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Abstract
The topic of pricing non-convexities in power markets has been explored vividly in
the literature and among practitioners for the past twenty years. The debate has been
focused on indivisibilities in short-term auctions, the computational tractability of
some pricing proposals, and the economic analysis of their behavior. In this paper, we
analyse a source of non-convexities that is not discussed as broadly: the indivisibilities
in investment decisions. The absence of equilibrium that we are primarily concerned
about is the long-term equilibrium.We derive a capacity expansionmodelwith indivis-
ibilities andwe highlight the issues arising from it.We discuss its relevance and address
one particular argument for neglecting indivisibilities in investment, namely market
size. We investigate to what extent a capacity market that clears discrete offers can
mitigate the lumpiness problem.We particularly introduce the novel concept of convex
hull pricing for capacity auctions. We illustrate the main findings with a numerical
experiment conducted on the capacity expansion model used by ENTSO-E to assess
the adequacy of the entire European system.
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1 Introduction

The restructuring of the electricity industry is work in progress for more than 25 years.
Early discussions mainly concentrated on decentralized versus centralized organiza-
tions of the market (Stoft, 2002). The latter system emerged, and with it the idea of
a centralized market clearing, and a dispatch associated to the so-called merit order
of plants that reflects fuel costs. It was quickly recognized that generation plants
are also characterized by “indivisibilities”, such as start-up cost or minimum time
between shutdown and startup. Accounting for these aspects required replacing the
merit order-based dispatch by a unit commitment. This invalidated the clean neoclassi-
cal interpretation of electricity prices that, according to the doxa, supports competition
in the industry. This made the market design more complex and generated a lot of
implementation and methodological work, including a vivid debate in the literature
and among practitioners about the right way to price in power auctions (O’Neill,
Sotkiewicz, Hobbs, Rothkopf, and Stewart Jr, 2005; Hogan & Ring, 2003).

Indivisibilities also have a long-term dimension. In the same way that plants go
through short-run cycles where they are started, operated for some hours, and shut
down, they also go through a long-term cycle where they are built, operated over
several years, and are eventually dismantled. Each of these stages implies costs that,
once incurred, become stranded, hence constituting indivisibilities. In contrast with
the short-run market, long-run indivisibilities did not receive much attention, whether
in the literature or in practice, so far. A notable exception is Scarf’s ground-breaking
paper (Scarf, 1994), which recognizes the indivisibilities in the choice of technologies
as an issue.

The apparent neglect of indivisibilities in long-term electricity markets contrasts
with the attention given to market failures and how these interact with investment
incentives. The notion of “missing money” has been central in these discussions since
Joskow (2007) enlightened the debate on the subject. The author relies on a stylized
capacity expansionmodel to show that long-term elements aremissing in the short-run
market,whichmakes it unable to send adequate investment signals. Themissingmoney
debate generated considerable but often inconclusive discussions on the respective
merits of different market designs such as energy-only markets and capacity markets.
The energy transition in Europe and its implication of fully restructuring the capital
stock of the generation system gave a new impetus to the subject. It was recognized
that the insufficient incentive to invest was rooted not only in “missing money” but
also in missing and incomplete financial markets, which are more difficult issues
to explore and remedy. Considerable work has been undertaken in the UK since at
least 2013 (UK Department of Energy & Climate Change, 2013; Grubb & Newbery,
2018; Helm, 2017). This led to the idea of using instruments such as contracts for
differences (CfDs), power purchase agreements (PPAs) and capacity auctions (CRM)
to mitigate this missing incentive for investment (De Maere d’Aertrycke, Ehrenmann,
and Smeers, 2017). The general principle of this approach is that existing markets
should be complemented by additional market instruments targeted at the incentive to
invest. The war in Ukraine and the new European policy of moving away fromRussian
gas supplies reinforced the sense of urgency of the investment problem. This led to
an explosion of papers to remedy not only the impact of high gas prices on the power
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market but also the possibly insufficient incentives to invest. It reinforced the push for
the already mentioned market instruments (CfDs, PPAs, CRM).

Our paper aims at contributing to this literature on investment incentives, but focus-
ing on the—much less discussed—problem of non-convexities in investment. Some
papers have focused on the effect of the short-run non-convexities on the investment
incentives (Mays, Morton, and O’Neill, 2021; Byers & Hug, 2023). Instead, our work
focuses on the non-convexities in the investment itself. The goal of an investor to
maximize profits still remains the same in the presence of indivisibilities, but these
indivisibilities can distort the capacity mix that results from existing incentives. As in
Joskow’s initial analysis of missing money (Joskow, 2007), we examine the problem
through adeterministic capacity expansionmodel. This corresponds to a completemar-
ket (no uncertainty or missing market) and thus makes it possible to focus on the sole
effect of indivisibilities. We analyse the possibility that, very much like indivisibilities
in the short-run market required a regulatory authority to clear the short-term market,
long-term indivisibilities may also require such an authority to coordinate investment.
Our formal analysis leads to ideas related to the work of French economists Finon
and Roques that claim that there exist fundamental difficulties for coordinating invest-
ment in the restructured power market, with the conclusion that direct regulated public
intervention should be introduced for that purpose (Roques & Finon, 2017; Finon &
Beeker, 2022). The authors refer to this mix of market and public coordination as the
“hybrid market”—a notion also supported by Joskow (2022).

In Sects. 2 and 3, we introduce a long-term investment model, and we analyse the
effects of the market imperfection at work, namely indivisibilities or non-convexities
in investment decisions. We show that indivisibilities in investment result in a dis-
tortion of incentives for the individual market agents—a long-term lost opportunity
cost, similarly to what happens in a short-term market with indivisibilities. Is this
long-term lost opportunity cost important? In Sect. 4, we derive one theoretical argu-
ment, inspired from the theory of general equilibrium, for neglecting indivisibilities
in general, and then discuss its relevance to the investment problem. We show that the
issue stemming from discrete investment, under certain pricing approaches, may be
arbitrarily large. In principle, the discussion of the first part of the paper (Sects. 2, 3
and 4) applies to any industry. In practice, however, one may expect the problem to
be more severe in the electricity sector. Because there are important technical barriers
to the storage and transportation of electricity, a shortfall of generation capacity in
a given location may not be compensated either by a stock of energy or by raising
imports. Unlike many industries, electricity has hardly any means to react to a local
shortage of production capacity. These supply and transportation rigidities, combined
with an electricity demandwhich has to bemet just in time by production, andwhich is
notably inelastic, especially in the short run, may exacerbate the impact of investment
indivisibilities on energy prices—therefore on investment incentives.

The second part of the paper focuses on the interplay between capacity markets
and investment indivisibilities. In Sect. 5, we analyse to what extent the long-term lost
opportunity cost can be corrected by market mechanisms. Capacity markets are one
way to coordinate long-term investments. Some existing capacity markets acknowl-
edge, in their design, the indivisible nature of investment decisions. For example, the
Belgian capacity market only includes indivisible bids [Elia (2022), art. 235, sec. 6.2].
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But if the benefits of a capacity market as an instrument to hedge investment risk
(De Maere d’Aertrycke, Ehrenmann, and Smeers, 2017) or to mitigate market power
in the energy market (Fabra, 2018) have been well analysed [see also (Stoft, 2002;
Cramton & Stoft, 2005; Cramton, Ockenfels, and Stoft, 2013)], little has been said
about the effect of the capacitymarket on the incentives of the agents to invest in amar-
ket with long-term indivisibilities. Indeed, if lumpiness of investment has sporadically
been mentioned to justify CRMs (Mastropietro, Rodilla, and Batlle, 2017), no formal
discussion of the argument has been provided so far to the best of our knowledge. We
analyse to what extent a capacity market could turn out to be a tool that mitigates the
long-term lost opportunity costs stemming from indivisibilities, or if it alternatively
exacerbates them. We particularly discuss the design of a CRM under discrete offers
and we introduce the concept of convex hull pricing for capacity auctions. Finally,
Sect. 6 illustrates our findings with a model of the European system. We perform our
simulations with the European Resource Adequacy Assessment (ERAA) model used
by ENTSO-E (2021) to estimate the need for investments in Europe.

2 The continuous investment problem

The continuous investment problem provides us with a useful benchmark. Its analysis
was pioneered by Boiteux (1960), who showed thatmarginal pricing provides market
agents with the right incentives to invest in the welfare-maximizing generation mix.
The analysis resolves the fallacy according to which a peaking unit could not possibly
cover its fixed cost by solely relying on market payments. The analysis of Boiteux can
be illustrated by considering the following long-term continuous investment model
(which admits a decentralized interpretation):

max
q,x,d≥0

∑

t∈T
�TtVtdt −

∑

g∈G

∑

t∈T
�Tt MCgqg,t −

∑

g∈G
ICgxg (1a)

(�Ttπt ) dt ≤
∑

g∈G
qg,t ∀t ∈ T (1b)

(�Ttμg,t ) qg,t ≤ xg ∀g ∈ G, t ∈ T (1c)

(�Ttηt ) dt ≤ Dt ∀t ∈ T (1d)

The variables xg , qg,t and dt stand respectively for the investment in technology
g ∈ G, the actual production from technology g at period t ∈ T , and the consumption
of energy at period t . Investment cost is indicated as ICg , while marginal cost is
indicated as MCg . The total served demand at period t , dt , is valued at Vt , which is
assumed to be the right value of lost load (VOLL), cf. Stoft (2002). Dt is the observed
load while�Tt stands for the duration of period t . As indicated by the inequality in the
market clearing constraint (1b), we assume free disposal. The optimality conditions
of problem (1) are:

0 ≤ qg,t ⊥ MCg − πt + μg,t ≥ 0 ∀g ∈ G, t ∈ T (2a)
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0 ≤ xg ⊥ ICg −
∑

t∈T
�Ttμg,t ≥ 0 ∀g ∈ G (2b)

0 ≤ dt ⊥ − Vt + πt + ηt ≥ 0 ∀t ∈ T (2c)

0 ≤ xg − qg,t ⊥ μg,t ≥ 0 ∀g ∈ G, t ∈ T (2d)

0 ≤ Dt − dt ⊥ ηt ≥ 0 ∀t ∈ T (2e)

0 ≤
∑

g∈G
qg,t − dt ⊥ πt ≥ 0 ∀t ∈ T (2f)

These equations convey three important facts. (i) If a technology is used (xg >

0), then the infra-marginal rents (
∑

t∈T �Ttμg,t ) earned from the short-term market
prices πt by each technology exactly cover the investment cost ICg . (ii) This means
that long-term profits are zero. (iii) Furthermore, as highlighted by Boiteux, in order
for the peaking units (the technology g with the highest MCg) to recover their fixed
costs, there should be at least some hours during which the system is scarce, meaning
that the demand sets the price (dt < Dt , such that πt = Vt > MCpeak).

3 The discrete investment problem and the lost opportunity cost

We now turn to the discrete version of model (1) that accounts for the lumpiness of
investment. Indivisibilities in investment decisions (commissioning or decommission-
ing) arise naturally from the fact that power plants are large indivisible assets (e.g.
nuclear or CCGT plants as well as an offshore wind park are straightforward exam-
ples). Indivisibilities also arise indirectly from economies of scale as well as learning
effects. “Learning by doing” can be represented as a particular model with indivisibil-
ities (Heuberger, Rubin, Staffell, Shah, and Mac Dowell, 2017) that appears to be of
particular interest in certain policy design discussions (Newbery, 2021). The discrete
investment model is as follows:

z∗P = max
q,x,d

∑

t∈T
�TtVtdt −

∑

g∈G

⎛

⎝
∑

t∈T
�Tt MCgqg,t +

∑

i∈Ig

xg,i ICg,i

⎞

⎠ (3a)

dt ≤
∑

g∈G
qg,t ∀t ∈ T (3b)

0 ≤ qg,t ≤
∑

i∈Ig

Pmax
g,i xg,i ∀g ∈ G, t ∈ T (3c)

xg,i ∈ {0, 1} ∀g ∈ G, i ∈ Ig (3d)

0 ≤ dt ≤ Dt ∀t ∈ T (3e)

The investment decisions are modelled with the binary variables xg,i . These stand
for investment into lumps of capacity Pmax

g,i at investment cost ICg,i , so that each
market agent (or technology) g comes with the set of investment projects i ∈ Ig .
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The real-time operations are assumed to be convex.1 This formulation of the discrete
investment problem is similar to the one considered by Scarf (1994) or O’Neill et al.
(2005). To ease notation, we shall denote the total cost of each agent for performing
the production plan (q, x)g as the linear function cg((q, x)g) in the remainder of this
paper. Thus, cg((q, x)g) = ∑

t∈T �Tt MCgqg,t +∑
i∈Ig

xg,i ICg,i . The (non-convex)
production sets defined by constraints (3c)–(3d) are denoted asXg , while the (convex)
consumption set defined by constraint (3e) is denoted as Xd .

The short-term marginal prices—or merit order prices—are the ones stemming
from the market when the investment decisions are fixed. In this paper, we are particu-
larly interested in finding prices that support the welfare-maximizing investment.2 We
therefore assume throughout the paper that the installed mix is the optimal investment
x∗∗
g,i , as if a central planner were solving problem (3).

Definition 1 (Marginal Pricing) Let x∗∗ be the values of the binary variables optimiz-
ing problem (3). The marginal prices are defined as the dual variables πM obtained
from solving the following (convex) problem, in which the variables x of problem (3)
are fixed to x∗∗:

max
d,q

∑

t∈T
�TtVtdt −

∑

g∈G
cg((q, x∗∗)g) (4a)

(�Ttπ
M
t )

∑

g∈G
qg,t ≥ dt ∀t ∈ T (4b)

(q, x∗∗)g ∈ Xg ∀g ∈ G (4c)

d ∈ Xd (4d)

The marginal pricing approach captures the two-stage nature of an investment cycle.
The supplier first decides on the discrete decision (e.g. investing in a new power unit).
The associated fixed cost is then considered as sunk. Thus, the price reflects the cost
of operating the plant given the fixed discrete decisions (i.e. the short-term so-called
merit order).

The concernwith thesemarginal prices, compared tomarginal pricing in the contin-
uous investment problem, is that in general they do not support the optimal investment.
This price alone does not support an equilibrium: some agents will have incentives
to enter or to leave the market. Intuitively, the lumpiness of investment can make it
socially optimal to over-dimension the investments, which in turn keeps the prices too
low to render the investment profitable in the first place.3 This fundamental problem of
the discrete investment problem was highlighted by Scarf (1994). Before illustrating
it in Example 1, we proceed with some definitions that characterise the incentives of
the market agents. All suppliers and consumers are assumed to be price-takers and to
act so as to maximize their selfish profit.

1 The model neglects the non-convexities of short-term production costs, such as start-up or no-load costs.
2 In other words, the dynamics that take us from a sub-optimal mix to this optimal investment are out of
scope for this paper.
3 A recent example is Finland. In April 2023 Olkiluoto-3, which is a 1600 MW nuclear unit, entered into
operation and led to a significant price drop.
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Definition 2 (Supplier Profit) Agent g is assumed to maximize its selfish profit func-
tion Pg , under market price π , which is defined as follows:

max
(q,x)g∈Xg

Pg(q, x, π) ≡
∑

t∈T
πt�Ttqg,t − cg((q, x)g) (5)

Definition 3 (Demand Profit) The load is assumed to maximize its selfish surplus
function U , under market price π , defined as follows:

max
d∈Xd

U(d, π) ≡
∑

t∈T
�Tt (Vt − πt )dt (6)

Definition 4 (CompetitiveWalrasianEquilibrium) The allocation (q∗, x∗, d∗) together
with the market price π constitute a competitive Walrasian equilibrium if

(i) for each supplier g, (q∗, x∗)g optimizes its profit maximization problem (5) under
price π ; d∗ optimizes the load profit maximization problem (6) under price π ;

(ii) the market clears (
∑

g∈G q∗
g,t ≥ d∗

t ∀t ∈ T ).

Since themarket is non-convex, a competitive equilibrium is not guaranteed to exist.
Under a centralized production and consumption plan (q∗, x∗) and d∗, chosen so that
condition (ii) of Definition 4 is met, there may be no price that satisfies condition
(i). Assuming that the private agents maximize their profit (Definitions 2 and 3), the
violation of condition (i) is measured by the long-term lost opportunity cost.

Definition 5 (Long-term Lost Opportunity Cost) The lost opportunity cost (LOC) is
the difference between the selfishmaximumprofit if self-scheduling and the as-cleared
profit (with allocation (q∗, x∗, d∗)) under price π . For each supplier g, it is expressed
as:

0 ≤ LOCg(π) =
selfish maximum profit︷ ︸︸ ︷
max

(q,x)g∈Xg

Pg(q, x, π) −
as-cleared profit︷ ︸︸ ︷
Pg(q

∗, x∗, π) (7)

For the demand, it is expressed as:

0 ≤ LOCd(π) = max
d∈Xd

U(d, π) − U(d∗, π)

This concept has been widely used in the context of pricing non-convexities in power
auctions. In an investment context, the long-term lost opportunity cost measures the
financial incentives that each profit-maximizing agent has to commission or decom-
mission power plants in a way that deviates from the efficient capacity mix (the one
solving problem (3)). The LOC could fruitfully be viewed as the sum of two quan-
tities. In some cases, an LOC corresponds to a shortfall of revenue. For instance, a
new investment that would be socially efficient, while it is unprofitable, implies that
the investor would bear a shortfall of revenue. Alternatively, an installed plant that,
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Fig. 1 Graphical illustration of
the relationship between LOC ,
RS and FO . P∗

g and maxPg
denote, respectively, the
as-cleared profit and the
maximum profit

from a social efficiency viewpoint, should stay in the market although it is unprof-
itable, would also face a shortfall of revenue. In a capital-intensive industry such as
power production,4a revenue shortfall stands for a threat of not recovering investment
cost. In other cases, LOC corresponds to a foregone opportunity. For instance, an
investor who, from a social efficiency viewpoint, should restrain from investing, while
his investment project is profitable, would forego an opportunity. Alternatively, if it
would be socially efficient to retire an existing plant, although it is profitable, then the
owner would also forego an opportunity. Mathematically, the revenue shortfall (RSg)
and the foregone opportunity (FOg) can be related as follows to the definition of LOC
(cf. Figure1). Looking at the two terms of expression (7), there are three cases (by
definition, max(q,x)g∈Xg Pg(q, x, π) ≥ Pg(q∗, x∗, π)):

(A) Either Pg(q∗, x∗, π) ≥ 0, in which case there is no revenue shortfall, and the
LOC is a “foregone opportunity” (LOCg = FOg), i.e. the investor does not loose
money, but he could gain more by deviating from the socially efficient plan;

(B) Or Pg(q∗, x∗, π) < 0. In this case, there are two alternatives: (B1) Either
max(q,x)g∈Xg Pg(q, x, π) ≤ 0, then the LOC is a revenue shortfall (LOCg =
RSg); (B2) Or max(q,x)g∈Xg Pg(q, x, π) > 0. In this case, the LOC can be equiv-
alently written as the following sum: LOCg(π) = [max(q,x)g∈Xg Pg(q, x, π) −
Pg(0, 0, π)] + [Pg(0, 0, π) − Pg(q∗, x∗, π)] = FOg + RSg .

As highlighted in case (B2), the revenue shortfall may fruitfully be viewed as a specific
“lost opportunity”, in which the as-cleared profit is negative and the “opportunity” is
not to invest (x∗ = 0 and Pg(0, 0, π) = 0).5 We shall reuse the notions of RSg and
FOg in the sequel, especially in Sect. 6.

Example 1 Consider the classic example proposed by Scarf (1994). This can be
described as a discrete investment problem into two different technologies (Table

4 For a peaking unit or an offshore wind park, the investment cost stands for most of the total cost of the
asset. For a mid-load gas-fired CCGT plant with an annualized investment cost of ∼ 80, 000e/MW/y and
a production cost of ∼ 50e/MWh with a capacity factor of ∼40%, the investment cost would stand for
∼30% of its total cost.
5 In case (B1), max(q,x)g∈Xg Pg(q, x, π) < 0 may happen if possibility of inaction does not hold, i.e.
if there are barriers of exit. In this case, an investor may have a shortfall of revenue, without having the
possibility to act differently (LOCg = 0). Accounting for this subtlety requires to introduce a distinction
between a “revenue shortfall that expresses a lost opportunity” (RSg) and a “revenue shortfall that is due
to a barrier of exit” (RSotherg ).
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Table 1 Power plant data in Scarf’s example (Scarf, 1994)

Capacity Investment cost Marginal cost
Technologies [MW] (Pmax ) [e/unit] (IC) [e/MWh] (MC)

Smokestack 16 53 3

High tech 7 30 2

1). One technological option is Smokestack, the other is High Tech plants. A cen-
tral planner solves problem (3) in order to determine the cost-minimizing number of
power plants of each technology to install so as to meet the perfectly inelastic demand
D. Figure2a reports the cost-minimizing investment choices as a function of load.
The lumpiness of investment translates into highly fluctuating investment decisions,
depending on market demand. For the sake of comparison, Fig. 2b illustrates what
would be the optimal expansion if the investment decisions were continuous. Since
the average cost of the Smokestack plant is 6.3125e/MWh, while it is 6.2857e/MWh
for the High Tech plant, only High Tech plants would have been built, so as to precisely
meet demand (recall that the example assumes a constant uniform demand D). Let us
now consider the case in which the demand equals to 60MWh. The optimal invest-
ment is to build 2 Smokestack plants and 4 High Tech plants. Under this allocation, the
marginal price is 3e/MWh, which corresponds to the marginal cost of the Smokestack
plants. The two suppliers face a lost opportunity cost (in this case, a revenue shortfall)
of 106e for the Smokestack plants and 92e for the High Tech plants. By contrast,
under continuous investment, the LOCs are zero for both technologies.

4 The theoretical magnitude of lost opportunity costs

Indivisibilities in investment have sometimes been overlooked on the basis that, when
the market size increases, “inefficiency caused by the lumpiness of generators is neg-
ligible”. As Stoft argues: “this impact of lumpiness is dramatic, but it occurs in an
unrealistically small market. [...] This inefficiency declines in proportion to the size of
the market.” (Stoft, 2002, pp. 130–131). In other words, the effect of indivisibilities
may be dramatic in Example 1, but it tends to vanish when the size of the system
increases. The same reasoning is supported by Byers and Hug (2023). In this section,
we assess whether this might be theoretically true. The intuition that non-convexities
would smooth outwhen themarket size increases rests on solid theoretical foundations.
A strong result was provided in the late sixties, in the theory of general equilibrium, by
Arrow and Starr,6 in order to justify the crucial assumption of convexity that is needed
for ensuring the existence of a competitive equilibrium. We briefly state the result of
Arrow and Starr, before showing how it can be adapted to our problem statement. We
then use this result in order to first derive a positive result, and then a more negative
result. The settings considered by Arrow and Starr differ in two manners from our

6 Starr (1969) shows the result for a pure exchange economy, while Arrow and Hahn (1971) show it for a
more general case of an economy that includes non-convex production.
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Fig. 2 Welfare maximizing investment decisions under discrete and continuous investment as a function of
the load

settings of Sect. 3: (i) their pricing rule differs from marginal pricing, and (ii) the
metric that they use for measuring the distance from competitive equilibrium differs
from LOC.

As far as the pricing scheme is concerned, in the absence of competitive prices,
the question of what will be the price that prevails in the non-convex market remains
open. An alternative to marginal pricing (Definition 1), consists of computing the
prices from the closest convex economy in which a competitive equilibrium exists.
Mathematically, the closest convex economy means the convex relaxation of problem
(3) in which the production sets (Xg) are replaced by their convex hull (conv(Xg)).

Definition 6 (Convex Hull Pricing) The convex hull prices πCH are defined as the
dual variables obtained from solving the following convex problem:

z∗D = max
d,q,x

∑

t∈T
�Ttdt Vt −

∑

g∈G
cg((q, x)g) (8a)
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(�Ttπ
CH
t )

∑

g∈G
qg,t ≥ dt ∀t ∈ T (8b)

(q, x)g ∈ conv(Xg) ∀g ∈ G (8c)

d ∈ Xd (8d)

Although they do not use this nomenclature, this is the pricing approach assumed
by Arrow and Starr.7 Let us notice that the investment costs ICg,i appear in problem
(8) through the function cg((q, x)g), while they are not present in the marginal pricing
problem (4), since the investment decisions are fixed.

Regarding the metric used for measuring the distance to an equilibrium, there are
two options that are worth examining: either condition (ii) of Definition 4 holds—or
is enforced—and (i) is violated; or condition (i) holds, in which case (ii) is violated.
The first case corresponds to what has been considered in Sect. 3, in which distance
to the equilibrium is measured by the LOC. The setting analysed by Arrow and Starr
corresponds to the second case. It can be viewed as a purely decentralized setting:
the producers and consumers leave or enter the market depending on the price they
observe, in a manner that satisfies (i). Then, the discrepancy between demand and
production—the violation of condition (ii)—is measured by the social excess demand.

Definition 7 (Social Excess Demand) Let q†g,t and d†t be decentralized production
and consumption plans of the private agents under price π , respecting condition (i) of
Definition 4. The social excess demand (SED) is defined as:

SED(q†, d†) = d† −
∑

g∈G
q†g . (9)

4.1 Convex hull pricing with decentralized decisions

We first consider the same setting as that assumed in the work of Arrow and Starr. Let
((q∗, x∗, d∗), πCH ) be the equilibrium in the closest convex economy, i.e. the solution
of problem (8). The allocation (q∗, x∗, d∗) can, in general, be infeasible. Therefore, we
shall seek an allocation (q†, x†, d†) that solves problems (5) and (6) under price πCH

(condition (i) in Definition 4 is met), even if it does not clear the market (condition
(ii) in Definition 4 can be violated). How would this mismatch between supply and
demand grow with the market size?

Example 2 Consider an investment problem with one single power plant technology
with the following characteristics: the investment cost is 50e/MWh, the production
cost is 10e/MWh and the indivisible size of the power plant is 100MW (i.e. investing
in one plant costs 100MW×50e/MWh= 5, 000e/h). Let us assume that one can

7 This happens to also be a pricing proposal that has been advocated—for other reasons—by Hogan and
Ring (2003) for pricing in non-convex power auctions under the name Convex Hull (CH) Pricing. Taking
the convex hull of the constraints (3c)–(3d) amounts to solving the Lagrangian relaxation of the problem
in which constraint (3b) is relaxed. The convex hull prices then correspond to the associated Lagrangian
multipliers. This connection with the Lagrangian dual problem justifies the label zD , for denoting the dual
objective value.
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invest in any non-negative integer number of power plants. We also assume that there
is a single period and that the VOLL is equal to 1,000e/MWh. If the demand is
D = 250MWh, the optimal allocation in the convex hull of this economy is x = 2.5
and q = D = 250, for which the convex hull price isπCH = 60e/MWh.At this price,
each plant is indifferent between either producing (and investing) zero, or producing
at 100MWh (both production plans lead to a zero profit). There exists a decentralized
decision to construct two power plants so as to produce 200MWh. On the other hand,
at this price, the demand is willing to consume 250MWh. Thus, the social excess
demand is 50MWh.

Intuitively, if the market grows (the demand D increases), the social excess demand
will always be bounded by 50 MWh (which can be viewed as a measure of the non-
convexity of the production set). This intuition is formally stated and proven to hold
for a general case in Proposition 1, which is the translation of the Theorem of Starr
and Arrow to our problem.8

Proposition 1 Let πCH denote the convex hull prices and (q∗, x∗, d∗) the associated
allocation in the convex problem, where both are obtained from solving problem (8).
Then, there exists an allocation (q†, x†, d†) such that

(i) (q†, x†) solve problem (5) under price πCH

(ii) d† solves problem (6) under price πCH

(iii) Thedifferenceof social excess demand is bounded9 |SED(q†, d†)−SED(q∗, d∗)| =
|(d† − ∑

g q
†
g) − (d∗ − ∑

g q
∗
g )| ≤ √|T |A with A ≥ r(Xg) ∀g.

The proof, largely inspired from the one of Arrow and Hahn (1971) that we adapt to
our problem statement, is provided in Appendix 1 (which also contains all the other
proofs of the paper). The Proposition shows that, under these assumptions of price and
metric, the discrepancy between supply and demand, caused by the indivisibilities, is
bounded. The bound depends upon the number of commodities that are exchanged as
well as the measure of non-convexity of each production set, but it is independent of
the size of the market. If the number of consumers and suppliers is multiplied, while
keeping similar production sets, the bound remains unchanged, meaning that its ratio
relative to the size of the market tends to zero.

4.2 Convex hull pricing with centralized decisions

Let us now assume that the production and the consumption plans are decided by a
central planner so that themarket clears and the solutionmaximizes social welfare. Let
(q∗∗, x∗∗, d∗∗) be the welfare-maximizing allocation, obtained from solving problem
(3). The market price is again assumed to be the convex hull price πCH . Under this
setup, condition (ii) in Definition 4 is met, while condition (i) is violated (the violation
being measured by the LOC).

8 Note that r(·) denotes the inner radius of a set (the definition is recalled in Appendix 1). To provide an
intuition to the reader, in the previous example, r(Xg) = 50. Indeed, the set of possible investments is
{0, 100}, meaning a ball of radius 50 MW spans any x ∈ [0, 100].
9 Note that ifπt > 0∀t ∈ T , thenwe deduce that d∗ = ∑

g q
∗
g and the expression becomes |d†−∑

g q
†
g | ≤√|T |A.
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Example 3 We consider the same data as in Example 2. If D = 250MWh, the welfare
maximizing allocation is x = 3 so that q = D = 250 MWh. The convex hull price
is πCH = 60e/MWh. At this price, the non-constructed power plants face a LOC of
0e. Two of the constructed power plants—the ones producing 100 MWh each—face
a LOC of 0e. The plant at the margin, producing 50 MWh, faces a loss of 2,500e.

Intuitively, if the market grows (D increases), there will always be one single
frustrated plant at the margin, which faces a revenue shortfall of at most 5,000e. This
intuition is formally stated and proven for a general case in the followingProposition.10

Proposition 2 Let (q∗∗, x∗∗, d∗∗) be the welfaremaximizing allocation, obtained from
solving problem (3). Let πCH denote the convex hull prices, obtained from solving
problem (8). Then, the total lost opportunity cost is bounded:

∑

g∈G
LOCg(π

CH ) + LOCd(π
CH ) ≤ ρ|T | (10)

with ρ = maxg∈G ρg and ρg defined as follows:

ρg = max
(q̂,x̂)g∈conv(Xg)

{
ĉg(q̂, x̂) − cg(q̂, x̂)

}
(11)

ĉg(q̂, x̂) = min
(q,x)g∈Xg
qg,t≥q̂g,t

cg((q, x)g) (12)

Let us notice that, in Example 3, ρg = 5, 000e. Indeed, |T | = 1 and a worst cost
increment of 5,000e could occur if a plant is asked to produce ε (the convex hull
allocation is x∗

g = ε/100 ≈ 0, while a feasible allocation requires to build an entire
power plant, xg = 1, which comes at a cost of 5,000e). Similarly to Proposition 1,
the bound does not depend on the market size. If the market grows (increasing the
load and the number of suppliers with similar production sets Xg) in such a way that
z∗P → ∞, since the total LOC remains bounded, its ratio with respect to the market
size tends to zero, i.e. LOC(πCH )/z∗P → 0. In other words, under convex hull prices,
the lost opportunity costs do not spread over the entire market but remain contained
to a small number of plants at the margin.

4.3 Marginal pricing with centralized decisions

We now turn to the configuration considered in section 3. The production and the
consumption plans are decided by a central planner but the market prices are the
marginal—merit-order—prices πM , as computed from problem (4).

Example 4 We consider once more the same data as in Example 2. For D = 250
MWh, the social welfare maximizing allocation is x = 3, so that q = D = 250
MWh. πM =10e/MWh. Under this price, all the plants that are not constructed are

10 It recently came to the attention of the authors that a similar proposition is also provided by Chao (2019),
although the proof proposed in Appendix 1 is different.
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in equilibrium. But each of the three constructed plants faces a revenue shortfall of
5,000e—and not only the plant at the margin—for a total of 15,000e.

Intuitively, on this stylised example, when the demand D increases, the number of
new plants constructed at a loss increases, and so does the lost opportunity cost which
does grow with the size of the economy.11

Proposition 3 Let N be the number of times that the input of the market defined in
problem (3) is duplicated, i.e. duplicating N times the set of suppliers G and the
load. Let (q∗∗, x∗∗, d∗∗) be the associated welfare-maximizing allocation and let πM

be the associated marginal prices. Then, in general, the lost opportunity cost is not
guaranteed to be bounded, i.e. it may be that limN→∞ LOC(πM ) = ∞.

Under marginal pricing, the market failure originating from indivisibilities could
be arbitrarily large. We stress that Proposition 3 does not establish that the LOC grows
to infinity in all cases, but simply that, in general, it is not guaranteed to be bounded,
as opposed to Proposition 2. This result highlights that Propositions 1 and 2 are highly
dependent on the pricing scheme that is assumed to hold in the non-convex market.
Thus, under alternative prices, indivisibilities do not smoothen out and may have
a significant impact, even in a large market. In the context of discrete investment,
convex hull pricing receives a less intuitive explanation than does marginal pricing. If
marginal pricing can indeed be viewed as the classic merit order pricing that prevails,
then theLOCstemming from indivisibilities is not necessarily expected to vanishwhen
considering a larger market size. The impact described in Proposition 3 is arguably
exacerbated in Example 4 by the fact that there is a single peaking technology. The
magnitude of the LOC under merit-order pricing will however be studied in a larger
system in Sect. 6. In the meantime, we turn once again to the two-technology example
of Scarf, Example 1,which illustrates Propositions 2 and3, before discussing a possible
solution to these lost opportunity costs in Sect. 5.

Example 5 We have shown in Example 1 that the marginal price is 3e/MWh for a
load of D = 60 MWh, leading to a total lost opportunity cost of 198 e. Instead, for
the same load, the convex hull price is 6.2857 e/MWh. At this price, the Smokestack
and High Tech technologies face an LOC of 0.857e and 0e respectively. As far as
the results of this section are concerned, the key observation is Fig. 3, which reports
the total LOC under both pricing schemes for various load scenarios. As expected
from Propositions 2 and 3, the lost opportunity cost grows with the market size under
marginal pricing, while it remains bounded under convex hull pricing. The bound,
computed using Proposition 2, is 53e.

11 The reader may also want to consider these results the other way around. Let us assume that, in the same
stylized example, due to some technological improvements, the plants are now available in lumps of 30MW
instead of 100 MW. The non-convex suppliers have been cut into smaller pieces so that the production sets
are “less non-convex” than they used to be (as measured with the inner radius). How does the technological
change affect the LOC? The reader can verify that, for D = 250MWh, under convex hull pricing, the LOC is
almost divided by three: 1,000e (compared to the 2,500e before the technological change). Instead, under
marginal pricing, the LOC is 13,500e. This point becomes relevant as we consider distributed resources
with smaller capacities in future power grids.
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Fig. 3 Lost opportunity costs under discrete investment, for both marginal pricing and convex hull pricing,
as a function of the load

5 Capacity markets

What is broken by the presence of indivisibilities in the investment decisions is the
possibility to achieve a perfect coordination of private agents solely by means of a
uniform energy price signal (Scarf, 1994). A decentralized energy-only market does
not guarantee a welfare-maximizing investment. This motivates a policy intervention
for coordinating investments.

O’Neill et al. (2005) suggests viewing the issue of indivisibilities as one of market
incompleteness.One commodity is energy, which is sold at themerit order energy price
(indexed by time and location). Another commodity—that should also be priced—
is capacity (the discrete investment decisions). In the approach of O’Neill, energy
receives auniform price,while capacity is remunerated usingdiscriminatory payments.
O’Neill et al. (2005) shows that there exists a set of prices (πM

t , πC
i,g) (remunerating

energy and capacities) associated to the allocation (q∗∗
g,t , x

∗∗
g,i ) (solving problem (3))

that is a competitive equilibrium. There are two issues with this approach. Firstly, from
a practical point of view, it is unclear which actual market mechanism is supposed
to output these discriminatory prices. Secondly, from a theoretical point of view, the
presumed price-taking behaviour of the suppliers seems to be contradicted by themere
fact that the capacity prices are discriminatory. There is essentially one single supplier
for each “investment commodity”, and therefore price-taking behaviour seems like
wishful thinking.12

In this section, we are instead interested in studying the effect of a uniform capacity
remuneration mechanism (CRM). A capacity market is one form of long-term cen-
tralized coordination of investment decisions. The classic arguments in favour of a
capacity market rest on its ability to reduce the exercise of market power and its usage
as an instrument for hedging investment risk. Instead, this section investigates to what
extent it could also turn out to be a means to mitigate the LOC caused by lumpy invest-

12 This puzzling methodological aspect connects to the well-known Lindahl equilibrium in public goods
(Mas-Colell, Whinston, and Green, 1995). The latter also relies on the use of discriminatory prices while
assuming price-taking behaviour, and has been subject to the same criticisms from economists.
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ments. As in the approach of O’Neill, the set of commodities is extended to include a
remuneration for capacity. Nonetheless, the capacity auction that is considered outputs
a uniform price.13 Concretely, the profit maximization problem of the market agents
is now assumed to be the following:

Definition 8 (Supplier Profit Under Energy and Capacity Prices) The agent g is
assumed to maximize its selfish profit function Pg , defined as follows:

max
(q,x)g∈Xg

Pg(q, x, πM , πC ) ≡
∑

t∈T
πM
t �Ttqg,t + πC

∑

i∈Ig

Pmax
g,i xg,i − cg((q, x)g)

(13)

The suppliers have two streams of revenue. One comes from selling energy at the
marginal energy prices πM

t under fixed investment. Another comes from the uni-
form capacity price πC , which remunerates their installed capacity. The capacity
price comes from a capacity auction. Various designs of CRM have been consid-
ered in the literature and among practitioners, such as descending clock auctions.
Both theory and experience have highlighted the advantages of sealed-bid uniform
price auctions (Harbord & Pagnozzi, 2014). Our auction model can be described
as follows. The suppliers submit bids that correspond to their investment costs∑

i xg,i ICg,i , discounted by the anticipated short-term surplus from the energymarket,∑
i P

max
g,i xg,i

∑
t∈Tg

(πM
t − MCg). Here, Tg are the periods for which the production

of plant g is profitable, πM
t > MCg . The system operator is the single buyer for the

capacity target Cmin , which is assumed to be inelastic.

Definition 9 (Discrete Capacity Auction) The capacity auction minimizes the cost of
satisfying the inelastic capacity demand Cmin :

min
x

∑

g∈G

⎛

⎝
∑

i∈Ig

xg,i ICg,i −
∑

i∈Ig

Pmax
g,i xg,i

∑

t∈Tg

�Tt (π
M
t − MCg)

⎞

⎠ (14a)

(πC )
∑

g∈G

∑

i∈Ig

Pmax
g,i xg,i ≥ Cmin (14b)

xg,i ∈ {0, 1} ∀g ∈ G, i ∈ Ig (14c)

The literature on CRMs typically focuses on continuous investment settings.14 This
contrasts with how the CRM is implemented in certain countries, such as Belgium,
where the auction accepts only indivisible bids. In the case of a discrete capacity
auction, as in model (14), two questions arise: (i) how do we select the bids that are
cleared? and (ii) how do we derive the capacity price? Harbord and Pagnozzi (2014)

13 A natural extension of the ideas developed in this section would be to consider several capacity targets
that depends on the technology (as opposed to a single aggregated capacity target).
14 This is true for all the previously cited works on CRM (Fabra, 2018; Stoft, 2002; Cramton & Stoft, 2005;
Cramton, Ockenfels, and Stoft, 2013; De Maere d’Aertrycke, Ehrenmann, and Smeers, 2017) that analyze
a continuous capacity auction.
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acknowledges these dilemmas in CRMs with indivisibilities. As far as bid selection
is concerned, a natural option is to select the cost-minimizing bids, as in model (14).
Proposition 4 establishes the general validity of this approach in continuous settings,
while Proposition 5 indicates certain limits that are encountered under discrete settings.

Proposition 4 Under a continuous investment model (problem (1)), with a classical
“missing money” problem originating from an energy price cap, there exists a well-
calibrated capacity target Cmin such that the optimal expansion plan x∗∗ is also a
solution of the capacity auction (i.e. a continuous version of model (14)).

Proposition 5 Under a discrete investment model (problem (3)) with long-term LOC,
in some cases, the capacity cleared by the auction (i.e. solving model (14)) may differ
from the optimal expansion plan x∗∗ even with a well-calibrated capacity target Cmin.

For example, considering Scarf’s Example 1, for D = Cmin = 60MW, solving
the auction of model (14) would lead to xSmokestack = 2 and xHighT ech = 4, which
corresponds to the optimal mix (cf. Figure2a). On the other hand, solving the same
auction for D = 40MW would lead to xSmokestack = 3 and xHighT ech = 0, which
differs from the optimal mix. This puzzling phenomenon raises the question of how a
discrete capacity market should select the bids that are cleared. In practice, alternative
clearing rules have been used. For instance, according to Elia (2019), the Belgian
TSO uses a “heuristic” rule to clear the CRM that even differs from cost-minimization.
Moreover, systemoperators typically performcertain prequalificationprocesses before
solving the CRM. In Ontario and certain other systems, the system operator even
solves a comprehensive capacity expansion model in order to determine the allocation
of the capacity payments (Spees, Newell, and Pfeifenberger, 2013; IESO, 2023). As
Proposition 5 indicates, this can be justified in certain cases.

As far as the pricing scheme is concerned, Harbord and Pagnozzi (2014) discuss
various options, acknowledging the “flexibility in the definition of a market-clearing
price” in a discrete capacity auction. They essentially focus on alternatives between
the highest winning bid and the lowest losing bid. Instead, we will consider that
the capacity auction relies on convex hull pricing (Definition 10). As highlighted in
Proposition 6, this pricing scheme has the property of mitigating the long-term LOC.

Definition 10 (Convex Hull Pricing for Capacity Auctions) The capacity price πC is
defined as the optimal Lagrangian multiplier.15 associated with the market clearing
constraint in problem (14).

Proposition 6 The uniform capacity price πC , as defined in Definition 10, minimizes
the following lost opportunity costs:

πC∗ = arg min
πC≥0

⎧
⎨

⎩

⎡

⎣πC (
∑

g∈G

∑

i∈Ig

Pmax
g,i x∗∗

g,i − Cmin)

⎤

⎦

15 Considering our simple set of constraints Xg , in our case, computing πC is equivalent to taking the
linear programming relaxation of problem (14).
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+
∑

g∈G

⎛

⎝ max
(q,x)g∈Xg

⎧
⎨

⎩
∑

t∈T
πM
t �Ttqg,t + πC

∑

i∈Ig

Pmax
g,i xg,i − cg((q, x)g)

⎫
⎬

⎭

−
⎡

⎣
∑

t∈T
πM
t �Ttq

∗∗
g,t + πC

∑

i∈Ig

Pmax
g,i x∗∗

g,i − cg((q
∗∗, x∗∗)g)

⎤

⎦

⎞

⎠

⎫
⎬

⎭ (15)

Here, (x∗∗, q∗∗) denotes a solution to problem (3).

A major question in the capacity auction regards the choice made by the system
operator of the capacity target Cmin . Assuming Cmin = ∑

g
∑

i P
max
g,i x∗∗

g,i (the opti-
mum of the long term expansion problem (3)), then expression (15) corresponds to the
long-term lost opportunity cost of the suppliers. More generally, as far as the first term
(under bracket) in equation (15) is concerned, the following result can be established.

Proposition 7 If Cmin ≤ ∑
g∈G

∑
i∈Ig

Pmax
g,i x∗∗

g,i , then the total LOC of the suppliers

under both energy and capacity prices (πM , πC ) is lower than the LOC under the
sole energy price πM.

Convex hull pricing in short-term auctions is known to mitigate the short-term
LOC (Hogan & Ring, 2003). Similarly, Proposition 6 shows that CHP in a capacity
auction mitigates the long-term LOC. However, this positive result has three limits.
Firstly, although the capacity price πC mitigates the LOC, we emphasize that it does
not reduce it to zero, thus it does not entirely solve the lumpiness problem. This is,
to some extent, expected. While a price cap is a distortion of the energy price that
homogeneously affects all the suppliers, and may therefore be solved in theory by a
uniform capacity price (Cramton, Ockenfels, and Stoft, 2013), investment indivisibil-
ities distort the energy price in a manner that affects suppliers heterogeneously. This
implies that it cannot be solved by a single instrument such as a uniform capacity
price. Secondly, Proposition 6 is conditional to the fact that the bids that are cleared
in the CRM are coherent with the x∗∗. As highlighted in Proposition 5, this may not
always be the case. There is no straightforward solution to this problem. In Example
6, over the 50 load scenarios, the capacity mix cleared by the CRM does not equal the
optimal mix in 11 scenarios (22% of the cases). This also happens in the numerical
results of Sect. 6, although infrequently. Thirdly—and most importantly—, Propo-
sition 6 is also conditional to the right calibration of the capacity targets Cmin . For
instance, as Proposition 7 emphasizes, an over-dimensioned capacity target could lead
to a capacity price that exacerbates the LOC, as compared to the energy-only market,
instead of mitigating it. On the other hand, a capacity target which is too low could
drive the CRM price πC to zero, thereby making the capacity auction pointless. This
sensitivity of the success of a capacity auction to the calibration of the capacity target
is known. De Maere d’Aertrycke et al. (2017) observe such a sensitivity in a risky
environment. We consistently observe it in an environment characterised by the pres-
ence of indivisibilities. This sensitivity is revisited in the next section. To sum up, if
the results of this section highlight how a CRM may partially resolve the incentives
to invest in the context of lumpy investments, one has to be careful with the design
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Fig. 4 Lost opportunity costs as a function of the load, for three settlement schemes: a marginal pricing
(Definition 1), b convex hull pricing (Definition 6) and c marginal pricing complemented with an uniform
capacity price (Definition 10)

Table 2 Comparison of the pricing schemes for a demand of 60 MW

Energy Capacity LOC LOC LOC
Settlement schemes Price Price Smokestack High tech Total

Marginal pricing 3 / 106 92 198

Convex hull pricing 6.2857 / 0.857 0 0.857

Marg. Price + Cap. Price 3 3.2857 0.857 0 0.857

of the capacity demand curve as well as with the capacity market clearing rule. The
following example illustrates the theory that is presented in this section.

Example 6 We consider once again Scarf’s Example 1. The capacity demand Cmin is
set equal to the optimal capacity mix

∑
g
∑

i x
∗∗
g,i P

max
g,i . So far, we have considered

three settlement schemes: marginal pricing, convex hull pricing and marginal pricing
complemented with a uniform capacity price. Table 2 presents the prices and LOC
results for the three settlement schemes, assuming a market demand of 60 MW. Fig. 4
reports the lost opportunity costs under these three settlement schemes, for various
loads. The red stars in Fig. 4 flag the load scenarios for which the bids cleared from
the capacity auction differ from the optimal solution of the capacity expansion (cf.
Proposition 5). In these cases, the LOC reported for the CRM assumes that the system
operator intervenes for selecting the optimal bids. This could be seen as the most
optimistic outcome of a uniform capacity market and is consistent with the separation
of primal and dual computations in various short-term auctions, including the EU and
US markets. As anticipated from Proposition 6, the addition of a capacity payment
decreases the total LOC.
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6 Numerical simulations: the European capacity expansion problem

We now turn to the quantification of the inefficiencies resulting from the lumpiness
of investment in realistic settings. We conduct our analysis on an investment model
derived from the ENTSO-E capacity expansion model which covers the entire Euro-
pean system.

6.1 The European resource adequacy assessment

ENTSO-E publishes the European ResourceAdequacyAssessment (ERAA) annually.
This is an analysis of the adequacy of the pan-European system which assesses Euro-
pean TSOs’ ability to ensure security of supply under various scenarios, for a given
target year. In the 2021 ERAA study that we consider (ENTSO-E, 2021), the main
target year is 2025. The ERAA has two main objectives. The first one is to assess the
expected adequacy (measured with the “Loss of Load Expectation” (LOLE) [h/year]),
and to compare it to the target LOLE defined by each national TSO for its country.
These simulations are performed with fixed expected capacity, as foreseen by each
national TSO. More related to the current investigation, the second objective is to
undertake an Economic Viability Assessment (EVA). This is an adequacy assessment
that is based on the capacity mix that results from an economically viable investment
in power plants. Here, a capacity expansion model is solved, which includes commis-
sioning and decommissioning decisions from the mix that is expected by the national
TSOs. In our simulations, we reproduce the model of ERAA (EVA) and use its data to
simulate the capacity expansion of the European system.16 Since the ERAA does not
consider integer investment decisions, we slightly adapt the model of ERAA to turn
it into a discrete investment model. With this exercise, we are particularly interested
in addressing the following questions:

1. How does the introduction of lumpy investment affect the outcome of ERAA? In
particular, what would be the magnitude of the LOC in such a large discrete invest-
ment model, that includes many technologies and nodes? This aims at illustrating
numerically the importance of lumpiness of investment advocated in Sects. 3 and
4.

2. How would a discrete CRM affect the incentives of agents to invest in such a
realistic case study? This aims at illustrating numerically the theory of Sect. 5.

We notice that ERAA also includes an analysis of the impact of a CRM. However,
our analysis fundamentally differs from ERAA. Under the continuous setting consid-
ered by ENTSO-E, the CRM is used to solve the missing money problem. Indeed, the
study of ENTSO-E shows that, when running the capacity expansion model (EVA)
without a capacity market but with a price cap in the energy market at 15 ke/MWh,
the new mix of capacities results in a slight under-investment. Concretely, the energy
market alone does not lead to the “optimal” investment, as defined by the LOLE tar-
gets. In this continuous case, the capacity market is needed because of the flawed price

16 The data can be retrieved from the website of ERAA.
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cap, which is not consistent with the LOLE target.17. In our discrete case, we assume
that the price cap of 15ke/MWh reflects the right VOLL, such that there is no classical
“missing money”. Instead, as we work with discrete investments, the CRM plays a
role of mitigating the long-term lost opportunity cost.

6.2 The ERAAmodel

The detailed mathematical model of EVA is provided in the Online Appendix. In a
nutshell, the EVA model includes 37 countries modelled as 59 bidding zones. The
power grid is composed of HVAC and HVDC lines, although in the EVA the network
constraints are represented using an ATCmodel. The model considers various climate
years, that can be viewed as a set of 31 scenarios of load and renewable production. Not
serving the load (load curtailment) is priced at V OLL . Production curtailment is not
penalized in the objective function (the model assumes free disposal). The operational
constraints are convex, and so are the investment decisions, which are all continuous.
All the power plants of the same technology in a bidding zone are aggregated into one
large virtual power plant. There are six main types of generation assets. (i) Existing
plants can be partially retired, leading to a fixed cost reduction. (ii) New plants can
be constructed with a fixed cost. These are the two investment decisions: continuous
variables xnewg (commissioning) that comes with an investment cost ICnew

g and xexistg

(decommissioning) that saves an investment cost ICexist
g . (iii) Renewable assets are

exogenous and therefore directly integrated in the net load. (iv) Demand response,
essentially an elastic load shedding, is modelled as an additional convex generator at
a given price. (v) Batteries are essentially a load shifting asset, and are modelled as a
unique battery per node. (vi) There are four different types of hydro plants (all convex,
described in the Online Appendix).

Figure5 provides an overview of the merit order of the entire ENTSO-E system
(i.e. the operational cost MCg). As far as the investment decisions are concerned,
each of the technologies of Fig. 5 could be decommissioned, while the commissioning
decisions are limited to two technologies,CCGTandOCGTplants. Toprovide an order
of magnitude, their investment costs are respectively 143,000 and 95,000 e/MW/y.
The decommissioning of generation assets of technology g is limited by a parameter
RCapamax

g that is provided by ENTSO-E. This parameter is either set to the installed
capacity (meaning that the technology could be entirely decommissioned) or to a

17 The price cap is a key driver of the investment decisions in an energy-only market. It reflects the value
at which the “lost load” is priced in the energy market (the VOLL). It should be aligned with the LOLE
targets in order for the market to induce the right level of investment. Indeed, there is a strong connection
between the VOLL and the LOLE (Stoft, 2002; Cramton & Stoft, 2005) Concretely, the invested capacity
will be optimal if it is such that the marginal cost of an additional MW of peaking capacity (the investment
cost of a peaker, ICpeak ) equals the cost of one more MW of blackout (V OLL × LOLE). This can be
summarized by the following equation: ICpeak = V OLL × LOLE . Note that this relationship can be
derived from the KKT conditions (2) of the continuous investment problem (1), with Vt = V OLL . Indeed,
considering the peaking units, we deduce from equation (2b) that ICpeak = ∑

t∈T �Ttμpeak,t . Either
the peaker sets the price and μpeak,t = 0, or demand sets the price. In the latter case, neglecting the
unlikely situation in which there is a price indeterminacy, the energy price will soar up to the V OLL , so
that μpeak,t = V OLL − MCpeak ≈ V OLL . From which we conclude that ICg ≈ V OLL × LOLE .
See also Papavasiliou (2024).
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Fig. 5 Merit order of the EVA model for the entire ENTSO-E region. Note that the model also includes a
carbon tax of 40e per ton of CO2 which is directly included in the operating cost of the plants

lower limit in case ENTSO-E considers it unrealistic to decommission entirely the
technology (e.g. nuclear plants in France are not allowed to be decommissioned). The
commissioning of new OCGT and CCGT plants is limited by a parameter Capamax

g .
For our experiments, we have modified the ERAAmodel in two ways (the detailed

models are in the Online Appendix):

• Sincewe are interested in the discrete investmentmodel, the continuous investment
decisions of ERAA are converted to integers. Concretely, investments are now the
variables xnewg , xexistg ∈ N which stand for investments in integer numbers of
capacity lumps, modelled by parameters Cnew

g and Cexist
g , which are technology

specific (for example, a CCGT unit is 500 MW, an OCGT unit is 300 MW...
e.g. xnewCCGT = 3 means the entrance of 3 CCGT units of 500 MW each). The
comprehensive data for parameters Cnew

g ,Cexist
g is provided in Table B2 of the

Online Appendix. The energy prices πM
i,t in this model are assumed to be the merit

order prices of Definition 1.
• In the same spirit as Sect. 5, a capacity market is introduced. The capacity market
is assumed to remunerate the capacity of flexible generation units only (xnewg ,
xexistg ), i.e. the capacity auction is limited to the thermal units (DSR, renewable
or hydro plants cannot participate). As compared to Sect. 5, the capacity targets
Cmin
i defined by the system operator are now indexed by the bidding zone i .

The model is implemented in Julia (JuMP) and is solved with Gurobi. The computa-
tions are performed on the Lemaitre3 cluster (80 nodeswith two 12-core Intel SkyLake
5118 processors at 2.3 GHz and 95 GB of RAM), which is hosted at the Consortium
des Equipements de Calcul Intensif (CECI).

6.3 Numerical Results

We simulate three models: the continuous “vanilla” version of ERAA, the discrete
version, and the latter complemented by capacity payments. The simulations are per-
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Table 3 Comparison of the discrete and continuous results of ERAA (the full results are in the Online
Appendix)

Scenarios Total cost Commissioning Decommissioning LOC

Cont Disc Inc Cont Disc Cont Disc Disc

. . .

2025/7 7.385e10 7.409e10 0.3% 4745 3800 37790 33000 4.91e8

. . .

2025/29 7.228e10 7.258e10 0.4% 3690 3300 46929 43100 4.254e8

. . .

Average 7.614e10 7.634e10 0.3% 7554 7048 29560 25920 1.139e9

Fig. 6 Commissioning decisions under the continuous and discrete model for scenario 2025/29

formed over 31 scenarios.18 (historical load and climate years projected to 2025market
conditions). Tables 3 and 4 report the average results of 31 scenarios as well as the
detailed results for two scenarios, 2025/7 and 2025/29. The full results are in theOnline
Appendix. We highlight three main sets of observations relative to the comparison of
discrete versus continuous investment settings, the magnitude of the long-term lost
opportunity cost, and the effect of a CRM.

Firstly, as far as the comparison of the discrete and continuous model is concerned,
Table 3 summarizes the main results from the simulations. We observe that both
models can lead to fairly different results of commissioning and decommissioning
decisions. Figure6a illustrates these differences on scenario 2025/29. We observe that
the commissioning of new capacities output by the continuous version of the model is
reallocated across the bidding zones because of the lumpiness of the capacity. More
importantly, Table 3 also reports the total cost under both continuous and discrete
models. We observe that the total costs are strikingly similar. The lumpiness of invest-
ment decisions marginally affects the total system costs, which increase by a mere
0.3% on average.

Secondly, if the lumpiness of investment has a minor effect on costs, it can however
significantly affect the incentives of the market agents. Indeed, in the continuous case,
the lost opportunity cost of all the new and existing units is zero. This is anticipated
from the theory. Under a convex model, the uniform energy prices together with
the allocation of resources (investment and dispatch) form a competitive equilibrium.

18 This is consistent with the methodology of ENTSO-E (2021): ENTSO-E performs the simulations
separately on multiple years (scenarios) and then averages the expansion plans.
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Instead, in the discrete case, themarket agents are not in equilibrium. This is quantified
in Table 3: on average, the total LOC stands for 1.5% of the total system cost. Both the
new and existing power plants face incentives to deviate from the welfare maximizing
allocation.We further focus on scenario 2025/29.Among all the possible comissioning
(resp. decomissioning) decisions, 11% (resp. 10%) face a positive LOC. These figures
show that the LOC is not contained to a few plants at the margin, but it affects the
investors more broadly. At the same time, this LOC—the “burden” of investments’
indivisibilities—is not split uniformly over the entire system, but it rests on the shoulder
of some private investors. For example, the revenue shortfall faced by the OCGT plant
installed in ITSA (Table 5) stands for 63% of its investment cost. More generally, 67%
of the effective commissioning decisions come with a revenue shortfall. On average,
this revenue shortfall corresponds to 22% of the investment cost.

The lost opportunity costs are further decomposed into revenue shortfall and fore-
gone opportunities in Table 4. A revenue shortfall should be read as follows. For a
new plant, it means that it is asked to be constructed while not covering its investment
cost. For an existing plant, it means that it is asked to not be decommissioned despite
facing damages. This is further illustrated in Tables 5 and 6 which report a sample of
the financial standing of various technologies per bidding zone for scenario 2025/29.
In Tables 5, we observe various new plants that are commissioned (the CCGT units
in zones DKE1, AL00 and RO00 as well as the OCGT in zone ITSA) while suffering
losses. As far as the existing plants are concerned, in Tables 6 we observe many tech-
nologies (the table only shows a sample) that are required to stay in the market while
they suffer losses (e.g. some oil plants in zone GR03 as well as CCGT units in FR00,
BE00, HU00 or PT00, or some lignite plants in RS00). Similarly, twelve CCGT units
in ES00 leave the market while even more units would prefer to leave the market due
to the fact that they are not profitable.

A foregone opportunity should be understood as follows. For a new technology, it
means that there is an incentive to invest more than what is socially optimal. Some
technologies are not investing at all, while they would be profitable. Others are invest-
ing, but less than what they would given the energy price signal. For example, in Table
5, we observe that no CCGT plants in zone SE04 are commissioned while they would
be profitable. In zones LT00 and SE03, one CCGT is commissioned while it is prof-
itable and would therefore have incentives to expand. The last case means that certain
new CCGT plants not only have incentives to deviate from the welfare-maximising
allocation but also to earn a non-zero profit for a resource that is not scarce. They
earn a “discreteness rent” of 3740 e/MW/year (for a 500MW CCGT it means 1.87
Me/year). For an existing plant, a foregone opportunity means that it is asked to retire
while the plant is profitable. In Table 6, several CCGT plants in zone UK00 are asked
to retire while they are profitable.

These results confirm the theoretical findings from section 4: in an investment prob-
lem, the LOC resulting from indivisibilities can be significant, even in large systems.
Certain market agents face incentives to invest more than what is socially optimal. In
practice, theymay not invest but they will then collect a positive rent for a resource that
is not scarce. Other agents cannot cover both their operational and capital costs. The
energy price does not play well the coordination role that it fulfils in convex settings,
nor does it convey the information properly. Indeed, in the discrete case, some tech-
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Table 4 Analysis of investor incentives decomposed into lost opportunity costs (LOC), revenue shortfall
(RS) and foregone opportunity (FO), for the two cases including or not a capacity payment

Scenarios Without capacity market With capacity market

New units Exist units Total Inelastic Elastic No Coord

. . .

LOC 3.534e8 1.376e8 4.91e8 4.863e8 6.354e8 1.144e9

2025/7 RS 1.802e7 0.0 1.802e7 1.335e7 4.154e7 3.244e7

FO 3.354e8 1.376e8 4.73e8 4.73e8 5.939e8 1.111e9

. . .

LOC 1.052e8 3.202e8 4.254e8 5.447e7 2.678e8 1.328e9

2025/29 RS 6.925e7 3.171e8 3.864e8 1.312e7 4.362e7 3.012e7

FO 3.599e7 3.061e6 3.905e7 4.135e7 2.242e8 1.297e9

. . .

LOC 6.7e8 4.692e8 1.139e9 7.192e8 9.044e8 1.429e9

Average RS 9.805e7 3.376e8 4.356e8 1.477e7 2.364e7 2.429e7

FO 5.72e8 1.316e8 7.037e8 7.045e8 8.808e8 1.405e9

The results report three CRM settings: the inelastic capacity target, the elastic capacity demand curve and
the inelastic capacity target computed without European coordination (the full results are in the Online
Appendix)

Table 5 Detailed analysis of agents incentives for the new plants (commissioning) for scenario 2025/29

Zone Technology Investment Profit LOC RS FO

SE04 CCGT new 0 × 500 0.0 3.05e6 0.0 3.05e6

DKE1 CCGT new 1 × 500 −1.871e6 1.871e6 1.871e6 0.0

LT00 CCGT new 1 × 500 2.007e6 2.007e6 0.0 2.007e6

AL00 CCGT new 1 × 500 −1.626e7 1.626e7 1.626e7 0.0

FI00 CCGT new 0 × 500 0.0 1.164e7 0.0 1.164e7

EE00 CCGT new 0 × 500 0.0 7.328e6 0.0 7.328e6

RO00 CCGT new 2 × 500 −3.284e7 3.284e7 3.284e7 0.0

SE02 CCGT new 0 × 500 0.0 3.468e6 0.0 3.468e6

SE01 CCGT new 0 × 500 0.0 2.199e6 0.0 2.199e6

SE03 CCGT new 1 × 500 1.733e6 3.466e6 0.0 3.466e6

ITSA OCGT new 1 × 300 −1.828e7 1.828e7 1.828e7 0.0

LV00 CCGT new 0 × 500 0.0 2.829e6 0.0 2.829e6

nologies end upwith positive (or negative) profits. But, as Scarf emphasises, and unlike
what would happen in the continuous case, the fact that a technology faces a positive
(negative) profit does not indicate that the entire system welfare could be improved
by increasing (decreasing) the investment in that technology—in fact, it would not.
There is no easy solution to this issue, and as we observe later, the introduction of a
capacity market can make matters worse if not properly calibrated.
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The third and last aspect of our analysis regards the impact of a uniform capacity
remuneration. We test three shapes of capacity demand curve:

(A) An inelastic capacity demand with the national capacity targets Cmin
i set to

the optimal investment target with European coordination (i.e. solving the
expansion problem), as in Proposition 6: Cmin

i = ∑
g∈Gnew

i
xnew∗∗
g Cnew

g −
∑

g∈Gexist
i

xexist∗∗
g Cexist

g , where xnew∗∗
g and xexist∗∗

g are the optimal investment
decisions derived from solving the discrete investment problem. An example is
provided in Fig. 7.

(B) An elastic capacity demand which follows the design proposals in the literature
(Cramton & Stoft, 2005; Cramton, Ockenfels, and Stoft, 2013) as well as practical
applications (see the survey in Papavasiliou (2021)). An illustration is provided
in Fig. 7. The demand for capacity is worth two times the entry cost of a peaker
(here, an OCGT unit) up to Cmin

i (the optimal investment target) minus 5%. Then
the valuation for capacity decreases sharply to one times the entry cost of a peaker
at Cmin

i , and finally becomes zero at Cmin
i plus 15%.

(C) An inelastic capacity demand, but with the Cmin
i targets computed without

European coordination. In this case, each country computes the target capacity
independently, instead of solving the European investment problem. Concretely,
in order to compute Cmin

i , we simulate an adapted version of the capacity expan-
sion problem of ENTSO-E, where each country i is treated as an island, having to
meet its national load only with domestic capacity. An illustration is provided in
Fig. 7.

The right half of Table 4 presents how the lost opportunity costs are affected by
the addition of a capacity market. Under CRM model (A), and as expected from
Proposition 6, the capacity payments improve the overall incentives of the market
agents. On average, the long-term lost opportunity costs decrease by 40% following
the inclusion of a CRM, while the revenue shortfalls drop by 97%. Nonetheless, the
magnitude of the impact of the CRM is heterogeneous across scenarios: for example,
if the effect is significant in scenario 2025/29, it is less so in scenario 2025/7. We
notice that, in our computations, the capacity price remunerates the optimal capacity
mix. This could be regarded as the most optimistic result that can be achieved by a
uniform price CRM. Indeed, as highlighted in Proposition 5, it may happen that the
bids cleared by the CRM (as problem (14)) differ from the capacity mix optimizing
problem (3). For example, in scenario 2025/29, 20 zones out of the 59 have a positive
capacity price. Among these 20 zones, discrepancies between the CRM results and
the optimal expansion plan occur in 15% of the cases.

The two other CRMdesigns stand for plausible cases of an over-dimensioned target
Cmin
i . They aim at evaluating the impact of a capacity price as soon as the capacity

demand curve departs from the idealized settings of Proposition 6. As indicated by
Proposition 7, an over-dimensioned capacity target can exacerbate the LOC. Under
CRMmodel (B), we observe that, on average, the addition of a capacity payment still
improves the incentives ofmarket agents compared to the sole energy remuneration. In
scenario 2025/29, the CRM model (A) allows to cut by ten the total lost opportunity
costs. Model (B) does not perform as well, nevertheless it still lowers by 40% the
total LOC compared to an energy-only settlement. However, scenario 2025/7 also
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Fig. 7 Illustration of the capacity demand curve for scenario 2025/29 in Ireland for models A (inelastic
demand), B (elastic demand) and C (no EU-coordination). In these models, the Irish capacity price is,
respectively, 0,∼60,000 and∼13,000e/MW/y. As a point of comparison, the capacity price of the Belgian
CRM in 2022 was ∼50,000 e/MW/y

highlights how model (B) can not only fail to achieve the same performance as model
(A), but also perform worse than an energy-only market. In this case, the addition
of a capacity payment makes the lost opportunity costs worse than they are under
the sole marginal energy price. As shown in Table 4, CRM model (C) has a more
disruptive effect on agents’ incentives. Since it neglects international coordination, this
model tends to increase the capacity demanded in each country, thereby amplifying
foregone opportunities. This highlights the benefits of having a European coordination
in defining the national CRM targets, in the spirit of ERAA.

7 Conclusion

In this paper, we analyse the problem of indivisibilities in investment decisions and
their impact on the ability of a decentralized energy market to support efficient invest-
ments. We analyse the market failure that occurs under indivisible investment. This
failure can be measured by the concept of long-term lost opportunity cost, which is
introduced in the paper. This lost opportunity cost prevents a purely decentralized
energy market to lead to a long-term equilibrium. Indivisibilities in investment have
often been overlooked in the literature. A persistent argument for neglecting indivisi-
bilities is that they supposedly vanish when the market size increases. We accurately
reconstruct the underlying theoretical argument, by reviewing a classical result from
the theory of general equilibrium, that we transpose to the context of power markets.
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We highlight that this result is only valid under specific pricing assumptions. We show
that, as far as the investment problem is concerned, under the classic “merit order
pricing”, the long-term lost opportunity costs can be arbitrary large. This theoretical
argument is confirmed by our numerical simulations.

In order to address this market failure, we analyse the effect of introducing a CRM.
We show that investment indivisibilities cast a new light on the role played by a CRM.
We particularly propose the novel concept of convex hull pricing (CHP) for capacity
auctions. We show that, similarly to CHP in short-term auctions, it can mitigate long-
term lost opportunity costs. Nevertheless, we also stress the limits of a CRM: we
highlight that its effect can be inconclusive—and even counter-productive—when the
CRM is ill-designed. We illustrate these findings on the realistic capacity expansion
model used by ENTSO-E for assessing the capacity adequacy of the European system.

As future work, we envision three possible directions. From a theoretical perspec-
tive, this work treats indivisibilities in isolation from other imperfections such as
market power or risk. One theoretical inquiry is to what extent these imperfections,
when combined, reinforce or mitigate each other. From a computational perspective,
we have introduced indivisibilities in the capacity expansionmodel of ENTSO-E. This
model has beenwork in progress for several years. A recent upgrade is the introduction
of uncertainty in the model (Ávila et al., 2023). Future work could focus on combining
the two features (uncertainty and indivisibility) in one model. Finally, from a policy
perspective, our work focused on the interplay between investment indivisibilities and
capacity markets. We have highlighted two main problems that could be explored in
future works. One further development could attempt to find bounds on the capacity
demand Cmin , as safeguards against over-dimensioning. Another development could
explore whether some heuristics could guide the capacity market towards the optimal
mix x∗∗, without having to rely on a comprehensive capacity expansion model.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11149-024-09473-6.
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Fig. 8 Illustration of the concepts of radius (left figure) and inner radius (right figure) of a non-convex set
X (here, X is a polytope with a hole)

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Proofs of the propositions

Before establishing the proof of Proposition 1, we recall the concept of the inner radius
of a non-convex set.

Definition 11 Let X ⊂ R
n be a compact non-convex set. The radius of this set is the

radius of the smallest ball containing the set:

rad(X ) = min
x∈Rn

max
y∈X

|x − y|

For any x ∈ conv(X ), there is a setY spanning x (i.e. x = ∑
y∈Y λ(y)y, withλ(y) ≥ 0

and
∑

y∈Y λ(y) = 1). The inner radius ofX is the radius of the smallest ball including
the smallest set Y spanning x , for any x ∈ conv(X ):

r(X ) = max
x∈conv(X )

min
Y⊂X
spans x

rad(Y)

Both concepts are illustrated in Fig. 8. Note that, if the production set is convex, its
inner radius is clearly 0.

Proof (Proposition 1) Let πCH denote the convex hull prices and (q∗, x∗, d∗) the
associated allocation in the relaxed problem, i.e. (q∗, x∗)g ∈ conv(Xg) ∀g. Since we
assume that the consumption set Xd is convex, we can set d† = d∗ ∈ Xd , which
indeed solves problem (6) under price πCH .

Regarding the production plan, by definition of the convex hull, (q∗, x∗)g =∑
i αg,i (q†, x†)g,i with

∑
i αg,i = 1, αg,i > 0, for some (q†, x†)g,i ∈ Xg . We denote

Yg ⊂ Xg as the smallest set of those (q†, x†)g,i . Clearly, all the points (q†, x†)g,i ∈ Yg
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solve problems (5) under the price πCH (by optimality of the allocation (q∗, x∗) in
the relaxed problem).

We define Ŷg = {q|(q, x) ∈ Yg} (the projections of the previously defined sets Yg

over the space of variables q), and z∗ ∈ R
|T | : z∗t = ∑

g q
∗
g,t ∈ ∑

g conv(Ŷg). By

Starr’s Theorem,19 there exists a z† ∈ ∑
g Ŷg such that |z∗ − z†| ≤ √|T |A. ��

Proof (Proposition 2)The proof proceeds in two steps. Firstly, from the central result of
convex hull pricing theory (Gribik, Hogan, and Pope, 2007), the total lost opportunity
cost corresponds to the duality gap:

∑

g∈G
LOCg(π

CH ) + LOCd(π
CH ) = z∗D − z∗P

To see this, it suffices to write the Lagrangian relaxation corresponding to z∗D
and to rearrange the terms. Secondly, this duality gap is bounded.20 Indeed, using
Minkowski’s extended formulation, problem (8) can be written as the following lin-
ear program:

z∗D = max
dt ,λkg

∑

t∈T
�Ttdt Vt −

∑

g∈G

∑

k∈Kg

λkgĉ
k
g (16a)

∑

g∈G

∑

k∈Kg

λkgq̂
k
g,t ≥ dt ∀t ∈ T (16b)

0 ≤ dt ≤ Dt ∀t ∈ T (16c)
∑

k∈Kg

λkg = 1 ∀g ∈ G (16d)

λkg ≥ 0 ∀g ∈ G, k ∈ Kg (16e)

The set Kg denotes the number of extreme points of Xg (which is assumed to be a
compact set). Parameters q̂kg,t and ĉkg denote the production schedule and cost asso-
ciated to each extreme point k of Xg . There are |T | variables dt and |Kg| variables
λkg for each of the |G| suppliers. From constraint (16d), there is at least one non-zero
λkg per supplier g. If there is exactly one, the solution of the relaxed problem is feasi-
ble. From the fundamental theorem of linear programming theory, there is an optimal
solution that has at least as many constraints as variables that are tight. Therefore, we
know there are at most |T | additional non-zero λkg , meaning that at most |T | suppliers
have more than one λkg > 0 (a production plan that is infeasible). Starting from the

19 (Starr (1969), a corollary of the Shapley–Folkman Theorem) Let Xi ⊂ R
n be m non-convex sets such

that r(Xi ) ≤ A ∀i = 1...m, and let x ∈ conv(
∑

i=1...m Xi ) ⊂ R
n . Then, there exists a y ∈ ∑

i=1...m Xi
such that |x − y| ≤ √

nA.
20 There are two ways to derive this bound. One immediately relies on the Shapley–Folkman theorem
(which is also the crux of the Arrow-Starr proofs). See, for instance, Bertsekas and Sandell (1982) for
the application of the Shapley–Folkman theorem to the estimation of the duality gap of a separable non-
convex optimization problem. Another way relies on basic linear programming theory, that we use here.
Our reasoning is adapted from Bertsekas et al. (1983).
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production plan that solves the convex relaxation, at most |T | production plans should
be modified in order to obtain a feasible primal solution (under-approximating z∗P ).
This modification costs at most ρg , which is the maximum cost resulting from turning
an infeasible production plan (q̂, x̂)g ∈ conv(Xg) to a feasible production plan that
supplies at least as much power. We conclude that z∗D − z∗P ≤ ρ|T |. ��

From the proof, it is obvious that an alternative bound (tighter in case the ρg vary
significantly between the power units) is z∗D − z∗P ≤ ∑

g∈Gmax ρg , with Gmax being
the set of |T | generators with the highest ρg . Furthermore, for a convex production
set Xg , clearly ρg = 0.

Proof (Proposition 3) The Proposition follows immediately from Example 4. ��
The next proof is adapted from Theorem 1 in Papavasiliou (2021).

Proof (Proposition 4) In convex settings, the classical “missing money”, which moti-
vates the use of a capacity market, arises because of a price cap in the energy market.
Let us assume that πM

t = PC when the system is short (load is curtailed). The
continuous capacity market is:

min
q,x

∑

g∈G

(
xg ICg −

∑

t∈T
�Tt (π

M
t − MCg)qg,t

)
(17a)

(πC )
∑

g∈G
xg ≥ Cmin (17b)

0 ≤ qg,t ≤ xg ∀g ∈ G, t ∈ T (17c)

xg ≥ 0 ∀g ∈ G (17d)

We show that there is a well-calibrated Cmin such that the optimal solution x∗ of
problem (1) is also a solution of auction (17). The KKT conditions of problem (17)
are:

0 ≤ qg,t ⊥ MCg − πM
t + μg,t ≥ 0 ∀g ∈ G, t ∈ T (18a)

0 ≤ xg ⊥ ICg − πC −
∑

t∈T
�Ttμg,t ≥ 0 ∀g ∈ G (18b)

0 ≤ xg − qg,t ⊥ μg,t ≥ 0 ∀g ∈ G, t ∈ T (18c)

0 ≤
∑

g∈G
xg − Cmin ⊥ πC ≥ 0 (18d)

Let x∗ be the solution of problem (1).Wewant to show that it satisfies (18). The energy
price only differs between problems (1) (where it is called πt ) and (18) (πM

t ) during
the scarcity periods ST , i.e. for t ∈ ST , πM

t = PC while πt = Vt . We denote by
μ∗
g,t the scarcity rents μ solving (2). Outside the scarcity periods, equations (18a) are

equivalent to (2a) and μg,t = μ∗
g,t . During the scarcity periods μ∗

g,t = Vt − MCg
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while equations (18a) can be written as μg,t = PC − MCg = μ∗
g,t − Vt + PC .

Equations (2b) can then be written equivalently as:

0 ≤ xg ⊥ ICg − πC −
∑

t∈T
�Ttμ

∗
g,t +

∑

t∈T S
�Tt (Vt − PC) ≥ 0 ∀g ∈ G (19)

Defining Cmin = ∑
g∈G x∗

g , equation (18d) implies πC ≥ 0. Fixing πC =∑
t∈T S �Tt (Vt − PC), equation (19) is then equivalent to (2b). ��

Proof (Proposition 5) The Proposition follows immediately from Example 6. ��
Proof (Proposition 6) Capacity market (14) can be written equivalently as follows:

min
q,x

∑

g∈G

⎛

⎝
∑

i∈Ig

xg,i ICg,i −
∑

t∈T
�Tt (π

M
t − MCg)qg,t

⎞

⎠ (20a)

(πC )
∑

g∈G

∑

i∈Ig

Pmax
g,i xg,i ≥ Cmin (20b)

0 ≤ qg,t ≤
∑

i∈Ig

Pmax
g,i xg,i ∀g ∈ G, t ∈ T (20c)

xg,i ∈ {0, 1} ∀g ∈ G, i ∈ Ig (20d)

The Lagrangian dual problem is then (rearranging the terms):

min
πC≥0

⎧
⎨

⎩−CminπC +
∑

g∈G
max

(q,x)g∈Xg

⎧
⎨

⎩
∑

t∈T
�Ttπ

M
t qg,t + πC

∑

i∈Ig

Pmax
g,i xg,i

−
∑

i∈Ig

xg,i ICg,i −
∑

t∈T
�Tt MCgqg,t

⎫
⎬

⎭

⎫
⎬

⎭

Adding the constants 0 = πC (
∑

g∈G
∑

i∈Ig
Pmax
g,i x∗∗

g,i −
∑

g∈G
∑

i∈Ig
Pmax
g,i x∗∗

g,i ) and∑
g∈G(−∑

t∈T �TtπM
t q∗∗

g,t +
∑

i∈Ig
x∗∗
g,i ICg,i +∑

t∈T �Tt MCgq∗∗
g,t ) leads to equa-

tion (15). ��
Proof (Proposition 7) We denote by LOCg(π

C , πM ) the lost opportunity cost of
g under both energy and capacity prices. LOCg(0, πM ) then corresponds to the
LOC in the energy-only market. Denoting the optimal objective function of equa-
tion (15) by ξ , since πC = 0 is a feasible solution of the optimization problem (15),
we conclude that: ξ ≤ 0× (

∑
g
∑

i P
max
g,i x∗∗

g,i −Cmin) + ∑
g LOCa

gagen(0, πM ) =
∑

g LOCgen
g (0, πM ). Furthermore, if Cmin ≤ ∑

g
∑

i P
max
g,i x∗

g,i then

πC∗(
∑

g
∑

i P
max
g,i x∗∗

g,i−Cmin) ≥ 0, fromwhichwecanwrite
∑

g LOCgen
g (πC∗, πM )

≤ ξ . We conclude that
∑

g LOCgen
g (πC∗, πM ) ≤ ∑

g LOCgen
g (0, πM ). ��
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