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A B S T R A C T

Since the liberalization of the power sector and the creation of wholesale electricity markets, the question of
how to price the non-convexities that are present in the market has attracted the interest of both academics and
practitioners. Over the years, US markets have studied and adopted different and evolving pricing rules. Since
the ‘‘Trilateral Market Coupling’’ (2006), the European day-ahead market has opted for a notably different
pricing rule. Recently, EU stakeholders have undertaken research to reform it, and have indicated an interest
for some approaches that are discussed in the other side of the Atlantic. Our paper aims at contributing to the
debate. We analyse six different pricing methods. We establish several mathematical properties for enabling
their accurate comparison. Our findings are illustrated on stylized examples and numerical simulations that
are performed on realistic datasets. Both theoretical and numerical evidences that are gathered in our paper
point towards the advantages of convex hull pricing.
1. Introduction

Power auctions are notably characterized by the presence of non-
convexities. In the US, these non-convexities emerge from the so-called
unit commitment model, which has been run in control rooms since
before the liberalization of the power sector took place. Although some
economists have argued for simpler – convex – market models (cf. the
arguments covered by Stoft (2002)), unit commitment has prevailed
in many US auctions. In Europe, despite the fact that the market
model is different, it also includes non-convex bids, the so-called ‘‘block
orders’’ being the simplest example. Although the European market
does not rely on physical unit commitment models, the non-convex
orders also aim – indirectly at least – at providing the suppliers with
the flexibility of representing the complex constraints of power gener-
ation into the auction. Non-convex multi-parts bids are a bet that the
efficiency gained by a refined scheduling model are higher than the
inefficiencies resulting from the increase in complexity. In particular,
the main drawback of non-convexities is that they impede the existence
of a competitive equilibrium. The ‘‘classical’’ marginal prices fail to
support the efficient allocation of goods. The absence of equilibrium
prices has resulted in various and evolving pricing practises among the
US and EU markets.
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(grant agreement No. 850540).
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The liberalization of the power sector in the US started in the 90s,
encouraged by the government through the Energy Policy Act of 1992.
The creation of the Independent System Operators (ISOs), that have
assumed the role of operating the market, followed in the late 90s and
early 2000s. Locational marginal pricing (LMP) has traditionally been
adopted by many ISOs to clear the market, cf. Stoft (2002) and the
historical account provided by EPRI (2019). Experience revealed sev-
eral drawbacks of marginal pricing, especially the fact that short-term
fixed costs are not reflected in the price signal which therefore does not
provide adequate incentives to market participants. The inadequacy of
marginal pricing has stimulated research about the right way to price
non-convex power auctions. Convex hull pricing (CHP) (Hogan and
Ring, 2003) has emerged as a promising – although contested (Schiro
et al., 2015) – way to price energy in the presence of non-convex bids.
Acknowledging these issues, several ISOs started moving away from
marginal pricing. In 2014, the US Regulatory Commission launched a
consultation about price formation in power auctions (FERC, 2014). In
2015, MISO implemented ‘‘Extended LMP’’ (ELMP, an approximation
of convex hull pricing) and a similar proposal followed by PJM in
2017 (PJM, 2017). Other ISOs have implemented various ‘‘fast-start
pricing’’ approaches (EPRI, 2019), which are variants of ELMP. They
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typically share the property of including, to some extent, fixed costs
in the price and resorting to some sort of linear relaxation of the
problem for computing market clearing prices. One example is the
‘‘hybrid pricing’’ approach, or ‘‘Fixed Block Unit Pricing’’, implemented
by NYISO (2016) since the early 2000s. That being said, up to recently,
some ISOs such as CAISO or SPP still rely on marginal pricing (CAISO,
2020; EPRI, 2019).

The restructuring of the power sector in Europe went down a
similar path, notwithstanding its peculiarities, cf. the historical account
by Meeus (2020). Following the creation of the European Single Market
in 1993, the First Energy Package initiated the liberalization of the
power sector in 1996. The actual unbundling of competitive (supply
and retail) and regulated (TSO and DSO) segments effectively took
place between 2003 and 2009 (the Second and Third Energy Packages),
along with the creation of national Regulatory Authorities. The im-
plementation of power markets followed, with a different institutional
arrangement than in the US: instead of the US ISOs (private, non-
profit), the EU market is operated by the Nominated Electricity Market
Operator (NEMO, private and for -profit). The first centralized – and
non-convex – auction, coupling parts of central-western European coun-
tries, went live in 2006 (the so-called ‘‘Trilateral Market Coupling’’).
This auction has been progressively extended to more member states
and in 2014 it became the Single Day-Ahead Coupling (SDAC) that
still prevails today. SDAC currently couples 27 countries (62 bidding
zones, 30 TSOs and 16 NEMOs) with an average daily traded volume of
4.62 TWh for a market surplus of 9.9 B€ per session (NEMO Committee,
2023).

The pricing approach adopted early on by SDAC (NEMO Com-
mittee, 2020b), inherited from the design of the Trilateral Market
Coupling (Belpex et al., 2006), significantly differs from those en-
countered across the US. A central difference in the design is the
introduction of side-payments. Because an equilibrium does not exist
with a uniform energy price, the US ISOs resort to discriminatory side-
payments that complement the uniform price of energy. In contrast
with this – so-called in EU parlance – ‘‘non-uniform pricing’’, the EU
stakeholders have opted for a uniform pricing rule. This is anchored
in the regulation: the Market Codes emphasize the importance for the
payments to be non-discriminatory (CACM GL, Art. 38, 1.b, cf. Commis-
sion Regulation (EU) (2015)). According to Meeus (2020), this implies
that the introduction of ‘‘non-uniform pricing’’ (i.e. the usage of side
payments) would require to change the regulation. This has motivated
market clearing rules that are notably different from those in the US.
The general principle of the EU pricing approach can be described
as follows. It is deemed unacceptable for a non-convex bid, such as
block orders, to be cleared while it is out of the money (a so-called
‘‘paradoxically accepted block’’, or PAB). Since the market principles
reject the usage of side payments, the market may not clear PABs. Thus,
the auction first solves the dispatch problem by aiming at maximizing
the welfare. Then, if no price can be found that respects the no-PAB
requirement, some constraints are added to the dispatch problem which
is solved again. This process repeats until the set of allocation and price
satisfies all the requirements.1

There are three main issues with this pricing approach (Van Vyve,
2011). Firstly, as opposed to US auctions that clear the welfare-
maximizing allocation, the EU market clearing rules can result in
rejecting welfare-enhancing bids in order to satisfy the no-PAB require-
ment. From an economic viewpoint, this welfare loss is critical since
efficiency (maximization of the total surplus) is the main justification

1 To simplify the exposition, we only describe the PAB requirement. As a
atter of fact, there are additional ‘‘primal–dual’’ constraints in the market

ules, that an interested reader can find in NEMO Committee (2020b).
2

o

for the market to exist.2 From a regulatory standpoint, the CACM GL
market codes (Art. 38, 1.a, cf. Commission Regulation (EU) (2015))
specifically emphasize that the EU pricing algorithm should ‘‘aim at
maximizing economic surplus for single day-ahead coupling’’, which
is, strictly speaking, currently not the case. Secondly, although the EU
pricing rule ensures no PAB orders, the outcome is not a competitive
equilibrium. There are market participants that are not cleared while
they would be profitable: the so-called ‘‘paradoxically rejected blocks’’
(PRB). In 2022, there was an average volume of 12 GWh of PRBs per
bidding zone per day, which amounted to a total profit loss of 129
thousand euros per day (NEMO Committee, 2023). From a regulatory
viewpoint, using the previously cited Art. 38 1.b of CACM GL, one
could argue that the current pricing rule already entails discrimination
of market players through the PRBs. Thirdly, the complexity of the
clearing rules creates computational challenges. This is problematic,
since the current algorithm is granted 17 min to compute the market
clearing allocation and price for the entire European continent. This
limit increased from 12 to 17 min between 2019 and 2022 – and there
are discussions to further extend it to 30 min or more (MCSC, 2023) – ,
reflecting the computational stress caused by this pricing requirement.
The Market Codes also emphasize the importance of ‘‘scalability’’, cf.
CACM GL, Art. 38, 1.e in Commission Regulation (EU) (2015).

For these reasons, SDAC is undertaking research to reform the
current pricing rule (SDAC, 2023). Initial EU stakeholder discussions
on ‘‘non-uniform prices’’ identified convex hull pricing as one possible
option for the EU market (NEMO Committee, 2020a). More recent
discussions have rather focused on marginal pricing (MCSC, 2022),
although nothing is decided yet (SDAC, 2023). Our paper aims at
contributing to these discussions relative to the reform of the European
pricing rules, although our analysis also applies to US auctions. Our
discussion focuses on possible alternatives to the current pricing rule,
i.e. we discuss the advantages of these alternatives between them and
not over the SDAC pricing rule. In particular, the contributions of this
paper are threefold.

Firstly, we perform a cross-comparison of four different pricing
approaches. Several properties are formalized mathematically on the
same model, in order to allow for a rigorous comparison of the al-
ternative prices. Our paper focuses on the short-term properties of the
prices. The long-term properties – the effect of pricing on investment
incentives – have notably been studied in other recent works (Mays
et al., 2021; Byers and Hug, 2023). Our endeavor aims at addressing the
urge for a better understanding of various pricing candidates, as called
upon by EPRI (2019). To some extent, we follow up on the pioneering
works of Schiro et al. (2015) and Liberopoulos and Andrianesis (2016).
While Schiro et al. (2015) focuse solely on Convex Hull Pricing, we
discuss it in comparison with other approaches to better grasp their
relative benefits and drawbacks. We also critically review some of the
arguments provided by Schiro et al. (2015). While Liberopoulos and
Andrianesis (2016) study some properties on a ‘‘two-suppliers’’ model,
we rather analyse other properties on a general market model.

Secondly, the theoretical properties are supported by numerical sim-
ulations on realistic systems. This is a novelty compared to both Schiro
et al. (2015) and Liberopoulos and Andrianesis (2016). In particular,
studying convex hull pricing on realistic instances is an effort that
has not been widely undertaken in the literature. Thanks to recent
algorithmic progresses (Stevens and Papavasiliou, 2022; Andrianesis
et al., 2021) we are able to compute exact CHP on realistic instances.
This enables an accurate numerical comparison. More specifically, we
illustrate and study the properties of the four pricing approaches on

2 Unfortunately, there is no public figure regarding the welfare loss, al-
hough it is a key indicator. ACER is the institution that defines the KPIs that
re reported in the annual CACM reports. It would arguably make sense to
nclude this additional KPI: the difference of welfare between the ‘‘root node’’
f the market clearing algorithm and the final solution.
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two different datasets: the ‘‘FERC dataset’’ (public data, but without
a network) and the ‘‘CWE dataset’’ (non-public data, but including a
network).

Finally, we particularly include the pricing method proposed by
Madani and Papavasiliou (2022) referred to as ‘‘Minimal Make-Whole
Payment’’ (MMWP) pricing in our comparison. This novel approach is
representative of various recent proposals that have appeared in the
literature, which have not been critically assessed so far. We notably
implement three alternative versions of MMWP, and we discuss their
relative advantages.

The material of the paper is organized as follows. Sections 2 and 3
introduce the model, the main concepts and the four pricing schemes.
Sections 4 to 8 then study their properties, and provide results from
numerical simulations. To some extent, Sections 5, 6 and 7–8 focus
respectively on the comparison between CHP vs. MMWP, CHP vs. ELMP
and CHP vs. marginal pricing.

2. Market model and distance to equilibrium

Throughout this paper, we consider the following auction model,
which can accommodate the settings of both the EU day-ahead market3

s well as most US auctions.

∗ = min
𝑐,𝑞,𝑥,𝑓

∑

𝑔∈
𝑐𝑔 (1a)

∑

𝑔∈𝑖

𝑞𝑔,𝑡 −𝐷𝑖
𝑡 =

∑

𝑙∈
𝑓𝑟𝑜𝑚(𝑖)

𝑓𝑙,𝑡 −
∑

𝑙∈
𝑡𝑜(𝑖)

𝑓𝑙,𝑡 ∀𝑖 ∈  , 𝑡 ∈  (1b)

(𝑐, 𝑞, 𝑥)𝑔 ∈ 𝑔 ∀𝑔 ∈  (1c)

𝑓 ∈  (1d)

The auction model (1) aims at minimizing the cost of satisfying the load
𝐷𝑖

𝑡 for each time period 𝑡 ∈  and each bidding zone 𝑖 ∈  . To simplify
the exposition of the paper, demand is assumed to be inelastic.4 The
market includes a set of 𝑖 suppliers (or market offers) at each node
𝑖. Each offer is modelled with a total cost variable 𝑐𝑔 , a power output
𝑔,𝑡 at time 𝑡 and a set of possibly non-convex constraints 𝑔 . The vari-
bles 𝑥𝑔 stand for all the binary variables encountered in the supplier
odel. In a US auction, which typically relies on a unit commitment
odel, 𝑔 should be understood as a detailed representation of the

echnical constraints of the power plant 𝑔. In the EU day-ahead auction,
which relies on portfolio bidding instead of unit bidding, 𝑔 should
be understood as the constraints of the market order 𝑔 (blocks, linked
blocks, stepwise curves, etc.). Eq. (1b) represents the market clearing
constraints. Finally, the auction model (1) also includes a network. The
variable 𝑓𝑙,𝑡 represents the flow on line 𝑙, while 𝑓𝑟𝑜𝑚(𝑖) is the set of lines
originating from 𝑖 and 𝑡𝑜(𝑖) the ones directed towards 𝑖. No assumption
is made on the network constraints  , except that it is a convex set. All
suppliers are assumed to be price-takers and to act so as to maximize
their private profit. We now proceed with some definitions.

Definition 1 (Supplier Profit Maximization). The agent 𝑔 is assumed to
maximize its selfish profit function 𝑔 , under market price 𝜋, defined
as follows:

max
(𝑐,𝑞,𝑥)𝑔∈𝑔

𝑔(𝑐, 𝑞, 𝑥, 𝜋) ≡
∑

𝑡∈
𝑞𝑔,𝑡𝜋𝑖(𝑔),𝑡 − 𝑐𝑔 . (2)

3 This has one exception: the so-called PUN orders (the ‘‘Prezzo Unico
azionale’’ requirement in Italy, cf. NEMO Committee (2020b)) and complex
rders are not compatible with the pricing approaches considered in this paper
s they include primal–dual constraints. We point out that both the PUN and
omplex orders are planned to be discontinued (MCSC, 2023).

4 All the pricing schemes and results of this paper can be extended straight-
orwardly to a model with elastic loads. With elastic load, the objective of the
3

uction is welfare maximization.
Definition 2 (Network Profit Maximization). The network is assumed to
maximize its profit function 𝑁 (the ‘‘congestion rent’’), under market
price 𝜋, defined as follows:

max
𝑓∈

𝑁 (𝑓, 𝜋) ≡
∑

𝑖∈ ,𝑡∈
−𝜋𝑖,𝑡

⎛

⎜

⎜

⎜

⎝

∑

𝑙∈
𝑓𝑟𝑜𝑚(𝑖)

𝑓𝑙,𝑡 −
∑

𝑙∈
𝑡𝑜(𝑖)

𝑓𝑙,𝑡

⎞

⎟

⎟

⎟

⎠

. (3)

Definition 3 (Competitive Walrasian Equilibrium). The allocation (𝑐∗, 𝑞∗,
𝑥∗, 𝑓 ∗) together with the market price 𝜋 constitute a competitive Wal-
rasian equilibrium if

(i) for each supplier 𝑔, (𝑐∗, 𝑞∗, 𝑥∗)𝑔 optimizes the profit problem (2)
under price 𝜋; 𝑓 ∗ optimizes the network profit problem (3) under
price 𝜋, and

(ii) the market clears (constraint (1b)).

A paramount desideratum for an auction is to reach economic ef-
ficiency : the allocation of goods resulting from the market should
be welfare-maximizing (cost-minimizing under inelastic load). All the
pricing schemes considered in this paper assume a welfare-maximizing
allocation: they assume that the auctioneer solves problem (1) and
selects the welfare-maximizing allocation. An example of a pricing
scheme that departs from welfare maximization is the current Eu-
ropean pricing rule (cf. Section 1). In the remainder of this paper,
(𝑐∗, 𝑞∗, 𝑥∗, 𝑓 ∗) refers to the optimal solution of problem (1). Since the

arket is non-convex, a competitive equilibrium is not guaranteed to
xist (i.e. the concern is about the existence of an equilibrium rather

than its efficiency : the First Theorem of Welfare Economics does not
require convexity, so if an equilibrium exists in a non-convex market,
it will be efficient, cf. Debreu (1959)). By assumption, the alloca-
tion (𝑐∗, 𝑞∗, 𝑥∗, 𝑓 ∗) satisfies condition (ii) in Definition 3. The issue
is that there may be no price 𝜋 that fulfils condition (i), provided
this allocation. Assuming that the market agents maximize their profit
(Definitions 1 and 2), the violation of condition (i) is measured by the
lost opportunity cost (LOC).

Definition 4 (Lost Opportunity Cost). The lost opportunity cost is the
difference between the maximum profit and the as-cleared profit under
price 𝜋. It is defined hereafter for each supplier 𝑔 (Eq. (4)), for the
network (Eq. (5)) and in total (Eq. (6)).

𝐿𝑂𝐶𝑔𝑒𝑛
𝑔 (𝜋) = max

(𝑐,𝑞,𝑥)𝑔
∈𝑔

𝑔(𝑐, 𝑞, 𝑥, 𝜋) − 𝑔(𝑐∗, 𝑞∗, 𝑥∗, 𝜋) (4)

𝐿𝑂𝐶𝑛𝑒𝑡(𝜋) = max
𝑓∈

𝑁 (𝑓, 𝜋) − 𝑁 (𝑓 ∗, 𝜋) (5)

𝐿𝑂𝐶(𝜋) =
∑

𝑔∈
𝐿𝑂𝐶𝑔𝑒𝑛

𝑔 (𝜋) + 𝐿𝑂𝐶𝑛𝑒𝑡(𝜋) (6)

The lost opportunity cost measures the financial incentives that
each profit-maximizing agent has for deviating from the allocation
decided by the auctioneer. Having a price that is incentive compatible
is important, both in order to ensure truthful bidding before the market
clears, as well as to ensure that the participants would follow the
dispatch instructions after the market has cleared. Concretely, incentive
compatibility is related to the notion of self-scheduling : a positive LOC
means that the price does not support the dispatch, thereby implying
an opportunity for the concerned agents to self-schedule, thus deviating
from the dispatch (𝑐∗, 𝑞∗, 𝑥∗) that is cleared in the auction. As far as
the network LOC is concerned, Garcia et al. (2020) interpret it as a
potential congestion revenue shortfall, meaning a possible inadequacy
between the FTR payments and the congestion revenue that the system
operator collects. More generally, it can be interpreted as an incentive
for the grid operator, given the market prices, to organize the flows
on the network in a manner that deviates from its efficient usage.
For example, let us consider two nodes connected by a line. The two

nodes receive different prices, but the line is not congested. This could
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arguably be contemplated as an undesirable configuration. Formally,
there is a network LOC: the cleared flows do not maximize the value
of the network.

Certain researchers and practitioners have advocated that the price
should not only aim at being incentive-compatible, as measured by the
LOC, but that it should also ensure a non-confiscatory outcome: the price
should at least enable the cleared bids to recover their costs (Madani
and Papavasiliou, 2022; Bichler et al., 2022; EPRI, 2019). The latest is
measured by revenue shortfall.

Definition 5 (Revenue Shortfall). The revenue shortfall (RS) corre-
sponds to the payments that are required in order to ensure a non-
negative profit. It is defined for each supplier (Eq. (7)), for the network
(Eq. (8)) and in total (Eq. (9)).

𝑅𝑆𝑔𝑒𝑛
𝑔 (𝜋) = −min

(

0, 𝑔(𝑐∗, 𝑞∗, 𝑥∗, 𝜋)
)

(7)

𝑅𝑆𝑛𝑒𝑡(𝜋) = −min
(

0, 𝑁 (𝑓 ∗, 𝜋)
)

(8)

𝑅𝑆(𝜋) =
∑

𝑔∈
𝑅𝑆𝑔𝑒𝑛

𝑔 (𝜋) + 𝑅𝑆𝑛𝑒𝑡(𝜋) (9)

Needless to say that the LOC and RS are non-negative numbers. Let
us notice that lost opportunity cost and revenue shortfall are some-
times referred to, respectively, as ‘‘uplift payments’’ and ‘‘make-whole
payments’’ in the literature. However, this terminology is misleading.
Because of the absence of a competitive equilibrium, the auctioneer
may indeed resort to some sort of out-of-market discriminatory pay-
ments that complement the uniform energy price. For example, several
US ISOs pay make-whole payments, while ISO-NE pays lost opportunity
costs for committed units (EPRI, 2019). Nonetheless, denoting the LOC
as ‘‘uplift payment ’’ suggests that the LOC only matters for the markets
that are actually paying them. Instead, the LOC is a crucial indicator,
independently from the actual payments that are paid by a particular
auctioneer.

3. Pricing scheme proposals

There is no straightforward solution to the absence of competi-
tive prices. We consider hereafter four pricing mechanisms that are
proposed in the literature. They all correspond to a certain convex
reformulation (either a relaxation or a restriction) of the non-convex
problem (1), cf. the discussion in Madani and Papavasiliou (2022).
A first option is to rely on marginal pricing, also called Integer Pro-
gramming (IP) pricing (O’Neill et al., 2005). This pricing scheme is
theoretically meaningful to study since it is widely used in economics.
It is also practically relevant, given its historical usage in US power
auctions, and considering that it is a serious candidate currently on the
table for the EU market.

Definition 6 (Marginal Pricing). The marginal (IP) prices are the dual
variables 𝜋𝐼𝑃 associated with the market clearing constraint in problem
(1) in which the binary variables 𝑥 have been fixed to their optimal
value 𝑥∗.

It effectively corresponds to taking the price as the subgradient of
the total cost curve with binary variables fixed.

A second approach – central for our paper – is Convex Hull Pricing
(CHP), which has been proposed in Hogan and Ring (2003) and Gribik
et al. (2007). We adopt here the primal formulation of CHP (Hua and
Baldick, 2017).

Definition 7 (Convex Hull Pricing). The convex hull prices are the dual
variables 𝜋𝐶𝐻 that are associated to the market clearing constraints in
problem (1), in which the sets 𝑔 are replaced by conv(𝑔).

It is worth noting – besides the peculiar name – the natural inter-
4

pretation of this pricing approach. The very problem of non-convexities p
is the inexistence of a competitive equilibrium. The logic of this ap-
proach is to compute the prices of the closest convex economy, in which
a competitive equilibrium exists. Remarkably, although most of the
economic theory neglects non-convexities, Starr (1969) and Arrow and
Hahn (1971), who studied non-convexities in the theory of general
equilibrium, adopted convex hull pricing – albeit they do not use this
term. The main property of CHP which has justified its interest in power
auctions is that it minimizes the LOC (Gribik et al., 2007): they are the
prices that are ‘‘as incentive-compatible as possible’’, i.e. that are as
close as possible to a competitive equilibrium.

Proposition 1 (CHP). CH prices minimize the total lost opportunity costs,
as defined in (6).

All the proofs are in Appendix A. From Lagrangian duality theory,
one can observe that the LOC corresponds to the duality gap between
the primal solution 𝑧∗ and the Lagrangian dual function in which the
market-clearing constraint (1b) is relaxed. Proposition 1 then states that
CHP is the price (the Lagrangian multiplier) that minimizes the duality
gap.

Convex hull prices are notably difficult to compute (Schiro et al.,
2015). Therefore, an approximation of CHP, called ELMP, has been
proposed and is already implemented by several ISOs, as explained in
Section 1.

Definition 8 (Extended Locational Marginal Pricing). The extended loca-
tional marginal prices are the dual variables 𝜋𝐸𝐿𝑀𝑃 that are associated
to the market clearing constraints in problem (1), in which the sets 𝑔
are replaced by  [0,1]

𝑔 , i.e. the binary constraints on 𝑥 are relaxed to
[0, 1].

In case  [0,1]
𝑔 = conv(𝑔), ELMP would correspond to the exact CHP

approach. This is the main justification for ELMP: it is viewed as a
tractable approximation of CHP. Nonetheless, even though the above
equality,  [0,1]

𝑔 = conv(𝑔), can be guaranteed in certain simple cases,
there are some constraints, such as the ramp constraints, for which
the equality is not straightforward to obtain, and reaching a tight
formulation in these cases may require the introduction of a substantial
number of valid inequalities (Hua and Baldick, 2017).

In a similar spirit as CHP, which minimizes the LOC, a number
of researchers have advocated for a price that minimizes the revenue
shortfall. In multiple works, O’Neill has proposed the Average Incre-
mental Cost (AIC) pricing (Chen et al., 2020; O’Neill et al., 2023),
which aims at finding a ‘‘zero make-whole payment price’’ for the sup-
pliers. However, this is not an achievable target for both the suppliers
and the loads if the latter are elastic. Indeed, it cannot be guaranteed
that we can find a uniform price that ensures zero revenue shortfall for
all the market participants in a two-sided auction.

Example 1 (Impossibility of Zero RS with Elastic Load). Let us consider
an hourly market with a non-convex supplier producing at maximum
200 MW for 50€/MWh, and at minimum 100 MW. Let us also consider
two convex and elastic loads: one is willing to consume 90 MW for
10,000€/MWh, the other is willing to consume 20 MW for 20€/MWh.
Because of the minimum output constraint of the supplier (the non-
convexity of the present example), the optimum solution is to produce
100 MW and to clear respectively 90 and 10 MW of the loads. Any
price 𝜋 would result in either a RS for the loads or for the supplier.
Indeed, the non-negative as-cleared profit condition implies 𝜋 ≥ 50 for
the supplier and 𝜋 ≤ 20 for the load, so the set of prices ensuring zero
RS is empty.5 We notice that, in this example, CHP, ELMP, MMWP or
AIC pricing all result in a market clearing price of 50€/MWh, which
implies a RS of 300€ for the second load.

5 The European SDAC clearing rule achieves zero revenue shortfall in a two-
ided auction. The difference with Example 1 is that the SDAC rule does not
ix the optimal dispatch: it allows a change in the dispatch, and tolerates a
ossible loss of social welfare, in order to find a price that ensures zero RS.
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Instead of AIC pricing, we shall consider, as the fourth pricing
scheme of this paper, a method that aims at minimal make-whole
payments (MMWP), proposed by Madani and Papavasiliou (2022), that
works with both elastic and inelastic loads.6 Two variants of MMWP
will later be discussed in Section 5.

Definition 9 (Minimal Make-Whole Payments Pricing). The minimal
make-whole payments prices are the dual variables 𝜋𝑀𝑀𝑊𝑃 associated
to the market clearing constraints in the following problem:

min
𝑘𝑔𝑒𝑛𝑔 ,𝑘𝑓

∑

𝑔∈
𝑘𝑔𝑒𝑛𝑔 𝑐∗𝑔 (10a)

𝜋𝑀𝑀𝑊𝑃
𝑖,𝑡 )

∑

𝑔∈𝑖

𝑘𝑔𝑒𝑛𝑔 𝑞∗𝑔,𝑡 −𝐷𝑖
𝑡 = (10b)

𝑘𝑓 (
∑

𝑙∈
𝑓𝑟𝑜𝑚(𝑖)

𝑓 ∗
𝑙,𝑡 −

∑

𝑙∈
𝑡𝑜(𝑖)

𝑓 ∗
𝑙,𝑡) ∀𝑖 ∈  , 𝑡 ∈  (10c)

0 ≤ 𝑘𝑔𝑒𝑛𝑔 , 𝑘𝑓 ≤ 1 (10d)

roposition 2 (MMWP). MMWP prices minimize the total revenue short-
fall, as defined in (9).

Given Problem (1) assumes inelastic load, MMWP will in fact lead
to zero revenue shortfall.

We conclude the section with three general remarks. Firstly, among
the four pricing approaches, IP, ELMP and MMWP are computationally
straightforward to obtain, while CHP is notably more challenging to
compute. In this paper, we calculate it using the Level Algorithm which
has demonstrated its ability to compute exact CHPs for realistic market
sizes (Stevens, 2016; Stevens and Papavasiliou, 2022). Secondly, CHP,
IP and MMWP are formulation-independent, while ELMP is formulation-
dependent. Two equivalent formulations of the sets 𝑔 could result in
different ELMPs.7 Thirdly, we notice that both CHP and ELMP keep
primal and dual computations distinct, while IP and MMWP do not. As
highlighted by Schiro et al. (2015), this implies that an off-line unit
could set the price under CHP or ELMP. It is, nonetheless, unclear to
what extent this is an undesirable feature. For example, the principle of
a second-price auction, which is contemplated in economics as a sound
manner to clear an auction, is that the first losing bid sets the price.

4. Agents’ incentives: Distributional analysis

The main property of CHP (Proposition 1) informs us on the total
LOC, which is guaranteed to be lower under CHP than under any alter-
native price. But it says nothing about how the total LOC is distributed
among the market participants. This section studies the main properties
that can be established mathematically and observed in the numerical
simulations. In general, nothing can be said a priori about how each
agent will be affected individually, depending on the pricing scheme:
although the total LOCs are lower under CHP, a supplier may have a
higher LOC under CHP than under the other prices. Nonetheless, some
properties can be established about the split of LOC among the three
following categories of market participants: the network, the convex
suppliers (𝑔 ∈ 𝐶 ) and the non-convex suppliers (𝑔 ∈ 𝑁𝐶 , with
 = 𝐶 ∪ 𝑁𝐶 ). Let us notice that both the European auction and the
US markets include a convex network and convex suppliers.

6 The original presentation of the method by Madani and Papavasiliou
2022) includes elastic loads. We extend the approach to include a network
nd inelastic loads.

7 Zhao et al. (2021) have challenged the ‘‘formulation-independence’’ of
HP. However, their usage of the term ‘‘formulation’’ departs from ours.
y ‘‘formulation’’, we mean here the textbook definition (Wolsey, 1998): let
𝑔 ⊆ R𝑛 × Z𝑚, then 𝑃1 and 𝑃2 are two formulations of 𝑔 (e.g. two ways to

𝑛 𝑚 𝑛 𝑚
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write ramp constraints) if 𝑔 = 𝑃1 ∩ (R × Z ) = 𝑃2 ∩ (R × Z ). t
Proposition 3 (LOC of Convex Agents in IP). Under IP pricing, all the
convex market participants (the convex suppliers 𝑔 ∈ 𝐶 and the network)
have a zero LOC.

Proposition 4 (RS of Convex Agents in IP). Assuming 𝟎 ∈ 𝑔 ∀𝑔 ∈ 𝐶
and 𝟎 ∈  , then both the convex suppliers and the network have a zero
revenue shortfall under IP pricing.

These properties follow from the fact that IP prices reflect the
marginal cost of on-line units. Since a convex supplier is always on-line
and does not bear fixed costs, its LOCs are null under marginal prices.
Furthermore, since the primal and the IP pricing problems are coupled
so that the flows are equal in both problems, the (convex) network does
not bear a LOC. These properties are not shared with the other pricing
rules.

Proposition 5 (Non-Zero LOC of Convex Agents). Under CHP, ELMP or
MMWP, the convex market participants (both the convex suppliers and the
network) may have a positive LOC.

For the sake of completeness, the following result can also be
deduced from Propositions 1 and 3.

Proposition 6 (LOC of Non-Convex Agents). Under CHP, the total lost
opportunity cost of the non-convex suppliers (∑𝑔∈𝑁𝐶 𝐿𝑂𝐶𝑔𝑒𝑛

𝑔 (𝜋)) is lower
than under IP prices.

Intuitively, CHP permits to increase the LOC of the network and the
convex generators in order to reduce the total LOC.8 We shall discuss
these Propositions in parallel with the results of the numerical simula-
tions. As announced in the introduction, we use two different datasets,
each having their merits for the properties we seek to illustrate. The
first, later denoted as ‘‘FERC dataset’’, is based on public data (Knueven
et al., 2020; Krall et al., 2012). The underlying unit commitment model
includes minimum up and down time constraints, ramp constraints
(including start-up and shut-down ramps), time-dependant start-up
costs, no-load costs, and piecewise linear production costs. The model
gathers almost 1000 power units, but has no network. This is a market
of realistic size, except for the absence of the network. We conduct
our analysis over 11 net-load scenarios of 24 periods each, with hourly
time step. The second dataset, later denoted as ‘‘CWE dataset’’, is based
on non-public data assembled by our team (Aravena and Papavasiliou,
2016; Stevens and Papavasiliou, 2022). It includes a network of 30
bidding zones and 74 power units. The suppliers are modelled using
a simpler unit commitment model than the FERC dataset (essentially
simplifying the cost structure). We simulate 12 different load profiles
(half of which correspond to 24 periods and the half of which corre-
spond to 96 periods). Tables 1 and 2 report the average results of the
FERC and CWE simulations respectively. The detailed results per load
scenario are available in Appendix C. We will focus on IP, CHP and
ELMP, and delay the analysis of MMWP until the next section.

As far as the suppliers are concerned, the FERC data include both
a share of convex (14%) and non-convex (86%) suppliers. The CWE
data only include non-convex suppliers. We observe that the convex
suppliers in the FERC case as well as the network in the CWE case have
zero LOC under IP pricing (Proposition 3). They also have a null RS
(Proposition 4). We also observe that CHP outperforms the other prices
on the total LOC (Proposition 1) as well as on RS, although the latter is
not guaranteed by the theory. Tables 1 and 2 also report the proportion
of suppliers impacted by LOC as well as the average LOC carried by
these suppliers. On the FERC data, we observe that CHP reduces both
figures. On the CWE case, the share of suppliers impacted by LOC is

8 Similarly, in case all the suppliers are convex and the network is non-
onvex, then IP pricing guarantees zero LOC for the suppliers, while CHP
ransfers some of the LOC from the network to the convex generators, in order
o ensure a minimum total LOC (Garcia et al., 2020).
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Table 1
Incentives of market agents on the FERC dataset depending on the price (average over 11 scenarios). All figures are in US$. Since all the suppliers have the possibility of inaction,
𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋) = 0. The lost opportunity costs (LOC), the revenue shortfall (RS), and the foregone opportunities (FO) are reported for the convex (Conv.) and non-convex (Non-Conv.)
suppliers as well as in total (Tot.).

IP CHP ELMP MMWP MMWP* MMWP**

Dispatch cost 29,780,000

Av. Price [$/MWh] 28.8 28.7 28.8 56.3 26.8 28.9
Num. Suppl. with LOC 3.4% 1.8% 7.5% 79.2% 24.7% 9.5%
Av. LOC per Suppl. 628 19 37 148,232 4577 94

Tot. 37,576 323 2801 130,147,114 1,176,050 14,217
LOC Conv. 0 67 94 1,978,501 5268 79

Non-Conv. 37,576 257 2707 128,168,613 1,170,782 14,137

Tot. 669 19 206 0 0 0
RS (in LOC) Conv. 0 0 3 0 0 0

Non-Conv. 669 19 203 0 0 0

Tot. 36,907 304 2,596 130,147,114 1,176,050 14,217
FO Conv. 0 66 91 1,978,501 5268 79

Non-Conv. 36,907 238 2505 128,168,613 1,170,782 14,137
e
b
−
c
a
a
o

Fig. 1. Distribution of the LOC across suppliers for IP, CHP and ELMP (aggregate of
all the CWE cases).

similar between CHP and IP pricing, but CHP significantly reduces the
average LOC carried by each supplier (see also Fig. 1). Interestingly, in
both the FERC and CWE datasets, ELMP tends to spread the LOC over
a higher share of suppliers.

As far as the network is concerned, we stress two observations.
Firstly, Zhao et al. (2021) questions the validity of CHP on the basis
that minimizing the network LOC is off-target. As Propositions 3 and
5 indicates, it could be argued that CHP minimizes the network LOC
to a smaller extent than IP pricing. Secondly, if the concept of network
LOC has already been analysed in the literature (Garcia et al., 2020),
the concept of network RS has been less discussed. Under some prices,
not only could the network bear a LOC (a potential FTR shortfall),
but it could also have a shortfall of revenue, i.e. a negative congestion
rent. The following example illustrates this possibility, although it does
not materialize in our simulations. Indeed, Table 2 shows that the
system operator has positive LOC under CHP, ELMP and MMWP. But
the network RS is null under all prices.

Example 2 (Network RS). Let us consider a simple network with two
nodes (A and B) connected by a line with a capacity of 100 MW.
There is an hourly demand of 200 MW at 100€/MWh in both nodes
as well as a flexible supplier of 400 MW at 50€/MWh in node A and an
inflexible supplier of 1000 MW (all-or-nothing) at 10€/MWh in node
B. The welfare-maximizing allocation is to produce 300 MWh in node
A: 200 MWh is consumed in A while 100 MWh is consumed in B and
the line is congested. Under IP pricing, the prices (𝜋𝐼𝑃 ) at A and B
are 50 and 100€/MWh, respectively and the congestion rent is 5000€.
Under CHP or ELMP, the prices (𝜋𝐶𝐻𝑃 = 𝜋𝐸𝐿𝑀𝑃 ) at A and B are 50
and 10€/MWh and the congestion rent is −4000€.

5. LOC vs. make-whole payments controversy

As mentioned in Section 2, some advocate that incentive-
compatibility (measured by LOC) is not the adequate target for a
6

price, that should instead aim at being non-confiscatory (measured by
RS). Schiro et al. (2015) particularly stress that, in some cases, the
revenue shortfall may be lower with IP pricing than with CHP, casting
some doubt about the validity of the latter. Although CHP reduces the
RS on average in our numerical simulations (Tables 1 and 2), there are
indeed instances in both datasets where CHP turns out to modestly
increase the RS, cf. Appendix C. In order to discuss rigorously the
controversy ‘‘LOC vs. RS’’, it is first worth clarifying the relationship
between LOC and RS.

Proposition 7 (Relationship between RS and LOC). If all the market
agents have the possibility of inaction (𝟎 ∈ 𝑔 ∀𝑔 ∈ , 𝟎 ∈ ), then
𝑅𝑆𝑔𝑒𝑛

𝑔 (𝜋) ≤ 𝐿𝑂𝐶𝑔𝑒𝑛
𝑔 (𝜋) ∀𝑔 and 𝑅𝑆𝑛𝑒𝑡(𝜋) ≤ 𝐿𝑂𝐶𝑛𝑒𝑡(𝜋).

Which is to say that, given the possibility of inaction,9 the lost
opportunity costs can be viewed as the sum of the revenue shortfall
and the foregone opportunities (FO):

𝐿𝑂𝐶𝑔𝑒𝑛
𝑔 (𝜋) = 𝑅𝑆𝑔𝑒𝑛

𝑔 (𝜋) + 𝐹𝑂𝑔𝑒𝑛
𝑔 (𝜋) ∀𝑔 ∈ 

𝐿𝑂𝐶𝑛𝑒𝑡(𝜋) = 𝑅𝑆𝑛𝑒𝑡(𝜋) + 𝐹𝑂𝑛𝑒𝑡(𝜋)

The RS is a certain type of LOC in which the cleared profit is negative
and the opportunity is to self-schedule at 0, while the FO denotes the
remaining ‘‘lost opportunities’’. If the as-cleared profit is zero (as for a
unit that is not operating), or positive, the RS is null and the LOC equals
the FO, which corresponds to the additional profit that the supplier
could gain by deviating from the cleared volumes. If the as-cleared
profit is negative, the foregone opportunities are the maximal profit
above zero that the supplier could earn.

Although the possibility of inaction is a standard assumption in
economics, there are cases when it does not hold. This happens when
there are barriers of exit, for instance, in the presence of must-run
constraints (this is the case in Example 7 presented by Schiro et al.
(2015)), or in case a supplier that is initially on-line faces a binding
‘‘minimum up time’’ or a ramp constraint that prevents it to be switched
off. In these circumstances, Proposition 7 does not hold: a unit could
produce at a loss (𝑅𝑆𝑔𝑒𝑛

𝑔 > 0) without having any opportunity to act
differently (𝐿𝑂𝐶𝑔𝑒𝑛

𝑔 = 0). More specifically, the revenue shortfall could
be further dissected into two quantities: 𝑅𝑆∈𝐿𝑂𝐶

𝑔 (the part of RS which
can be expressed as an LOC) and 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (the part which cannot be
xpressed as an LOC, roughly speaking the revenue shortfall due to a
arrier of exit). For example, a supplier having an as-cleared profit of
200€ and a maximum profit of 100€, has an LOC of 300€. The latter
orresponds to a RS of 200€ as well as a FO of 100€. Alternatively,
supplier which does not have possibility of inaction and who has an

s-cleared profit of −200€ and a maximum profit of −100€, has an LOC
f 100€ with 𝑅𝑆 = 𝑅𝑆∈𝐿𝑂𝐶 + 𝑅𝑆∉𝐿𝑂𝐶 = 100 + 100 = 200€.

9 This is the case for all suppliers in the European DA market.
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Table 2
Incentives of market agents on the CWE dataset depending on the price (average over 12 scenarios). All figures are in €. The LOC, RS and FO are reported for the suppliers
(Suppl.), the network (Net.) and in total (Tot.).

IP CHP ELMP MMWP MMWP* MMWP**

Dispatch cost 5,489,000

Av. Price [€/MWh] 42.8 43.4 47.3 27.7 23.8 52.6
Num. Suppl. with LOC 33.2% 35.9% 45.3% 83.6% 63.4% 64.3%
Av. LOC per Suppl. 3528 278 1285 141,834 29,326 27,066

Tot. 83,543 8093 42,948 98,681,795 41,808,171 20,789,079
LOC Suppl. 83,543 6810 39,006 8,746,513 1,350,259 1,250,017

Net. 0 1282 3942 89,935,282 40,457,912 19,539,062

Tot. 10,550 1987 8508 0 0 0
RS (in LOC) Suppl. 10,550 1987 8508 0 0 0

Net. 0 0 0 0 0 0

Tot. 72,993 6106 34,440 98,681,795 41,808,171 20,789,079
FO Suppl. 72,993 4823 30,499 8,746,513 1,350,259 1,250,017

Net. 0 1282 3942 89,935,282 40,457,912 19,539,062

Tot. 897,653 877,040 730,234 0 0 0
RS (not in LOC) Suppl. 897,653 877,040 730,234 0 0 0

Net. 0 0 0 0 0 0
Definition 10 (RS & FO). The revenue shortfall (Definition 5) and the
foregone opportunities can be further characterized as follows10:

𝑅𝑆∉𝐿𝑂𝐶
𝑔 (𝜋) = max(0, 𝑅𝑆𝑔𝑒𝑛

𝑔 (𝜋) − 𝐿𝑂𝐶𝑔𝑒𝑛
𝑔 (𝜋))

𝑅𝑆𝑔𝑒𝑛
𝑔 (𝜋) = 𝑅𝑆∈𝐿𝑂𝐶

𝑔 (𝜋) + 𝑅𝑆∉𝐿𝑂𝐶
𝑔 (𝜋)

𝐹𝑂𝑔𝑒𝑛
𝑔 (𝜋) = 𝐿𝑂𝐶𝑔𝑒𝑛

𝑔 (𝜋) − 𝑅𝑆∈𝐿𝑂𝐶
𝑔 (𝜋)

Under possibility of inaction, 𝑅𝑆∉𝐿𝑂𝐶
𝑔 (𝜋) = 0

CHP minimizes the total lost opportunity costs. Under the possibility
of inaction, this means that CHP minimizes the revenue shortfall as
long as it does not exacerbate the foregone opportunities. In case the
possibility of inaction does not hold, some of the revenue shortfalls
(𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋)) would not enter into what is minimized by CHP. Follow-
ing those remarks, the LOC-RS controversy, as raised by Schiro et al.
(2015), could be formulated as follows:

• Under the possibility of inaction, is it desirable to minimize the
RS at all cost?

• In case the possibility of inaction does not hold, is it desirable to
minimize 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋)?

We shall present several arguments against both. To address both
questions, we rely on the comparison of CHP with MMWP, which is
precisely the price that minimizes the RS.

Firstly, is it desirable to minimize the revenue shortfall? A major
concern when dealing with MMWP is price indeterminacy: the MMWP
prices are typically not unique. This also happens for CHP or IP pricing,
as well as for a convex case in which multiple prices could support a
competitive equilibrium. Nonetheless, the indeterminacy is expected to
be more severe under MMWP than for the other pricing rules. Indeed,
minimizing the revenue shortfall is a mild requirement: in a load-
inelastic case, any price that is high enough would guarantee zero
revenue shortfall – e.g. fixing the price at the market price cap would
certainly make each cleared bid whole. Mathematically, in problem
(10), 𝜋𝑀𝑀𝑊𝑃 belongs to a set that ranges from the smallest price
ensuring profitability for all the committed units to infinity.

This indeterminacy is observed in our numerical results. In Table 1,
the MMWP prices meet their objective of zero revenue shortfall. But
this is achieved with prices that are excessively high – two times the
CHP on average – which, in turn, leads to extravagant LOC – four
times the total system cost. This makes the ‘‘vanilla’’ version of MMWP
(Definition 9) impracticable. Load elasticity would certainly mitigate

10 Although we define them for the suppliers, these concepts could also be
ransposed to the network.
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the indeterminacy, but it would likely not solve it entirely. If one
chooses to proceed with MMWP prices, this then raises the question
of how to choose the right price among the many MMWP prices. We
shall consider two possibilities. The first one, that we shall denote
as MMWP*, is to select the smallest price that minimizes the revenue
shortfall.

Definition 11 (MMWP*). The MMWP* prices are the optimal variables
𝜋 of the following problem:

min
𝜋

‖𝜋‖2 (11a)

𝑔(𝑐∗, 𝑞∗, 𝑥∗, 𝜋) ≥ 0 ∀𝑔 ∈  (11b)

𝑁 (𝑓 ∗, 𝜋) ≥ 0 (11c)

Constraints (11b)–(11c) require that the price 𝜋 results in zero
revenue shortfall, while the objective (11a) resolves the eventual in-
determinacy over 𝜋 by selecting the smallest price that satisfies the
required constraints. This method is akin to average cost pricing, at least
when the load is inelastic, since the smallest price that ensures zero RS
is essentially the highest average cost among the committed units. A
similar proposal is described by Liberopoulos and Andrianesis (2016).

Bichler et al. (2022) propose another formulation, which we refer
to later in the paper as MMWP**, in which, among the possible MMWP
prices, the one that minimizes the LOC is selected. Their model relies
on a bi-level optimization problem which is intractable. Consequently,
they introduce an approximation of this bi-level model, which consists
of finding a price that is as close as possible to ELMP while minimizing
the RS.11

Definition 12 (MMWP**). The MMWP** prices are the optimal vari-
ables 𝜋 of problem (11) in which the objective function (Eq. (11a)) is
replaced by ‖𝜋 − 𝜋𝐸𝐿𝑀𝑃

‖2.

Concretely, MMWP* and MMWP** are linked with MMWP as fol-
lows. If 𝛱𝑀𝑀𝑊𝑃 = {𝜋 solving (10)}, then 𝜋𝑀𝑀𝑊𝑃∗, 𝜋𝑀𝑀𝑊𝑃∗∗ ∈
𝛱𝑀𝑀𝑊𝑃 . Finally, we notice that the two previous models are straight-
forward to extend to a configuration that includes elastic loads, by
relying on slack variables in constraints (11b)–(11c), cf. Bichler et al.
(2022).

As far as the numerical results are concerned, we observe in Ta-
ble 1 that, as expected, both MMWP* and MMWP** prices reach zero

11 The actual model of Bichler et al. (2022) slightly differs from ours: they
compute the price that minimizes the RS for every hour, as opposed to our
model, that minimizes the RS over the entire market horizon.
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revenue shortfall. They also both significantly improve the LOC as
compared to the vanilla MMWP. Nonetheless, MMWP* is still widely
outperformed by the alternative pricing methods. It illustrates that
resolving the price indeterminacy that is inherent in MMWP is by no
means obvious. This leaves MMWP** as the only serious competitor for
IP, CHP and ELMP. We shall nonetheless see later in this section some
shortcomings of MMWP** in the CWE case. The question remains: is
it desirable to minimize the revenue shortfall at all cost? On the FERC
simulations, the average total RS under CHP is 19$. Under MMWP**,
it drops to zero, but the total LOC increases from 323$ with CHP to
14,217$ with MMWP**. Are the 19$ savings in RS worth the loss
of ∼14,000$ in LOC? More generally, in the hypothetical case that
lowering the RS of 1€ would induce a LOC of 1 M€, should we take the
tance that minimizes RS? In contrast with MMWP which minimizes
he RS at all cost, convex hull pricing offers an appealing trade-off: it
inimizes the revenue shortfall as long as it does not exacerbate more

he foregone opportunities. This is not to say that RS are irrelevant,
ut since they are unavoidable in two-sided auctions (cf. Example 1),
onsidering the above discussion, it may appear more appropriate to
andle them through side-payments instead of through the uniform
rice (as demonstrated by Madani and Papavasiliou (2022), there
lways exist ‘‘zero-sum transfers’’ that can finance the make-whole
ayments while guaranteeing revenue-adequacy for the auctioneer).

Secondly, is it desirable to implement a price that aims at minimiz-
ng the RS including 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋) (the three MMWP approaches described
o far minimize the total RS, including 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋))? Let us first look at
he question from the viewpoint of a convex market. Actually, having
𝑆∉𝐿𝑂𝐶
𝑔 (𝜋) > 0 is not specific to non-convexities. Indeed, while 𝐿𝑂𝐶 =

is guaranteed in a convex market, it is straightforward to design
n instance of a convex market (e.g. with a must-run constraint) with
competitive equilibrium, in which some agents have 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋) >
. Remarkably, CHP, IP and ELMP would boil down to the classic
ompetitive prices in a convex market, while MMWP would not. Then,
he numerical results also highlight another shortcoming of MMWP
rices. In the FERC case, all suppliers have the possibility of inaction,
nd therefore 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋) = 0. In the CWE case, 36% of the suppliers
o not have possibility of inaction because of binding constraints.
onsequently, we observe positive 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋) in Table 2 for all the
ricing methods except the three MMWP approaches. We observe that
itigating the 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋) through the uniform price of energy comes
ith a substantial effect on the lost opportunity costs. Intuitively, in
rder to ensure zero revenue shortfall for suppliers which are in any
ase not willing to deviate from the market schedule, MMWP raises the
rices, which in turn exacerbate the foregone opportunities of the other
uppliers. MMWP** which, although disputable, is still competitive in
he FERC cases, is simply impracticable in the CWE cases. Again, we
re not arguing that the 𝑅𝑆∉𝐿𝑂𝐶

𝑔 (𝜋) are irrelevant, but according to the
vidences of this section, they are not specific to the topic of pricing
on-convexities and it is not clear that they should be settled through
he uniform price of energy, as MMWP does.

. The limits of approximating CHP

The previous section has focused on MMWP. In the present section,
e turn to ELMP. As outlined in Section 3, the main economic justi-

ication for ELMP is that it is viewed as a scalable approximation of
HP which comes with the remarkable Proposition 1 (Chao, 2019).
his analogy with CHP suggests that ELMP would achieve a lower

ost opportunity cost than IP pricing, as it ‘‘approximately minimizes
OC’’. Tables 1 and 2 confirm this intuition. On average, ELMP roughly
uts by ten (resp. two) the lost opportunity costs in the FERC dataset
resp. CWE dataset) as compared with IP pricing. This is also observed
n other works (PJM, 2017; Hua and Baldick, 2017; Yu et al., 2020).
onetheless, if empirical evidences show that ELMP reduces the LOC as
ompared to IP pricing, it is worth noting that, in general, there is no
heoretical guarantee that this will be the case.
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Table 3
Supplier data in Example 3. The columns stand for the initial commitment, the no-load
cost (€/h), the marginal cost (€/MWh), the production limits (MW) and the ramp limits
(MW).

Suppliers 𝑥0 NLC MC 𝑄𝑚𝑎𝑥 Ramp

G1 1 0 80 500 500
G2 0 1950 78 600 300
G3 0 5920 74 600 100
G4 0 0 130 500 105

Table 4
Hourly demand (MW), commitments/schedules (MW) and prices (€/MWh) in
Example 3.
𝐷 G1 G2 G4 IP ELMP CHP

350 1/350 1/0 0/0 80 80 80
500 1/200 1/300 1/0 80 80 80
950 1/255 1/600 1/95 80 82.5 82.5
1300 1/500 1/600 1/200 180 95.1 145.27

Proposition 8 (ELMP vs. IP LOC). Given a feasible primal solution of
problem (1), ELMP does not guarantee a lower total LOC than IP pricing.

xample 3 (LOC ELMP vs. IP). Designing a stylized example with
𝐿𝑂𝐶(𝜋𝐼𝑃 ) < 𝐿𝑂𝐶(𝜋𝐸𝐿𝑀𝑃 ) is not trivial, since it firstly requires that
ELMP differs from CHP. Let us consider a market with four suppliers
(Table 3) and four hourly periods with an inelastic load (Table 4). The
suppliers do not have a minimal production limit, but they have a no-
load cost and a ramp constraint (the detailed model is in Appendix B).
The optimal schedule is reported in Table 4. The cheapest way to
meet the load in 𝑡 = 2 is using G1. Nonetheless, due to binding ramp
constraints, G2 has to be started in 𝑡 = 1, and to produce in 𝑡 = 2
in order to meet the ramp from period 2 to 3. Similarly, the cheapest
way to satisfy the load in 𝑡 = 3 is using G1 and G2. Because of the
ramp from period 3 to 4, G4 produces in 𝑡 = 3. The total production
cost is 267,550€. The binding ramp constraints make ELMP different
from CHP. The crux of the example is that G4 has zero no-load cost,
as opposed to G3. The optimal schedule commits G4, which has a
higher MC, implying a high IP price. In the ELMP pricing problem,
since integers are relaxed, the no-load cost of G3 does not have to be
borne entirely in periods 2, 3 and 4, rendering it economically more
attractive than G4. This drives the ELMP price downward, resulting in
a significant revenue shortfall for G4. The prices are reported in Table 4
(the intuition about these prices is discussed in Appendix B). They lead
to a total LOC of 10,670, 12,105 and 3675€ for, respectively, IP, ELMP
and CHP.

This is not merely a phenomenon that occurs in a pathological
example. In our simulations, there are instances in both datasets
where ELMP induces a higher LOC than IP pricing (one instance
in both datasets, cf. Appendix C). As discussed in Section 3, ELMP
is formulation-dependent. If the formulation of ELMP is tight, then
𝜋𝐶𝐻 = 𝜋𝐸𝐿𝑀𝑃 , which implies from Proposition 1 that 𝐿𝑂𝐶(𝜋𝐸𝐿𝑀𝑃 ) ≤
𝐿𝑂𝐶(𝜋𝐼𝑃 ). The above discussion highlights that the previous inequality
is not guaranteed in general for any ELMP, regardless of the tightness
of the formulation. This highlights the advantage of exact CHP over
ELMP, not only for the average reduction of LOC, but also for the
theoretical guarantees surrounding CHP. Let us stress that, according
to the evidence from Stevens and Papavasiliou (2022), computing exact
CHP is expected to be feasible for the European market, although this
should be confirmed by simulation on the actual order book.

7. Minimizing the costs or the LOC

The last two sections focus on a comparison of IP pricing with CHP,
and stress two properties. Again, IP pricing is the candidate currently
envisioned by SDAC for the European day-ahead market (MCSC, 2022).
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Table 5
Sensitivity of lost opportunity cost to the primal optimality gap, depending on the
price. The simulations are performed on CWE dataset (Spring WD 24). All figures are
in €.

Opt. gap Tot. cost IP LOC ELMP LOC CHP LOC

0.1% 5,213,357 115,043 43,346 12,611
0.09% 5,212,947 101,212 42,937 12,201
0.08% 5,212,121 194,521 42,111 11,375
0.07% 5,212,121 194,521 42,111 11,375
0.06% 5,211,690 129,455 41,680 10,944
0.05% 5,211,057 119,929 41,047 10,312
0.04% 5,210,885 119,579 40,875 10,140
0.03% 5,210,743 119,360 40,733 9997
0.02% 5,210,685 119,351 40,675 9940
0.01% 5,210,685 119,351 40,675 9940

Firstly, convex hull pricing minimizes the LOC, not only for the optimal
allocation (𝑐∗, 𝑞∗, 𝑥∗, 𝑓 ∗) of problem (1), but for any feasible allocation.
In this section, we briefly revisit the interplay between primal and dual
(prices) results, also studied in previous works (Sioshansi et al., 2008;
Eldridge et al., 2019; Byers and Hug, 2022).

Proposition 9 (LOC-Primal Relationship 1). Under CHP or ELMP, the
otal 𝐿𝑂𝐶 decreases monotonically with the optimality gap of the primal
olution. More specifically, let (𝑐, 𝑞, 𝑥, 𝑓 )1 and (𝑐, 𝑞, 𝑥, 𝑓 )2 denote two feasi-
ble solutions of problem (1), with objectives 𝑧1 and 𝑧2 and lost opportunity
cost 𝐿𝑂𝐶1 and 𝐿𝑂𝐶2, respectively. Then:

𝐿𝑂𝐶1(𝜋) − 𝐿𝑂𝐶2(𝜋) = 𝑧1 − 𝑧2

This result immediately follows the interpretation of the LOC as
the duality gap, explained in Section 3. Under convex hull pricing, the
objective of minimizing the primal optimality gap is consistent with
both the minimization of the total costs and the minimization of the
lost opportunity costs. Let us notice that Proposition 9 holds even if
the computation of CHP is not exact. Proposition 9 also implies that
there is no other allocation that could make the agents better off than
the welfare-maximizing allocation. This is notably different under IP or
MMWP.

Proposition 10 (LOC-Primal Relationship 2). Under IP or MMWP, the
total 𝐿𝑂𝐶 does not decrease monotonically with the optimality gap of the
primal solution.

Intuitively, as far as IP pricing is concerned, a suboptimal solution
commits costlier suppliers which, if entailing higher variable produc-
tion cost, pulls the IP price upward, which in turn might reduce the
LOC. We want to emphasize the dilemma that this might create when
it comes to picking the ‘‘best’’ solution among a set of feasible solutions.
The dilemma is illustrated on the numerical results of Table 5.12 Here,
one instance of the CWE dataset is solved for various optimality gaps.
As expected from Proposition 9, the LOC associated with CHP and
ELMP diminishes monotonically with the primal optimality gap: the
improvement in LOC corresponds exactly to the improvement in total
cost. Under IP prices, a suboptimal solution (optimality gap of 0.09%)
achieves the best LOC. This creates inconsistent incentives for the
primal and the pricing problems: going from an optimality gap of
0.09% to 0.01% reduces the total cost by 2262€ while it increases the
lost opportunity cost by 18,139€. Which solution should be preferred?
More radically: going from the gap 0.09% to 0.08% reduces the total
cost by 826€ while it increases the lost opportunity cost by 93,309€.
CHP makes such dilemmas irrelevant.

12 Since the comparison of this section focuses on CHP and IP pricing, we
mit the three MMWP schemes from Table 5. Nonetheless, the reader may find
he related results for MMWP in Appendix A (Table A.1).
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8. The curse or blessing of market size

Convex hull pricing does not only minimize the lost opportunity
cost, it is also guaranteed to remain bounded, so that it does not grow
with the market size. This remarkable property, which builds on works
from the theory of general equilibrium (Starr, 1969; Arrow and Hahn,
1971), can be expressed for the market model (1), in order to derive a
theoretical bound on the LOC (Chao, 2019).

Proposition 11 (LOC Bound 1). Under CHP or ELMP, the total LOC is
bounded. The bound depends on the shape of 𝑔 , but is independent of ||:
lim

||→∞ 𝐿𝑂𝐶(𝜋) < 𝛤 .

The surprising feature of Proposition 11 is that the LOC does not
depend on the market size: if the market grows (increasing the number
of suppliers as well as load), given that the LOC remains bounded,
its relative importance shrinks (𝐿𝑂𝐶(𝜋𝐶𝐻 )∕𝑧∗ → 0). The strength of
Proposition 11 is better captured when contrasted to alternatives prices
(see also the discussion in Stevens et al. (2024)).

Proposition 12 (LOC Bound 2). Under IP or MMWP pricing, the total
LOC is not necessarily bounded: it could be that lim

||→∞ 𝐿𝑂𝐶(𝜋) → ∞.

Propositions 11 and 12 highlight the theoretically sound behaviour
of CHP, as opposed to IP pricing. Stylized examples as well as numerical
illustrations of these Propositions have nonetheless been scarce in the
literature. Example 4 aims at providing intuition about the Propo-
sitions, while the subsequent numerical simulations and the related
discussion explore their practical implications.

Example 4 (LOC Bounded or Unbounded). Consider a session of the
European day-ahead market with one hourly period and the following
supply orders: one divisible stepwise curve of 100 MW at 50€/MWh and
a set of 𝑁 fully indivisible block orders of 100 MW at 100€/MWh. Let
us assume a divisible demand of 250 MW at 1000€/MWh. The welfare
maximizing allocation is to clear 2 blocks and 50 MW of the stepwise
curve. Under IP pricing, the price is 50€/MWh and the two cleared
blocks have a revenue shortfall of 10,000€. Let us now assume that the
demand grows to 550 MW. The IP price remains the same while the
revenue shortfall is now 25,000€. This quantity will keep growing with
the demand. Under CHP, the price is 100€/MWh. Only the stepwise
supply curve has an LOC (in this case, a foregone opportunity) of
50 × 50 = 2, 500€, whether the demand is 250 or 550 MW. This shall
remain bounded if the demand keeps growing.

In order to further illustrate the theoretical Propositions, we conduct
the following experiment on the FERC dataset over one load profile
(2015-08-01_lw). First, we randomly select 50 power units out of
the 1000. Then, we adapt the load profile accordingly, in order to make
the problem feasible. Under these settings, we compute the welfare
maximizing allocation as well as the marginal prices and the convex
hull prices together with their associated lost opportunity costs. Finally,
we gradually increase the market size by duplicating 𝑥 times the 50
units and multiplying the load accordingly. The results are reported
in Table 6. We proceed with certain observations. Proposition 11
establishes that, when the market size increases, the LOC under convex
hull pricing remains bounded and the bound is not affected by the
number of plants. Thus, the ratio of the LOC relative to some measure
of the market size (e.g. the relative duality gap) is expected to shrink
with the market size. This is what we observe in Table 6 where the ratio
of the LOC relative to the total system cost ranges from 0.62% to 0.01%
while the number of power plants grows from 50 to 1000. On the other
hand, Proposition 12 establishes that the LOC under IP pricing is not
subject to such a bound and could therefore increase with the market
size so that the relative importance of LOC remains largely unaffected.
Concretely, what we observe in Table 6 (last column), is that the ratio
of LOC relative to the total system cost remains around 15%, regardless

of the market size.
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Table 6
Results of CHP and IP pricing on FERC datasets (load profile 2015-08-01_lw) depending on the market size. The initial 50-unit market is
multiplied by a factor ranging from 2 to 20.

Market size Convex hull pricing Marginal pricing

Number of plants Av. hourly load (MW) Tot. cost ($) LOC ($) LOC (% Tot. cost) LOC ($) LOC (% Tot. cost)

50 4900 1,820,308 11,222 0.62% 276,383 15.18%
100 9800 3,631,286 13,114 0.36% 538,713 14.84%
150 14,700 5,444,099 16,841 0.31% 805,370 14.79%
200 19,600 7,245,546 9202 0.13% 1,060,574 14.64%
250 24,500 9,052,185 6756 0.07% 1,320,763 14.59%
300 29,400 10,857,007 2492 0.02% 1,579,297 14.55%
350 34,300 12,666,418 2817 0.02% 1,842,613 14.55%
400 39,200 14,475,824 3136 0.02% 2,105,629 14.55%
450 44,100 16,290,191 8417 0.05% 2,373,870 14.57%
500 49,000 18,099,571 8711 0.05% 2,636,708 14.57%
1000 98,000 36,183,999 2280 0.01% 5,258,840 14.53%
We make two more remarks on the Propositions and the numerical
esults: the first regards the mathematical bound in Proposition 11, the
econd concerns the practical implications of the propositions. As far as
he bound is concerned, the mathematical expression of 𝛤 is provided

in Appendix A. This expression can be used to calculate the bound on
the FERC dataset: 𝛤 = 21.9M$. From Table 6, we observe that this
ound is far from tight, since the actual LOC amounts to a few thousand
ollars per day. Although the trend expected from Propositions 11 and
2 materializes in the numerical results, the practical usefulness of the
ound itself appears to be limited.

As far as the practical implications are concerned, it is of course
nrealistic to expect the market to grow by a factor of ten in most
S markets or in Europe. We nevertheless stress that the variations
f volume traded in the market do not necessarily represent a phys-
cal change of generation. In a country such as India, in which the
ay-ahead market has been created in 2008, and which has recently
dopted a similar pricing rule as in Europe (N-SIDE, 2021), such an
ncrease is not far from reality. Indeed, since its creation, the market
aily average traded volume has increased by a factor of ten (IEX,
020). Similarly, in Japan, the traded volume in the day-ahead market
as multiplied by more than ten since the implementation of liber-
lization policies in 2016 (JPEX, 2023). In Europe, if the growth of
he day-ahead market is more modest (+1.5% of daily traded volume

between 2018 and 2021, with a notable increase of +7% in the number
of non-convex block orders over the same period, cf. NEMO Committee
(2022)), the traded volume in a market session can vary significantly.
As an example, the daily average traded volume in 2020 ranges from
3.83 to 5.82 TWh (NEMO Committee, 2022).

9. Conclusion

We have reviewed and analysed six pricing methods from the
literature. They are all potential candidates for reforming the current
European pricing rule. Marginal pricing could be an upgrade as com-
pared to the current SDAC pricing rule, given the likely improvement
in both welfare and scalability. Nonetheless, the fact that many US
markets have exhibited the tendency to move away from marginal
pricing during the last ten years is something that stakeholders may
wish to pay attention to in Europe, given the favourable alternatives
that are on the table.

In the paper, we have attempted to highlight some of the advantages
of convex hull pricing over several dimensions. With respect to IP
pricing, the fact that CHP incorporates the lumpy costs in the price
signal improves significantly the incentives faced by the market agents
(Section 4). CHP is also accompanied by appealing theoretical guaran-
tees, both in terms of consistency between cost and LOC minimization
(Section 7) as well as in terms of the bound it ensures on the LOC
(Section 8). While ELMP would be a significant first step in the direction
of CHP – a step that several US ISO have made – we have tried to
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highlight some limits of this approximation. In particular, ELMP does
not safeguard all the theoretical guarantees of CHP (Section 6), nor does
it achieve the same performance in terms of LOC minimization. Finally,
while minimizing the revenue shortfall – or ‘‘make-whole payments’’ –
may sound like a reasonable target, we have shown that it may also
result in unbearable (and unbounded, cf. Section 8) lost opportunity
costs (Section 5).
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Appendix A. Proofs of the propositions

Proof (Proposition 1). Building on Lagrangian duality theory (Wolsey,
1998), CHP as defined in Definition 7 is equivalent to solving the
following Lagrangian relaxation (Hua and Baldick, 2017).

𝐿(𝜋) = min
(𝑐,𝑞,𝑥)𝑔∈𝑔
∀𝑔∈, 𝑓∈

∑

𝑔∈
𝑐𝑔 −

∑

𝑖∈
𝑡∈

𝜋𝑖,𝑡(
∑

𝑔∈𝑖

𝑞𝑔,𝑡 (A.1a)

−𝐷𝑖
𝑡 −

∑

𝑙∈
𝑓𝑟𝑜𝑚(𝑖)

𝑓𝑙,𝑡 +
∑

𝑙∈
𝑡𝑜(𝑖)

𝑓𝑙,𝑡)

𝜋𝐶𝐻 = argmax
𝜋

𝐿(𝜋) (A.1b)

Hence 𝜋𝐶𝐻 minimizes the following duality gap:

∑

𝑔∈
𝑐∗𝑔 − max

𝜋
𝐿(𝜋) =

∑

𝑔∈
𝑐∗𝑔 − max

𝜋

⎡

⎢

⎢

⎢

⎣

∑

𝑖∈ ,𝑡∈
𝜋𝑖,𝑡𝐷

𝑖
𝑡

−
∑

𝑔∈
max

(𝑐,𝑞,𝑥)𝑔∈𝑔

{

∑

𝑡∈
𝑞𝑔,𝑡𝜋𝑖(𝑔),𝑡 − 𝑐𝑔

}

−max
𝑓∈

⎧

⎪

⎨

⎪

∑

𝑖∈ ,𝑡∈
−𝜋𝑖,𝑡

⎛

⎜

⎜

⎜

∑

𝑙∈

𝑓𝑙,𝑡 −
∑

𝑙∈𝑡𝑜(𝑖)
𝑓𝑙,𝑡

⎞

⎟

⎟

⎟

⎫

⎪

⎬

⎪

⎤

⎥

⎥

⎥

⎩ ⎝ 𝑓𝑟𝑜𝑚(𝑖) ⎠⎭⎦
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Replacing 𝐷𝑖
𝑡 by ∑

𝑔∈𝑖 𝑞
∗
𝑔,𝑡 −

∑

𝑙∈𝑓𝑟𝑜𝑚(𝑖) 𝑓
∗
𝑙,𝑡 +

∑

𝑙∈𝑡𝑜(𝑖) 𝑓
∗
𝑙,𝑡 (using (1b))

nd rearranging terms, the previous expression is equivalent to min𝜋
{

∑

𝑔∈ 𝐿𝑂𝐶𝑔𝑒𝑛(𝜋) + 𝐿𝑂𝐶𝑛𝑒𝑡(𝜋)
}

.

Proof (Proposition 2). Using a similar result from Lagrangian duality
theory as in the CHP approach, computing the prices 𝜋𝑀𝑀𝑊𝑃 from
roblem (10) is equivalent to solving the Lagrangian relaxation of
roblem (1) in which the sets of constraints are changed from 𝑔 to

̂𝑔 = {(0, 0, 0), (𝑐∗, 𝑞∗, 𝑥∗)𝑔} and from  to ̂ = {0, 𝑓 ∗}. Indeed, the
previously defined sets can be modelled with binary variables 𝑘. Since
solving the Lagrangian relaxation amounts to finding the convex hull
of the non-relaxed constraints, and since conv({0, 1}) = [0, 1], this leads
to problem (10). The Lagrangian relaxation is expressed as follows:

min
𝜋

{

max
𝑓∈̂

{

∑

𝑖∈

∑

𝑡∈
−𝜋𝑖,𝑡

(

∑

𝑙∈𝑓𝑟𝑜𝑚(𝑖)
𝑓𝑙,𝑡 −

∑

𝑙∈𝑡𝑜(𝑖)
𝑓𝑙,𝑡

)}

+
∑

𝑔∈
max

(𝑐,𝑞,𝑥)𝑔∈̂𝑔

{

∑

𝑡∈
𝜋𝑖(𝑔),𝑡𝑞𝑔,𝑡 − 𝑐𝑔

}

−
∑

𝑖∈

∑

𝑡∈
𝜋𝑖,𝑡𝐷

𝑖
𝑡

}

Let us replace 𝐷𝑖
𝑡 =

∑

𝑔∈𝑖 𝑞
∗
𝑔,𝑡 − (

∑

𝑙∈𝑓𝑟𝑜𝑚(𝑖) 𝑓
∗
𝑙,𝑡 −

∑

𝑙∈𝑡𝑜(𝑖) 𝑓
∗
𝑙,𝑡) into the pre-

vious expression and let us add the constant ∑

𝑔∈ 𝑐
∗
𝑔 . The Lagrangian

relaxation then corresponds to:

min
𝜋

{

∑

𝑔∈

(

max
(𝑐,𝑞,𝑥)𝑔∈̂𝑔

𝑔(𝑐, 𝑞, 𝑥, 𝜋) − 𝑔(𝑐∗, 𝑞∗, 𝑥∗, 𝜋)

)

+max
𝑓∈̂

𝑁 (𝑓, 𝜋) − 𝑁 (𝑓 ∗, 𝜋)

}

which, from the definition of the modified sets, corresponds to the total
revenue shortfall (Definition 5).

Proof (Proposition 3). Let us consider the Lagrangian relaxation 𝐿𝐼𝑃 (𝜋)
of the problem of Definition 6 in which the market clearing constraint
is relaxed. Since the problem is convex, the duality gap is zero and
𝜋𝐼𝑃 = argmax𝜋 𝐿𝐼𝑃 (𝜋). Furthermore, the optimum dispatch of both the
primal problem (1) (𝑧∗) and the IP problem of Definition 6 (𝑧∗𝐼𝑃 ) is the
same: ∑𝑔∈ 𝑐

∗
𝑔 = 𝑧∗ = 𝑧∗𝐼𝑃 . We then write:

0 =
∑

𝑔∈
𝑐∗𝑔 − max

𝜋
𝐿𝐼𝑃 (𝜋) =

∑

𝑔∈
𝑐∗𝑔 − 𝐿𝐼𝑃 (𝜋𝐼𝑃 )

=
∑

𝑔∈𝐶
max

(𝑐,𝑞,𝑥∗)𝑔∈𝑔
𝑔(𝑐, 𝑞, 𝑥, 𝜋𝐼𝑃 ) − 𝑔(𝑐∗, 𝑞∗, 𝑥∗, 𝜋𝐼𝑃 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐿𝑂𝐶𝑔𝑒𝑛

𝑔 ≥0

+
∑

𝑔∈𝑁𝐶

max
(𝑐,𝑞,𝑥∗)𝑔∈𝑔

𝑔(𝑐, 𝑞, 𝑥, 𝜋𝐼𝑃 ) − 𝑔(𝑐∗, 𝑞∗, 𝑥∗, 𝜋𝐼𝑃 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0, but ≠𝐿𝑂𝐶𝑔𝑒𝑛

𝑔

+ max
𝑓∈

𝑁 (𝑓, 𝜋𝐼𝑃 ) − 𝑁 (𝑓 ∗, 𝜋𝐼𝑃 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐿𝑂𝐶𝑛𝑒𝑡≥0

rom which we conclude that 𝐿𝑂𝐶𝑛𝑒𝑡 = 0 and 𝐿𝑂𝐶𝑔𝑒𝑛
𝑔 = 0 ∀𝑔 ∈ 𝐶 .

roof (Proposition 4). The result follows from Propositions 3 and 7.

roof (Proposition 7). Let us consider the case where 𝑅𝑆𝑔 > 0 (the unit
faces a revenue shortfall – the case for which 𝑅𝑆𝑔 = 0 is trivial since
𝑂𝐶𝑔 ≥ 0):

𝑂𝐶𝑔𝑒𝑛
𝑔 =

≥0 by assumption of possibility of inaction
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

max
(𝑐,𝑞,𝑥)𝑔∈𝑔

{

∑

𝑡∈
𝑞𝑔,𝑡𝜋𝑖(𝑔),𝑡 − 𝑐𝑔

}

−(
∑

𝑡∈
𝑞∗𝑔,𝑡𝜋𝑖(𝑔),𝑡 − 𝑐∗𝑔 )

≥ −(
∑

𝑡∈
𝑞∗𝑔,𝑡𝜋𝑖(𝑔),𝑡 − 𝑐∗𝑔 ) = 𝑅𝑆𝑔𝑒𝑛

𝑔

he same reasoning applies to the network.
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Table A.1
Sensitivity of the LOC under MMWP pricing with respect to the primal optimality gap.
The simulations are performed on CWE dataset (Spring WD 24). All figures are in €.

Opt. Gap MMWP LOC MMWP* LOC MMWP** LOC

0.1% 127,174,509 46,374,970 25,487,688
0.09% 128,078,572 46,380,214 25,477,625
0.08% 128,503,837 46,534,306 25,374,010
0.07% 128,503,837 46,534,306 25,374,010
0.06% 129,671,679 46,505,121 25,366,511
0.05% 129,665,324 46,286,384 25,414,900
0.04% 129,855,305 46,366,246 25,411,805
0.03% 127,937,157 46,371,886 25,411,662
0.02% 127,677,227 46,360,290 25,411,605
0.01% 127,677,227 46,360,290 25,411,605

Proof (Proposition 9). This follows the interpretation of the LOC as the
duality gap (cf. Proposition 1):

𝐿𝑂𝐶1(𝜋) − 𝐿𝑂𝐶2(𝜋) =
∑

𝑔∈
𝑐1𝑔 − 𝐿(𝜋) −

∑

𝑔∈
𝑐2𝑔 + 𝐿(𝜋) = 𝑧1 − 𝑧2

where 𝐿(𝜋) is the Lagrangian function defined in (A.1a). The equality
follows from the fact that CHP and ELMP prices are not affected by a
change of primal solution, so the 𝐿(𝜋) cancel out.

Proof (Proposition 10). The proof for IP pricing derives from the mere
observation of Table 5. The proof for the three MMWP pricing schemes
is straightforward from the observation of Table A.1, which reports the
results of MMWP for the same experience as in Table 5. In Table A.1, we
observe that the LOC under MMWP pricing evolves non-monotonically
with respect to the primal optimality gap.

Proof (Proposition 11). Ignoring the network, the bound takes the
following form:
∑

𝑔∈
𝐿𝑂𝐶𝑔(𝜋𝐶𝐻 ) ≤ 𝜌| |

with 𝜌 = max𝑔∈ 𝜌𝑔 and 𝜌𝑔 defined as follows:

𝜌𝑔 = max
(𝑐,𝑞,�̂�)𝑔∈conv(𝑔 )

{

𝑐𝑔(𝑞, �̂�) − (𝑐𝑔)
}

𝑐𝑔(𝑞, �̂�) = min
(𝑐,𝑞,𝑥)𝑔∈𝑔
𝑞𝑔,𝑡≥𝑞𝑔,𝑡

𝑐𝑔

The proof, deriving from an application of the Shapley–Folkman theo-
rem, can be found in Chao (2019) or in Stevens et al. (2024).

Proof (Proposition 12). The proof for IP pricing follows from Example 4.
A similar stylized example can prove the Proposition for MMWP. Let
us consider an hourly market with one fully indivisible block order
A of 50 MW at 100€/MWh and 𝑁 = 3 block orders 𝐵𝑖 of 100 MW
at 75€/MWh with a minimum acceptance of 90 MW. The demand
is 240 MW at 1000€/MWh. The welfare maximizing allocation (with
or without free disposal) is to clear 𝐴 as well as two blocks 𝐵 (one
produces 100 MW, the other 90 MW). In order to ensure zero revenue
shortfall, 𝜋𝑀𝑀𝑊𝑃 = 100€/MWh. At this price, the blocks 𝐵 which
are not cleared have a foregone opportunity. Clearly, if 𝑁 → ∞,
𝐿𝑂𝐶(𝜋𝑀𝑀𝑊𝑃 ) → ∞.

Appendix B. Model of Example 3

The model is the following:

min
𝑞,𝑥,𝑣,𝑤

∑

𝑔∈,𝑡∈
𝑀𝐶𝑔𝑞𝑔,𝑡 +𝑁𝐿𝐶𝑔𝑥𝑔,𝑡

∑

𝑔∈
𝑞𝑔,𝑡 = 𝐷𝑡 ∀𝑡 ∈ 

𝑚𝑎𝑥
0 ≤ 𝑞𝑔,𝑡 ≤ 𝑄𝑔 (𝑥𝑔,𝑡 − 𝑣𝑔,𝑡) ∀𝑔 ∈ , 𝑡 ∈ 
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w
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𝑞𝑔,𝑡+1 ≤ 𝑞𝑔,𝑡 + 𝑅𝑎𝑚𝑝𝑔 ∀𝑔 ∈ , 𝑡 < | |

𝑞𝑔,𝑡+1 ≥ 𝑞𝑔,𝑡 − 𝑅𝑎𝑚𝑝𝑔 ∀𝑔 ∈ , 𝑡 < | |

𝑣𝑔,𝑡 −𝑤𝑔,𝑡 = 𝑥𝑔,𝑡 − 𝑥𝑔,𝑡−1 ∀𝑔 ∈ , 𝑡 > 1

𝑣𝑔,1 −𝑤𝑔,1 = 𝑥𝑔,1 − 𝑥0𝑔 ∀𝑔 ∈ 

𝑥𝑔,𝑡, 𝑣𝑔,𝑡, 𝑤𝑔,𝑡 ∈ {0, 1} ∀𝑔 ∈ , 𝑡 ∈ 

here 𝑥, 𝑣 and 𝑤 stand respectively for the commitment, the start-up
nd shut-down decision variables. We notice that IP prices (Table 4)
an be interpreted as follows. G1 is marginal in 𝑡 ∈ {1, 2, 3}, so 𝜋𝐼𝑃 =

80€/MWh. Increasing the demand of 𝜖 in 𝑡 = 4 requires to increase the
roduction of G4 in 𝑡 = 4 as well as to substitute production of G1 by

𝐼𝑃
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4 in 𝑡 = 3, because of the ramp. So 𝜋4 = 130+(130−80) = 180€/MWh. o
LMP prices (Table 4) are less straightforward to interpret, as it is
ecessary to resort to the KKT conditions of the ELMP problem. To
rovide some intuition, we look at the price of the third period. The
verage cost of G2 is 𝑀𝐶 + 𝑁𝐿𝐶∕𝑄𝑚𝑎𝑥 = 81.25€/MWh. Increasing
he demand of 𝜖 in 𝑡 = 3 requires to increase the production and
ommitment of G2 in 𝑡 = 3 as well as to substitute production from
1 by G2 in 𝑡 = 2, so 𝜋𝐸𝐿𝑀𝑃

3 = 81.25 + (81.25 − 80) = 82.5€/MWh.

ppendix C. Detailed numerical results

Tables C.1 and C.2 provide the detailed results (per load scenario)
f Tables 1 and 2.
Table C.1
Incentives of market agents on the FERC dataset depending on the pricing scheme (detailed figures per scenario).

IP CHP ELMP MMWP MMWP* MMWP**

2015-02-01-hw

Av. Price 23.1 23.7 23.1 247 20.3 23.2
Num. Suppl. 7.4% 3.3% 7.2% 99.9% 17.2% 9.1%
Av. LOC/Suppl. 476 22 53 623,873 8853 52
LOC 32,858 673 3522 582,073,937 1,425,275 4421
RS (in LOC) 0 41 88 0 0 0
FO 32,858 633 3434 582,073,937 1,425,275 4421

2015-04-01-hw

Av. Price 19.3 18.9 19.2 27.1 17.3 19.3
Num. Suppl. 3.4% 1.2% 8.4% 51.7% 16.7% 8.7%
Av. LOC/Suppl. 265 18 74 41,666 1546 75
LOC 8734 229 6084 21,082,899 252,047 6360
RS (in LOC) 2426 0 831 0 0 0
FO 6307 229 5253 21,082,899 252,047 6360

2015-05-01-hw

Av. Price 24.8 24.7 24.8 23.1 23.1 24.8
Num. Suppl. 1.3% 1.3% 4.1% 60.4% 17.9% 4.1%
Av. LOC/Suppl. 68 4 12 40,060 1488 12
LOC 888 60 471 23,675,307 260,410 471
RS (in LOC) 499 0 0 0 0 0
FO 389 60 471 23,675,307 260,410 471

2015-06-01-hw

Av. Price 27.2 27.4 27.1 23.1 23.1 27.2
Num. Suppl. 2.4% 1.8% 5.3% 64.5% 19.9% 5.2%
Av. LOC/Suppl. 344 15 20 43,962 6790 18
LOC 7906 271 1026 27,739,814 1,323,996 923
RS (in LOC) 0 5 32 0 0 0
FO 7906 265 995 27,739,814 1,323,996 923

2015-07-01-lw

Av. Price 32.8 32.9 32.8 49.6 32.8 32.9
Num. Suppl. 1.2% 1.1% 4.4% 83.7% 31.6% 5.1%
Av. LOC/Suppl. 231 21 29 38,983 4543 35
LOC 2772 241 1273 31,926,833 1,403,848 1733
RS (in LOC) 21 0 5 0 0 0
FO 2751 241 1268 31,926,833 1,403,848 1733

2015-07-01-hw

Av. Price 28.6 27.8 28.7 26.4 27.1 28.7
Num. Suppl. 2.4% 3.3% 8.8% 60.4% 23.8% 8.8%
Av. LOC/Suppl. 608 13 42 36,043 2611 42
LOC 13,978 427 3583 21,301,239 608,479 3583
RS (in LOC) 3922 0 0 0 0 0
FO 10,056 427 3583 21,301,239 608,479 3583

2015-08-01-hw

Av. Price 28 27.2 28.1 23.1 26.4 28.1
Num. Suppl. 3.2% 1.4% 11.0% 81.3% 31.8% 11.1%
Av. LOC/Suppl. 749 24 31 75,557 2156 30
LOC 23,217 336 3341 60,067,559 670,588 3327
RS (in LOC) 229 12 38 0 0 0
FO 22,988 324 3303 60,067,559 670,588 3327

2015-09-01-lw

Av. Price 43.3 43 43.4 34.3 41 43.6
Num. Suppl. 4.1% 2.7% 9.6% 83.1% 44.7% 14.9%
Av. LOC/Suppl. 168 18 26 49,988 7778 99
LOC 6719 468 2461 40,640,061 3,399,179 14,509
RS (in LOC) 233 0 82 0 0 0
FO 6486 468 2379 40,640,061 3,399,179 14,509

(continued on next page)
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Table C.1 (continued).
IP CHP ELMP MMWP MMWP* MMWP**

2015-09-01-hw

Av. Price 35.2 36.9 35.3 78.6 33.2 35.8
Num. Suppl. 8.8% 1.3% 12.7% 99.2% 33.7% 21.9%
Av. LOC/Suppl. 3579 29 35 241,607 5830 511
LOC 307,764 383 4318 234,358,740 1,923,877 109,366
RS (in LOC) 0 71 435 0 0 0
FO 307,764 313 3883 234,358,740 1,923,877 109,366

2015-10-01-lw

Av. Price 30 30.3 30 61 27.4 30.2
Num. Suppl. 2.4% 1.4% 4.6% 90.8% 22.1% 6.4%
Av. LOC/Suppl. 366 26 46 105,984 7301 57
LOC 8053 341 1973 89,874,328 1,503,907 3403
RS (in LOC) 0 0 91 0 0 0
FO 8053 341 1882 89,874,328 1,503,907 3403

2015-12-01-hw

Av. Price 23.8 23.8 23.8 26.1 23.2 23.9
Num. Suppl. 1.0% 1.0% 6.9% 96.1% 12.2% 9.0%
Av. LOC/Suppl. 50 14 43 332,826 1447 99
LOC 447 128 2763 298,877,534 164,941 8286
RS (in LOC) 26 85 660 0 0 0
FO 421 43 2104 298,877,534 164,941 8286
Table C.2
Incentives of market agents on the CWE dataset depending on the pricing scheme (detailed figures per scenario).

IP CHP ELMP MMWP MMWP* MMWP**

SpringWE-24

Av. Price 35.6 36.4 43.8 25.3 24.2 50.3
Num. Suppl. 28.4% 25.7% 37.8% 78.4% 60.8% 60.8%
Av. LOC/Suppl. 4047 278 2631 137,534 36,071 38,786
LOC 84,978 7189 75,852 95,284,255 45,775,853 27,790,203
RS (in LOC) 1207 1145 15,035 0 0 0
FO 83,771 6043 60,816 95,284,255 45,775,853 27,790,203
RS (not in LOC) 1,241,106 1,262,137 937,572 0 0 0

AutumnWE-24

Av. Price 38 38.6 45.2 30.8 24.4 51.1
Num. Suppl. 29.7% 23.0% 36.5% 78.4% 55.4% 56.8%
Av. LOC/Suppl. 4245 195 2164 228,052 36,306 36,682
LOC 93,398 4814 61,033 134,946,417 45,300,887 25,886,284
RS (in LOC) 9812 1364 10,898 0 0 0
FO 83,586 3450 50,135 134,946,417 45,300,887 25,886,284
RS (not in LOC) 1,165,408 1,177,396 880,050 0 0 0

SummerWE-24

Av. Price 34.5 34.5 42.4 25.1 23.9 49.6
Num. Suppl. 29.7% 23.0% 37.8% 78.4% 63.5% 63.5%
Av. LOC/Suppl. 5549 621 2861 115,019 36,695 40,142
LOC 122,078 12,606 82,506 88,196,688 46,897,168 29,419,777
RS (in LOC) 6111 4985 23,074 0 0 0
FO 115,967 7621 59,431 88,196,688 46,897,168 29,419,777
RS (not in LOC) 1231,897 1312,780 997,636 0 0 0

SummerWE-96

Av. Price 44.3 44.4 46.8 24.9 21.1 51.4
Num. Suppl. 41.9% 36.5% 52.7% 81.1% 70.3% 71.6%
Av. LOC/Suppl. 2286 212 627 99,952 22,600 17,941
LOC 70,879 6406 25,444 76,307,676 35,056,506 15,473,856
RS (in LOC) 3814 2858 7065 0 0 0
FO 67,065 3547 18,379 76,307,676 35,056,506 15,473,856
RS (not in LOC) 634,481 654,700 577,425 0 0 0

SummerWD-24

Av. Price 35.3 34.2 42.9 23.2 24.2 49.9
Num. Suppl. 25.7% 25.7% 39.2% 79.7% 60.8% 63.5%
Av. LOC/Suppl. 3612 357 2450 106,374 37,784 39,207
LOC 68,620 7707 73,911 86,363,710 46,951,981 29,096,219
RS (in LOC) 7190 3832 21,504 0 0 0
FO 61,430 3875 52,408 86,363,710 46,951,981 29,096,219
RS (not in LOC) 1,319,226 1,288,743 984,371 0 0 0

AutumnWD-24

Av. Price 47.9 43.4 49.6 33.6 26.7 55
Num. Suppl. 32.4% 40.5% 41.9% 81.1% 58.1% 56.8%
Av. LOC/Suppl. 4839 464 817 198,139 32,992 33,969
LOC 116,130 18,723 42,626 134,179,378 45,844,078 23,812,415
RS (in LOC) 67,061 649 1025 0 0 0
FO 49,070 18,074 41,601 134,179,378 45,844,078 23,812,415
RS (not in LOC) 1,048,066 888,203 832,867 0 0 0

(continued on next page)
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Table C.2 (continued).
IP CHP ELMP MMWP MMWP* MMWP**

AutumnWD-96

Av. Price 53 52.6 54 30.1 25.8 58.1
Num. Suppl. 35.1% 55.4% 58.1% 94.6% 70.3% 71.6%
Av. LOC/Suppl. 1999 152 388 126,419 20,139 14,407
LOC 51,962 6,625 21,179 90,412,716 39,833,338 13,737,122
RS (in LOC) 7886 1194 1146 0 0 0
FO 44,076 5430 20,033 90,412,716 39,833,338 13,737,122
RS (not in LOC) 538,906 532,300 507,761 0 0 0

SpringWE-96

Av. Price 44.8 45.3 47.3 25.7 21.1 51.7
Num. Suppl. 37.8% 44.6% 50.0% 86.5% 67.6% 68.9%
Av. LOC/Suppl. 2841 131 626 198,060 22,316 17,651
LOC 79,560 5196 24,688 94,436,434 35,076,443 15,125,326
RS (in LOC) 7511 633 4893 0 0 0
FO 72,049 4563 19,795 94,436,434 35,076,443 15,125,326
RS (not in LOC) 627,309 640,835 561,709 0 0 0

SummerWD-96

Av. Price 46.7 46.1 49.1 25.7 23.2 53.5
Num. Suppl. 36.5% 43.2% 55.4% 83.8% 71.6% 73.0%
Av. LOC/Suppl. 2238 165 556 90,557 22,047 15,174
LOC 60,430 5989 24,358 80,534,617 38,674,968 14,967,433
RS (in LOC) 3356 1339 4493 0 0 0
FO 57,074 4650 19,865 80,534,617 38,674,968 14,967,433
RS (not in LOC) 645,930 629,168 556,458 0 0 0

SpringWD-24

Av. Price 44.5 42.9 47.4 30.4 25 53.3
Num. Suppl. 28.4% 32.4% 37.8% 82.4% 52.7% 54.1%
Av. LOC/Suppl. 5683 400 1185 182,800 37,165 36,427
LOC 119,351 9940 40,675 127,677,227 46,360,290 25,411,605
RS (in LOC) 6463 3829 8973 0 0 0
FO 112,889 6111 31,702 127,677,227 46,360,290 25,411,605
RS (not in LOC) 1,110,721 969,030 859,078 0 0 0

AutumnWE-96

Av. Price 46 45.2 48.3 25.4 21.6 52.6
Num. Suppl. 39.2% 39.2% 45.9% 83.8% 63.5% 64.9%
Av. LOC/Suppl. 2581 167 643 88,274 25,366 18,805
LOC 74,843 5591 23,722 82,089,816 36,154,282 14,545,232
RS (in LOC) 5296 1116 2911 0 0 0
FO 69,546 4475 20,811 82,089,816 36,154,282 14,545,232
RS (not in LOC) 625,250 614,743 543,490 0 0 0

SpringWD-96

Av. Price 50 49.6 51 32.2 24.2 55.1
Num. Suppl. 33.8% 41.9% 50.0% 94.6% 66.2% 66.2%
Av. LOC/Suppl. 2412 189 467 130,828 22,438 15,598
LOC 60,292 6328 19,382 93,752,601 39,772,253 14,203,481
RS (in LOC) 895 898 1079 0 0 0
FO 59,397 5430 18,303 93,752,601 39,772,253 14,203,481
RS (not in LOC) 583,540 554,445 524,396 0 0 0
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