuous problem

• Suppose that we minimize the function 𝑥𝑥2 on the real numbers
• The objective function is 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2
• The constraints are 𝑋𝑋 = ℝ
• The math programming problem is expressed as min𝑥𝑥𝑥𝑥2, or equivalently as 

max𝑥𝑥 − 𝑥𝑥2

A. Papavasiliou, NTUA 8



Example Α.2: discrete problem

• Consider the decision problem of buying airplane tickets for an 
upcoming trip from Athens to Brussels

• A roundtrip that does not include the weekend costs $600
• A roundtrip that includes the weekend costs $400
• One-way tickets cost $350 each
• The feasible set can be enumerated, with 𝑋𝑋 = {1,2,3}
• Objective function: 𝑓𝑓(1) = 600, 𝑓𝑓(2) = 400, 𝑓𝑓(3) = 700
• If the goal is to minimize cost, then 𝑥𝑥∗ = 2 and 𝑓𝑓(𝑥𝑥∗) = 400
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Solution methods

• There is no silver bullet for solving general math programs
• The continuous problem can be solved using differential calculus

(derivative equals zero)
• The discrete problem can be solved by enumerating feasible solutions
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Problem classes

• None of these strategies (enumeration, or setting the derivative to 
zero) is fully general or appropriate for large-scale problems

• What determines whether a math program is hard or not?
• One thought: if the objective function 𝑓𝑓 and constraints 𝑋𝑋 are linear, then the 

problem is easy

• Wrong! The crucial property is not linearity, but convexity
• If the function 𝑓𝑓 is convex, and if the set 𝑋𝑋 is convex, then the problem is 

«easy»
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Linear programming problems
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Linear programming problems

• A linear programming model is a mathematical programming model 
where:

• the objective function 𝑓𝑓 is a linear function of decision variables
• the constraints 𝑋𝑋 are linear equalities or inequalities of the decision variables

A. Papavasiliou, NTUA 13



Example Α.3: economic dispatch problem

• Consider the economic dispatch problem where two generators 
produce electricity in order to cover a load of 100 MWh

• Offer generator 1: 60 MWh at 20 €/MWh
• Offer generator 2: 80 MWh at 50 €/MWh
• Goal: cover load at least cost
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Economic dispatch model

Decision variables: 𝑝𝑝1, 𝑝𝑝2 (what do they correspond to?)

min𝑝𝑝1,𝑝𝑝220 � 𝑝𝑝1 + 50 � 𝑝𝑝2

𝑝𝑝1 + 𝑝𝑝2 ≥ 100

𝑝𝑝1 ≤ 60

𝑝𝑝2 ≤ 80

𝑝𝑝1, 𝑝𝑝2 ≥ 0

A. Papavasiliou, NTUA 15



Direction of inequalities and sign of variables

• Linear programming inequalities can be of the (≤) or (≥) variety
• we can move from one variety to the other (how?)

• Decision variables can be defined as non-negative (as in the previous 
example), non-positive, or free

• Decision variables in electric power systems:
• Non-negative: production, demand, stored hydro energy in a hydroelectric 

unit
• Free: flow of power on a transmission line, amount of power produced by a 

pumped hydro unit
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Graphical solution of linear 
programming models
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Graphical solution of economic dispatch 
problem: feasible set

• Feasible set: pink surface
• 𝑝𝑝1 ≥ 0 and 𝑝𝑝2 ≥ 0: the feasible 

set is in the non-negative orthant
• 𝑝𝑝1 + 𝑝𝑝2 ≥ 100: half-space to the 

upper right of the line that 
crosses (𝑝𝑝1, 𝑝𝑝2) = (100, 0) and
(𝑝𝑝1, 𝑝𝑝2) = (0,100)

• 𝑝𝑝1 ≤ 60: half-scape to the left of 
the line 𝑝𝑝1 = 60

• 𝑝𝑝1 ≤ 80: half-space under the 
line 𝑝𝑝2 = 80
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Graphical solution of economic dispatch 
problem: objective function
• Behavior of objective function: 

depicted by iso-cost lines of the 
objective function 𝑧𝑧 = 20 � 𝑝𝑝1 + 50 �
𝑝𝑝2

• Iso-cost of $4400: corresponds to the 
line 20 � 𝑝𝑝1 + 50 � 𝑝𝑝2 = 4400 which is 
indicated in red

• There are infinitely many points within the 
feasible set that achieve this cost (which 
ones?)

• Iso-cost of $3200: parallel to the iso-
cost of $4400, indicated as the green 
line
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Graphical solution of economic dispatch 
problem: optimal solution
• The green iso-cost is preferable to 

the red one
• It is as far down and to the left as 

the feasible set allows for
• The only point in the pink set that 

can attain this objective function 
value is F ⇒ optimal solution

• Coordinates of F: intersection of 
𝑝𝑝1 = 60 and 𝑝𝑝1 + 𝑝𝑝2 = 100, ⇒
𝑝𝑝1∗, 𝑝𝑝2∗ = (60,40)
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Usefulness of graphical solution

• This two-dimensional analysis is quite limited, since we cannot 
visualize beyond three dimensions

• Nevertheless, it does clarify an important geometric intuition: the 
«corner points» of the feasible set have a special role in linear 
programs, because they are candidates for optimal solutions

• This geometric intuition is the basis of the celebrated simplex 
algorithm
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Linear programs in standard form
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Linear programs in standard form

A linear programming model in standard form with 𝑛𝑛 decision variables and 
𝑚𝑚 equality constraints:

min𝑥𝑥�
𝑖𝑖=1

𝑛𝑛

𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖

s. t.�
𝑖𝑖=1

𝑛𝑛

𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1, … ,𝑚𝑚

𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑛𝑛
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Vector and matrix notation

• The parameters 𝑐𝑐𝑖𝑖 can be organized into a vector 𝑐𝑐, with transpose 𝑐𝑐𝑇𝑇 ∈ ℝ1×𝑛𝑛, that
corresponds to the coefficients of the objective function of the linear program

• The parameters 𝐴𝐴𝑖𝑖𝑖𝑖 are coefficients of the problem constraints, and can be organized 
into a matrix 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 with 𝑚𝑚 rows (one row per constraint) and 𝑛𝑛 columns (one 
column per decision variable)

• The parameters 𝑏𝑏𝑖𝑖 can be collected into a column vector 𝑏𝑏 ∈ ℝ𝑚𝑚×1

• The problem can be expressed equivalently as:

min𝑥𝑥𝑐𝑐𝑇𝑇𝑥𝑥

s. t.𝐴𝐴𝑥𝑥 = 𝑏𝑏

𝑥𝑥 ≥ 0

A. Papavasiliou, NTUA 24



Converting a linear program into standard 
form
• Any linear program can be expressed in standard form using the 

following transformations:
• exchange maximization with minimization
• introduce non-negative slack variables

• The transformation of linear programs into standard form allows us to 
better understand the relationship between extreme points of the 
feasible set and the underlying linear algebra computations that the 
simplex algorithm executes in order to solve the problem
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Exchanging maximization with minimization

Exchanging maximization with minimization amounts to exchanging 
max𝑥𝑥𝑐𝑐𝑇𝑇𝑥𝑥 with min𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑥𝑥
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Introducing non-negative slack variables

• The use of non-negative slack variables allows us to transform any 
inequality to an equality by adding or subtracting non-negative 
quantities in such a way as to preserve an equivalence with the 
original inequality

• For example, the inequality 𝑝𝑝1 ≤ 60 can be expressed equivalently as 
𝑝𝑝1 + 𝑠𝑠 = 60, where 𝑠𝑠 ≥ 0

• This is equivalent to the original condition, because if we can find a non-
negative variable 𝑠𝑠 ≥ 0 such that 𝑝𝑝1 + 𝑠𝑠 = 60, then it must be that 𝑝𝑝1 =
60 − 𝑠𝑠 ≤ 60
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Example Α.4: economic dispatch problem in 
standard form
Returning to the economic dispatch problem, we can express it in standard form as 
follows:

min𝑝𝑝1,𝑝𝑝2,𝑠𝑠1,𝑠𝑠2,𝑠𝑠320 � 𝑝𝑝1 + 50 � 𝑝𝑝2 + 0 � 𝑠𝑠1 + 0 � 𝑠𝑠2 + 0 � 𝑠𝑠3

𝑝𝑝1 + 𝑝𝑝2 − 𝑠𝑠1 = 100

𝑝𝑝1 + 𝑠𝑠2 = 60

𝑝𝑝2 + 𝑠𝑠3 = 80

𝑝𝑝1,𝑝𝑝2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0
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Extreme points and the simplex
algorithm
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Constraints are typically not more than 
decision variables
• Let us consider a linear program in standard form, and let us ignore 

the fact that variables are non-negative for the moment
• If there are more constraints (𝑚𝑚 equalities) than decision variables (𝑛𝑛

decision variables), then the linear system does not have a solution 
unless there are linearly dependent constraints

• Thus, we can focus on the case where there are more variables than 
constraints, 𝑛𝑛 ≥ 𝑚𝑚
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Basis and basic solution

• If 𝑚𝑚 ≤ 𝑛𝑛, the set of feasible solutions has a 
dimension of up to 𝑛𝑛 −𝑚𝑚

• One way to attempt to compute feasible solutions 
is by setting 𝑛𝑛 −𝑚𝑚 of these variables equal to 0, 
and isolating the remaining 𝑚𝑚 × 𝑚𝑚 linear system

• Equivalent to splitting the original constraint matrix 
𝐴𝐴 into two parts, 𝐴𝐴 = [𝐵𝐵 𝑁𝑁], where 𝛣𝛣 is an 𝑚𝑚 × 𝑚𝑚
matrix and 𝑁𝑁 is an 𝑚𝑚 × (𝑛𝑛 −𝑚𝑚) matrix

• If the remaining sub-matrix 𝛣𝛣, which is called the 
basis, is invertible, then the linear system has a 
unique solution

• This is called a basic solution
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}

𝑚𝑚 columns
(basic variables)
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(non-basic variables)

𝑚𝑚 lines
(constraints)
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Basic and non-basic variables

• The 𝑛𝑛 −𝑚𝑚 variables that are set equal to zero at the outset are 
called non-basic variables

• The remaining 𝑚𝑚 variables that are part of the linear system are 
called basic variables
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Basic feasible solutions and extreme points

• If the unique solution of the 𝑚𝑚 × 𝑚𝑚 system is non-negative, then we 
have a basic feasible solution to the original problem

• An extreme point is a point that cannot be expressed as a convex 
combination of two other distinct points in the feasible set

• Geometrically, extreme points correspond to “corners” of the set of 
feasible solutions

• A basic feasible solution corresponds geometrically to an extreme 
point of the original set of feasible solutions
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Example Α.5: computing a basic feasible 
solution of the economic dispatch problem
• Consider the economic dispatch problem:

min𝑝𝑝1,𝑝𝑝2,𝑠𝑠1,𝑠𝑠2,𝑠𝑠320 � 𝑝𝑝1 + 50 � 𝑝𝑝2 + 0 � 𝑠𝑠1 + 0 � 𝑠𝑠2 + 0 � 𝑠𝑠3
𝑝𝑝1 + 𝑝𝑝2 − 𝑠𝑠1 = 100

𝑝𝑝1 + 𝑠𝑠2 = 60
𝑝𝑝2 + 𝑠𝑠3 = 80

𝑝𝑝1, 𝑝𝑝2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0

• The constraint matrix of the problem can be expressed as:

𝐴𝐴 =
1 1 −1
1 0 0
0 1 0

0 0
1 0
0 1

• The columns of the matrix corresponds to the variables (𝑝𝑝1,𝑝𝑝2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3) respectively

A. Papavasiliou, NTUA 34



Example Α.5: selecting non-basic variables

• The rank of the matrix is 3 (all constraints of the problem are linearly 
independent)

• Selecting (𝑠𝑠1, 𝑠𝑠3) as the non-basic variables which are set equal to 
zero, the remaining linear system which only consists of the basic 
variables (𝑝𝑝1,𝑝𝑝2, 𝑠𝑠2) can be expressed as:

1 1 0
1 0 1
0 1 0

𝑝𝑝1
𝑝𝑝2
𝑠𝑠2

=
100
60
80
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Example Α.5: basic solution

• This system is obtained by isolating columns 1, 2 and 4 of the original 
matrix 𝛢𝛢

• The new 3 × 3 matrix is invertible because its rank is also 3
• Inverting the matrix, we compute the basic solution that corresponds 

to the basic  variables (𝑝𝑝1,𝑝𝑝2, 𝑠𝑠2)
• This corresponds to solving a system of 3 equations in 3 unknowns:

𝑝𝑝1
𝑝𝑝2
𝑠𝑠2

=
1 1 0
1 0 1
0 1 0

−1 100
60
80

=
20
80
40
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Example Α.5: basic optimal solution

• Non-negative basic variables ⇒
basic feasible solution

• Corresponds to the extreme point G 
• 𝑠𝑠3 = 0 ⇒ the third constraint of the 

problem is tight at G ⇒ the point G 
is on the line 𝑝𝑝2 = 80
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One of the basic solutions is optimal

• One of the central ideas behind the simplex algorithm is that, if the original 
problem has an optimal solution (i.e. if it is neither infeasible nor 
unbounded), then one of these can be found among the extreme points of 
the feasible set

• Therefore, if we enumerate all extreme points of the feasible set and pick 
the best one, it is also an optimal solution

• There may also exist optimal solutions that are not extreme points, but at 
least one optimal solution is an extreme point

• In practice, enumerating all extreme points is computationally prohibitive: 
up to

𝑛𝑛
𝑛𝑛 −𝑚𝑚 such points

• At least we can navigate between a finite number of points instead of 
infinitely many
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Interlude:
𝑛𝑛

𝑛𝑛 −𝑚𝑚
• The expression

𝑛𝑛
𝑛𝑛 −𝑚𝑚 = 𝑛𝑛!

𝑛𝑛! 𝑛𝑛−𝑚𝑚 !
 is the number of ways in which 

we can pick 𝑛𝑛 −𝑚𝑚 objects among 𝑛𝑛 objects

• Or 𝑚𝑚 objects among 𝑛𝑛 objects: 
𝑛𝑛

𝑛𝑛 −𝑚𝑚 = 𝑛𝑛
𝑚𝑚

• In our case:
• 𝑛𝑛 is the number of decision variables
• 𝑚𝑚 is the number of basic variables (or 𝑛𝑛 −𝑚𝑚 is the number of non-basic 

variables)
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Example Α.6: basic solutions of the economic 
dispatch problem
• We return to the economic dispatch example and describe the set of basic solutions

min𝑝𝑝1,𝑝𝑝2,𝑠𝑠1,𝑠𝑠2,𝑠𝑠320 � 𝑝𝑝1 + 50 � 𝑝𝑝2 + 0 � 𝑠𝑠1 + 0 � 𝑠𝑠2 + 0 � 𝑠𝑠3

𝑝𝑝1 + 𝑝𝑝2 − 𝑠𝑠1 = 100

𝑝𝑝1 + 𝑠𝑠2 = 60

𝑝𝑝2 + 𝑠𝑠3 = 80

𝑝𝑝1,𝑝𝑝2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0
• We consider two non-basic variables at a time, so that we are left over with a system of 

three variables in three constraints
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Example Α.6: matrix of basic variables

Non-basic 
variables

Basic 
variables

Basic 
solution

Extreme 
point

Feasible
(≥ 𝟎𝟎)?

Objective 
function

(𝑝𝑝1,𝑝𝑝2) (𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3) (-100, 60, 80) A No -
(𝑝𝑝1, 𝑠𝑠1) (𝑝𝑝2, 𝑠𝑠2, 𝑠𝑠3) (100, 60, -20) B No -
(𝑝𝑝1, 𝑠𝑠2) (𝑝𝑝2, 𝑠𝑠1, 𝑠𝑠3) - - -
(𝑝𝑝1, 𝑠𝑠3) (𝑝𝑝2, 𝑠𝑠1, 𝑠𝑠2) (80, -20, 60) C No -
(𝑝𝑝2, 𝑠𝑠1) (𝑝𝑝1, 𝑠𝑠2, 𝑠𝑠3) (100, -40, 80) D No -
(𝑝𝑝2, 𝑠𝑠2) (𝑝𝑝1, 𝑠𝑠1, 𝑠𝑠3) (60, -40, 80) E No -
(𝑝𝑝2, 𝑠𝑠3) (𝑝𝑝1, 𝑠𝑠1, 𝑠𝑠2) - - -
(𝑠𝑠1, 𝑠𝑠2) (𝑝𝑝1,𝑝𝑝2, 𝑠𝑠3) (60, 40, 40) F Yes 3200
(𝑠𝑠1, 𝑠𝑠3) (𝑝𝑝1,𝑝𝑝2, 𝑠𝑠2) (20, 80, 40) G Yes 4400
(𝑠𝑠2, 𝑠𝑠3) (𝑝𝑝1,𝑝𝑝2, 𝑠𝑠1) (60, 80, 40) H Yes 5200
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Example Α.6: understanding the table

• There are 5
2 = 10 ways in which we can select non-basic variables

• There are 8 choices that lead to invertible sub-matrices, i.e. there are 8 basic 
solutions

• The choices that lead to non-invertible 3 × 3 sub-matrices are indicated with red 
font in the first column of the matrix, and in this case we cannot compute basic 
solution

• Geometrically, they correspond to parallel lines that do not intersect
• The table presents the basic solutions, whether feasible or not, as well as the 

corresponding objective function value
• The basic feasible solutions correspond exactly to the corners of the feasible set 

and the optimal solution of the problem corresponds to one of these extreme 
points (point F, with a cost of $3200)
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Idea of the simplex algorithm

• Instead of enumerating all the extreme points, the simplex algorithm 
navigates itself by applying on pivot per iteration

• Algebraically, this corresponds to the exchange of a non-basic solution with a 
basic solution in the 𝑚𝑚 × 𝑚𝑚 linear system

• Geometrically, this corresponds to jumping to a neighboring extreme point

• At every iteration (i.e. at every basic solution that is computed during 
the course of the algorithm), there is detailed theory regarding the 
numerical checks that are required for asserting if the current 
solution is optimal
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Why the simplex algorithm works

• If the current basic solution is not optimal, there are processes for 
selecting a non-basic variable that should be removed from the basis, 
in a way that guarantees that the next iteration produces a solution 
that is at least as good as the present solution

• Given that the new solution is not worse than the previous one, and 
since we have a process for avoiding cyclic paths between solutions 
that attain the same objective function value, 

• Convergence: we have a guarantee that the process has a finite number of 
steps

• Computational savings: we can avoid exploring a (potentially huge) number of 
points which have no hope of being better than the current iterate
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Linear programming duality
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Duality theory

• Duality theory is part of mathematical programming theory that 
concerns all classes of math programs (not only linear programming)

• It has important implications for algorithm development as well as 
the economic interpretation of mathematical programming models
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Primal problem, dual problem and dual 
variables
• If the original problem, which is referred to as primal problem, is a 

minimization problem then the dual problem is a maximization, while 
if the primal is a minimization problem then the dual is a 
maximization problem

• The decision variables of the dual problem are determined by 
assigning a dual variable to each constraints of the primal problem

• To each decision variable of the primal problem corresponds a dual 
constraint

A. Papavasiliou, NTUA 47



Duality mnemonic table

Minimization Maximization
Constraints ≥ 𝑏𝑏𝑖𝑖 ≥ 0 Variables

≤ 𝑏𝑏𝑖𝑖 ≤ 0
= 𝑏𝑏𝑖𝑖 Free

Variables ≥ 0 ≤ 𝑐𝑐𝑖𝑖 Constraints
≤ 0 ≥ 𝑐𝑐𝑖𝑖
Free = 𝑐𝑐𝑖𝑖
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Dual of a problem in standard form
• Consider a primal problem in standard form:

min𝑥𝑥𝑐𝑐𝑇𝑇𝑥𝑥

𝜋𝜋 :𝐴𝐴𝑥𝑥 = 𝑏𝑏

𝑥𝑥 ≥ 0

• Its dual is:

max𝜋𝜋𝑏𝑏𝑇𝑇𝜋𝜋

𝜋𝜋𝑇𝑇𝐴𝐴 ≤ 𝑐𝑐𝑇𝑇
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Example Α.7: primal minimization probem

Consider the following linear program:

min𝑥𝑥3𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3

𝜋𝜋1 : 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 ≤ 3

𝜋𝜋2 : 2𝑥𝑥1 + 2𝑥𝑥2 + 2𝑥𝑥3 ≥ 0

𝜋𝜋3 : 𝑥𝑥3 = 5

𝑥𝑥1 ≥ 0, 𝑥𝑥2 ≤ 0
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Example Α.7: dual

The dual problem is expressed as:

max𝜋𝜋3𝜋𝜋1 + 0𝜋𝜋2 + 5𝜋𝜋3

𝑥𝑥1 :𝜋𝜋1 + 2𝜋𝜋2 ≤ 3

𝑥𝑥2 :𝜋𝜋1 + 2𝜋𝜋2 ≥ 2

𝑥𝑥3 :𝜋𝜋1 + 2𝜋𝜋2 + 𝜋𝜋3 = 1

𝜋𝜋1 ≤ 0,𝜋𝜋2 ≥ 0
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Example Α.8: economic dispatch
• Consider the economic dispatch problem with a slight rearrangement of the objective function 

and first primal constraint:

max𝑝𝑝1,𝑝𝑝2 − 20 � 𝑝𝑝1 − 50 � 𝑝𝑝2

𝜆𝜆 :−𝑝𝑝1 − 𝑝𝑝2 ≤ −100

𝜇𝜇1 :𝑝𝑝1 ≤ 60

𝜇𝜇2 :𝑝𝑝2 ≤ 80

𝑝𝑝1,𝑝𝑝2 ≥ 0

• Optimal objective function value: -3200
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Example Α.8: dual of the economic dispatch 
problem
• The dual problem can be expressed as:

min𝜆𝜆,𝜇𝜇 − 100𝜆𝜆 + 60𝜇𝜇1 + 80𝜇𝜇2

𝑝𝑝1 :−𝜆𝜆 + 𝜇𝜇1 ≥ −20

𝑝𝑝2 :−𝜆𝜆 + 𝜇𝜇2 ≥ −50

𝜆𝜆 ≥ 0, 𝜇𝜇1 ≥ 0, 𝜇𝜇2 ≥ 0

• The optimal solution of the dual problem is 𝜆𝜆∗ = 50, 𝜇𝜇1∗ = 30, 𝜇𝜇2∗ = 0
• The optimal objective function value of the dual problem is -3200 (equal to the optimal 

objective function value of the primal problem)
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Relaxation

• A relaxation of a mathematical program is a variation of the original 
mathematical program in which the feasible solution is expanded

• For instance, by ignoring some constraint

• Thus, a relaxation of a minimization problem yields a solution that 
results in an objective function value that is less then or equal to the 
objective function of the original minimization problem

• Similarly, a relaxation of a maximization problem yields a solution that 
results in an objective function value that is greater than or equal to
the objective function value of the original maximization problem
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Weak duality

• Dual problems result in a bound for corresponding primal problems, 
because they come from (non-trivial) relaxations of the original 
primal problems

• This is referred to as weak duality, and holds for all mathematical 
programs
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Strong duality

• A stronger result in mathematical programming states that, for 
certain classes of math programs, the objective function value of the 
dual problem becomes equal to the objective function value of the 
primal problem

• This is referred to as strong duality
• Strong duality holds in the case of linear programs
• It is often the case that math programs for which strong duality holds 

are computationally manageable
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Strong duality in linear programming

• Strong duality in linear programming can be expressed in a more 
nuanced way, in order to capture cases where linear programs are 
infeasible or unbounded: 

• If a primal problem has an optimal solution, then its dual has an optimal 
solution with an objective function value that is equal to that of the primal 
problem

• If a primal problem is unbounded, then its dual is infeasible
• If a primal problem is infeasible, then its dual may be infeasible or unbounded
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Usefulness of duality

• Duality is used in optimization algorithms for solving large-scale 
problems

• The general principle is that one solves the dual problem, which is 
typically easier to solve than the original primal problem

• This leads to a bound of the original problem in the case of weak 
duality (from which we can sometimes extract high-quality primal 
solutions), or to the optimal solution of the original problem in the 
case of strong duality
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Dual of the dual

The dual of a dual problem corresponds to the primal problem
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Sensitivity
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Sensitivity and dual variables

• Dual variables hold significant information regarding the behavior of 
the objective function at the neighborhood of the optimal solution

• Specifically, a dual variable quantifies the sensitivity of the objective 
function of the original problem to a change in the right-hand side of 
the corresponding constraint
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Example Α.9: economic dispatch

• Consider the economic dispatch problem, where we increase the right-hand side of the 
first constraint (−𝑝𝑝1 − 𝑝𝑝2 ≤ −100) by one, thus converting the right-hand side of the 
constraints to -99 instead of -100:

max𝑝𝑝1,𝑝𝑝2 − 20 � 𝑝𝑝1 − 50 � 𝑝𝑝2

𝜆𝜆 :−𝑝𝑝1 − 𝑝𝑝2 ≤ −99

𝜇𝜇1 :𝑝𝑝1 ≤ 60

𝜇𝜇2 : 𝑝𝑝2 ≤ 80

𝑝𝑝1,𝑝𝑝2 ≥ 0
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Example Α.9: graphical solution
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Example Α.9: graphical solution of the new 
problem
• Point F corresponds to the original optimal solution and point F’ corresponds to 

the new optimal solution
• The feasible set has increased, since the constraint 𝑝𝑝1 + 𝑝𝑝2 ≥ 100 has shifted to 

the lower left, and is now expressed as 𝑝𝑝1 + 𝑝𝑝2 ≥ 99
• This constraint is indicated by the line that crosses points B' (0, 99) and D' (99,0)
• The expansion of the feasible set leads to a new and cheaper iso-cost that crosses 

F’ at (60, 39)
• The cost of this solution is 3150, this the optimal objective function value of the 

problem expressed as a maximization is -3150
• The change in the optimal value of the objective function is therefore equal to -

3150-(-3200)=50
• We observe that this is exactly the value of the optimal dual value 𝜆𝜆∗, which is the 

dual variable of the constraint that we have relaxed
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ΚΚΤ conditions for linear 
programs
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Karush-Kuhn-Tucker (KKT) conditions

• The Karush-Kuhn-Tucker (KKT) conditions are a set of mathematical 
conditions that characterize the optimal solution of a primal problem and 
its dual for certain classes of mathematical programs, including linear 
programs

• The KKT conditions are a set of inequalities and complementarity 
conditions that implicate both primal as well as dual variables, and which 
serve as certificates for the optimality of the primal and dual poroblems

• They are necessary and sufficient for certain classes of problems (including 
linear programs):

• If a primal-dual vector (𝑥𝑥,𝜋𝜋) is a candidate for optimality, this can be checked by 
testing whether it satisfies the KKT conditions (sufficient)

• Any primal optimal solution 𝑥𝑥 and dual optimal solution 𝜋𝜋 must satisfy these 
conditions (necessary)
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Complementarity operator

• The complementarity operator is indicated as ⊥
• The expression 𝑎𝑎 ⊥ 𝑏𝑏 implies that 𝑎𝑎 ⋅ 𝑏𝑏 = 0
• We also use the condensed notation 0 ≤ 𝑎𝑎 ⊥ 𝑏𝑏 ≥ 0 to indicate that the 

following three conditions hold simultaneously: 
𝑎𝑎 ≥ 0
𝑏𝑏 ≥ 0

𝑎𝑎 ⋅ 𝑏𝑏 = 0
• Thus, 0 ≤ 𝑎𝑎 ⊥ 𝑏𝑏 ≥ 0 implies that either 𝑎𝑎 = 0, or , 𝑏𝑏 = 0, or both, but 

both quantities cannot be positive simultaneously, therefore if one is 
positive then the other is zero

• The notation is generalized to vectors
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ΚΚΤ conditions for maximization linear 
programs
• Consider the following linear program:

max𝑥𝑥,𝑦𝑦 𝑐𝑐𝑥𝑥𝑇𝑇𝑥𝑥 + 𝑐𝑐𝑦𝑦𝑇𝑇𝑦𝑦
s. t. 𝜆𝜆 :𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑦𝑦 ≤ 𝑏𝑏
𝜇𝜇 :𝐶𝐶𝑥𝑥 + 𝐷𝐷𝑦𝑦 = 𝑑𝑑

𝑥𝑥 ≥ 0
• The ΚΚΤ conditions of the problem have the following form:

𝐶𝐶𝑥𝑥 + 𝐷𝐷𝑦𝑦 − 𝑑𝑑 = 0
0 ≤ 𝜆𝜆 ⊥ 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑦𝑦 − 𝑏𝑏 ≤ 0

0 ≤ 𝑥𝑥 ⊥ 𝜆𝜆𝑇𝑇𝐴𝐴 + 𝜇𝜇𝑇𝑇𝐶𝐶 − 𝑐𝑐𝑥𝑥𝑇𝑇 ≥ 0
𝜆𝜆𝑇𝑇𝐵𝐵 + 𝜇𝜇𝑇𝑇𝐷𝐷 − 𝑐𝑐𝑦𝑦𝑇𝑇 = 0

and are necessary and sufficient for an optimal solution
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ΚΚΤ conditions for minimization linear 
programs
• Consider the following linear program:

min𝑥𝑥,𝑦𝑦 𝑐𝑐𝑥𝑥𝑇𝑇𝑥𝑥 + 𝑐𝑐𝑦𝑦𝑇𝑇𝑦𝑦
s. t. 𝜆𝜆 :𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑦𝑦 ≤ 𝑏𝑏
𝜇𝜇 :𝐶𝐶𝑥𝑥 + 𝐷𝐷𝑦𝑦 = 𝑑𝑑

𝑥𝑥 ≥ 0
• The ΚΚΤ conditions of the problem have the following form:

𝐶𝐶𝑥𝑥 + 𝐷𝐷𝑦𝑦 − 𝑑𝑑 = 0
0 ≤ 𝜆𝜆 ⊥ 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑦𝑦 − 𝑏𝑏 ≤ 0

0 ≤ 𝑥𝑥 ⊥ 𝜆𝜆𝑇𝑇𝐴𝐴 + 𝜇𝜇𝑇𝑇𝐶𝐶 + 𝑐𝑐𝑥𝑥𝑇𝑇 ≥ 0
𝜆𝜆𝑇𝑇𝐵𝐵 + 𝜇𝜇𝑇𝑇𝐷𝐷 + 𝑐𝑐𝑦𝑦𝑇𝑇 = 0

and are necessary and sufficient for an optimal solution
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Example Α.10: economic dispatch

Consider the economic dispatch problem:

max𝑝𝑝1,𝑝𝑝2 − 20 � 𝑝𝑝1 − 50 � 𝑝𝑝2

𝜆𝜆 :−𝑝𝑝1 − 𝑝𝑝2 ≤ −100

𝜇𝜇1 :𝑝𝑝1 ≤ 60

𝜇𝜇2 :𝑝𝑝2 ≤ 80

𝑝𝑝1, 𝑝𝑝2 ≥ 0
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Example Α.10: economic dispatch

The KKT conditions of the problem are summarized as follows:

0 ≤ 𝜆𝜆 ⊥ 𝑝𝑝1 + 𝑝𝑝2 − 100 ≥ 0

0 ≤ 𝜇𝜇1 ⊥ 60 − 𝑝𝑝1 ≥ 0

0 ≤ 𝜇𝜇2 ⊥ 80 − 𝑝𝑝2 ≥ 0

0 ≤ 𝑝𝑝1 ⊥ 20 − 𝜆𝜆 + 𝜇𝜇1 ≥ 0

0 ≤ 𝑝𝑝2 ⊥ 50 − 𝜆𝜆 + 𝜇𝜇2 ≥ 0
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Example Α.10: confirming the ΚΚΤ conditions

• We claimed earlier that 𝜆𝜆∗ = 50, 𝜇𝜇1∗ = 30, 𝜇𝜇2∗ = 0 is an optimal 
solution to the dual problem, without however proving it

• This can be confirmed by checking that the candidate dual solution 
satisfies the KKT conditions of the economic dispatch problem when 
combined with the primal solution 𝑝𝑝1∗ = 60, 𝑝𝑝2∗ = 40
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Usefulness of the ΚΚΤ conditions

• The KKT conditions are used extensively in the book, because they allow us to 
extract quantitative conclusions regarding perfect competition models

• Economic models of perfect competition are the starting point for modeling 
electricity markets

• The KKT conditions thus characterize the behavior of market prices in conditions 
of perfect competition, and explain the behavior of a large range of models:

• pricing energy in economic dispatch models
• pricing network access in optimal power flow problems
• pricing reserves in energy and reserve co-optimization problems
• pricing capacity in long-term investment models
• pricing energy in ramp-constrained models
• effect of storage on market prices
• effect of substitution on energy prices
• ...
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Example Α.11: economic interpretation of 
dual variables
• Suppose that, instead of receiving an instruction about the amount of 

energy production, generator 1 responds to a market price, which we 
denote as 𝜆𝜆

• Given an exogenous price 𝜆𝜆, the problem of maximizing generator profit 
can be expressed as follows:

max𝑝𝑝1≥0𝜆𝜆 � 𝑝𝑝1 − 20 � 𝑝𝑝1

𝜇𝜇1 :𝑝𝑝1 ≤ 60

• The choice of notation follows that of the economic dispatch problem
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Example Α.11: maximizing generator profit
• The KKT conditions of this profit maximization problem are expressed as follows:

0 ≤ 𝑝𝑝1 ⊥ 20 − 𝜆𝜆 + 𝜇𝜇1 ≥ 0

0 ≤ 𝜇𝜇1 ⊥ 60 − 𝑝𝑝1 ≥ 0

• We observe that these conditions are identical to the second and fourth KKT condition of the 
original economic dispatch problem

• This is an important observation: it implies that the optimal solution of the economic dispatch 
problem contains the profit maximization goal of generator 1

• In other words, this means that the primal-dual solution (𝜆𝜆∗,𝜇𝜇1∗ ,𝑝𝑝1∗) that is produced by the 
economic dispatch model also solves the profit maximization problem of generator 1, since the 
dual variable 𝜆𝜆 assumes the role of market price

• Similarly, the profit maximization problem of generator 2 is contained in the second and fifth KKT 
condition of the economic dispatch problem
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Example Α.11: market clearing

• This leaves us with interpreting the first KKT condition of the 
economic dispatch problem: 0 ≤ 𝜆𝜆 ⊥ 𝑝𝑝1 + 𝑝𝑝2 − 100 ≥ 0

• This condition is interpreted as a market clearing condition: 
• given a non-zero market price (𝜆𝜆 > 0), the production of units should equal 

the market demand (𝑝𝑝1 + 𝑝𝑝2 = 100)
• unless there is excess production in the market (𝑝𝑝1 + 𝑝𝑝2 > 100), in which 

case the energy price is zero (𝜆𝜆 = 0) because there is over-supply
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Example Α.11: overall interpretation of ΚΚΤ 
conditions
• Thus, the KKT conditions of the centralized economic dispatch 

problem can be considered to be equivalent to a set of conditions 
that contain the following information:

• The primal-dual solution must be such that the profit of generator 1 is 
maximized

• The primal-dual solution must be such that the profit of generator 2 is 
maximized

• The market clears
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Example Α.12: pricing with ramp constraints

• Consider an economic dispatch problem in two time periods in a 
system that consists of two generators

• Load:
• Period 1: 100 MWh
• Period 2: 200 MWh

A. Papavasiliou, NTUA

Generator Marginal cost
($/MWh)

Ramp rate (MW) Capacity (MW)

1 20 60 +∞
2 50 +∞ +∞
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Example Α.12: linear programming model

The linear program that describes the optimal dispatch can be expressed as 
follows:

min𝑝𝑝≥020 � (𝑝𝑝11 + 𝑝𝑝12) + 50 � (𝑝𝑝21 + 𝑝𝑝22)

𝜆𝜆1 : 100 − 𝑝𝑝11 − 𝑝𝑝21 = 0

𝜆𝜆2 : 200 − 𝑝𝑝12 − 𝑝𝑝22 = 0

𝛿𝛿+ :𝑝𝑝12 − 𝑝𝑝11 ≤ 60

𝛿𝛿− :𝑝𝑝11 − 𝑝𝑝12 ≤ 60
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Example Α.12: ramp constraints

• Ramp constraints limit how much the 
output of a generator can change 
from one time period to the next:

𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 ≤ 60
𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡+1 ≤ 60

• Equivalent to:
𝑝𝑝𝑡𝑡+1 ≤ 60 + 𝑝𝑝𝑡𝑡
−60 + 𝑝𝑝𝑡𝑡 ≤ 𝑝𝑝𝑡𝑡+1
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𝑝𝑝𝑡𝑡

60 + 𝑝𝑝𝑡𝑡

−60 + 𝑝𝑝𝑡𝑡

Period t Period t+1

𝑝𝑝𝑡𝑡+1
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Example Α.12: optimal solution

A. Papavasiliou, NTUA

Quantity 
(MW)

Time 
period1 2

Dispatch 
generator 1

160

100

0

Quantity 
(MW)

Time 
period21

Dispatch 
generator 2

40
0
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Example Α.12: ΚΚΤ conditions

The KKT conditions of the problem are described as follows:

100 − 𝑝𝑝11 − 𝑝𝑝21 = 0
200 − 𝑝𝑝12 − 𝑝𝑝22 = 0

0 ≤ 60 − 𝑝𝑝12 + 𝑝𝑝11 ⊥ 𝛿𝛿+ ≥ 0
0 ≤ 60 − 𝑝𝑝11 + 𝑝𝑝12 ⊥ 𝛿𝛿− ≥ 0

0 ≤ 20 − 𝜆𝜆1 − 𝛿𝛿+ + 𝛿𝛿− ⊥ 𝑝𝑝11 ≥ 0
0 ≤ 20 − 𝜆𝜆2 + 𝛿𝛿+ − 𝛿𝛿− ⊥ 𝑝𝑝12 ≥ 0

0 ≤ 50 − 𝜆𝜆1 ⊥ 𝑝𝑝21 ≥ 0
0 ≤ 50 − 𝜆𝜆2 ⊥ 𝑝𝑝22 ≥ 0
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Profit maximization 
generator 2

Profit maximization 
generator 1

Market clearing
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Example Α.12: profit maximization of 
generator 1
• The green KKT conditions are equivalent to the following profit 

maximization problem of generator 1:

max𝑝𝑝≥0 𝜆𝜆1 − 20 � 𝑝𝑝11 + (𝜆𝜆2 − 20) � 𝑝𝑝12

𝛿𝛿+ :𝑝𝑝12 − 𝑝𝑝11 ≤ 60

𝛿𝛿− :𝑝𝑝11 − 𝑝𝑝12 ≤ 60
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Example Α.12: profit maximization of 
generator 2
• The orange KKT conditions are equivalent to the following profit 

maximization problem of generator 2:

max𝑝𝑝≥0 𝜆𝜆1 − 50 � 𝑝𝑝21 + (𝜆𝜆2 − 50) � 𝑝𝑝22
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Example Α.12: understanding the price of 
period 2
• The profit maximization of each unit is contained in the ΚΚΤ conditions of the 

centralized economic dispatch problem
• This observation can be used in order to understand the market prices that result 

from the model
• Specifically, since generator 2 is asked to produce a positive quantity in period 2, 

the only market price that can urge the unit to produce a non-zero but finite 
amount of energy in period 2 is its marginal cost, because

• a price that is greater than its marginal cost would urge the unit to produce at its maximum 
(i.e. infinitely much) 

• while a price signal that is lower than its marginal cost would urge the unit to produce zero
• On the other hand, we cannot conclude what the price is for period 1 from the 

optimal dispatch of generator 2: since the generator is not producing, the price 𝜆𝜆1 
must be less than or equal to its marginal cost, but understanding the precise 
value of the price requires the analysis of the profit maximization of generator 1
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Example Α.12: understanding the price in 
period 1
• If the average value of the price over the two periods is greater than 20 $/MWh, 

then generator 1 has an interest to produce an arbitrarily large amount of energy 
in period 1, and this same quantity plus 60 MWh (the ramp constraint) in period 2

• On the other hand, if the average value in the two periods is lower than 20 
$/MWh, then the unit has an interest in producing 0 MWh during both periods

• Since none of these two extremes is the optimal dispatch, the average price in 
both periods must equal 20 $/MWh, so that we can urge the generator to 
produce 100 MWh in period 1 and 160 MWh in period 2

• Which implies that the price in period 1, 𝜆𝜆1, must equal -10 $/MWh
• A negative price may appear as being exotic, but it occurs in electricity markets, 

and implies that consumers are paid, instead of paying, to consume energy
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Example Α.12: inferring the price of period 1
from the ΚΚΤ conditions
• Since 𝑝𝑝11 > 0, the price of period 1 is

𝜆𝜆1 = 20 − 𝛿𝛿+ + 𝛿𝛿−

• Since 𝑝𝑝12 > 0 then
𝜆𝜆2 = 20 + 𝛿𝛿+ − 𝛿𝛿−

• We already know that 𝜆𝜆2 = 50 $/MWh
• Which implies that 𝛿𝛿+ − 𝛿𝛿− = 30 $/MWh
• Which implies that 𝜆𝜆1 = −10 $/MWh
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Example Α.12: (incorrect) pricing in practice

• It is worth juxtaposing the price derived previously to a heuristic that 
is used in practice by certain system operators: pricing at the marginal 
cost of the cheapest unit that is producing a non-zero quantity

• Applying this heuristic pricing method to the optimal solution of the 
economic dispatch that is calculated previously implies a price of 20 
$/MWh in both periods (since generator 1 produces a non-zero 
quantity in both periods, and is the cheapest unit in the market)

• However, this heuristic method does not maximize generator profits, 
and is therefore not aligned with private incentives
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Representing piecewise linear 
functions
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Representing piecewise linear functions

Hyperplane in ℝ𝑛𝑛: a set of points that is described as
{𝑥𝑥 ∈ ℝ𝑛𝑛|𝑎𝑎𝑇𝑇𝑥𝑥 = 𝑏𝑏}

where 𝑎𝑎 ∈ ℝ𝑛𝑛 and 𝑏𝑏 ∈ ℝ
• Generalizes a «line» into higher dimensions

• A piecewise linear convex function corresponds to the upper
envelope of the hyperplanes that define it

• A piecewise linear concave function corresponds to the lower
envelope of the hyperplanes that define it
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Example Α.15: minimizing piecewise linear 
convex functions
• Consider the following non-linear problem

min𝑥𝑥2 � 𝑥𝑥 + 𝑥𝑥 + 2.5 � 𝑥𝑥 − 2
• Optimal solution: 𝑥𝑥 = 0
• Geometric «solution»: moving from left to right, we stop at the point 

where the slope switches from negative to positive
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Example Α.15: equivalent representation as a 
linear program
Equivalent representation as a linear program:

min𝑥𝑥,𝜃𝜃1,𝜃𝜃22 � 𝑥𝑥 + 𝜃𝜃1 + 2.5 � 𝜃𝜃2
𝜃𝜃1 ≥ 𝑥𝑥
𝜃𝜃1 ≥ −𝑥𝑥
𝜃𝜃2 ≥ 𝑥𝑥 − 2
𝜃𝜃2 ≥ 2 − 𝑥𝑥
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Piecewise linear functions and dynamic 
programming
• Dynamic programming value functions in multistage stochastic linear 

programs are piecewise linear
• They emerge in the context of hydrothermal planning
• They map the level of water to the expectation of the value function
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Sensitivity analysis
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Condition for an optimal basis

Proposition: A basic solution is optimal if
• 𝐵𝐵−1𝑏𝑏 ≥ 0 and
• 𝑐𝑐𝑁𝑁𝑇𝑇 − 𝑐𝑐𝐵𝐵𝑇𝑇𝐵𝐵−1𝑁𝑁 ≥ 0

• The solution is feasible because 𝑥𝑥𝐵𝐵 = 𝐵𝐵−1𝑏𝑏 ≥ 0 and 𝑥𝑥𝑁𝑁 = 0
• We express the basic variables as a function of non-basic variables in the 

objective function:
𝛣𝛣 𝛮𝛮

𝑥𝑥𝐵𝐵
𝑥𝑥𝑁𝑁 = 𝑏𝑏 ⇔ 𝐵𝐵𝑥𝑥𝐵𝐵 + 𝑁𝑁𝑥𝑥𝑁𝑁 = 𝑏𝑏 ⇔ 𝑥𝑥𝐵𝐵 = 𝐵𝐵−1 𝑏𝑏 − 𝑁𝑁𝑥𝑥𝑁𝑁

• Substituting into the objective function:
𝑐𝑐𝑇𝑇𝑥𝑥 = 𝑐𝑐𝐵𝐵𝑇𝑇𝐵𝐵−1𝑏𝑏 + 𝑐𝑐𝑁𝑁𝑇𝑇 − 𝑐𝑐𝐵𝐵𝑇𝑇𝐵𝐵−1𝑁𝑁 𝑥𝑥𝑁𝑁
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• The first term is a constant
• If we move from the present solution to any other feasible solution, 

then the second term cannot improve the objective function
• The vector 𝑐𝑐𝑁𝑁𝑇𝑇 − 𝑐𝑐𝐵𝐵𝑇𝑇𝐵𝐵−1𝑁𝑁 ∈ ℝ𝑛𝑛−𝑚𝑚 is referred to as the reduced cost 

of the basis
• Non-negative reduced cost is a sufficient condition for a feqsaible 

basis to be optimal
• And under certain conditions (non-degenerate solution) it is also 

sufficient (theorem 3.1 [2])
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Example Α.16: Feasible and optimal bases for 
the diet problem
• We are seeking a least-cost diet 

which consists of three dishes and 
includes at least 𝑏𝑏1 and 𝑏𝑏2 units of 
two nutrients

• The content of dishes in nutrients is 
presented in the table

• Cost of dishes:
• Dish 1: 1 €
• Dish 2: 2 €
• Dish 3: 1 €
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Dish 1 Dish 2 Dish 3
Nutrient 1 0.5 4 1
Nutrient 2 2 1 2



Example Α.16: formulation as a linear 
program
The problem is expressed parametrically with respect to nutrient content as 
follows:

min𝑥𝑥𝑥𝑥1 + 2 � 𝑥𝑥2 + 𝑥𝑥3
0.5 � 𝑥𝑥1 + 4 � 𝑥𝑥2 + 𝑥𝑥3 = 𝑏𝑏1
2 � 𝑥𝑥1 + 𝑥𝑥2 + 2 � 𝑥𝑥3 = 𝑏𝑏2

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0

Three possible bases:
𝛣𝛣1 = 0.5 4

2 1 ,𝛣𝛣2 = 0.5 1
2 2 ,𝛣𝛣3 = 4 1

1 2
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Example Α.16: basic solution as a function of 
nutritional requirements
• Reduced costs:

• Basis 𝛣𝛣1: -0.2
• Basis 𝛣𝛣2: 1.5
• Basis 𝛣𝛣3: 0.2143

• Basic solutions as functions of 𝑏𝑏:

𝑥𝑥𝐵𝐵1 = −0.1333 � 𝑏𝑏1 + 0.5333 � 𝑏𝑏2
0.2667 � 𝑏𝑏1 − 0.0667 � 𝑏𝑏2

𝑥𝑥𝐵𝐵2 = −2 � 𝑏𝑏1 + 𝑏𝑏2
2 � 𝑏𝑏1 − 0.5 � 𝑏𝑏2

𝑥𝑥𝐵𝐵3 = 0.2857 � 𝑏𝑏1 − 0.1429 � 𝑏𝑏2
−0.1429 � 𝑏𝑏1 + 0.5714 � 𝑏𝑏2
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Example Α.16: cost as a function of 𝑏𝑏

• Define 𝑅𝑅𝑖𝑖 = { 𝑏𝑏1, 𝑏𝑏2 : 𝑥𝑥𝐵𝐵𝑖𝑖 ≥ 0} as the set of 𝑏𝑏 for which basis 𝑖𝑖 is 
feasible

𝑅𝑅1 = {0.25 � 𝑏𝑏1 ≤ 𝑏𝑏2 ≤ 4 � 𝑏𝑏1}
𝑅𝑅2 = {2 � 𝑏𝑏1 ≤ 𝑏𝑏2 ≤ 4 � 𝑏𝑏2}

𝑅𝑅3 = {0.25 � 𝑏𝑏1 ≤ 𝑏𝑏2 ≤ 2 � 𝑏𝑏1}
• Cost of each basic solution as a function of the parameters (𝑏𝑏1, 𝑏𝑏2)

𝑐𝑐𝐵𝐵1
𝑇𝑇 𝑥𝑥𝐵𝐵1 = 0.4 � 𝑏𝑏1 + 0.4 � 𝑏𝑏2

𝑐𝑐𝐵𝐵2
𝑇𝑇 𝑥𝑥𝐵𝐵2 = 0.5 � 𝑏𝑏2

𝑐𝑐𝐵𝐵3
𝑇𝑇 𝑥𝑥𝐵𝐵3 = 0.4286 � 𝑏𝑏1 + 0.2857 � 𝑏𝑏2
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Example Α.16: the function 𝑧𝑧∗(𝑏𝑏)

• We can check that: 
• 𝑥𝑥𝐵𝐵2 is optimal in 𝑅𝑅2
• 𝑥𝑥𝐵𝐵3 is optimal in 𝑅𝑅3

• The optimal solution as a function of 
𝑏𝑏 is piecewise linear

• The region 𝑅𝑅2 corresponds to a mix of 
dishes 1 and 3

• The region 𝑅𝑅3 corresponds to a mix of 
plates 2 and 3
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𝑧𝑧∗(𝑏𝑏) from a dual point of view
• The dual of the primal program in standard form is

𝐷𝐷 : max𝜋𝜋𝜋𝜋𝛵𝛵𝑏𝑏
s. t.𝜋𝜋𝑇𝑇𝛢𝛢 ≤ 𝑐𝑐𝛵𝛵

• A basic solution of a polyhedron 𝑃𝑃 ⊆ ℝ𝑛𝑛 (not in standard form) is a vector 𝑥𝑥 such that:
• The equality constraints are active, and
• From the equality constraints that are active at 𝑥𝑥, 𝑛𝑛 of them are linearly independent

• Each base 𝛣𝛣 of the constraint matrix 𝛢𝛢 corresponds to a basic solution of the feasible set of the dual 
problem based on the relation 𝜋𝜋𝛵𝛵 = 𝑐𝑐𝐵𝐵𝑇𝑇𝐵𝐵−1

• And for each basic solution of the dual, there is a basis in the primal matrix such that the above relationship 
holds

• Thus, the dual problem is expressed equivalently as
𝑧𝑧∗ 𝑏𝑏 = max𝑖𝑖=1,…,𝑟𝑟𝜋𝜋𝑖𝑖𝑇𝑇𝑏𝑏

where 𝑟𝑟: number of basic feasible solutions of (𝐷𝐷)
• As in the primal analysis, this suggests that 𝑧𝑧∗(𝑏𝑏) is a piecewise linear function of 𝑏𝑏
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Example Α.17: feasible set of the dual of the 
diet problem
The dual of the diet problem is expressed 
as follows:

max𝜋𝜋𝑏𝑏1 � 𝜋𝜋1 + 𝑏𝑏2 � 𝜋𝜋2
s. t.  0.5 � 𝜋𝜋1 + 2 � 𝜋𝜋2 ≤ 1

4 � 𝜋𝜋1 + 𝜋𝜋2 ≤ 2
𝜋𝜋1 + 2 � 𝜋𝜋2 ≤ 1
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