
Université catholique de Louvain
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Abstract

The transition of the energy sector towards decarbonization involves the in-
tegration of more renewable sources, which introduces unpredictability from
solar and wind energy. This necessitates sophisticated decision-making models
to manage such variability effectively. Emphasizing the importance of innova-
tive modeling approaches, this thesis highlights how effective modeling serves
as a critical strategy to utilize these mathematical techniques in practical sce-
narios. By presenting examples, including a novel perspective on uncertainty in
multi-interval real-time markets and reformulation strategies for multi-area re-
serve sizing problems, the dissertation demonstrates significant computational
efficiency gains and the potential for solving large-scale, practical power system
challenges.

The first part of this dissertation explores the dynamics of multi-interval
real-time markets, where the unique characteristics of rolling implementation
pose significant challenges for both optimal dispatch decisions and pricing mod-
els. Through theoretical and empirical analyses, this chapter uncovers the dif-
ference between these two models and introduces a method that leverages the
stochastic gradient algorithm. This innovative approach circumvents the com-
plexities of multi-stage stochastic programming, yielding near-optimal solutions
swiftly for large-scale problems and highlighting the significance of advanced
modeling in reducing opportunity costs.

The second part of this dissertation considers the multi-area reserve dimen-
sioning problem, aiming to optimize reserve allocations within the constraints of
system reliability. Beginning with a foundational two-stage chance-constrained
programming model, this chapter evaluates three distinct reformulations. The
final approach is particularly notable for the development of an efficient solu-
tion method that not only solves real-world problems optimally but also has
been adopted by a Nordic Transmission System Operator for a number of plan-
ning functions. This example underlines the impact of modeling, especially in
handling integer variables.

Collectively, the dissertation underscores the role of modeling as a founda-
tional element for optimization under uncertainty in power systems, presenting
modeling not just as a theoretical endeavor, but as a practical tool that ad-
dresses specific and complex requirements, thereby bridging the gap between
computational capabilities and practical needs in the power industry.
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1 Introduction

1.1 Context and motivation

Starting from the Paris Agreement in 2015, there is an increasing global con-
sensus to achieve the carbon net-zero goal by 2050. Through several political
initiatives (the European Green Deal [Com19], the long-term strategy of the
US [oStUSEOotP21]), each country sets its own concrete plans to meet this
target [Nat].

The production and use of energy account for more than 75% of the EU’s
greenhouse gas emissions. Decarbonizing the EU’s energy system is therefore
critical to reach our 2030 climate objectives and the EU’s long-term strategy
of achieving carbon neutrality by 2050 [Com].

Renewable energy plays a fundamental role in delivering the European
Green Deal and in achieving climate neutrality. In the EU, the share of re-
newable energy sources (RES) in primary energy production has surpassed
40%. In addition to the policy momentum initiated by the carbon net-zero
objective, the recent global energy crisis is driving rapid growth in renewable
power. Not only the western countries that are originally considered leaders of
the carbon net-zero initiative but also other countries responsible for a consid-
erable share of carbon emissions, such as China and India, are adding to global
renewable capacity at an unprecedented rate. For example, China’s share of
global annual renewable capacity deployment has exceeded 50% [Age23].

Renewable energy sources, particularly solar and wind power, are variable
and unpredictable. This limited predictability raises a series of questions about
the reliability and cost-effectiveness of our energy systems when supporting
high shares of renewable energy [OEC14]. Moreover, recent crises, such as
the 2021 Texas power crisis and the energy crisis associated with the Russian-
Ukraine war, have shown the fragility of our energy systems in responding to
uncertainty. To mitigate the impact of these new challenges, it is inevitable to
explicitly consider uncertainty in models for decision-makers.

“Power systems,” “electricity grids,” or “electrical power systems” are net-
works of interconnected electrical components, including power generation plants,
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2 Chapter 1. Introduction

transmission lines, substations, and distribution networks. An energy system
encompasses a broader scope and includes all forms of energy, not just electric-
ity, but also natural gas, oil, coal, and so on. Regarded as one of the biggest
and most complicated systems that humankind has ever created, power sys-
tems are the core of the entire energy system. In an electricity grid, supply
and demand must be constantly balanced in real time under the complex phys-
ical laws of electricity. Moreover, as of now, there is no efficient technology
for large-scale electricity storage to address the issue of increasing uncertainty.
These distinct characteristics are what make power systems special as one of the
core research subjects in the energy sector. Given the current global changes,
decision-making under uncertainty for power systems is a necessary and timely
research topic.

In light of this, an increasing effort from academia has been observed, fo-
cusing on optimization under uncertainty within power system operations, es-
pecially in the past couple of decades. One of the most common approaches to
modeling uncertainty is so-called “stochastic programming” [BL11]. In stochas-
tic programming, scenarios for future uncertainty are identified, and the goal is
to optimize the expectation of the objective function. Since the size of the prob-
lem grows as the number of scenarios increases, and this is further multiplied by
the number of time periods in the case of multi-stage settings, it is significantly
more demanding than assuming that all the future information is certain and
deterministic. Early examples date back to the 20th century such as [Blo82]
(generation expansion planning), [PP91] (long-term hydrothermal scheduling),
and [TBL96] (stochastic unit commitment). These seminal works established
the foundations for future research, and the core models are still in use today.
However, due to computational limitations, they could only address relatively
small instances compared to a realistic scale, or target long-term operational
problems (e.g. units of each period amounting to several years). It is only
relatively recent that researchers have demonstrated the ability to solve large
enough real-world problems. Large-scale stochastic unit commitment [POR14],
and real-world capacity generation expansion problems [GAC14] are some such
examples. The scope of research has also expanded to tackle short-term op-
erational problems, such as trading decisions within hydro systems [LWM13]
and real-time storage dispatch [PMCS17]. Through the use of parallel and
distributed computing, the authors of [ÁPL21], [ÁPJE23] have made further
developments in solving large-scale problems more efficiently. Nevertheless,
there are still many challenges to face. In dynamic real-time operations, for
example, a large-scale problem should be solved every 5 to 15 minutes, as it is
ideal to consider the updated available information for the future every time
a decision is made. Moreover, to capture inter-temporal dynamics, a multi-
stage approach should be considered even for real-time operations. However,
even with recent algorithmic and computational developments, the unit of solv-
ing time for real-world multi-stage stochastic programming problems is several
hours rather than minutes [ÁPL21].

Another common approach to modeling uncertainty is to employ chance
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constraints. In deterministic optimization problems, the goal is to find the
solutions that optimize the objective function while remaining feasible within
the set of constraints. It is indispensable to satisfy all the constraints. This
concept is similar in stochastic programming; the optimal solutions must be
feasible under all possible uncertain scenarios. Chance constraints, on the other
hand, allow for violations of these constraints with uncertain parameters. In-
stead of treating these parameters as fixed values (e.g., one deterministic value
or several scenarios), chance constraints specify the acceptable level of risk or
probability associated with violating these constraints. In chance-constrained
programming, the objective is to find the optimal solution to an optimization
problem while ensuring that certain constraints are satisfied with a specified
probability or chance.

Although chance-constrained programming was first suggested at the end
of the 1950s [CC59], it was not until the 2000s that this approach was uti-
lized in power system applications. At first, it was suggested as an alterna-
tive method for stochastic unit commitment [OMN04], [WGW11]. Later, it
was employed to address various applications, including the transmission net-
work expansion problem [YCWZ09] and optimal power flow under uncertainty
[ZL11]. The main challenge in tackling chance-constrained programming is
that it is intrinsically non-convex. When making assumptions about the un-
derlying distributions for uncertain parameters, such as assuming a Gaussian
distribution or assuming independence among the parameters, it is possible to
reformulate the original problem into tractable one. However, without such
assumptions or when there are several jointly related chance constraints, solv-
ing real-world problems remains difficult. Instead, a convex approximation
of chance-constrained programming is often suggested, such as CVaR (Condi-
tional Value-at-Risk). To solve this more general form of chance-constrained
programming problem closer to its optimality, a scenario based method called
“sample approximation” [LAN10] is used. The issue is that the resulting opti-
mization problem becomes a mixed-integer linear programming (MILP) prob-
lem, which is also generally challenging. There are several layers of integer
programming techniques available based on [ANS00], [GP01] that help accel-
erate the computational performance of the specific form of MILP that results
from sample approximation. However, it remains a significant challenge when
dealing with complex underlying systems, such as considering multiple areas
simultaneously with network constraints.

Modeling as a Strategy

This dissertation proposes the use of modeling as a strategy to make signif-
icant advancements beyond the current state. It is an undeniable fact that
algorithmic developments play a major role in improving the optimization or
operations research field. The invention of the simplex algorithm for linear
programming by G. Dantzig [Mur83] is one of the most prominent examples.
For convex optimization, all the variants of gradient descent-based algorithms
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and the interior point algorithm [Kar84] represent legacies and evidence of
successful efforts. In stochastic programming, the L-shaped method [VSW69]
established the basis for future variations that are widely used to this day.
Exact methods for chance-constrained programming are primarily supported
by the integer programming literature through the sample approximation link
[LAN10].

However, modeling is another essential pillar for solving practical real-world
problems using these algorithms. There are often gaps between the standard-
ized forms of problems that currently available algorithms can efficiently solve
and what we need to solve in practice. Modeling is an art that bridges these
gaps and finds a balance between theory and practice. For example, how should
we model uncertainty? What are the uncertain parameters, and which ones
are important and why? What do we want to achieve with uncertainty mod-
eling? Is the goal to maximize expected profit or guarantee a certain level of
system reliability? Is the aim to find a “robust” solution that is feasible in any
possible scenario? These questions have led to the aforementioned divisions of
optimization under uncertainty: stochastic programming, chance-constrained
programming, and robust optimization [BTGN09]. Algorithmic developments
have occurred in each of these divisions separately and in combination. Start-
ing from a specific problem, there can be various types of modeling depending
on the focus and practical usage. For instance, [Bru16] presents possible vari-
ations and their results when it comes to modeling uncertainty in the unit
commitment problem. By exploring the universe of these possibilities, one can
sometimes find a good match that marries practical needs with theoretical foun-
dations. As a contribution of this dissertation, one such example is introduced
in chapter 2. The particular issue addressed is how to price under uncertainty
in the context of multi-interval real-time markets. By proposing a new perspec-
tive on modeling uncertainty, this example identifies an ideal point to bridge
the practical needs (meeting the requirements of establishing good prices) and
theory (minimizing the proposed objective function using a stochastic gradient
descent algorithm).

Another facet of the value of modeling lies in its effectiveness when dealing
with optimization problems that include integer or binary variables. Except
for some special cases, as of now, Branch-and-Bound-type algorithms or their
variants are used to find optimal solutions for integer programming problems.
The performance of the Branch-and-Bound algorithm depends on the tight-
ness of the continuous relaxation problem. In other words, it depends on the
amount on the gap between the optimal objective function values in the original
problem and the relaxed problem where integer variables are replaced by con-
tinuous ones. This leads to an interesting phenomenon; two equivalent models
(formulations) can have completely different performance. Being equivalent
means they are fundamentally identical in terms of their solutions and feasible
regions in the space of integer variables. However, when we relax these integer
variables to continuous ones, the resulting relaxation problems can have differ-
ent feasible regions and solution sets. If one relaxation is closer to the convex
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hull of the original problem than the other in terms of optimality gap, then the
computation time for solving can be much faster. It is important to note that
this difference can be dramatic. Remember that integer programming prob-
lems are NP-hard in general. That is why seemingly small changes can have a
significant impact on performance differences.

The traveling salesman problem (TSP) [Lap10] is a classic example where
this phenomenon can be observed. One type of modeling can obtain the opti-
mal solution for the instance with 85,900 nodes, while slightly modified mod-
eling cannot even achieve optimal solutions for instances with 100 nodes. In
addition to this, there are myriads of examples in different applications, in-
cluding the vehicle routing problem [ZGYT21] and the cutting stock problem
[GG61], [Van00], where a new type of modeling (reformulation) has dramati-
cally improved computational time and enabled the solution of previously un-
solved instances. As the second contribution of this dissertation, in chapter
3, a power system application problem is presented that has been similarly
improved through different modeling. The multi-area reserve sizing problem is
first formulated as a basic two-stage chance-constrained programming problem,
followed by several reformulation strategies. The last one utilizes a minimal
projection formulation to transform the original problem into a single-stage
chance-constrained programming problem, for which more powerful algorithms
are available. This work also serves as an example of bridging the gap between
the practice (addressing a more complex problem closer to what is encountered
in practice) and theory (utilizing integer programming techniques applicable
to a specific format).

The upcoming sections of this chapter provide relevant background knowl-
edge for the following chapters. The organization of the chapter is as fol-
lows. Section 1.2 presents a brief overview of electricity markets relevant to
the subsequent chapters. Section 1.3 focuses on stochastic programming. Two
different modeling strategies are first introduced for multi-stage stochastic pro-
gramming. Later, for unconstrained stochastic programming, the stochastic
gradient descent algorithm is introduced. In section 1.4, an approach to tackle
chance-constrained programming mainly used in chapter 3, is introduced. As
mentioned earlier, this dissertation focuses on exact methods based on sample
approximation rather than other types of convex approximation. Therefore,
after introducing general chance-constrained programming, the sample approx-
imation method is presented, followed by corresponding integer programming
techniques to tighten the general types of chance-constrained programming.

1.2 Electricity Market

In the early ages of electric power systems, dating back to the late 19th century,
electricity markets were composed of numerous small, local players who often
operated as monopolies within their respective areas. As the industry grew,
there was a trend towards consolidation. Some entities were nationalized, while
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others remained as large, vertically integrated companies that handled gener-
ation, transmission, and distribution. By the late 20th century, some markets
had gradually opened to competition, and regulatory reforms were introduced
to separate the generation, transmission, and distribution of electricity. Ex-
amples include the Energy Policy Act of 1992 in the US and the Electricity
Directive 96/92/EC in 1996 in the EU. Depending on the historical context
and policy goals, each electricity market in the world has developed its own
distinct characteristics. One of the major differences is the distinction between
self-scheduling, which is a dominant paradigm in Europe, and centralized mar-
ket clearing, which is a dominant paradigm in the US.

The centralized market clearing paradigm aims to imitate vertically inte-
grated operations. Its primary goal is to find optimal coordinated schedules
that minimize the cost of serving demand (or maximize the total welfare of
supply and demand), subject to both system constraints and each participant’s
operational constraints [Wil02]. A system operator serves as the central plan-
ner who operates the market with submitted bids representing the true cost
of generation, including startup cost, minimum running cost, and marginal
costs. This often requires extra market power mitigation efforts, where bids are
checked for consistency. The countries that have adopted this paradigm have
established regulatory authorities empowered by laws or comparable measures
to ensure that bids reflect actual costs. One downside is that this paradigm
relies on side payments due to the underlying non-convexity of the market
clearing models. It is known that these side payments can be gamed without
careful surveillance of the system [FER13].

Self-scheduling, on the other hand, reduces the role of system operators in
scheduling individual assets. Market participants have more freedom in bid-
ding, and it is up to them to schedule their generation units according to their
accepted bids. Although this approach is more flexible, it is also more chal-
lenging for the bidders since they are required to internalize complex factors
such as inter-temporal constraints (e.g. ramp constraints). The low coordina-
tion of markets for energy, transmission and reserves results in efficiency loss
for system operation. Proponents of this paradigm argue that the incentive
effects overshadow the deficiency in efficient coordination. This paradigm is
often associated with portfolio-based bidding systems where the markets clear
aggregate positions and the owners of portfolios self-schedule resources in order
to deliver the aggregate market position. This is the case in the majority of
the EU electricity market.

The increase in renewable energy resources has made the inter-temporal
linkage among different market intervals tighter. Energy storage resources re-
quire explicit inter-temporal coordination. In the self-scheduling paradigm,
market participants are expected to predict the effects of inter-temporal con-
straints and internalize the opportunity costs into their bids. However, esti-
mating such opportunity costs is a challenging task, as observed in [WP18].
The difficulty intensifies with the increasing amount of uncertainty. In con-
trast, some system operators in the US, such as New York ISO, California ISO,
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and PJM, have adopted multi-period market clearing models for their real-
time market operations to explicitly capture these inter-temporal constraints
in their models. This is due to the fact that the US system operators have
closer access to unit-based technical information. In chapter 2, we investigate
and analyze such multi-interval real-time markets, starting from an assumption
of deterministic systems, and then moving to the case of uncertainty.

The difference in paradigms also affects the differences in reserve market
(or balancing capacity market) design. The forward reserve markets in Europe
are often separated from energy markets, whereas US market clearing models
co-optimize energy and reserves simultaneously. The centralized approach al-
lows them to directly account for security constraints. US models incorporate
security constraints in their market clearing for both day-ahead and real-time
[CAI13]. By contrast, European system operators rather rely on probabilistic
criteria, by law, throughout the EU [Com17a]. The collection of detailed data
on a unit-level basis is challenging in EU electricity markets, where resources
are bid as portfolios [DVSD+19]. Probabilistic criteria are used to dimension
the requirements for reserves to meet a certain reliability level. In the US, a
so-called bottom-up approach is used where the decision is endogenously made
considering the technical details of units.

One remarkable feature in Europe is the encouragement of coordination
across different countries within the EU market for balancing capacity. The
reserve products are relatively more uniform than in the US, due to the target
model which aims for a common European market where reserve services can
be traded between zones. This motivates the project in chapter 3, where re-
serve dimensioning is conducted across several zones with consideration of the
underlying transmission network.

1.3 Stochastic Programming

The first paper that suggested stochastic programming is regarded as [Dan55],
published in 1955 by George B. Dantzig. He begins his paper as follows.

“The essential character of the general models under consideration is that
activities are divided into two or more stages. The quantities of activities in
the first stage are the only ones that are required to be determined; those in the
second (or later) stages can not be determined in advance since they depend
on the earlier stages and the random or uncertain demands which occur on or
before the latter stage.”

As written in the text, it is common to consider multiple stages of decision-
making in stochastic programming. When a decision is made in a certain
stage, randomness exists for the later stages, and the previous decision has an
impact on the subsequent decisions. The goal of stochastic programming is
to minimize (or maximize) the expectation of an objective function across all
possible scenarios while satisfying the problem’s constraints. There are two
different ways to model stochastic programming with multiple stages where



8 Chapter 1. Introduction

1

2

3

4

5

6

7

Figure 1.1: An example of a scenario tree with the root node n0. One sample path P
is shown with the set of nodes NP in the sample path P.

there is a dependency between previous decisions and later decisions. This
section is dedicated to introducing the difference between these approaches to
modeling stochastic programming. Before delving into the models, a tool for
analyzing uncertain sequential decision-making processes is introduced in the
following subsection.

1.3.1 Scenario Tree

A scenario tree is a graphical representation for visualizing different possible
outcomes and decisions that can be made at various stages of a complex process.
An example of a scenario tree is illustrated in Figure 1.1. A tree is made up
of nodes and branches. In a scenario tree, nodes represent decision points and
branches the possible paths of events.

The notation regarding scenario trees for the rest of the dissertation is as
follows: for a scenario tree G, let n ∈ N denote a node of the scenario tree,
where N is the entire set of nodes of G. We call n0 the root node of a scenario
tree, n− denotes the parent node of n. A sample path is denoted as P, and the
set of nodes in the sample path P as NP.

The root node n0 represents the first stage in sequential decision making. In
this stage, the outcomes of uncertainties in subsequent stages remain uncertain.
For example, in Figure 1.1, at node 1, which is the root node n0, the decision
should be made without knowing which paths (e.g. 1→ 2→ 5 or 1→ 3→ 7) it
will follow on the scenario tree. In the next stage, if the uncertainty is revealed
as 3, then the decision should be made given only the previous information 1
→ 3 without knowing that the next node will be either 6 or 7 in the following
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stage.
Figure 1.1 illustrates a three-stage example in which each node presents

two possibilities for future outcomes. Conceptually, this can be extended to
infinite-dimensional cases, where there is no termination stage, and at every
node, there are infinite possibilities. In this dissertation, a finite number of
stages is considered, even though an infinite number of outcomes is assumed
in some cases. In a finite length scenario tree, a path from the root node to a
leaf node is called a sample path. A sample path represents a scenario of a full
sequence of uncertain outcomes throughout all the stages.

Note that every sequence on a scenario tree shares at least one common
node, which is the root node. This is why it is impossible to assess each scenario
separately and consider the expectation on all the scenarios independently. It
is necessary to devise an approach to model this dependency. Two widely used
major examples are introduced in the following subsections. One way is node
based modeling, and another way is sample path based modeling.

1.3.2 Node-Based Modeling

Node-based modeling is the formulation suggested in the paper [Dan55]. In
node-based modeling, each node on a scenario tree corresponds to one set of
decision variables. Let us denote the set of variables for node n as x(n). The
uncertain feasible region is denoted as X , and given the stage and uncertain
realization (i.e. given the node) the feasible region for x(n) is defined as X (n).
σ(n) denotes the probability that the scenario of node n occurs from the per-
spective of the root node n0. For example, σ(n0) is equal to 1, and the sum of
σ(n) for each stage is also equal to 1. Each branch represents an inter-temporal
relationship between the parent and the child node in the form of constraints.
For each branch with parent node n− and child node n, let h(x(n−), x(n)) ≤ 0
be the set of inter-temporal constraints between these two nodes. Consequently,
for the branches that share the same parent node, the corresponding constraints
also have the same common decision variables. Let the objective function for
decision variable x(n) be denoted as f(x(n)). It is worth noting that in general,
the functions f and h can have different forms according to different nodes and
branches, similarly to the case of the feasible region X (n). In this dissertation,
this fact is implied, and explicit notation for the dependency on n is omitted
for brevity. The resulting stochastic programming formulation is as follows:

min
x

Σ
n∈N

σ(n) · f(x(n))

s.t. h(x(n−), x(n)) ≤ 0, n ∈ N
x(n) ∈ X (n) n ∈ N .

(1.1)

In the first row of (1.1), the objective function is minimized over all the
decision variables x = {x(n),∀n ∈ N}. The objective function represents the
expected cost across all stages, as the sum of σ(n) for every stage should be
equal to 1.
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Example 1.1 (Ramp Constraint). Let x represent the power generation level
in each stage for a generator. This generator has a limit on the rate of change in
power generation. Between two consecutive stages, the generator can change its
level by up to R in both directions. Additionally, the generator has a maximum
capacity limit, denoted as Xmax. The cost function is linear with a marginal
cost C. The generator’s objective is to maximize its expected profit in the
face of uncertain prices in the electricity market. It is assumed that although
information about future prices is uncertain, the (finite) probability distribution
of prices p(n) with probability σ(n),∀n ∈ N is known.

Through node-based modeling, as shown in (1.1), the expected profit maxi-
mization problem can be formulated as follows:

max
x

Σ
n∈N

σ(n) · [p(n)− C] · x(n)

s.t. |x(n−)− x(n))| ≤ R, n ∈ N
0 ≤ x(n) ≤ Xmax n ∈ N .

(1.2)

Let us consider a more explicit example with only two stages and three nodes,
n = {1, 2, 3}. Node 1 is the root node and nodes 2 and 3 are its children, each
with an equally distributed probability of σ(2) = σ(3) = 1/2.

max
x

[p(1)− C] · x(1) + 1/2 · [p(2)− C] · x(2) + 1/2 · [p(3)− C] · x(3)

s.t. |x(1)− x(2)| ≤ R,

|x(1)− x(3)| ≤ R,

0 ≤ x(n) ≤ Xmax n ∈ {1, 2, 3}.

(1.3)

In this example, it is clearer that the objective function represents the expected
profit, and two inter-temporal constraints share the same decision variable x(1)
from their common parent node.

Solution Methods

One of the challenges in solving multi-stage stochastic programming problems
is the rapid increase in problem size as the number of stages and branches
per node grows. Sometimes, solving the entire problem at once in the form of
(1.1), known as the extensive form, becomes impossible. A common strategy
to address this issue is to decompose the extensive form into smaller problems.

Let us consider a two-stage stochastic programming problem. Given the
first-stage solution x̂(1) and an uncertain realization ω ∈ Ω, the function
V(x̂(1), ω) is denoted as follows:

V(x̂(1), ω) =min
x(ω)

f(x(ω))

s.t. h(x̂(1), x(ω)) ≤ 0 : λ(ω)

x(ω) ∈ X (ω).

(1.4)
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With this function, the two-stage stochastic programming problem can be
represented as follows:

min
x

f(x(1)) + Eω[V(x(1), ω)]

s.t. x(1) ∈ X (1).
(1.5)

If f and h are linear functions and X (ω) is a convex set ∀ω ∈ Ω, then the
dual multipliers λ(ω) become subgradients for V(x(1), ω). When ω is a finite
discrete random variable, Eω[V(x(1), ω)] is a piece-wise linear function that is
convex in x(1) [BL11]. Therefore, Eω[V(x(1), ω)] can be underestimated by the
supporting hyperplanes generated by subgradients λ(ω̂).

This fact motivates an iterative algorithm called “L-shaped algorithm”, in-
troduced in [VSW69]. This algorithm is a variation of Benders’ Decomposition
in [Ben62]. Fixing the first-stage variable (x(1) in this case) allows us to de-
compose the problem into first-stage variables and second-stage variables. In
the L-shaped algorithm, the second-stage variables can be further decomposed
into the form of (1.4) for each ω ∈ Ω. Starting from a master problem with
zero cuts (or supporting hyperplanes), cuts are added from the sub-problem
consisting of the second-stage variables in each iteration. Similarly to Benders’
Decomposition, the L-shaped algorithm converges after finitely many iterations
when the functions f and h are linear [PG08].

For multi-stage stochastic programming problems, there exists an extension
of the L-shaped algorithm called the nested L-shaped algorithm, which was in-
troduced in [BL11]. This method requires scanning all possible paths and
solving corresponding sub-problems in every iteration of the algorithm. To al-
leviate this issue, a sampling-based approach is used. Instead of scanning all
possible paths, Monte Carlo sampling is employed, making the algorithm much
more scalable. This algorithm has a specific name, stochastic dual dynamic
programming (SDDP). First introduced in [PP91], SDDP is widely used in in-
dustrial applications [FBP10, DMPFG10, PBM13, LWM13, LW20, DPMD19].

1.3.3 Sample Path Based Modeling

An alternative way of modeling a multi-stage stochastic programming problem
is through sample path-based modeling. This approach was first introduced in
[RW91]. As the name of the method suggests, this modeling strategy focuses
on sample paths rather than nodes in a scenario tree. Since a sample path
on a scenario tree corresponds to a fully sequenced scenario, this method is
often regarded as a scenario-based formulation. As a reminder, in Figure 1.1, a
sample path is denoted as P and the set of nodes in P is defined as NP. The set
of all the sample paths is P. The probability of each sample path is denoted
as Pr(P). According to the definitions, the sum over all sample paths, denoted
as Σ

P∈P
Pr(P), is equal to 1.

In sample path-based modeling, a certain node n can have several sets of
decision variables. For instance, every sample path contains the root node n0.
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Consequently, at the root node, the number of sets of decision variables equals
the total number of sample paths. For a given sample path P, the correspond-
ing set of decision variables is denoted as xP and is further decomposed into the
node levels xP(n),∀n ∈ NP. Due to the presence of multiple decision variables
for each node, inter-temporal constraints do not share decision variables. How-
ever, an additional set of constraints is introduced to represent the dependency
of each decision. These constraints impose that the decisions made at the same
node are the same. They are referred to as “non-anticipativity constraints”.
The resulting formulation is as follows:

min
x,x̂

Σ
P∈P

Pr(P) Σ
n∈NP

f(xP(n))

s.t. h(xP(n−), xP(n)) ≤ 0, n ∈ NP,P ∈ P
xP(n) ∈ X (n) n ∈ NP,P ∈ P
xP(n)− x̂(n) = 0, n ∈ NP,P ∈ P.

(1.6)

The first row of (1.6) minimizes the objective function, which represents
the expected cost function under all possible scenarios or sample paths. This is
because Σ

n∈NP
f(xP(n)) represents the cost function for a given sample path P.

When summed over all sample paths and with weights Pr(P), it becomes the
expected profit across all sample paths. The last row of (1.6) contains the non-
anticipativity constraints, where x̂(n) is an auxiliary variable ensuring that the
decisions at the same node must be identical, i.e. xP1(n) = xP2(n) = · · · = x̂(n).

Example 1.2 (continued). Through sample path-based modeling as in (1.6),
the expected profit maximization problem can be formulated as follows:

max
x,x̂

Σ
P∈P

Pr(P) Σ
n∈NP

σ(n) · [p(n)− C] · xP(n)

s.t. |xP(n−)− xP(n))| ≤ R, n ∈ NP,P ∈ P
0 ≤ xP(n) ≤ Xmax, n ∈ NP,P ∈ P
xP(n)− x̂(n) = 0, n ∈ NP,P ∈ P.

(1.7)

Let us consider a more explicit example with only two stages and three nodes,
n = {1, 2, 3}. Node 1 is the root node and nodes 2 and 3 are its children, each
having an equally distributed probability of σ(2) = σ(3) = 1/2. There are
two sample paths ([1, 2] and [1, 3]), with their probabilities being also equally
distributed; Pr([1, 2]) = Pr([1, 3]).
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max
x,x̂

1/2 · {[p(1)− C] · x[1,2](1) + [p(2)− C] · x[1,2](2)}

+ 1/2 · {[p(1)− C] · x[1,3](1) + [p(3)− C] · x[1,3](3)}
s.t. |x[1,2](1)− x[1,2](2)| ≤ R,

|x[1,3](1)− x[1,3](3)| ≤ R,

0 ≤ x[1,2](n) ≤ Xmax n ∈ {1, 2}
0 ≤ x[1,3](n) ≤ Xmax n ∈ {1, 3}
xP(1)− x̂(1) = 0 P ∈ {[1, 2], [1, 3]}.

(1.8)

In this example, it is clearer that the objective function represents the expected
profit. Unlike the node-based model, the two inter-temporal constraints do not
share the same decision variable. They have separate sets of variables x[1,2](1)
and x[1,3](1). However, these two variables, which correspond to the same node
(node 1), must have equal values, as enforced by the non-anticipativity con-
straints in the last row.

Solution Methods

One of the reasons for using different modeling methods is to apply various
solution techniques. The most common algorithms designed for sample path-
based model is called “progressive hedging”, introduced in [RW91]. Similar to
the case of node-based modeling, the primary challenge in stochastic program-
ming problems is their size. Therefore, a method to decompose the original
large problem into smaller ones is needed. In sample path-based modeling,
the separation between scenarios is more explicit than in node-based modeling.
The only set of constraints representing dependencies among scenarios is the
non-anticipativity constraints. The progressive hedging algorithm relaxes these
constraints to enable decomposition.

Let us consider a two-stage stochastic programming problem. Given a first-
stage solution x̄(1) and an uncertain realization ω ∈ Ω, the progressive hedging
algorithm decomposes the original problem into the following sub-problems.

min
x(1),x(ω)

f(x(1)) + f(x(ω)) + π(ω)T (x(1)− x̄(1)) +
ρ

2
· ||x(1)− x̄(1)||2

s.t. h(x(1), x(ω)) ≤ 0

x(1) ∈ X (1), x(ω) ∈ X (ω).

(1.9)

In the objective function of (1.9), the second-to-last term represents the
relaxation of the non-anticipativity constraints with corresponding dual multi-
pliers π(ω). Additionally, a quadratic regularization term is added as the last
term of the objective function. Starting from initial values for the dual multi-
pliers π(ω), let us denote the optimal solutions of the sub-problems as x∗

ω(1)
and x∗

ω(ω). Then, for the next iteration π(ω) is updated as follows:

π(ω)← π(ω) + ρ · (x∗
ω(1)− x̄(1)), (1.10)
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and x̄(1) is set as Eω[x
∗
ω(1)].

The performance of the progressive hedging algorithm depends crucially
on the choice of the tuning parameter ρ. Determining the appropriate level
of tuning for a given problem is a critical consideration, and this can vary
depending on the specific problem characteristics, as discussed in [BSdG+22].

1.3.4 Stochastic Gradient Descent

In this subsection, an algorithm is introduced that is widespread and can be
applied to a specific type of stochastic programming problem. Unlike the pre-
vious models targeted at a general form of constrained optimization problem,
the goal of this algorithm is to tackle an unconstrained optimization problem.
In 1951, a predecessor method of the stochastic gradient descent algorithm was
introduced by Herbert Robbins and Sutton Monro under the name ‘stochastic
approximation method’ [RM51]. A year later, the first optimization algorithm
that used the stochastic approximation method was published [KW52], and this
algorithm is regarded as the first form of the stochastic gradient descent algo-
rithm. Since the algorithm is used for solving the perceptron model [Ros58],
which is a precursor to neural networks, the stochastic gradient descent algo-
rithm or its variations are widely used, especially in the field of machine learn-
ing. Nevertheless, it is less frequently used for tackling stochastic programming
problems due to the presence of constraints.

The stochastic gradient descent algorithm is a stochastic approximation
version of gradient descent.

F (x) =
1

n

n

Σ
i=1

Fi(x) (1.11)

It is mostly used if the objective function F (x) that is minimized has the form
of (1.11). A gradient descent algorithm proceeds with the following iterations

x← x− γ · ∇F (x), (1.12)

where γ is a step size. The full gradient information can be obtained through
the following equation.

∇F (x) =
1

n

n

Σ
i=1
∇Fi(x) (1.13)

For a stochastic gradient descent, however, a randomly chosen subset of
{1, · · · , n} is used for each iteration instead of the full gradient. As a simple
example, consider a stochastic gradient descent algorithm with a single sample.
If the chosen sample is i, then the iteration is as follows:

x← x− γ · ∇Fi(x). (1.14)

The step size γ can be dynamically chosen along with the number of iter-
ations. At the t-th iteration, let the corresponding step size be γt. For the
algorithm to converge, it usually requires a diminishing sequence of step sizes
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that satisfy
∑

t γ
2
t < ∞ and

∑
t γt = ∞. With mild assumptions [Bot98] and

appropriate diminishing rates of γ, the stochastic gradient descent algorithm
converges almost surely to its local (or global) minimum depending on the con-
vexity of the function F (x) [Bot12]. There are many variations in terms of
how to choose step size rules or utilize momentum. A partial list of variants
can be found in [Bot12]. When multiple samples are chosen per iteration, it
is called ‘mini-batching’, and it often exhibits smoother convergence than the
single-sample version.

The form of function F (x) as in (1.11) often arises in the context of mini-
mizing the expectation of an uncertain objective function. In this case, n can
be viewed as the size of a dataset or observations, while Fi(x) corresponds to
the objective function assuming the i-th data point or observation. If the set
of uncertain outcomes is finite, the expectation can be directly replaced by the
average of all possibilities. Otherwise, when dealing with infinite outcomes, the
expectation is approximated by the average of available data or observations,
a method known as sample average approximation [SHdM00, KSHdM02].

When the size n is too large, calculating the full gradient becomes computa-
tionally burdensome. By utilizing a small subset of the dataset, the stochastic
gradient descent algorithm significantly reduces the time required for each it-
eration. While it may have a slower per-iteration convergence rate in theory
compared to its full gradient descent counterpart, empirical evidence demon-
strates its excellent performance in various applications.

1.4 Chance-Constrained Programming

Let us consider the following form of an optimization problem:

min
x

f(x)

s.t. Pr{G(x, ξ) ≤ 0} ≥ 1− ϵ

x ∈ X,

(1.15)

where f is the objective function, X is a deterministic feasible region, ξ ∈ Ξ
represents uncertain parameters, G is a constraint mapping with a reliability
parameter ϵ. In general, the probabilistic constraint imposes all rows of the
constraints jointly instead of considering them separately. Due to the explicit
representation of probabilistic constraints, this form is sometimes referred to
as probabilistic programming or chance-constrained programming.

Chance-constrained programming was first suggested by Charnes and Cooper
[CC59], and they published several papers on this topic, including [CC63]. Even
in their early works, mixed-integer programming (MIP) was often used to tackle
chance-constrained programming problems. The choice is particularly natural
when the support of uncertain parameters Ξ is a finite set, as binary vari-
ables could model each realization of uncertain parameters. However, due to
the NP-hardness of MIP, this approach had limitations in terms of scalability.
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Therefore, many early works on chance-constrained programming focused on
identifying conditions under which problems could be considered convex.

1.4.1 Convex Cases

In general, chance-constrained programming problems are non-convex. How-
ever, there are some special cases where the deterministic equivalent problem
of (1.15) is convex. Let us consider the case where G(x, ξ) is a linear mapping
as follows:

G(x, ξ) = A(ξ)Tx− h(ξ), (1.16)

where A(ξ) is a matrix consisting of the coefficients of linear inequalities, and
h(ξ) is the corresponding right-hand-side vector.

Let us start from the case where A(ξ) is fixed to a deterministic matrix A.
When G represents a single linear inequality, it is straightforward to see that

Pr{ATx ≤ h(ξ)} ≥ 1− ϵ

⇔ ATx ≤ F−1(ϵ),
(1.17)

where F is the probability distribution function of h(ξ). For a given ϵ, F−1(ϵ)
is a fixed scalar, making it convex in this case.

When G represents multiple linear inequalities, there is a seminal result
by Prekopa [Pre03], indicating that if the distribution function of h(ξ) is log-
concave, the resulting joint chance-constrained programming problem is con-
vex.

In the case where A(ξ) is also random, along with h(ξ), and if the joint
distribution function of every row follows a normal distribution with a com-
mon covariance structure, then the chance-constrained programming problem
is convex [Pre74]. As an example, consider once again the case where G cor-
responds to a single inequality. Assume that h is fixed, and the coefficients
of A(ξ) are normally distributed with a mean vector µ and covariance matrix
Σ. In this scenario, A(ξ)Tx follows a one-dimensional normal distribution with
mean µTx and variance xTΣx. Then,

Pr{A(ξ)Tx ≤ h} ≥ 1− ϵ

⇔ µTx+Φ−1(1− ϵ) · [xTΣx]1/2 − h ≤ 0,
(1.18)

where Φ is the probability distribution function of the standard normal distri-
bution. By introducing a new variable v this can be reformulated as follows:

µTx+Φ−1(1− ϵ) · v − h ≤ 0

xTΣx ≤ v2

v ≥ 0,

(1.19)

a second-order cone programming problem, which is convex.
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1.4.2 Sample Approximation

Except for some special cases, the general form of joint chance-constrained
programming is non-convex and NP-hard. One way to address this issue is
through sample approximation. This approach was first introduced in [LA08].
As the name suggests, it approximates a probabilistic constraint by sampling
several scenarios for uncertain parameters. By doing so, it allows us to avoid
the need to assume a specific type of underlying uncertainty distribution, such
as Gaussian. This method yields an exact optimal solution with probability
approaching one exponentially fast with the sample size N , under mild assump-
tions [LA08]. Since it is often the case that we do not know the underlying
distribution for the uncertain parameters but do have access to historical data,
this approach is widely used in many applications.

Let ξ1, · · · , ξn be independent Monte Carlo samples of ξ. Then, the sample
approximation of (1.15) is defined as follows:

min
x

f(x)

s.t.
1

N

N∑
i=1

I(G(x, ξi) ≤ 0) ≥ 1− ϵ

x ∈ X,

(1.20)

where I(·) is an indicator function that takes value one when its argument is
true and zero otherwise. Although it remains a challenging problem, there are
some cases where it can be efficiently solved at a large scale with the assistance
of integer programming techniques.

Let G be a linear mapping with only right-hand-side uncertainty as follows:

G(x, ξ) = h(ξ)−Ax. (1.21)

Let X ⊆ Rd
+ be a polyhedron, where d is the dimension of x. Then, the

sample approximation (1.20) can be reformulated with additional variables y
and ui,∀i ∈ {1, · · ·N} as follows:

min
x,y,u

f(x)

s.t. Ax− y = 0

y + h(ξi)ui ≥ h(ξi)

1

N

N∑
i=1

ui ≤ ϵ

x ∈ X,u ∈ {0, 1}N ,

(1.22)

where ui is a binary variable that represents the indicator function I(·) in the
opposite way. For all i ∈ {1, · · · , N}, ui takes value one when · is false for the
i-th scenario ξi and zero otherwise. Observe that in order for the problem to
be feasible, Ax ≥ 0.
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1.4.3 Mixing Set and Mixing Inequalities

Given N scalars hi for i ∈ [N ], a mixing set is defined as

P = {(y, u) ∈ R+ × {0, 1}N : y + hiui ≥ hi, i ∈ [N ]}. (1.23)

Mixing inequalities, also known as star inequalities, were developed by
Atamturk et. al [ANS00] and Gunluk and Pochet [GP01]. Assuming, with-
out loss of generality, that h1 ≥ h2 ≥ · · · ≥ hN , the mixing inequalities for the
mixing set (1.23) are defined as

y +

l∑
j=1

(htj − htj+1)utj ≥ ht1 ,∀{t1, . . . , tl} ⊂ [N ], (1.24)

where t1 < · · · < tl and htl+1
:= 0. It is known that the mixing inequalities

are valid and sufficient for defining the convex hull of the mixing set (1.23).
Defining a convex hull with a certain set of inequalities implies that the LP
relaxation gap is zero. In other words, the integer programming problem can
be solved by solving a linear programming problem with these convex hull
defining inequalities. This fact can be used even for more complex problems in
which we may not be able to fully characterize the convex hull of the problem.
In such cases, while we can no longer guarantee a zero LP relaxation gap,
these mixing inequalities remain valid and significantly help in reducing the
LP relaxation gap, resulting in better performance when solving the original
integer programming problem with binary variables u.

Furthermore, for the following set with a cardinality constraint induced by
a reliability criterion ϵ, where we define q = ⌊ϵN⌋,

G = {(y, u) ∈ R+ × {0, 1}N :

N∑
i=1

ui ≤ q, y + hiui ≥ hi, i ∈ [N ]}, (1.25)

the strengthened mixing inequalities

y +

l∑
j=1

(htj − htj+1
)utj ≥ ht1 ,∀{t1, . . . , tl} ⊂ [q] (1.26)

with t1 < · · · < tl and htl+1
:= htq+1 are facet-defining for conv(G) if and only

if t1 = 1 [LAN10]. For a polyhedron and a valid inequality for the polyhedron,
a face of the polyhedron is defined as the intersection of the polyhedron and
the corresponding hyperplane of the valid inequality. When the dimension of
a face is equal to the dimension of the polyhedron minus one, we call it a facet
of the polyhedron. Facets are important since they exist in any description of
the polyhedron including its minimal description. If we know all the facets of a
polyhedron, e.g. conv(G), we can then describe the polyhedron in its minimal
form. Therefore, a facet-defining valid inequality is crucial for defining the con-
vex hull. It implies that these inequalities are expected to be the most effective
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for reducing the LP relaxation gap among similar types of inequalities, since
the convex hull is the smallest convex set containing all the feasible solutions.

In this thesis, we assume that all the scenarios have equal probabilities.
There are similar techniques for knapsack constraints for unequal probabilities.
In this case, the inequalities are less tight. However, there is no significant loss
of generality since we can approximate the problem with equal probabilities by
re-sampling from the original distribution. The readers who are interested are
referred to [LAN10].

1.4.4 A Strong Extended Formulation

Although these inequalities are useful for tightening the LP relaxation gap,
there are additional steps required to use them. One might first consider com-
pletely enumerating all such inequalities. However, since there are exponen-
tially many such inequalities, this will not be a practical approach. Alterna-
tively, there are ways to add a subset of the inequalities on-the-fly, while we
are running the Branch-and-Bound algorithm. This is a potential way forward;
however, it is not straightforward to implement such algorithms. In this sub-
section, a method is introduced that is very easy to implement and achieves
excellent performance.

The essence of this method is to use a very compact formulation that has
the same effect as when we add all the inequalities (1.26) by introducing a new
set of variables. This new formulation is called a strong extended formulation
and is first introduced in [LAN10]. The name ‘extended’ comes from the fact
that there are additional variables to the original formulation, and ‘strong’
refers to the fact that this new formulation is as strong as adding the entire
exponential family of valid inequalities (1.26) to the original one.

Formally, the extended formulation of G in Eq. (1.25) is defined as follows:

EG := {(y, u, w) ∈ R+ × {0, 1}N+q :

N∑
i=1

ui ≤ q, (1.28a)− (1.28c)}, (1.27)

where

y +
q

Σ
i=1

(hi − hi+1)wi ≥ h1 (1.28a)

wi − wi+1 ≥ 0, ∀i ∈ [q − 1] (1.28b)

ui − wi ≥ 0, ∀i ∈ [q]. (1.28c)

Theorem 1.1. (Theorem 6 from [LAN10]) Proj(y,u)(EG) = G. Moreover, the
projection of the linear relaxation of EG is the linear relaxation of G with all
the inequalities (1.26) added.

As Theorem 1.1 shows us, by simply introducing q binary variables w,
we can tighten the LP relaxation gap. Notice that Eqs. (1.28) are easily
implemented in a commercial solver.
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1.5 Organization of Dissertation

This dissertation is organized into two main chapters. Each chapter corre-
sponds to an independent problem related to power system applications with
a consideration of uncertainty. The first problem utilizes stochastic program-
ming for modeling uncertainty, while the second problem is focused on chance-
constrained programming.

Chapter 2. Pricing Under Uncertainty in Multi-Interval Real-Time
Markets

Recent research has demonstrated that real-time auctions can generate the
need for side payments, even if the market clearing models are convex, be-
cause of the rolling nature of real-time market clearing. This observation has
inspired proposals for modifying the real-time market-clearing model in order
to account for binding past decisions. This analysis is extended in order to
account for uncertainty by proposing a real-time market clearing model with
look-ahead and an endogenous representation of uncertainty. Two different
types of expected lost opportunity cost are defined as performance metrics.
The novel market-clearing model provides the price signal minimizing one of
these metrics using the Stochastic Gradient Descent algorithm. Computational
results are presented from a case study of the ISO New England system under a
scenario of significant renewable energy penetration while accounting for ramp
rates, storage, and transmission constraints. The results of this chapter have
been published in the following work:

⋄ Cho, Jehum, and Anthony Papavasiliou, Pricing Under Uncertainty in
Multi-Interval Real-Time Markets, Operations Research, (2022).

Chapter 3. Multi-Area Reserve Dimensioning Problem

Multiple modeling approaches for the multi-area reserve dimensioning problem
are presented in this chapter. The problem can be formulated as a two-stage
stochastic mixed integer linear program using sample approximation. Due to
its intricate structure, existing methods often rely on heuristics to find fea-
sible solutions. However, leveraging integer programming techniques allows
us to reformulate the problem into a more solvable form. In this chapter,
two such possibilities are explored. First, a Benders’ Decomposition-based re-
formulation is employed. It enables the direct application of a certain type
of mixed-integer algorithms to address the two-stage stochastic programming
problem. Subsequently, a distinct modeling approach is adopted. It utilizes
a minimal description of the projection of our problem onto the space of the
first-stage variables. This enables us to directly apply more general integer
programming techniques for handling mixing sets, which commonly appear
in chance-constrained programming problems. By combining the advantages

https://pubsonline.informs.org/doi/full/10.1287/opre.2022.2314
https://pubsonline.informs.org/doi/full/10.1287/opre.2022.2314
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of the minimal projection and the strengthening reformulation from IP tech-
niques, this innovative method can tackle real-world problems effectively. This
result is demonstrated with a case study of the 10-zone Nordic network with
100,000 scenarios, where the optimal solution can be found in approximately 5
minutes.

The results of this chapter have been published in the following works:

⋄ Cho, Jehum, and Anthony Papavasiliou, A Branch-and-cut Algorithm
for Chance-constrained Multiarea Reserve Sizing, No. UCL-Université
Catholique de Louvain, CORE, (2022).

⋄ Cho, Jehum, and Anthony Papavasiliou, Exact Mixed-Integer Program-
ming Approach for Chance-Constrained Multi-Area Reserve Sizing, IEEE
Transactions on Power Systems, (2023).

https://dial.uclouvain.be/pr/boreal/object/boreal%3A260463/datastream/PDF_01/view
https://dial.uclouvain.be/pr/boreal/object/boreal%3A260463/datastream/PDF_01/view
https://ieeexplore.ieee.org/abstract/document/10132509
https://ieeexplore.ieee.org/abstract/document/10132509
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2 Pricing Under Uncertainty in
Real-Time Markets

2.1 Introduction

2.1.1 Motivation

In a regime of large-scale renewable resource integration, the multi-period and
uncertainty effects of renewable resources are becoming increasingly important.
Flexibility, in the sense of the ability of resources to respond rapidly to real-time
conditions [Sch17], is becoming a valuable resource for system operators. Two
important challenges that system operators face in real time are to arrive to ef-
ficient dispatch decisions, but also prices that provide an incentive to flexibility
providers to offer their resources voluntarily to the market. Concretely, the real-
time market is operated at a time step of 5-15 minutes in US and EU markets,
and determines the dispatch of resources such as storage, pumped hydro plants,
combined cycle units and demand response, that can respond rapidly to the
significant and often unpredictable variations of renewable supply. Look-ahead
matters in this respect, because these resources have inter-temporal constraints
such as ramp limits, state of charge limits, startup/shutdown costs, and so on.
An increasingly important challenge in real-time market operations is to ac-
count for these inter-temporal effects since ramp episodes induced by renewable
resources are placing increasing stress on the system. And prices need to match
the increasingly complex schedules, otherwise system operators are facing the
threat that flexibility owners may “take matters in their own hands” by self-
committing or self-scheduling their resources at a time when these flexibility
resources are needed most. It is therefore imperative that the price signal that
accompanies the central dispatch decision match the profit-maximizing objec-
tives of flexible resource owners. This challenge has placed multi-period pricing
in real-time markets at the spotlight of stakeholders and academics in recent
years.

25
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2.1.2 Market Clearing Proposals in the Literature

In what follows we revisit the existing literature on multi-period pricing. Al-
though this literature has been cast in the context of price consistency, our
approach is rather to connect the literature to a related but different notion,
that of equilibrium. An equilibrium is a pair of prices and quantities such that
the market clears and the prices support the dispatch for profit-maximizing
agents. We comment along the way on its relation to price consistency and
other metrics that are often monitored and deemed important in market oper-
ations.

Single-Period Market Clearing.

For each agent k ∈ K, an abstract formulation of single-period market clearing
models can be written as follows:

min
x

Σ
k∈K

fk(xk)

s.t. Σ
k∈K

xk = y : p

hk(x
#
k , xk) ≤ 0, k ∈ K

xk ∈ Xk, k ∈ K

(2.1)

where xk denotes the amount of power generation, fk denotes the cost
function, hk denotes inter-temporal constraints such as ramp constraints with
x#
k being a given initial condition (the amount of power generation in the

previous time step), Xk denotes constraints for each k that do not depend on
time such as generation output limits, and p denotes the dual multiplier of
the power balance constraint. Observe the generality of this formulation. For
example, if an agent k is a network owner and y is a vector representing net
demand for each node in the network, then the transmission network can be
incorporated in this formulation with xk being the vector of the power flows of
each line and Xk containing optimal power flow constraints and transmission
capacity constraints. In the remainder of this chapter, we assume that the
functions fk, hk are convex.

Basic convex optimization arguments establish that the solution of the fully
coordinated problem provides the optimal price and quantity. The optimal
price and quantity pair (p∗, x∗) forms an equilibrium since p∗ supports x∗

k for
profit-maximizing agents. In other words, for each agent k ∈ K, x∗

k is an
optimal profit-maximizing solution under the price p∗. This is the approach
adopted in real-time market clearing in ISO-NE, MISO, PJM, SPP [Sch17] and
future integrated EU balancing platforms [Com17b].

Multi-Period Deterministic Market Clearing.

In a multi-period deterministic setting, the notion of an equilibrium can be
extended if the quantities clear for every period, and if the dispatch is profit-
maximizing over the full horizon. Consider an economic dispatch problem over
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(a)

(b)

Figure 2.1: Rolling multi-period implementations with (a) a fixed horizon and (b) a
moving horizon. The grey bars represent the time steps that a look-ahead market
clearing model covers.

the time interval [ts, te]. Let us define the following optimization problem as
LAD(ts, te), an abbreviation of Look Ahead Dispatch Model (LAD). This term
is used in [HSZ+19].

LAD(ts, te) : min
x

Σ
k∈K

Σ
t∈[ts,te]

fk,t(xk,t)

s.t. Σ
k∈K

xk,t = yt, t ∈ [ts, te] : pt

hk(x
#
k,ts−1, xk,ts) ≤ 0, k ∈ K

hk(xk,t−1, xk,t) ≤ 0, k ∈ K, t ∈ [ts + 1, te]

xk,t ∈ Xk, k ∈ K, t ∈ [ts, te]

(2.2)

where the inter-temporal constraints are divided into two parts in order
to clearly show the treatment of initial conditions (x#

k,ts−1). For the sake of
brevity, the initial condition is implied and the set of constraints will be written
as hk(xk,t−1, xk,t) ≤ 0, k ∈ K, t ∈ [ts, te] in the remainder of this chapter.

In practice, multi-period deterministic models can be categorized as either
static, rolling with a fixed horizon, or rolling with a moving horizon. In a
one-shot multi-period market clearing model we run the dispatch and pricing
model once and clear prices and quantities for the entire horizon at the be-
ginning of the horizon. The same convex optimization arguments as in the
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static case guarantee that a centralized optimization problem yields the equi-
librium result [Bal06]. The static setting is easy to study but unrealistic. The
most realistic assumption is a rolling multi-period market clearing model with
a moving horizon as in Figure 2.1(b), where the look-ahead length is fixed and
we run the model multiple times for clearing [Hog20], [Mic15]. As time moves
forward, we fix the decisions for the current time step (e.g. ts) and at the
next time step we solve another optimization problem including new informa-
tion for the future demand (e.g. LAD(ts + 1, te + 1)). This is the approach
currently adopted in CAISO, NYISO [Sch17] and under consideration in Texas
[Mic15]. However, this setting is very difficult to study. Thus, most, if not all,
previous research has focused on the case of rolling with fixed horizon [Hog16],
[HSZ+19], [ZZL19], [GCT21], [GCT20], [BH22], [Hog20]. In this setting, we
still run market clearing models multiple times but we know when the end of
the horizon is and even from the beginning we can access the demand informa-
tion of the end of the horizon. Notice that in Figure 2.1(a), which corresponds
to a multi-period model with a fixed horizon, all the bars (representing the
time coverage of a market clearing model) have the same ending at tT .

Metrics for Deterministic Multi-Period Market Clearing. Two met-
rics that are often employed in practice for assessing the quality of market
clearing solutions are lost opportunity cost (LOC) and make-whole payments
(MWP). Given a pair of price-quantity time series, lost opportunity cost (LOC)
refers to the difference between the maximum profit that could have been en-
sured by an agent that is reacting freely to prices and the profit of an agent that
follows the dispatch schedule of the system operator. Zero LOC is equivalent to
an equilibrium. For price-quantity pairs that do not constitute an equilibrium,
make-whole payments (MWP) are non-zero whenever the cost of a deployed
resource exceeds the revenue that is obtained by following the dispatch instruc-
tions of the system operator.

Rolling Multi-Period with a Fixed Horizon. For a rolling multi-period
planning with a fixed horizon, it would be tempting to argue that one should
solve the dispatch problem at every time stage (as in model predictive control),
and keep current-period dispatch decisions and prices as the market clearing
quantities and prices. The resulting sequence of prices and quantities actually
turns out not to carry guarantees of being an equilibrium price-quantity pair.
This is due to dual degeneracy where dual optimal solutions are not unique
[BH22].

One way to mitigate this issue is to utilize the dual multipliers from the
past dispatch problems. [Hog16] uses power balance constraints and [HSZ+19]
use inter-temporal constraints for the dual multipliers. In this chapter, we
introduce the method of [Hog16] that uses power balance constraints, and we
generalize it in the next section to the case of uncertainty. Consider a time
interval [ts, te]. Assume that the current time step is tc, where ts < tc < te, and



2.1. Introduction 29

the past decisions x#
0 = {x#

ts , . . . , x
#
tc−1
}, p#0 = {p#ts , . . . , p

#
tc−1
} are available.

Let us definePMP(ts, tc, te), an abbreviation of Price-preserving Multi-interval
Pricing Model (PMP), as follows:

PMP(ts, tc, te) : min
x

Σ
k∈K

Σ
t∈[ts,te]

fk,t(xk,t) + Σ
t∈[ts,tc−1]

p#t (− Σ
k∈K

xk,t + yt)

s.t. Σ
k∈K

xk,t = yt, t ∈ [tc, te] : pt

hk(xk,t−1, xk,t) ≤ 0, k ∈ K, t ∈ [ts, te]

xk,t ∈ Xk t ∈ [ts, te], k ∈ K
(2.3)

This pricing model (PMP) is first introduced by [Hog16] and formalized by
[HSZ+19].

[HSZ+19] show that for every time step tc if PMP(t0, tc, tT ) is used instead
of LAD(tc, tT ) for pricing models with rolling implementation, the resulting
prices coincide with the prices from the one-shot multi-period optimization
problem LAD(t0, tT ). This is closely related to the concept of “price con-
sistency,” defined in slide 35 of [Hog20] as the property that, “given perfect
foresight, where actual conditions equal the forecast conditions, the methodol-
ogy produces the same set of prices.”

Rolling Multi-Period with a Moving Horizon. In a more practical set-
ting, we can no longer assume that a horizon is fixed. For a rolling multi-period
model with a moving horizon, even in the case of strongly convex market clear-
ing models, the application of the PMP approach can produce a price-quantity
pair that does not satisfy an equilibrium for an entire horizon, i.e. in the sense
of perfect hindsight, and with a horizon which spans {1, . . . , T}. This is shown
in section VI-B of [HSZ+19]. This deviation of equilibrium is different from
the dual degeneracy pointed out by [BH22].

Nevertheless, empirically PMP achieves better performance than LAD with
respect to LOC and MWP in this setting. In this chapter, we provide an
explanation by introducing an additional characteristic of PMP. PMP not only
guarantees price consistency for a rolling multi-period planning with a fixed
horizon, but also minimizes LOC for an entire horizon including past time
steps given past prices. PMP balances the past decisions and future decisions
in a way that LOC is minimized; hence the better performance. This is further
discussed in section 2.2.3. We focus on this property of PMP and extend it to
the setting under uncertainty in section 2.3.3.

Multi-Period Market Clearing under Uncertainty.

Our interest in this chapter is an extension of the analysis on multi-period
pricing in the context of uncertainty. When extending the basic setting to
incorporate uncertainty, the standard definition of an equilibrium is a pair of
price-quantity stochastic processes, such that the market clears at every stage
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for every possible sample path of uncertainty, and the dispatch instructions of
agents are maximizing risked profit given the prevailing price process. Risked
profit is commonly quantified using risk measures [RS15], [PFW16], [PF21],
and is an ex-ante (i.e. without the benefit of hindsight) measure of how well
an agent can do given the attitude of the agent towards risk and given the
underlying price process.

The computation of the underlying equilibrium relies on posing the problem
in question (the look-ahead economic dispatch, in the case of our application)
as a multi-stage stochastic program. We will concentrate our discussion to the
risk-neutral setting, therefore time consistency [Sha12] is automatically satis-
fied in our setting. An equilibrium can be computed in this setting as the
generalization of the multi-period deterministic case, i.e. by retrieving the dis-
patch decisions of the stochastic program and the dual multipliers of the market
clearing constraints for every stage and every sample path. As a natural exten-
sion for LOC in the multi-period deterministic setting, it is possible to define a
metric of performance, ex-ante expected LOC, i.e. the difference between the
maximum expected profit and the expected profit of an agent following the dis-
patch decision by the system operator. A stochastic equilibrium is equivalent
to this metric being equal to zero. However, this definition stumbles upon a
number of implementation challenges in a practical setting. These challenges
include (i) the definition of the scenarios that constitute the stochastic pro-
gram that needs to be solved, (ii) an underlying assumption that all agents
in the market share the same views about the distribution of uncertainty (i.e.
the same set of scenarios, and the same probability for all scenarios), (iii) an
assumption that the system operator can correctly identify the risk attitude of
the least risk-averse agent in the market, and (iv) the need to solve a large-scale
stochastic program under the tight run times that are imposed by real-time op-
erations. Consequently, this pricing method has not directly seen its way into
practical implementation.

In the present work, and inspired by the spirit of the discussion in the
literature on multi-period pricing, we rather pose the question of finding a
price that (i) is non-anticipative (i.e. can be computed at a given time stage
given the information that is available up to that moment in time), and (ii)
delivers a stochastic process of real-time prices that minimize the expected
lost opportunity cost defined in an ex-post sense, i.e. with lost opportunity
cost being defined in a hindsight fashion when all uncertainty in the market
(renewable forecast errors, etc.) has been revealed. An important property of
the price that is obtained is that this price minimizes ex-post expected LOC
not only for the optimal system dispatch, but for any dispatch that satisfies
the aggregate uncertain demand in the market. This is further discussed in the
following sections.

Our motivation for the first requirement (non-anticipativity) is that real-
time market clearing is intrinsically a process that resembles model predictive
control, in the sense that it is executed in a rolling fashion. Concretely, we
contrast this to a situation (not applied in practice) where prices are computed
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after the fact, i.e. at the end of the horizon in question, and with the benefit
of hindsight when we can observe the realized uncertainty for the full horizon.

Our motivation for the second requirement is to propose a computationally
viable proxy of the ideal stochastic equilibrium benchmark, but one that can
be computed in the realistic time frames of real-time market operations with
minimal assumptions related to stochastic models / scenario selection. Note
that both definitions of expected LOC coincide with the one in the multi-period
deterministic setting. Note also, as a consequence, that price consistency is
satisfied automatically for prices that minimize ex-post expected LOC in the
multi-period deterministic setting.

This chapter outlines a computational procedure that can be applied for
computing the prices with the requisite properties. The procedure amounts to
executing a separate pricing procedure as in [HSZ+19] and [Hog16]. In con-
trast to the case of computing a stochastic equilibrium, this minimization is
essentially minimizing an expectation (as opposed to a multi-stage stochastic
program in [PFW16] and [PF21]) which can be implemented with a straight-
forward algorithmic procedure. Moreover, the procedure can be applied to a
continuous model of uncertainty without requiring scenario selection in order
to restore computational tractability.

It is important to point out that the line of work pursued here is distinct
from the literature on stochastic market clearing such as [BGC05], [PZP10],
[ZKAB17], and [MZPP14]. Whereas the latter is concentrated on day-ahead
auctions without considerations of consistency in a rolling market clearing
(since day-ahead auctions are non-overlapping), the interest of this chapter is
on real-time market clearing in a rolling fashion. The discussion is also distinct
from that of flexible ramp products [WH15] and their associated implementa-
tion challenges [Sch17]. Flexible ramp products amount to an ancillary service
that is priced in addition to energy. Instead, our focus here is on the pricing of
energy in real time.

2.2 Multi-Period Deterministic Setting

In this section, we formally define what lost opportunity cost (LOC) is in the
multi-period sense. This definition is extended to the case of uncertainty in
the next section. In a simple fixed horizon setting, we show that the pair of
the optimal dispatch solution and the dual price from the economic dispatch
problem minimizes LOC, indeed makes it zero. In a more practical setting, i.e.
the rolling multi-period optimization with a moving horizon, this is no longer
possible. The simple look-ahead model cannot be guaranteed to achieve either
a zero LOC or even a low LOC. We show that the PMP procedure proposed
by [Hog16] relieves this issue by minimizing LOC for the horizon including the
past time steps given the prices for the past time periods.
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2.2.1 Lost Opportunity Cost in a Deterministic Setting

First, let us define an individual profit maximization problem for each agent
k ∈ K. Let t ∈ T = {t0, . . . , tT } be a time step in the entire horizon T .
From now on, tilde is used (e.g. p̃, x̃) to indicate that these variables represent
decisions made by system operators. On the other hand, the notations without
accents or superscripts (e.g. p, x) correspond to the variables that each agent
uses for optimizing their individual profit maximization problem. Given price
signals p̃ = {p̃t : ∀t ∈ T }, the maximized profit in the time interval [t0, tT ] is
defined as follows:

v
[t0,tT ]
k (p̃) = max

x
Σ

t∈T
p̃txk,t − fk,t(xk,t)

s.t. hk(xk,t−1, xk,t) ≤ 0, t ∈ [t0, tT ]

xk,t ∈ Xk, t ∈ T

(2.4)

The lost opportunity cost (LOC) for each agent k in the period [t0, tT ] is
defined as the difference between the maximized profit and the profit of an
agent following the dispatch decision by the system operator (x̃k).

LOC
[t0,tT ]
k (p̃, x̃k) = v

[t0,tT ]
k (p̃)− Σ

t∈T
(p̃tx̃k,t − fk,t(x̃k,t)) (2.5)

By definition, LOC is a nonnegative value. The vector x̃k is a feasible solu-
tion for the optimization problem (2.4) and since it is a maximization problem
the first term for (2.5) is greater than and equal to the second term.

Another frequently used performance measure is make-whole payments (MWP),
which is the amount of costs exceeding revenue for each agent k. Formally, we
define it as follows:

MWP
[t0,tT ]
k (p̃, x̃k) = max{0,− Σ

t∈T
(p̃tx̃k,t − fk,t(x̃k,t))} (2.6)

The concepts of LOC and MWP are suggested in [SZZL16] and [HSZ+19].
[SZZL16] refers to them as deviation incentives mostly in the context of dealing
with non-convexity. However, [HSZ+19] extends the usage of the metrics to
the convex case in the rolling multi-period optimization with a moving horizon
where we can no longer guarantee to be able to have a zero LOC.

In this chapter, the focus of our analysis is on LOC. Note that LOC is an
upper bound of MWP if vk is nonnegative. Even though vk can be negative in
certain cases, we can expect it to be nonnegative in most of the cases where
the length of the interval [t0, tT ] is large enough. Practically, there will be no
agents who would continue their business if their maximum profit is below zero.
Consequently, by minimizing LOC, a low level of MWP can be obtained as a
by-product. The opposite argument is not valid: the most straightforward way
of guaranteeing zero MWP is clearing the market with high prices p̃, which
would however result in a high LOC.
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For the rest of this chapter, we use the notation for the aggregation of LOC

or MWP as LOC [t0,tT ](p̃, x̃) = Σ
k∈K

LOC
[t0,tT ]
k (p̃, x̃k) or MWP [t0,tT ](p̃, x̃) =

Σ
k∈K

MWP
[t0,tT ]
k (p̃, x̃k).

2.2.2 Simple Look-Ahead Model

When the pricing horizon is fixed as T , and if we assume that all the future
demand information is available, it is possible to obtain an equilibrium price-
quantity pair by solving a one-shot multi-period optimization problem. It can
be easily shown by inspection of the KKT conditions that the primal and dual
pair of optimal solutions for LAD(t0, tT ), (p

∗, x∗) = {(p∗t , x∗
t ) : t ∈ T }, results

in a zero LOC, which is equivalent to an equilibrium. In other words, the
price-quantity pair (p∗, x∗) minimizes LOC [t0,tT ](p̃, x̃).

Nonetheless, in reality, the entire horizon is not fixed. A common practical
setting is one with a moving horizon. With a fixed look-ahead time length, it
is natural to solve LAD at every time stage (e.g. solve LAD(ts, te) at ts, solve
LAD(ts+1, te+1) at ts+1, etc), and to keep the current period dispatch decisions
and prices. The resulting (p∗t , x

∗
t ) pair sequence is no longer an equilibrium

for a longer period. One of the main issues is that the look-ahead model
ignores the decisions from the previous stages as the look-ahead horizon moves
forward. The existence of inter-temporal constraints often results in certain
agents suffering losses in certain time steps that are expected to be made up
for in the next stages. When the look-ahead horizon moves forward, this loss is
regarded as sunk costs by the look-ahead model. Mathematically, the solutions
from the LAD(t1, t2) minimizing LOC [t1,t2] do not guarantee to be a part of a
solution minimizing LOC [t0,tT ], when t0 < t1 and t2 < tT . A simple illustrative
three-stage example where the look-ahead length is two time steps is provided
by [HSZ+19].

2.2.3 Binding Past Prices

In this subsection, we analyze the effect of using a pricing model that takes
into account past price decisions p#0 to mitigate the price inconsistency issue.

Let us define LOC [ts,te](p̃, x̃|p#0 , x
#
0 ) as the LOC defined on the interval [ts, te]

where ts is a time step in the past and te is a time step in the future. Note
that at the current time step tc, p

#
0 and x#

0 represent decisions already made
in the past, specifically during the time steps from ts to tc−1. The notation
explicitly indicates that they are given. p̃ and x̃ represent the decisions yet to
be made for the interval [tc, te].

Theorem 2.1. A primal optimal solution x∗ = {x∗
t : t ∈ [tc, te]} of LAD(tc, te)

and an optimal dual multiplier p∗ = {p∗t : t ∈ [tc, te]} of PMP(ts, tc, te) are

minimizers of LOC [ts,te](p̃, x̃|p#0 , x
#
0 ).
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Proof. Redistribute the terms of LOC [ts,te](p̃, x̃|p#0 , x
#
0 ):

min
p̃,x̃

LOC [ts,te](p̃, x̃|p#0 , x
#
0 ) = Σ

k∈K
Σ

t∈[ts,tc−1]
fk,t(x

#
k,t)

+ min
x̃

Σ
k∈K

Σ
t∈[tc,te]

fk,t(x̃k,t)− Z, (2.7)

where Z = max
p̃

min
x

Σ
k∈K

Σ
t∈[ts,te]

fk,t(xk,t) + Σ
t∈[ts,tc−1]

p#t (− Σ
k∈K

xk,t + yt)

+ Σ
t∈[tc,te]

p̃t(− Σ
k∈K

xk,t + yt)

s.t. hk(xk,t−1, xk,t) ≤ 0, k ∈ K, t ∈ [ts, te]

xk,t ∈ Xk t ∈ [ts, te], k ∈ K
(2.8)

In the redistribution process, the following fact is utilized: Σ
k∈K

x̃k,t = yt, and

likewise Σ
k∈K

x#
k,t = yt. This is based on the assumption that x̃ (or x#), a

dispatch decision made by a system operator, should be feasible. Therefore,

Z = max
p̃

[− Σ
k∈K

v
[ts,te]
k (p̃|p#0 ) + Σ

t∈[ts,tc−1]
(p#t · Σ

k∈K
x#
k,t) + Σ

t∈[tc,te]
(p̃t · Σ

k∈K
x̃k,t)]

takes the form of equation (2.8) after substituting Σ
k∈K

x̃k,t and Σ
k∈K

x#
k,t with

yt. Note that the considered time interval is on [ts, te] for both LOC and v,
resulting in the same time interval for the objective function of equation (2.8).
Notice that, in equation (2.7), the first term is a constant, x∗ is the minimizer
of the second term, and p∗ is the maximizer of the third term (Z), since Z is
the dual problem of PMP(ts, tc, te). Q.E.D.

Corollary 2.2. If x#
0 , p

#
0 are a part of the primal and dual optimal solu-

tions of LAD(ts, te), then with x∗ of LAD(tc, te) and p∗ of PMP(ts, tc, te),

(x#
0 , x

∗), (p#0 , p
∗) become a primal and dual optimal solution of LAD(ts, te).

Theorem 2.1 implies that the price fromPMP(ts, tc, te) minimizes LOC [ts,te]

incorporating not only future but also past time periods given the past deci-
sions x#

0 , p
#
0 . Intuitively, as the look-ahead horizon moves forward, PMP takes

into account past decisions and balances in a way that LOC is minimized. This
new property of PMP explains the empirically better performance measured by
LOC or MWP than simple look-ahead models such as LAD. What Corollary
2.2 guarantees is the notion of price consistency as defined in [Hog20].

Another point worth commenting is that Theorem 2.1 suggests to separate
the pricing model (PMP) from the dispatch model (LAD). In equation (2.7),
observe that LOC is divided into the dispatch related term and the price related
term. In order to minimize LOC, each of the terms is minimized from the
solution of different models. We focus on these properties of PMP and extend
the analysis to the setting under uncertainty.
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2.3 Multi-Period Market Clearing Under Un-
certainty

In this section, we extend the previous theory for the deterministic case to the
setting under uncertainty. We use a scenario tree to visualize the uncertainty
as in Figure 1.1. A scenario tree in the setting under uncertainty is analogous
to a time interval in the deterministic setting. In other words, in the same way
that we define performance metrics over intervals in the deterministic case, we
define performance metrics over scenario trees in the stochastic case.

First, we provide the definitions of expected lost opportunity cost from
two different aspects, i.e. ex-ante (AEL) and ex-post (PEL), and we compare
their characteristics. Then, we discuss two different methods for minimizing
each of the definitions of expected lost opportunity cost respectively, when a
scenario tree (time horizon) is fixed. Finally, we extend one of the methods to
an algorithm analogous to PMP, which can deal with the more realistic setting
of a moving horizon.

2.3.1 Two Definitions of Expected Lost Opportunity Cost
Under Uncertainty

Care must be taken, when we extend the definition of lost opportunity cost to
the setting under uncertainty. Depending on the perspective of the individual
profit maximization problem, the expected lost opportunity cost can be defined
in two different ways.

One perspective is that each agent would solve an optimization problem in
order to maximize its expected profits. We assume that the future price and
dispatch distribution for all the scenarios is available and all agents share the
same information. We define ex-ante expected lost opportunity cost (AEL) as
the difference between the maximized expected profit and the expected profit
that an agent can obtain if it follows the dispatch decisions by system operators.
Formally, AEL for each agent k under the scenario tree G is defined as follows:

AELG
k (p̃, x̃k) = WG

k (p̃)− Σ
n∈N

σ(n)(p̃(n)x̃k(n)− fk(x̃k(n)), (2.9)

where WG
k (p̃) = max

x
Σ

n∈N
σ(n)[p̃(n)x(n)− fk(x(n))]

s.t. h(x(n−), x(n)) ≤ 0, n ∈ N
x(n) ∈ X(n) n ∈ N ,

(2.10)

with a slight abuse of the notation for variables (p̃, x̃k), e.g. p̃ = {p̃(n) :
∀n ∈ N}.

Another perspective is that each agent solves a deterministic optimization
problem maximizing its profit in the ex-post fashion once all the uncertainty
is revealed (i.e. under a chosen sample path). We define ex-post expected lost
opportunity cost as the expectation of the difference between the maximized
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1
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Initial Output 
40 MW

Energy
30 $/MWh

Ramping
4 MW/min

Agent (Generator)

Figure 2.2: A two-stage example for comparing the calculation of AEL and PEL. Two
possible scenarios for the second stage (5 minutes from the first one) and the prices
and the dispatch decisions from the system operator are given.

profit that an agent could have earned if it had known the uncertain information
and the actual profit that the agent obtains following the dispatch decisions by
system operators. Mathematically, PEL for each agent k under the scenario
tree G is defined as follows:

PELG
k (p̃, x̃k) = EP[w

P
k(p̃)− Σ

n∈NP
(p̃(n)x̃k(n)− fk(x̃k(n))], (2.11)

where wP
k(p̃) =max

x
Σ

n∈NP
p̃(n)x(n)− fk(x(n))

s.t. h(x(n−), x(n)) ≤ 0, n ∈ NP

x(n) ∈ X(n) n ∈ NP.

(2.12)

The interpretation of wP
k(p̃) is the profit that the agent k can achieve with

perfect foresight of path P given prices p̃. In the remainder of this chapter, we
define AELG(p̃, x̃) = Σ

k∈K
AELG

k (p̃, x̃k) and PELG(p̃, x̃) = Σ
k∈K

PELG
k (p̃, x̃k).

The ex-ante expected lost opportunity cost (AEL) is closely related to
stochastic equilibrium as zero AEL is equivalent to a stochastic equilibrium.
As a special case, zero LOC is equivalent to an equilibrium in the deterministic
setting. However, using AEL directly in practice seems to be unrealistic as
it relies on strong assumptions and requires solving a large-scale multi-period
stochastic program (this is discussed further in section 2.1.2).

Example 2.1. Here, we provide a simple two-stage example for the comparison
between AEL and PEL in Figure 2.2, where there are two scenarios with equal
probability. The parameters for this agent are given in the left side of the figure,
and the prices and dispatch decisions from the system operator (p̃, x̃) are also
given for each possible scenario (node). Even though in order to compute the
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precise profit we should re-scale the price or cost according to the size of a
time step, for this example we present the results without re-scaling to avoid
fractional numbers.

For the calculation of AEL, let us start from calculating WG
k (p̃), the individ-

ual expected profit maximization problem. Since the expected gain for the second
stage (32.5− 30 = 2.5) is higher than the loss at the first stage (30− 28 = 2),
generating the maximum possible output at the first stage would make the best
expected profit, thus x∗(1) = 60. Next, at node 2, since the gain is positive
(35 − 30 = 5), the agent should generate the maximum possible output given
x∗(1), thus x∗(2) = 80. For node 3, since the marginal cost is equal to the price
any feasible solution would produce the same result, here let us pick x∗(3) = 60.
Then, we can calculate that WG

k (p̃) becomes 80, and since the actual expected
profit that this agent can achieve by following (p̃, x̃) is 70, AELG

k (p̃, x̃k) = 10.
On the other hand, for the calculation of PEL, for each sample path P,

the deterministic individual profit maximization problem for P, wP
k(p̃) should

be obtained. In this example, there are two possible sample paths: node 1 to 2,
and node 1 to 3. For the sample path that shifts from node 1 to 2, since the
gain for the second stage (35− 30 = 5) is higher than the loss at the first stage
(30−28 = 2), the unit should generate the maximum possible output for both the

first and the second stage, thus x∗(1) = 60, x∗(2) = 80, which makes w
(1,2)
k (p̃)

equal to 280. The sample path that transitions from node 1 to 3 corresponds to
the opposite. The unit should generate the minimum possible output for the first
stage since for the second stage the marginal cost is equal to the price so any
feasible solution would be optimal. Thus, let us pick x∗(1) = 20, x∗(3) = 20,

which makes w
(1,3)
k (p̃) equal to −40. Considering that the actual profit for

sample path (1,2) is 220 and that for sample path (1,3) is −80, we can see that
PELG

k (p̃, x̃k) = 50.

Theorem 2.3. For any G, AELG
k (p̃, x̃k) ≤ PELG

k (p̃, x̃k).

Proof. First, we show that WG
k (p̃) ≤ EP[w

P
k(p̃)]. There is another equivalent

formulation for a multi-period stochastic program other than (2.10). This
scenario based formulation is introduced in [RW91]. The formulation uses
separate variables xP for each sample path P ∈ P. Let Pr(P) denotes the
probability for a sample path P. The formulation with our notation is as
follows:

WG
k (p̃) =max

x,x̂
Σ

P∈P
Pr(P) Σ

n∈NP
[p̃(n)xP(n)− fk(x

P(n))]

s.t. h(xP(n−), xP(n)) ≤ 0, n ∈ NP,P ∈ P
xP(n) ∈ X(n), n ∈ NP,P ∈ P
xP(n)− x̂(n) = 0, n ∈ NP,P ∈ P.

(2.13)

The last set of constraints is called the set of non-anticipativity constraints.
These constraints impose that variables in the same node n have the same
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value. Notice that if we relax these non-anticipativity constraints, formulation
(2.13) becomes EP[w

P
k(p̃)]; hence WG

k (p̃) ≤ EP[w
P
k(p̃)].

Second, we show that

Σ
n∈N

σ(n)(p̃(n)x̃k(n)− fk(x̃k(n)) = EP[ Σ
n∈NP

(p̃(n)x̃k(n)− fk(x̃k(n))].

This comes from the fact that in a scenario tree,

σ(n) = Σ
P∈P:n∈NP

Pr(P),∀n ∈ N .

Q.E.D.

As a metric of economic behavior, the ex-post expected lost opportunity
cost (PEL), on the other hand, has some practical advantages relative to AEL.
It is easier to calculate, and it is possible to estimate PEL when the underlying
uncertainty model is continuous. By Theorem 2.3, PEL is an upper bound of
AEL. In a similar fashion as in the deterministic case, PEL is also an upper
bound of the expected MWP under a mild condition (EP[w

P
k(p̃)] is nonnega-

tive). Note that the definition of MWP is independent from the two different
perspectives of solving an individual profit maximization problem mentioned
above in the description of AEL and PEL, hence the expected MWP is identi-
cal under both of the perspectives unlike LOC. Thus, by minimizing PEL, we
can regulate AEL and the expected MWP to a low level.

It is true that the economical implication of PEL diverges from conventional
stochastic equilibrium theory. Even though AEL and PEL coincide (both be-
come LOC) in the deterministic case, zero PEL is not equivalent to a stochastic
equilibrium anymore, as is the case with AEL. It is even impossible to have
zero PEL unless the setting is deterministic. PEL becomes zero only when an
agent enjoys perfect foresight and acts optimally under this perfect foresight,
i.e. applies the solution of LAD over the entire horizon. Instead, PEL can be
interpreted as a metric that measures how far the decisions of system operators
are compared to the optimal case under the perfect foresight assumption. When
PEL is minimized in the case under uncertainty (e.g. under a scenario tree),
the minimum value, which is strictly positive now, represents the inevitable
LOC (calculated ex-post) caused by the underlying uncertainty.

2.3.2 Look-Ahead Models Under Uncertainty

AEL Minimizing Look-Ahead Model.

Consider a stochastic economic dispatch problem under a scenario tree G. Let
us refer to the following optimization problem as SLAD(G), an abbreviation
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for Stochastic Look Ahead Dispatch Model (SLAD).

SLAD(G) : min
x

Σ
n∈N

σ(n) Σ
k∈K

fk(xk(n))

s.t. Σ
k∈K

xk(n) = y(n), n ∈ N : λ(n)

h(xk(n−), xk(n)) ≤ 0, k ∈ K,n ∈ N
x(n) ∈ X(n) k ∈ K,n ∈ N .

(2.14)

Let p∗(n) = λ∗(n)/σ(n),∀n ∈ N , where λ∗(n) are the nodal balance optimal
dual multipliers of SLAD(G). Similar to the deterministic case in section 2.1.2,
it can be shown using KKT conditions that (p∗, x∗) = {(p∗(n), x∗(n)) : n ∈ N}
minimizes AELG(p̃, x̃k) to zero. This implies that (p∗, x∗) forms the (risk
neutral) stochastic equilibrium, defined as “a stochastic process of prices and
a corresponding collection of actions for each agent with the property that the
actions are individual expected profit maximizing solutions for each agent,” see
e.g. [PFW16], [PF21] for further information.

PEL Minimizing Look-Ahead Model.

For the pricing model minimizing PEL, we use the notation for the scenario
based formulation introduced in the proof of Theorem 2.3 as follows:

min
x

Σ
P∈P

Pr(P) Σ
n∈NP

Σ
k∈K

fk(x
P
k(n))

s.t. Σ
P∈P:n∈NP

Pr(P) Σ
k∈K

xP
k(n) = Σ

P∈P:n∈NP
Pr(P)y(n), n ∈ N : p(n)

h(xP
k(n−), xP

k(n)) ≤ 0, n ∈ NP,P ∈ P
xP(n) ∈ X(n), n ∈ NP,P ∈ P.

(2.15)

The equivalent way of writing the first set of constraints of (2.15) is

EP
P∈P:n∈NP

[ Σ
k∈K

xP
k(n)] = σ(n)y(n).

As an example, when n = n0, the constraint can be written succinctly as
EP[ Σ

k∈K
xP
k(n0)] = y(n0).

Theorem 2.4. For a scenario tree G, a primal optimal solution x∗ = {x∗(n) :
n ∈ N} of SLAD(G) and a dual optimal multiplier p∗ = {p∗(n) : n ∈ N} of
formulation (2.15) under G are minimizers of PELG(p̃, x̃).

Proof. Redistribute the terms of PELG(p̃, x̃):

min
p̃,x̃

PELG(p̃, x̃) = min
x̃

EP[ Σ
n∈NP

Σ
k∈K

fk(x̃k(n))]− ZG , (2.16)

where ZG = max
p̃

EP[min
x

Σ
n∈NP

Σ
k∈K

fk(xk(n)) + p̃(n)(− Σ
k∈K

xk(n) + y(n))]

s.t. h(xk(n−), xk(n)) ≤ 0, n ∈ NP

x(n) ∈ X(n), n ∈ NP.
(2.17)
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Since

min
x̃

EP[ Σ
n∈NP

Σ
k∈K

fk(x̃k(n))] = min
x̃

Σ
n∈N

σ(n) Σ
k∈K

fk(x̃k(n)), (2.18)

x∗ = {x∗(n) : n ∈ N} of SLAD(G) minimizes the first term. From (16), ZG

can be expressed as follows:

ZG = max
p̃

min
x

Σ
P∈P

Pr(P) Σ
n∈NP

Σ
k∈K

fk(x
P
k(n)) + Σ

P∈P
Pr(P)p̃(n)(− Σ

k∈K
xP
k(n) + y(n))

s.t. h(xP
k(n−), xP

k(n)) ≤ 0, n ∈ NP,P ∈ P
xP(n) ∈ X(n), n ∈ NP,P ∈ P.

(2.19)
Notice that (2.19) is the dual problem of the formulation (2.15); hence p∗

maximizes the second term (ZG). Q.E.D.
Theorem 2.4 shows that we can minimize PEL with the dispatch decision

from SLAD(G) and the price signal from formulation (2.15). Notice that even
when the dispatch decision is not optimal, the price obtained from formulation
(2.15) is still optimal since PEL is divided into a dispatch related term and a
price related term (see equation (2.16)). This allows us to treat the dispatch
and price model independently. In practice, it is not realistic to assume that we
would always be able to find optimal dispatch decisions in the sense of solving
SLAD. Let x# be sub-optimal dispatch decisions that we would encounter
in practice, then we can still guarantee that p∗ from the formulation (2.15)
minimizes PELG(p̃, x#).

Notwithstanding, we note that formulation (2.15) is not practical for being
used in real-time pricing because it requires too many variables and the first set
of constraints prevents the formulation from being separable. Here, we show a
slightly modified version of (2.15) in order to make it more workable. The key
is in the way to approach (2.17). Now, instead of changing (2.17) to (2.19), we
redualize the dualized power balance constraints back to the constraints except
for the one for the root node as follows:

ZG = max
p̃(n0)

EP[ min
x∈XP

Σ
n∈NP

Σ
k∈K

fk(xk(n)) + p̃(n0)(− Σ
k∈K

xk(n0) + y(n0))]

s.t. Σ
k∈K

xk(n) = y(n), n ∈ NP \ n0,

(2.20)
where we express the set of inter-temporal constraints and the set of indepen-
dent constraints as XP. Let FP(p̃(n0)) be the inner optimization problem of
(2.20). Then we can write ZG more concisely as follows:

ZG = max
p̃(n0)

EP[FP(p̃(n0))]. (2.21)

Notice that we can compute the gradient of FP(p̃(n0)) by Danskin’s Theorem
[Dan67]:

∇FP(p̃(n0)) = − Σ
k∈K

x̄k(n0) + y(n0), (2.22)
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where x̄k(n0) is the optimal solution for the inner optimization problem of
(2.20).

Observe that it is possible to utilize the Stochastic Gradient Descent algo-
rithm in order to find the maximizer p∗(n0) for (2.21). This modification allows
us to deal with continuous uncertainty models by incorporating the principle
of stochastic approximation methods in [RM51]. All we need is a model which
samples sample paths. Instead of knowing the whole set of scenarios for the
future, if we can somehow sample future sample paths, we can apply our ap-
proach to find p∗(n0). Practically, we can either directly use historical data as
sample paths, or build an uncertainty model such as an auto-regressive model
in order to predict the distribution of future information. Although this does
not guarantee having an exhaustive uncertainty set which represents reality
perfectly, at least this approach liberates us from discretization for building a
scenario tree.

This modification can be further developed by binding cleared past prices
as PMP does for the deterministic setting in section 2.2.3. In the next section,
we introduce a PMP-style version of the PEL minimizing look-ahead model.

2.3.3 Binding Past Prices

Before we propose a formulation for coping with binding past prices under
uncertainty, we define some additional notation. Referring to Figure 2.3, it is
necessary to extend a scenario tree with its past path in order to link a scenario
tree G starting from the current time step n0 to the past. The extension is
indeed a sub-tree of a larger scenario tree H whose root node is m0. We denote
the past path we have followed right before the current time step as Q, and the
node set of the path as NQ. Naturally, we denote the extension of G as G ∪Q.
For a future sample path including the current time step, we use P as in the
previous sections. To avoid ambiguity, let the node set of G be N G , and that
of H be NH.

Let the cleared past prices be p#0 = {p#(m) : ∀m ∈ NQ}, and the past

dispatch decisions be x#
0 = {x#(m) : ∀m ∈ NQ}. Let us denote the following

optimization problem as SPMP(H,G), an abbreviation of Stochastic Price-
preserving Multi-interval Pricing Model (SPMP):

min
x

Σ
P∈P

Pr(P) Σ
n∈NQ∪NP

Σ
k∈K

fk(x
P
k(n)) + Σ

m∈NQ
p#(m)(− Σ

k∈K
xP
k(m) + y(m))

s.t. Σ
P∈P:n∈NP

Pr(P) Σ
k∈K

xP
k(n) = Σ

P∈P:n∈NP
Pr(P)y(n), n ∈ N G : p(n)

h(xP
k(n−), xP

k(n)) ≤ 0, n ∈ NQ ∪NP,P ∈ P
xP(n) ∈ X(n), n ∈ NQ ∪NP,P ∈ P.

(2.23)

Theorem 2.5. (p∗, x∗) is a part of the minimizer for PELH(p̃, x̃|p#0 , x
#
0 ),

where x∗ is an optimal solution for SLAD(G) and p∗ is an optimal dual mul-
tiplier for SPMP(H,G).



42 Chapter 2. Pricing Under Uncertainty in Real-Time Markets

1

2

3

4

5

6

7

ba

Figure 2.3: An example of a sub-tree of a scenario tree with the root node m0 which
incorporates another scenario tree with the root node n0. Here, n0 denotes the current
time step. Q is the past path that starts from m0 until right before the current time
step, and NQ is the set of nodes in the past path Q. One future sample path P
including the current time step is shown with the set of nodes NP in the sample path
P.

Proof. The proof is a combination of the proofs of Theorem 2.1 and Theorem
2.4. Q.E.D.

Corollary 2.6. If (p#0 , x
#
0 ) is part of a minimizer for PELH(p̃, x̃), then (p∗, x∗)

in Theorem 2.5 is also part of a minimizer for PELH(p̃, x̃).

Theorem 2.5 and Corollary 2.6 are analogous to Theorem 2.1 and Corollary
2.2 respectively in the deterministic case. The price from SPMP minimizes PEL
incorporating not only future but also past time periods given past decisions. It
no longer treats past losses as sunk costs. However, notice the subtle difference
between the two cases (deterministic / under uncertainty). In the set NH\N G ,
there are nodes that are not in NQ. Since the support for (p∗, x∗) is N G , it is

only a part of the minimizer for PELH(p̃, x̃|p#0 , x
#
0 ) in Theorem 2.5, unlike

in the deterministic case where it is a minimizer for LOC [ts,te](p̃, x̃|p#0 , x
#
0 )

in Theorem 2.1. Notice that the nodes in NH \ (N G ∪ NQ) are meaningless
given the current time step when the uncertainty of the past has been re-
vealed. Mathematically speaking, when (p#0 , x

#
0 ) is given for NQ, the terms

related to N G ∪ NQ in PELH(p̃, x̃|p#0 , x
#
0 ) become completely separable from

the others; hence, it can be shown that (p∗, x∗) is a part of the minimizer for

PELH(p̃, x̃|p#0 , x
#
0 ) without knowing the information for NH\(N G∪NQ). The

same argument can be applied to Corollary 2.6.

Now, we are in a position to propose a pricing method for rolling market
clearing under uncertainty given past prices. Let us modify (2.23) as we have
seen in the previous section (from (2.15) to (2.20) via (2.17)), so that we can
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apply the Stochastic Gradient Descent Algorithm for SPMP(H,G) as follows:

max
p̃(n0)

EP[ min
x∈XQ∪P

Σ
n∈NQ∪NP

Σ
k∈K

fk(xk(n)) + Σ
m∈NQ

p#(m)(− Σ
k∈K

xk(m) + y(m))

+ p̃(n0)(− Σ
k∈K

xk(n0) + y(n0))]

s.t. Σ
k∈K

xk(n) = y(n), n ∈ NP \ n0,

(2.24)
where we express the set of inter-temporal constraints and the set of indepen-
dent constraints for an extended sample path Q ∪ P as XQ∪P.

Let FQ∪P(p̃(n0)) be the inner optimization problem of (2.24). Then (2.24)
can be expressed as follows:

max
p̃(n0)

EP[FQ∪P(p̃(n0))]. (2.25)

Notice that we can compute the gradient of FQ∪P(p̃(n0)) by Danskin’s Theorem
[Dan67]:

∇FQ∪P(p̃(n0)) = − Σ
k∈K

x̄k(n0) + y(n0), (2.26)

where x̄k(n0) is the optimal solution for the inner optimization problem of
(2.24).

Now SGD can be applied to find the maximizer p∗(n0) for (2.25). Note
that (2.24) is very similar to (2.20). The main differences are twofold. First,
x is defined under an extended sample path Q ∪ P instead of P. Second,
the inner optimization is equivalent to solving PMP(tm0

, tn0
, te) instead of

solving LAD(tn0
, te), where tm0

, tn0
denote the time steps of the nodes m0, n0

respectively, and te the time step of the leaf nodes in the scenario tree H.
Thanks to Corollary 2.6, this sequential implementation (clear only the

current time step sequentially as time passes) of SPMP(H,G) using (2.24)-
(2.26) results in the same solution as solving (2.15) under H for clearing prices
for all possible scenarios at once. This property enables us to use SPMP(H,G)
in a more practical setting. In the next section, we briefly formalize the SGD
algorithm for (2.24)-(2.26), and analyze practical details related to initialization
and step size rules.

2.3.4 Stochastic Gradient Descent Algorithm for SPMP

We propose the following algorithm for computing prices in a rolling market
clearing under uncertainty with binding past prices.



44 Chapter 2. Pricing Under Uncertainty in Real-Time Markets

Table 2.1: Unit Parameters

Unit
Energy Min,Max Output Ramping
$/MWh MW MW/min

1 28 0,100 3
2 30 0,100 4
3 40 0,100 5

Algorithm 1: SGD for SPMP

Result: pI(n0)
1 i← 0; Initialize p0(n0);
2 while i < I do
3 Sample a sample path P;
4 Obtain xi(n0) by solving the inner optimization problem of (2.24);

5 ∇F i
Q∪P(p

i(n0))← (− Σ
k∈K

xi
k(n0) + y(n0));

6 pi+1(n0)← pi(n0) + γi∇F i
Q∪P(p

i(n0));

7 i← i+ 1;

8 end

For initializing p0(n0), we use the dual multiplier of PMP with future ex-
pected demand as input data. In practice, using a deterministic model with
expected demand data is a commonly used way to clear market. We use it as
an initial value and update it in our algorithm.

For the step sizes {γi : i ∈ {0, . . . , I}}, there can be many variations. For
updating step sizes, we consult mainly [Bot12]. Note that there is another
variation of SGD often referred to as Averaged SGD based on [PJ92]. De-
tailed rules are introduced in section 5.3 of [Bot12]. While there exist many
variations for selecting the initial step size, it is common to use the ratio of
the upper bounds of the norm of the argument over the norm of the gradient
as a fixed learning rate or dynamic learning rate with some diminishing rules
[NJLS09]. In our experiment, we use the maximum cost over the current net
load. The argument p(n0) cannot be greater than the maximum cost, and the
upper bound of the gradient is bounded by y(n0). We have experimented with
variations of step size rules according to changes in parameters regarding the
initial step size and the rate of diminishing step size. The reader is referred to
the details in Appendix 2.A.

2.4 Computational Results

2.4.1 An Illustrative Example

Let us first examine an illustrative three-stage example where two scenarios
are possible for each node with equal probability as in Figure 2.4. We have



2.4. Computational Results 45

1

2

3

4

5

6

7

Figure 2.4: A scenario tree with demand for each scenario and transition probabilities
between nodes.

Table 2.2: Market Clearing Solutions from Stochastic Model

SLAD SLAD SPMP
Node x∗

1(n) x∗
2(n) x∗

3(n) p∗(n) p∗(n)
(n) MW MW MW $/MWh $/MWh
1 90 40 0 28 28
2 100 60 0 30 32
3 85 55 0 25 28
4 100 80 20 40 40
5 90 40 0 28 30
6 100 75 5 40 34
7 100 70 0 30 34

three different units for generating power with ramp constraints as in Table
2.1. Each time step corresponds to 5 minutes. This example is an extension of
Example 1 in [HSZ+19] for the case under uncertainty. We show the results of
different market clearing models in Table 2.2 and Table 2.3. For the stochastic
model, the dispatch solution is solved by SLAD, and the two price distributions
are obtained from SLAD and SPMP. For the deterministic model, the dispatch
solution is obtained from LAD and the prices are obtained from LAD and
PMP. Notice that future expected demand is used for the deterministic models,
and as time moves forward (with new demand information updated) truncated
problems are solved in a rolling fashion, whereas for the stochastic models the
result is obtained from one optimization problem.

Performance metrics are compared in Tables 2.4 and 2.5 with the solutions
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Table 2.3: Market Clearing Solutions from Deterministic Model

LAD LAD PMP
Node x∗

1(n) x∗
2(n) x∗

3(n) p∗(n) p∗(n)
(n) MW MW MW $/MWh $/MWh
1 100 30 0 30 30
2 100 50 10 40 30
3 90 50 0 28 28
4 100 70 30 40 40
5 100 30 0 28 30
6 100 70 10 40 32
7 100 70 0 40 32

Table 2.4: Comparison of Metrics with Dispatch Solutions from SLAD

Unit
SLAD SPMP

AEL PEL MWP AEL PEL MWP
1 0 5 3.4375 5 5 0
2 0 161.25 32.1875 47.5 47.5 0
3 0 0 0 7.5 7.5 1.875

SUM 0 166.25 43.125 60 60 1.875

that are presented in Table 2.2 and Table 2.3. We note that different dispatch
solutions are used for Table 2.4 and Table 2.5, SLAD and LAD respectively;
therefore, the values for SPMP are different in the two tables. In Table 2.4,
observe that (i) for SLAD, AEL is 0 as the results of section 2.3.2, (ii) for
SPMP, AEL ≤ PEL as foreseen by Theorem 2.3, and expected MWP ≤ PEL
as discussed in section 2.3.1, (iii) most importantly, SPMP achieves smaller
PEL and expected MWP than SLAD because SPMP produces prices that
minimize PEL. In Table 2.5, we compare SPMP with deterministic pricing
models (LAD and PMP). Observe that PMP achieves better performance than
LAD since it accounts for binding past prices, and that SPMP attains better
results than PMP since it accounts for the underlying uncertainty distribution.
With the optimal dispatch solutions obtained from SLAD, the results can be
further reduced to the values shown in Table 2.4. The reason why LAD has
zero MWP in this example (it happens coincidentally, it is not a property of
LAD) is because the price from this model is very high compared to other
models in Table 2.2 and Table 2.3. This example shows that we can achieve
zero MWP by clearing prices at high values but then LOC (AEL or PEL under
uncertainty) increases significantly as shown in Table 2.5.

It is further worth noting that a stochastic equilibrium can perform poorly
in terms of certain metrics. In Table 2.4, SLAD indeed achieves zero AEL,
which is equivalent to a stochastic equilibrium; however, it exhibits rather high
levels of PEL (the value that each agent would perceive when they calculate
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Table 2.5: Comparison of Metrics with Dispatch Solutions from LAD

Unit
LAD PMP SPMP

AEL PEL MWP AEL PEL MWP AEL PEL MWP
1 0 0 0 0 0 0 0 0 0
2 275 275 0 62.5 62.5 0 62.5 62.5 0
3 0 0 0 70 70 17.5 55 55 13.75

SUM 275 275 0 132.5 132.5 17.5 117.5 117.5 13.75

LOC in an ex-post fashion) and expected MWP (simply losses). SPMP, on
the other hand, by minimizing PEL directly, can regulate the level of AEL
and expected MWP as by-products, but it does not constitute a stochastic
equilibrium. In the next section, we present an experiment with realistic data.

2.4.2 Simulation with Realistic Data

In this section, we illustrate our proposal for pricing under uncertainty in a
case study of the ISO New England (ISO-NE) system.

Case Study Description.

We consult [KLT16] for the grid, generator and load data based on ISO New
England. The model includes 8 zones with 76 generators. The original source
of data is hourly. In our case study, we are interested in five-minute time
resolution, since certain binding operating constraints that are driven by the
random variations of renewable supply are only observable at this shorter time
frame. We assume linear cost functions in our analysis, hence we use only the
first-order cost terms from [KLT16]. The linear cost terms and the ramp rates
of the generators are re-scaled in order to account for the five-minute resolution
of our model. Since there is no congestion due to sufficient transmission line
capacity for the network in the original data, we adjusted the capacity (to 1500
MW for each line) to induce congestion resulting in the difference in prices for
different zones, while making sure that there is no load-shedding because of the
lack of capacity.

Minimum generation levels for the units are not specified in the original
data. Instead, we assume that nuclear units have a technical minimum which
is equal to 80% of their nominal output, 60% for coal-fired units, and 0% for
the remaining technologies. We add pumped-hydro reservoirs to the model,
in order to introduce an interesting interplay between storage and renewable
supply. The pumped-hydro storage data is sourced from [PS17].

In order to introduce uncertainty to the model, we consider a scenario of
large-scale wind power penetration. In terms of modeling wind power pro-
duction, we follow the approach that is introduced by [PO13]. Concretely, we
model wind speed using a time series model, and use a power curve in or-
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der to transform random fluctuations in wind speed to a resulting wind power
stochastic process.

We use wind speed data with one-minute resolution from January 2018 to
October 2019 from the Royal Meteorological Institute of Belgium (RMI). We
source data with five-minute resolution and we use a cumulative empirical dis-
tribution for transforming the data. We remove monthly seasonal effects, and
use an auto-regressive model with a 10-order lag (AR(10) model). We control
the amount of uncertainty in the wind power production model with a tuning
parameter, WindRate. When its value is one, the level of wind penetration
corresponds to average wind production equal to 17% of annual ISO-NE en-
ergy demand and the highest possible penetration rate that we consider in our
model amounts to 40% of annual ISO-NE energy demand.

Comparison of Metrics with Different Pricing Models.

The full horizon of our simulation consists of 312 intervals (26 hours), where an
interval length is equal to five minutes. We ignore the first and last 12 intervals
(one hour each) in our analysis in order to mitigate boundary effects. Two
types of inter-temporal constraints exist in our model: ramping constraints
and the constraints that represent the dynamics of pumped hydro storage.

Since we use a continuous stochastic uncertainty model (AR model), we can
no longer compute AEL. Here, the focus is on comparing deterministic pricing
models (LAD and PMP) with our method (SPMP). For the deterministic mod-
els, we use expected future demand. We use the solution from the LAD model
as the dispatch decision for all the models, and our goal is to compare the
effect of the different pricing models. We add one more model as a benchmark
named PMP PF (PMP with Perfect Foresight assumption), where we provide
the actual sample path for future demand. For each model, we implement a
moving horizon with a look-ahead length of 12 intervals (one hour). For the
models which account for binding past prices (PMP, PMP PF and SPMP), we
add the information of past prices over the 12 most recent intervals (one hour).
Notice that even the benchmark model PMP PF can have positive value of
PEL, because the look-ahead length is limited (12 intervals), whereas the full
horizon length for calculating LOC is much longer (288 intervals). PMP PF
has the information of the actual demand for the future, however it does not
solve a one-shot optimization with a full horizon length but instead a rolling
implementation, as other models do. The goal of this comparison is to quan-
tify how much the perfect foresight assumption can change the result ceteris
paribus (including the look-ahead length).

Figure 2.5 shows the results of PEL and the expected make-whole-payments
(MWP) for different models with increasing levels of uncertainty controlled by
WindRate. The bars correspond to the average result of 500 experiments,
and the middle lines show the sample standard deviation of the experiments.
For our method, the iteration count for the SGD algorithm I is one hundred
for SPMP. First, we can observe that the binding past prices version (PMP)
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(a) (b)

Figure 2.5: Ex-post expected lost opportunity cost for different models as the degree
of wind penetration increases.

performs better than the simple look-ahead model (LAD). By exploiting the
information of the distribution of the uncertain future, our method (SPMP)
achieves significantly lower PEL and variance of the LOC than those mod-
els that use the expectation of future demand. Furthermore, SPMP achieves
similar performance to the case with perfect foresight (PMP PF). In Figure
2.5 (b), we can observe the same pattern as (a), but with even more notice-
able differences. SPMP achieves lower expected value and variance for MWP
than other models. Additionally, it also achieves a comparable result to the
case with perfect foresight. The readers who are interested in the difference of
prices resulting from different models are referred to Appendix 2.B.

Computation Time.

For the computing time of our method, 500 iterations of SGD require approx-
imately 30 seconds in the experiment on a personal computer with 2.5-GHz
dual-core CPU and 8GB of RAM. The results and discussion about the con-
vergence of the SGD algorithm are available in Appendix 2.A.

2.5 Conclusion

In this chapter, we introduce two different definitions of expected lost opportu-
nity cost, and we propose and analyze a pricing method for multi-interval real-
time markets that operates under uncertainty. The proposed method minimizes
one type of expected lost opportunity cost (PEL). We perform experimental
results that demonstrate that our pricing approach results in lower PEL and
expected make-whole payments with smaller variance, than alternative pricing
methods that have been proposed in the recent literature. We further ob-
serve that the gap between our method and other methods that do not exploit
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Figure 2.6: Convergence behavior of the SGD algorithm for varying levels of λ.

distribution information increases as the level of uncertainty increases. This
indicates that our pricing proposal is especially suitable for future renewable
integration scenarios, where the role of uncertainty is expected to become in-
creasingly important, and where the accuracy of price signals will be a crucial
element in preventing asset owners from “taking matters in their own hands”
through self-commitment or self-dispatching. Our experimental results suggest
that near-optimal prices can be obtained with a modest number of iterations of
the Stochastic Gradient algorithm. This observation provides encouraging sup-
port to the claim that the method proposed in this chapter can be implemented
within operationally acceptable time frames for real-time market clearing.

2.A Convergence of the SGD Algorithm Ac-
cording to Changes in Parameters

In this section, we focus on a type of step size rule which is provided by equation
(2.27). The general form of this rule is from [Bot12].

γt = γ0(1 + λt)−3/4 (2.27)

Notice that when λ = 0, this rule reduces to a constant step size. The param-
eter γ0 is the initial step size, and λ controls the rate at which the step size
diminishes.
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First, let us observe the behavior of the SGD algorithm for different lev-
els of λ when the initial step size γ0 is fixed to 1/500. In Figure 2.6, the
blue line corresponds to pt(n0) in Algorithm 1 of section 2.3.4. and the or-
ange line represents the average of the 20% of the last iterations; namely,

t

Σ
i=⌈0.8t⌉

pi(n0)/(t − ⌈0.8t⌉ + 1). When λ = 0, as in the upper left figure, this is

equivalent to a constant step size rule. In this case, the variance of the blue line
does not decrease as the iteration count increases. Even though the average of
the blue line (i.e. the orange line) appears to be converging, notice that the
point of convergence is different from that of other figures (the orange line sta-
bilizes around 140, whereas the other figures converge around 75). This might
be surprising when one considers the behavior of deterministic (sub)gradient-
based algorithms. Unlike deterministic gradient-based algorithms, however, a
stochastic gradient descent algorithm does not necessarily generate a full gra-
dient for each iteration, which should decrease as it converges to the (local)
minimum point. Typically, what a stochastic gradient descent algorithm ob-
tains at every iteration is a partial gradient whose expectation is the same as
a full gradient. Especially for our problem, this partial gradient does not con-
verge, even when the algorithm is very close to the optimal solution. Thus, it
is necessary to use a diminishing step size rule (λ > 0 in our case).

Now, observe the behavior when λ = 500, at the other side of the range of
values. In this case, it is possible that the rate of reduction of the step size
is so high that the algorithm could not converge even after 1000 iterations.
Out of the four different choices of λ, the lower left figure (λ = 50) appears to
achieve the best performance. However, this may not be the case for different
instances. Even though it is possible to find an optimal parameter for each
instance, as long as λ is within a certain range (10 - 300 for this instance), the
algorithm converges relatively robustly within 500 iterations.

In Figure 2.7, we fix λ to 50, and present the results for varying levels
of the initial step size γ0. When γ0 is too low, as in the lower right figure
(γ0 = 1/2500), the speed of convergence can be too slow. Nevertheless, observe
that the algorithm converges in all four cases, and the range of the level of this
parameter that shows a good performance is wide.

In this chapter, we used λ = 50, γ0 = 1/500 for all 8 zones of the ISO-NE
case study. Notice that these values can be further optimized and it is also
possible to use different parameters for different zones.

2.B Price Graphs Over Time for Different Mod-
els in Various Scenarios

In Figure 2.8, we present the price graphs over time for different models under
several scenarios. The horizontal axis corresponds to time steps of 5 minutes
each. The graphs present the prices for 288 time steps (24 hours). Except for
case (d), we can observe that the model PMP PF produces more spikes than
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Figure 2.7: Convergence behavior of the SGD algorithm when varying the level of γ0.

Table 2.6: Average prices from different models under various scenarios.

Scenario
Average Price over 24 hours ($/MWh)
LAD PMP SPMP PMP PF

(a) 83.3 83.7 95.2 98.7
(b) 100.3 93.9 100.7 104.6
(c) 113.7 112.2 112.1 115.4
(d) 132.9 127.6 126.1 127.3

the other models. This can be explained by the fact that the deterministic
models (LAD, PMP) use an expected value for the future forecast, whereas
the actual trajectory of the future net demand is used in PMP PF. Especially
when the variance of the forecast is large, the expectation of net demand fails to
reflect the actual volatility of the net demand process, resulting in fewer spikes
than the model with perfect foresight. SPMP tends to follow the trajectory of
the price of PMP PF rather than that of the deterministic models, but exhibits
less volatility since SPMP considers all possible future scenarios and minimizes
the expectation of LOC (PEL) whereas PMP PF minimizes the LOC for a
certain scenario. Among the two deterministic models, PMP is generally less
volatile than LAD, and this is rather expected considering that PMP tends to
smooth out the price trajectory by balancing the future and the past prices.

The average prices are presented in Table 2.6. There is a tendency for
PMP PF to produce higher values under different scenarios because of its more
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Figure 2.8: Various scenarios of prices over time for different pricing models.

frequent spikes. For a similar reason, PMP tends to exhibit a slightly lower
value than LAD. SPMP is clearly lower than PMP PF for most of the cases, if
not all. Compared to the prices of the deterministic models, SPMP is higher
for some scenarios and lower for other scenarios.
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3 Multi-Area Reserve Dimensioning
Problem

3.1 Introduction

In Europe, transmission system operators (TSOs) are increasingly coordinating
their system operations in response to the pan-European coupling of electricity
markets [Com17b]. One of the objectives of this coupling is to organize a
system that encompasses multiple areas for dispatching balancing energy from
frequency restoration reserves in real time or close to real time (the MARI
and PICASSO platforms)1. An important problem of interest that is emerging
as a result of cross-zonal coordination in balancing is to allocate the right
quantities of reserves in the right locations of the network while accounting for
possible congestion in the transmission network. This problem is referred to as
reserve sizing or reserve dimensioning, with the associated challenge of reserve
deliverability [ZL08], [CGG13], depending on the context.

Article 157 of the System Operation Guideline (SOGL) of the European
Union [Com17a] explicitly specifies probabilistic requirements for reserve sizing.
The Nordic System Operation Agreement (SOA) [TSO19] is an example of an
effort for the coordinated operation of frequency reserves among the Nordic
countries in response to the SOGL. A recent ENTSO-E report [Ene22] by
Danish TSO Energinet demonstrates the continual pursuit in the direction of
multi-area reserve sizing in accordance with article 157 of the SOGL.

3.1.1 Literature Review

There exist a number of papers that attempt to address the multi-area reserve
sizing problem in the literature. However, much of this literature [LHZ13,
HGKK15, SJM18, PZBT20, WC21] focuses on either chance constraints or
transmission constraints without treating these aspects jointly. Other literature
[VMLA13, RMKA16] considers these two aspects simultaneously; nonetheless,

1MARI stands for “Manually Activated Reserves Initiative”, PICASSO stands for “Plat-
form for the International Coordination of Automated Frequency Restoration and Stable
System Operation”.
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the underlying probabilistic distributions are assumed to belong to a specific
class. Recent literature [PBA+21, CP22], which has been proposed by the au-
thors of this paper, accounts for both of these characteristics. In [PBA+21], the
authors define a chance-constrained formulation for the problem, but suggest a
heuristic method that is not guaranteed to furnish the optimal solution. Sub-
sequently, in [CP22], the authors attempt to solve this two-stage mixed-integer
programming to optimality by applying integer programming techniques. How-
ever, the method proposed by the authors is not scalable to the size of realistic
problems.

3.2 Problem Formulation

For a network G(Z,E), let r+z [resp. r−z ] denote the size of upward [resp. down-
ward] balancing capacity of reserve for each zone z. Our goal is to minimize the
sum of r+z and r−z for all the zones in G(Z,E). Note that the objective function
can be extended straightforwardly to the case where total procurement costs
are considered through balancing capacity offers. In this case, the coefficients

of r
+/−
z would be different values from +1, but the method in this section can

manage this type of adjustment. F+ [resp. F−] denotes the feasible region for
r+ [resp. r−] representing the region where the capacity of reserve can cover
imbalances δz for each zone z in the network G(Z,E). Formally, F+/− are
defined as (3.1) and (3.2).

F+ = {r+ ∈ R|Z|
+ : ∃(p, f) s.t.

pz + δz = Σ
e=(z,·)∈E

fe − Σ
e=(·,z)∈E

fe, ∀z ∈ Z

pz ≤ r+z , ∀z ∈ Z

− T−
e ≤ fe ≤ T+

e , ∀e ∈ E}

(3.1)

F− = {r− ∈ R|Z|
+ : ∃(p, f) s.t.

pz + δz = Σ
e=(z,·)∈E

fe − Σ
e=(·,z)∈E

fe, ∀z ∈ Z

− r−z ≤ pz, ∀z ∈ Z

− T−
e ≤ fe ≤ T+

e , ∀e ∈ E}

(3.2)

Here, pz and fe are the amounts of balancing energy activated at zone z and
the flow from z1 to z2, where e = (z1, z2), given that link e has capacity limits
T+
e and T−

e in the reference and opposite direction respectively. The equations
in the first lines denote the power balance equations for each zone z. The
inequalities in the second line impose that the activation of balancing energy
cannot exceed the amount of available reserve. Flow limits are imposed in the

last inequalities. Note that the values of δz, T
+/−
e can vary under different

scenarios, as we discuss in the sequel.
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Notice that, we assume that power flow constraints are approximated using
a transportation network model. This assumption is aligned with the fact that,
within MARI, the platform for the activation of manual frequency restoration
reserve, the network will be approximated using an ATC (Available Transfer
Capacity) transportation-based model [ACE20, PBDS20] at the launch of the
platform.

Given reliability targets for upward/downward reserves (1−ϵ+/−), our prob-
lem can be written with probabilistic constraints (3.3b) as follows.

min Σ
z∈Z

(r+z + r−z ) (3.3a)

s.t. Pr{r+/− ∈ F+/−} ≥ 1− ϵ+/− (3.3b)

r+/− ≥ 0 (3.3c)

This is a two-stage chance-constrained formulation where the first-stage vari-
ables are r+, r− and the second-stage variables are pz and fe.

3.2.1 Sample Approximation

Given a positive integer n, let us denote [n] as the set {1, . . . , n}. Let us start
from declaring F

+/−
i , i.e., the feasible set of r+/− when the uncertain param-

eters (δz, T
+/−
e ) are replaced by their realizations for scenario i.

F+
i = {r+ ∈ R|Z|

+ : ∃(p, f) s.t.
pz + δiz = Σ

e=(z,·)∈E
fe − Σ

e=(·,z)∈E
fe, ∀z ∈ Z : λz

pz ≤ r+z , ∀z ∈ Z : πz

fe ≥ −T−
ei , ∀e ∈ E : µ−

e

fe ≤ T+
ei , ∀e ∈ E : µ+

e }

(3.4)

F−
i = {r− ∈ R|Z|

+ : ∃(p, f) s.t.
pz + δiz = Σ

e=(z,·)∈E
fe − Σ

e=(·,z)∈E
fe, ∀z ∈ Z : λz

− r−z ≤ pz, ∀z ∈ Z : πz

fe ≥ −T−
ei , ∀e ∈ E : µ−

e

fe ≤ T+
ei , ∀e ∈ E : µ+

e }

(3.5)

By introducing new binary variables u
+/−
i for each scenario i, representing

whether the probabilistic constraint is violated or not, our problem can be
reformulated with logical constraints (3.6b) as follows.

min Σ
z∈Z

(r+z + r−z ) (3.6a)

s.t. u
+/−
i = 0 =⇒ r+/− ∈ F

+/−
i , ∀i ∈ [N ] (3.6b)
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Σ
i∈N

u
+/−
i ≤

⌊
ϵ+/−N

⌋
(3.6c)

r+/− ≥ 0, u+/− ∈ {0, 1}N (3.6d)

In this section, we show three different directions for addressing the con-
straints (3.6b). First, in section 3.3, by using the so-called “Big-M” method, we
reformulate (3.6) into a big Linear Programming problem with both first- and
second-stage variables. Although it is theoretically possible to obtain optimal
solutions with this formulation, it is known that this method is not able to deal
with big instances. Instead, a heuristic method derived from this formulation
is presented. Next, in section 3.4, we introduce a method based on Benders’
Decomposition. Lastly, in section 3.5, we use a projection method to represent
the feasible regions of the first-stage variables r+, r− explicitly in the space
of the first-stage variables. In the following sections, all of the methods are
compared with one another.

3.3 Heuristic Method

First, we introduce another way to reformulate the problem using the so-called
“Big-M” method. Even though this approach is not scalable in practice, it
is also a basis of a heuristic method introduced in [PBA+21]. One of the
key characteristics of this approach is to use the second-stage variables p and f
directly and use a Big-M method to represent the logical expression Eq. (3.6b).

min Σ
z∈Z

(r+z + r−z )

s.t. pzi + l+zi − l−zi + δzi = Σ
e=(z,·)∈E

fei − Σ
e=(·,z)∈E

fei, ∀z ∈ Z, i ∈ [N ]

− r−z ≤ pzi ≤ r+z , ∀z ∈ Z, i ∈ [N ]

l+zi ≤ max{0,−δzi} · u+
i , ∀z ∈ Z, i ∈ [N ]

l−zi ≤ max{0, δzi} · u−
i , ∀z ∈ Z, i ∈ [N ]

− T−
ei ≤ fei ≤ T+

ei , ∀e ∈ E, i ∈ [N ]

Σ
i∈N

u
+/−
i ≤

⌊
ϵ+/−N

⌋
r+/− ≥ 0, l+/− ≥ 0, u+/− ∈ {0, 1}N

(3.7)

This is achieved by introducing slack variables l+/−. Slack variables l
+/−
zi

are non-zero only when u
+/−
i = 1, enabling the power balance constraints

to be violated. Notice that l
+/−
zi is bounded by max{0,−δzi} or max{0, δzi}.

They are the upper and lower bounds for pzi in absolute value. This is the
reason why this approach is called the Big-M method since big-sized bounds
such as max{0,−δzi} or max{0, δzi} are used to reformulate logical statements.

Thanks to this large bound for l
+/−
zi , when u

+/−
i = 1, there exists a feasible
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solution with pi = 0, fi = 0, which allows scenario i to not be accounted for
when calculating the size of reserves r+/−.

Unfortunately, it is well known that formulations using the Big-M method
are not practical for solving problems to optimality due to large LP relaxation
gaps. However, the model of Eq. (3.7) can be used for developing a heuristic
method in order to find a feasible solution. In [PBA+21], for example, the

authors first solve the LP relaxation of Eq. (3.7) and fix u
+/−
i to 1 for the

indices in which the optimal solutions for the LP relaxation u∗+/−
i are in the

sets of the
⌊
ϵ+/−N

⌋
largest values when the solutions u∗+/−

i are sorted in
descending order. The formal description of the algorithm is as follows in
Algorithm 2.

Algorithm 2: LP-based Heuristic Method

STEP1: Solve the linear relaxation of the problem (3.7);

STEP2: Sort the optimal solutions for the LP relaxation u∗+/− in
descending order;
STEP3: Define U+/− as the sets of scenarios corresponding to

⌊
ϵ+/−N

⌋
highest ranked values of u∗+/−;
STEP4: Solve the problem (3.7) with additional constraints

u
+/−
i = 1,∀i ∈ U+/−, and u

+/−
i = 0,∀i ∈ (U+/−)c;

The biggest advantage of this algorithm is that it is comprised of solving
two LPs (STEP1 and STEP4), instead of the original form of large-scale mixed
integer programming (3.7). Therefore, it is scalable to the size of realistic in-
stances. However, notice that this method does not guarantee to find optimal
solutions for the original problem although its proposed solution is always fea-
sible. In the later sections, we introduce exact methods that are designed to
solve the original mixed integer programming problem to optimality. There
are two variations; one with an approach based on Benders Decomposition, the
other one with an approach based on minimal projection.

3.4 Exact Method Using Benders Decomposi-
tion

3.4.1 Benders Decomposition

Standard Benders Cuts

Introduced by Benders in [Ben62], the standard Benders Cuts are used in order
to decompose a large problem into smaller problems by dividing variables into
different groups. So, it is often used for solving stochastic programming with
recourse where variables can be easily grouped by stages. In this way, the
second stage variables can be decomposed into even smaller problems for each
scenario. The method is based on two types of cuts: Benders Optimality Cuts
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and Benders Feasibility Cuts. The former connect the effects of the second
stage variables to the objective function with the first stage variables, and the
latter are used for representing the feasible region of the first stage variables
depending on second stage variables. Since the second stage variables (p, f) in
our problem do not show up in the objective function (3.6a), and what we need

is to check r+/− ∈ F
+/−
i , we only utilize Benders Feasibility Cuts throughout

the paper.

For our problem, Benders Feasibility Cuts can be obtained by solving (3.8)
and (3.9), which are the dual problems of the feasibility checking problems for

F
+/−
i when r̂+/− is given.

vi(r̂
+) = max− Σ

z∈Z
(r̂+z πz + δizλz)− Σ

e∈E
(T+

ieµ
+
e + T−

ieµ
−
e )

s.t. πz − λz = 0, ∀z ∈ Z

λzt − λzs − µ+
e + µ−

e = 0, ∀e = (zs, zt) ∈ E

π, λ ∈ [0, 1]|Z|, µ+, µ− ∈ [0, 1]|E|

(3.8)

vi(r̂
−) = max− Σ

z∈Z
(r̂−z πz + δizλz)− Σ

e∈E
(T+

ieµ
+
e + T−

ieµ
−
e )

s.t. πz + λz = 0, ∀z ∈ Z

λzt − λzs − µ+
e + µ−

e = 0, ∀e = (zs, zt) ∈ E

π, λ ∈ [0, 1]|Z|, µ+, µ− ∈ [0, 1]|E|

(3.9)

Observe that the dual variables π, λ, µ+, µ− correspond to certain constraints

of (3.4) or (3.5). If vi(r̂
+/−) > 0, then r̂+/− ̸∈ F

+/−
i . Let (π̂, λ̂, µ̂+, µ̂−) be an

optimal extreme point solution of (3.8). Then, for

α = π̂,

β = −δiλ̂− T+
i µ̂+ − T−

i µ̂−,
(3.10)

αr̂+ < β and αr+ ≥ β, for all r+ ∈ F+
i . Likewise, let (π̂, λ̂, µ̂+, µ̂−) be an

optimal extreme point solution of (3.9). Then, αr̂− < β and αr− ≥ β, for all
r− ∈ F−

i . We call this αr+/− ≥ β a Benders Feasibility Cut. For the rest of this
subsection, we slightly abuse notation for the sake of simplicity in describing
the procedure further. Instead of differentiating directions of reserves (positive
or negative) as superscripts (+/−), (r, Fi) are used to represent either of them.

Modified Benders Cuts

The standard Benders Cuts are not directly applicable to our problem. The
Benders Feasibility Cuts represent r ∈ Fi, but what we need is the cuts which
represent the logical expression in (3.6b). For that, we need the following
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optimization problem for each scenario2:

hi(α) := min{αr|r ∈ Fi}. (3.11)

Here, αr+hi(α)ui ≥ hi(α) is a valid inequality for (3.6b), because if ui = 0, r ∈
Fi, then αr ≥ hi(α) by definition of hi(α). Then, we can utilize the mixing set
Eq. (1.23) and the mixing inequalities Eq. (1.24) introduced in section 1.4.3.
Let us define the mixing set with these valid inequalities as follows:

P (α) := {(r, u) ∈ R|Z|
+ × {0, 1}N : αr + hi(α)ui ≥ hi(α),∀i ∈ [N ]}. (3.12)

Let us denote Π as the set of all the possible α, which are extreme points
of (3.8). Notice that for our problem Fi for all i ∈ [N ] shares the common
constraint set of (3.8), resulting in the same set of extreme points; hence the
same Π for Fi,∀i ∈ [N ].

Theorem 3.1.
⋂

α∈Π

P (α) is equivalent to {(r, u) : (3.6b), (3.6d)}.

Proof. Since all the inequalities in the set P (α) are valid for (3.6b), {(r, u) :
(3.6b), (3.6d)} ⊆ P (α) for all α ∈ Π. For (r̂, û) such that ûk = 0 and r̂ ̸∈ Fk,
∃(α, β) s.t. αr̂ < β but αr̂ ≥ β is valid for Fk. By definition of hk(α), for all
r ∈ Fk, αr ≥ hk(α) ≥ β > αr̂. So, (r̂, û) is violated by αr + hk(α)uk ≥ hk(α).
Thus,

⋂
α∈Π

P (α) ⊆ {(r, u) : (3.6b), (3.6d)}. Q.E.D.

Theorem 3.1 implies that the logical expression (3.6b) can be replaced by
the modified Benders Cuts. These cuts can be strengthened by including the
cardinality constraint (3.6c). For the simplicity of notation, let us denote q =
⌊ϵN⌋, and for all α ∈ Π, σα is a permutation of N integers such that

hσα
1
(α) ≥ hσα

2
(α) ≥ · · · ≥ hσα

N
(α).

Then, αr+ (hσα
i
(α)− hσα

q+1
(α))uσα

i
≥ hσα

i
(α) for all i ∈ [q] is valid for {(r, u) :

(3.6b), (3.6c), (3.6d)}. This is because for at least one of the q+1 largest values
of hi(α), ui = 0 and this implies that αr ≥ hσα

q+1
(α) is always valid. This

argument is from Lemma 1 of [Lue14]. Let us define the mixing set with these
new valid inequalities as follows:

P ′(α) := {(r, u) ∈ R|Z|
+ × {0, 1}N : (3.6c),

αr + (hσα
i
(α)− hσα

q+1
(α))uσα

i
≥ hσα

i
(α),∀i ∈ [q]}. (3.13)

Theorem 3.2.
⋂

α∈Π

P ′(α) is equivalent to {(r, u) : (3.6b), (3.6c), (3.6d)}.

2Observe that Fi is nonempty. The recession cone of Fi is the positive orthant, whose
dual cone is also the positive orthant. Since α = π̂ is a vector in the positive orthant as well,
hi(α) exists and is finite.
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Proof. It is easy to see that {(r, u) : (3.6b), (3.6c), (3.6d)} ⊆ P ′(α) for all
α ∈ Π, as in the proof of Theorem 1. Similarly, for (r̂, û) such that ûk = 0 and
r̂ ̸∈ Fk, ∃(α, β) s.t. αr̂ < β but αr̂ ≥ β is valid for Fk. Here, we need to consider
two cases. If hσα

q+1
(α) ≥ hk(α), since hσα

i
(α) − (hσα

i
(α) − hσα

q+1
(α))ûσα

i
≥

hσα
q+1

(α) ≥ hk(α) ≥ β > αr̂ for all i ∈ [q]. If hσα
q+1

(α) < hk(α), then k = σα
i

for some i ∈ [q], and hσα
k
(α)− (hσα

k
(α)− hσα

q+1
(α))ûσα

i
≥ hσα

q+1
(α) ≥ hk(α) ≥

β > αr̂. So, there exist some inequalities in (3.13) which violate (r̂, û). Thus,⋂
α∈Π

P ′(α) ⊆ {(r, u) : (3.6b), (3.6c), (3.6d)}. Q.E.D.

Theorem 3.2 shows that we can use these stronger valid inequalities to rep-
resent the logical expression (3.6b) thanks to the cardinality constraint (3.6c).
Notice the difference between (3.12) and (3.13). The former has N inequalities
whereas the latter has q inequalities, and generally q << N since we consider
ϵ ≤ 0.01. Now, we apply the star inequalities of [ANS00], or equivalently the
mixing inequalities of [GP01] as in [Lue14].

Theorem 3.3. ([Lue14],[ANS00],[GP01]) Let T = {t1, t2, . . . , tl} ⊆ {σα
1 , . . . , σ

α
q }

be such that hti(α) ≥ hti+1
(α) for i ∈ [l], where htl+1

(α) = hσα
q+1

(α). Then the
inequality

αr +
l

Σ
i=1

(hti(α)− htt+1
(α))uti ≥ ht1(α) (3.14)

if valid for P ′(α).

Clearly, (3.14) dominate the inequalities in (3.13), and they are known for
their strength because they define the convex hull of the mixing set P ′(α)
without a cardinality constraint (3.6c). See ([Lue14],[ANS00],[GP01]) for more
details.

Also, the inequalities in (3.13) are special cases of (3.14) when T is a sin-
gleton. So, Q(α) is equivalent to P ′(α), where

Q(α) := {(r, u) ∈ R|Z|
+ × {0, 1}N : (3.6c), (3.14)}. (3.15)

These mixing sets and new valid inequalities are analogous to the ones in section
1.4.3. Q(α) is similar to Eq. (1.25) and Eq. (3.14) to Eq. (1.26).

Even though the number of constraints in (3.14) grows exponentially with
respect to q, for a given (r̂, û) the separation of these inequalities can be ac-
complished efficiently ([ANS00],[GP01]). Therefore, in [Lue14], they used these
inequalities for their Branch-and-Cut algorithm with the separation problem.
In this section, we move a bit further forward by using an extended formulation
from [LAN10], introduced in section 1.4.4.

Extended Formulation

Let us first define the extended formulation of Q with q additional binary
variables wα as follows:

EQ(α) := {(r, u, w) ∈ R|Z|
+ × {0, 1}N+q : (3.6c), (3.17)− (3.19)}, (3.16)
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where

αr +
q

Σ
i=1

(hσα
i
(α)− hσα

i+1
(α))wα

i ≥ hσα
1

(3.17)

wα
i − wα

i+1 ≥ 0, ∀i ∈ [q − 1] (3.18)

uσα
i
− wα

i ≥ 0, ∀i ∈ [q]. (3.19)

Here the set EQ(α) is analogous to the set EG (Eq. (1.27)) in section 1.4.4.
Therefore, according to Theorem 1.1, we can show that EQ(α) is also equivalent
to Q(α). So, instead of solving the separation problem for (3.14), by utilizing
the extended formulation EQ(α), we can have the same effect as adding the
whole exponential family of valid inequalities (3.14).

3.4.2 Branch-and-Cut Algorithm

So far, we have explored ways to represent {(r, u) : (3.6b), (3.6c), (3.6d)} by
modifying the standard Benders Cuts for Fi. Since the size of Π is too big to
handle with a one-shot optimization problem, to solve our problem to optimal-
ity, a procedure updating α which cuts off incumbent solutions is necessary.
This procedure should be combined with the Branch-and-Bound algorithm
to get an integer solution for u. Traditionally, this type of combination is
called a Branch-and-Cut algorithm because in the course of the Branch-and-
Bound algorithm, certain cuts (in our paper Benders Cuts) are added. One of
the Branch-and-Cut algorithms using (3.14) for a general two-stage stochastic
problem is well documented in [Lue14]. Here, we provide a diagram to describe
our Branch-and-Cut algorithm specialized for our problem which is a slightly
modified version using EQ(α).

Outline

Figure 1 shows the diagram illustrating the procedures of the Branch-and-Cut
algorithm for our problem. In this subsection, we briefly explain the notation
and the general flow of the algorithm. Formal descriptions for the Master
Problem and the Separation Problem can be found in the following subsections.

The Branch-and-Bound algorithm is basically a tree-search method where
we utilize the information of upper bounds and lower bounds of incumbent
problems (denoted as Master Problem in the diagram) in order to narrow down
the searching space. In Figure 1, OPEN denotes the set of nodes that we still
need to explore. At each node of the searching tree (l), we fix binary variables
to a certain value (0 or 1); N0(l) is the set of variables fixed to 0 at node l, N1(l)
the set of variables fixed to 1 at node l. The linear relaxation of the incumbent
problem is solved at each node, which provides a lower bound (denoted as lb)
for the original optimization problem. At the leaf of the tree or in the middle
of the tree by coincidence, sometimes we get an (mixed) integer solution which
gives an upper bound for the underlying optimization problem (denoted as U in
our diagram) if that solution is feasible to Fi for all i ∈ [N ]. Notice that when
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Figure 3.1: A Diagram for the Branch-and-Cut Algorithm

the lower bound for a certain node is higher than the current upper bound (U),
it implies that we no longer need to explore that node. In this manner, the
searching space gets narrowed down. This is what the rhombus (lb ≥ U?) does
in the diagram.

When the lower bound of the incumbent optimization problem is lower than
U , it is still worth exploring that node. So, unless it happens to find an (mixed)
integer solution, we branch the node by selecting a non-binary solution ûk and
adding two new nodes to OPEN , where uk is either fixed to 0 or 1 (see the
bottom rectangle of the diagram).

If û is binary, the current solution is a candidate for being feasible to the
original optimization problem. But, we still need to check if the current solution
is feasible to Fi for all i ∈ [N ]. That is what the Separation Problem does in
the diagram. It checks if there is any k ∈ [N ] such that r̂ ̸∈ Fk and uk = 0.
CUTFOUND is a boolean whose value is TRUE if there exists such k and
FALSE if there is none. When CUTFOUND = TRUE, Separation Problem



3.4. Exact Method Using Benders Decomposition 67

returns α which cuts off the current solution. This α is added to Π̄ to update
the Master Problem. When CUTFOUND = FALSE, it means that the current
solution is feasible to the original optimization problem, so we update U with
the optimal objective function value for the incumbent problemMaster Problem
(l), which is lb. This process continues until there are no unexplored nodes left
in the set OPEN . Then, the value U when the algorithm terminates is the
optimal objective function value for our problem, and it is possible to store the
optimal solution when we update U .

Master Problem

Here, we formalize what we solve as Master Problem. Master Problem (l)
solves as follows:

min Σ
z∈Z

rz

s.t. Σ
i∈N

ui ≤ q

(3.17)− (3.19), ∀α ∈ Π̄

uk = 0, k ∈ N0(l), uk = 1, k ∈ N1(l)

r ≥ 0, u ∈ [0, 1]N , wα ∈ [0, 1]q,∀α ∈ Π̄.

(3.20)

For the initial Master Problem (0), Π̄, N0(l), N1(l) = ∅. So the optimal
solution is rz = 0,∀z ∈ Z. During the course of the Branch-and-Cut Algorithm,
the set Π̄ is continually updated, so that (3.20) becomes closer to the original
optimization problem until it finds the optimal solution.

After we solve (3.20), when it is infeasible Master Problem (l) returns lb =
∞, which results in that the optimal U becomes ∞. This implies that our
original problem is infeasible. When (3.20) finds a feasible optimal solution,
it returns the the optimal objective function value as lb, and corresponding
optimal solution (r̂, û). Notice that the extended variable w is only used for
tightening (3.20), and it is no longer used in the remaining procedure.

Separation Problem

As briefly stated in the outline, the Separation Problem (r̂, û) checks if the
current solution is feasible to the original optimization problem, and if not it
returns α which cuts off this solution.

This is done by solving (3.8),∀i ∈ [N ] such that ûi = 0. When ûi = 1, it
implies that r̂ does not have to be feasible to Fi for that certain solution. If
vi(r̂) > 0, then r̂ ̸∈ Fi and α = π̂ for (3.8). Notice that this procedure can be
parallelized for each i. If Separation Problem finds k such that vk(r̂) > 0, then
it returns a boolean CUTFOUND as TRUE with corresponding α, otherwise
it returns CUTFOUND as FALSE.

When CUTFOUND = TURE, α is added to Π̄. Here, it is possible to find
just one single such α or instead screen all i ∈ [N ] such that ûi = 0 and add all
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α for all k such that vk(r̂) > 0). Notice that when we update Master Problem,
we need to calculate hσα

i
,∀i ∈ [N ] and this can be also parallelized.

3.4.3 Computational Results

We compare the formulation of (3.7) and our Branch-and-Cut algorithm. For
the underlying Branch-and-Bound algorithm, we used a commercial solver
Gurobi 9.1. Here, in order to compare the power of different formulations,
we did not use parallelization for Separation Problem. As simulation data,
four different networks in Figure 3.2 are used for the computational experi-
ments. For each network, we tested three levels of sample size : 3000, 4000,
and 5000. For each sample i ∈ [N ], δiz is sampled from a normal distribution
with mean = 0, standard deviation = 100 for each zone z ∈ Z. For capac-
ity constraints3, [T+

e1 , T
+
e2 , T

+
e3 ] = [50, 80, 20], [T−

e1 , T
−
e2 , T

−
e3 ] = [40, 30, 90]. For

each setting, we test 100 instances and check how many instances are solved
to optimality within the time limit (1800 seconds).

Figure 3.2: Networks for Simulation

3The capacity data could have been chosen to be random, but for the simplicity of pre-
sentation we chose fixed numbers for our simulation.
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Figure 3.3: Comparison between Big-M Formulation and Branch-and-Cut Algorithm
for Different Networks

Figure 3.3 shows the result of the computational experiments. It shows
the number of unsolved instances among 100 test instances by two different
methods (BigM: Eqs. (3.7), B&C: Branch-and-Cut Algorithm) for different
networks in Figure 3.2. Observe that in every setting, the number of unsolved
instances by B&C is lower than that by BigM. Even when BigM cannot solve
more than 90% of the instances, B&C solves more than 80% of the instances.
Notice that even though the effect of stronger valid inequalities (tight formu-
lation of (3.16)) enhanced the performance of Branch-and-Bound drastically,
the bottleneck of the B&C is the Separation Problem. If we use parallelization
for calculation vi(r̂) or hσα

i
in the Separation Problem, this performance can

be further improved.

3.5 Exact Method Using Projection

3.5.1 Minimal Projection Formulation

In this section, we introduce a way to reformulate the constraints (3.3b) so that
they represent r+/− ∈ F+/− explicitly in the space of r+/−. Intuitively, one
might surmise that imposing that the reserves should be greater than or equal
to the lowest possible aggregate imbalances corresponding to each element of
the power set4 of the vertex set would suffice to represent F+/− explicitly with

4Recall that the power set of a set is the set of all subsets of the set.
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Figure 3.4: A graph with 5 zones for illustrating the definition of a connected vertex
set.

r+/−. Although this is not trivial, it happens to be correct. However, this rep-
resentation is not minimal, since there are inequalities that can be represented
by a linear combination of other inequalities. In this section, we present a com-
pact representation that is minimal. It turns out that using only the subsets
of the vertex set whose elements are “connected” on the network is enough
to obtain a minimal projection. We, therefore, define this set as a connected
vertex set in order to develop our analysis. For each element of the connected
vertex set, imposing that the sum of the reserve capacities of the zones included
in the element is greater than equal to the size of the total imbalances in the
element minus the maximum input (or output) flow of the element, is sufficient
to represent F+/−. This statement can be formally stated as Theorem 3.4,
and we prove it in the sequel. We commence by formally defining the following
objects: connected vertex set, and maximum input/output flow.

Definition 3.1 (Connected Vertex Set). For a graph G(V,E), the connected
vertex set W(G) is defined as follows:

W(G) = {S ⊆ V : ∀v, w ∈ S,∃ a path P on G s.t. v, w ∈ V (P ) ⊆ S}, (3.21)

where V (P ) denotes the set of vertices in the path P .

Example 3.1 (Connected Vertex Set). For the graph in Fig. 3.4, {1, 2, 3} is
an element of a connected vertex set, whereas {1, 4} is not. For a vertex set
{1, 2, 3}, as an example, when v = 2, w = 3 there exists a path 3→ 1→ 2 such
that v, w ∈ V (3 → 1 → 2) = {1, 2, 3} ⊂ {1, 2, 3}. This is true for all possible
combinations of v, w ∈ {1, 2, 3}, so this is an element of the connected vertex
set. On the other hand, for a vertex set {1, 4}, when v = 1, w = 4, there is
no such path whose vertex sets are subsets of {1, 4}, since all the paths between
v = 1 and w = 4 contain either 2 or 3, which are not elements of {1, 4}.

Intuitively, if all the elements in a vertex set have an edge that connects
these vertices to any of the other elements in the vertex set, such vertices are
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Figure 3.5: A directed graph for illustrating maximum input/output flow.

elements of a connected vertex set; hence the name of the definition. For the
5-zone example in Fig. 3.4, the connected vertex set is

W(G) = {{1}, {2}, {3}, {4}, {5},
{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5},

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5},
{1, 2, 3, 4}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}},

and the size of the connected vertex set |W(G)| is 21.

Definition 3.2 (Maximum Input/Output Flow). For a directed graph G(V,E)
where ∀e ∈ E, f(e) denotes the flow in e and −T−

e ≤ f(e) ≤ T+
e , for all

S ⊆ V,E′ ⊆ E, the maximum input flow I(S|E′) and the maximum output
flow O(S|E′) on E′ are defined as follows:

I(S|E′) = Σ
v∈S,w∈Sc:(v,w)∈E′

T−
(v,w) + Σ

v∈S,w∈Sc:(w,v)∈E′
T+
(w,v), (3.22)

O(S|E′) = Σ
v∈S,w∈Sc:(v,w)∈E′

T+
(v,w) + Σ

v∈S,w∈Sc:(w,v)∈E′
T−
(w,v). (3.23)

Notice that maximum input/output flows are properties of the network

since they are defined only on the basis of line capacities T
+/−
e .

Example 3.2 (Maximum Input/Output Flow). In Fig. 3.5, every edge of the
directed graph has flow capacities in both directions. For the edge (1, 2), the
maximum capacity for the direction 1→ 2 is T+

(1,2), and the maximum capacity

for the direction 2 → 1 is T−
(1,2). Maximum input/output flows are defined on

an edge subset E′ = {(1, 2), (2, 4), (4, 3)} ⊂ E for a vertex subset S. In Fig.
3.5, S = {2, 4}, so the maximum input flow is I(S|E′) = T+

(1,2) + T−
(4,3), and

the maximum output flow is O(S|E′) = T−
(1,2) + T+

(4,3).
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Let us return to our problem. For the sake of brevity, let us denote
W(G(Z,E)) for the network G(Z,E)) for our original problem as W(G) from
now on. Using this new notation, we define the three following sets F, Fp, Fr.

F = {(r+, r−, p, f) ∈ R|Z|
+ × R|Z|

+ × R|Z| × R|E| : (3.24)− (3.26)}

pz + δz = Σ
e=(z,·)∈E

fe − Σ
e=(·,z)∈E

fe, z ∈ Z (3.24)

− r−z ≤ pz ≤ r+z , z ∈ Z (3.25)

− T−
e ≤ fe ≤ T+

e , e ∈ E (3.26)

Fp = {(r+, r−, p) ∈ R|Z|
+ × R|Z|

+ × R|Z| : (3.27)− (3.28)}

− I(S|E) ≤ Σ
z∈S

(pz + δz) ≤ O(S|E), S ∈ W(G) (3.27)

− r−z ≤ pz ≤ r+z , z ∈ Z (3.28)

Fr = {(r+, r−) ∈ R|Z|
+ × R|Z|

+ : (3.29)− (3.30)}

Σ
z∈S

r−z ≥ Σ
z∈S

δz −O(S|E), S ∈ W(G) (3.29)

Σ
z∈S

r+z ≥ − Σ
z∈S

δz − I(S|E), S ∈ W(G) (3.30)

Notice that F is a set defined with the same types of constraints as F+/−

from (3.1) and (3.2), but considering upper and lower bounds for the balancing
energy pz at the same time in Eq. (3.25). Another difference is that F is in
the space of (r+/−, p, f). The goal is to find a projection onto the space of
r+/− only. The resulting projection is the set Fr and Fr = F+ ∩ F−. Fp is a
projection of F onto the space (r+/−, p), and it is used as an intermediate step
to go from F to Fr in order to prove that Fr is indeed a projection of F . Since
the proof for the set F is more general than the proofs for Eqs. (3.1) or (3.2),
we present the proof for F in this section. From now on, for a set A defined in
the space of variables (x, y), we denote Proj(x)(A) as the projection of the set
A onto the space of x.

Theorem 3.4. Proj(r+,r−)(F ) = Fr.

Proof. The proof is based on two steps. First, in Claim 3.4.2, we show that
the projection of F onto the space of (r+, r−, p) is Fp. Second, in Claim 3.4.1,
we show that the projection of Fp onto the space of (r+, r−) is Fr. Claim 3.4.2
and Claim 3.4.1 together imply that Proj(r+,r−)(F ) = Fr. Q.E.D.

Claim 3.4.1. Proj(r+,r−)(Fp) = Fr.

Claim 3.4.2. Proj(r+,r−,p)(F ) = Fp.
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Proof of Claim 3.4.1

In this proof, we use V instead of Z as the vertex set in the set Fp and Fr.

Lemma 3.5. For a graph G(V,E),

I(S1 \ S2|E′) +O(S2 \ S1|E′) ≤ I(S1|E′) +O(S2|E′), ∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. For the sake of compactness, without loss of generality, we leave out
the conditions (v, w) ∈ E′ or (w, v) ∈ E′ under the summation sign. We can
divide I(S1 \ S2|E′) into two terms:

I(S1 \ S2|E′) = Σ
v∈S1\S2,w∈Sc

1

(T−
(v,w) + T+

(w,v))

+ Σ
v∈S1\S2,w∈S1∩S2

(T−
(v,w) + T+

(w,v)). (3.31)

Observe that since S1 \ S2 ⊆ Sc
2, the second term

Σ
v∈S1\S2,w∈S1∩S2

(T−
(v,w) + T+

(w,v)) ≤ Σ
v∈Sc

2 ,w∈S1∩S2

(T−
(v,w) + T+

(w,v)). (3.32)

By changing v and w, we can obtain

Σ
v∈Sc

2 ,w∈S1∩S2

(T−
(v,w) + T+

(w,v)) = Σ
v∈S1∩S2,w∈Sc

2

(T+
(v,w) + T−

(w,v)). (3.33)

In a similar way, O(S2 \ S1|E′) can be divided into two terms:

O(S2 \ S1|E′) = Σ
v∈S2\S1,w∈Sc

2

(T+
(v,w) + T−

(w,v))

+ Σ
v∈S2\S1,w∈S1∩S2

(T+
(v,w) + T−

(w,v)). (3.34)

Since S2 \ S1 ⊆ Sc
1, the second term

Σ
v∈S2\S1,w∈S1∩S2

(T+
(v,w) + T−

(w,v)) ≤ Σ
v∈Sc

1 ,w∈S1∩S2

(T+
(v,w) + T−

(w,v)). (3.35)

By changing v and w, we can obtain

Σ
v∈Sc

1 ,w∈S1∩S2

(T+
(v,w) + T−

(w,v)) = Σ
v∈S1∩S2,w∈Sc

1

(T−
(v,w) + T+

(w,v)). (3.36)

Now observe that the sum of the first term of (3.31) and the right-hand-side
of (3.36) is equal to I(S1|E′). Likewise, the sum of the first term of (3.34) and
the right-hand-side of (3.33) is equal to O(S2|E′). Thus, I(S1 \S2|E′)+O(S2 \
S1|E′) ≤ I(S1|E′) +O(S2|E′). Q.E.D.
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Algorithm 3: Finding feasible p̂ to Fp from (r̂+, r̂−) ∈ Fr

Input: G = (V,E), (r̂+, r̂−) ∈ Fr

Output: p̂
Start with an empty set R← ∅;
while R ̸= V do
Choose v ∈ V \R such that R ∪ v ⊆ W(G);
Fix p̂v satisfying (3.37) - (3.39);

−r̂−v ≤ p̂v ≤ r̂+v (3.37)

p̂v ≥ − Σ
w∈R∩S

p̂w − Σ
w∈S\{R∪v}

r̂+w − Σ
w∈S

δw − I(S|E),

S ∈ W(G) : v ∈ S (3.38)

p̂v ≤ − Σ
w∈R∩S

p̂w + Σ
w∈S\{R∪v}

r̂−w − Σ
w∈S

δw +O(S|E),

S ∈ W(G) : v ∈ S (3.39)

R← R ∪ v;
end while

Claim 3.4.1 Proj(r+,r−)(Fp) = Fr.
Proof. First, we show that Proj(r+,r−)(Fp) ⊆ Fr. From (3.28),

− Σ
v∈S

r−v ≤ Σ
v∈S

pv ≤ Σ
v∈S

r+v . (3.40)

Now it is easy to see that Eqs. (3.40) and (3.27) imply Eqs. (3.29) and (3.30).

Second, we show that Fr ⊆ Proj(r+,r−)(Fp). It suffices to show that, for
all (r̂+, r̂−) ∈ Fr, there exists p̂ such that (r̂+, r̂−, p̂) ∈ Fp. We show that we
can find such p̂ from Algorithm 3 and that it always exists. If it exists, it is
easy to show that p̂ satisfies Eq. (3.28) from Eq. (3.37). Also, observe that
p̂ satisfies Eq. (3.27) because for all S ∈ W(G), over the course of the while
statement, there exists v,R such that S ̸⊆ R,S ⊆ R∪ v. Then Eqs. (3.38) and
(3.39) for S with such v,R become Eq. (3.27).

Now, we show the existence of such p̂ in Algorithm 3. We use mathematical in-
duction. DenoteRi and vi as the node sets and the nodes we get from Algorithm
3 as it iterates over the while statement. For the first step of the induction we
consider the case where R1 = ∅. The lower bound of (3.38) ≤ the upper bound
of (3.37) is implied by Eq. (3.30) and the upper bound of (3.39) ≥ the lower
bound of (3.37) is implied by Eq. (3.29). For showing why the lower bound of
(3.38) ≤ the upper bound of (3.39), pick S1, S2 ∈ {S ∈ W(G) : v1 ∈ S}. From
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(3.29) for S2 \ S1 and (3.30) for S1 \ S2
5 using Lemma 3.5,

Σ
w∈S1\S2

r+w + Σ
w∈S2\S1

r−w ≥

− Σ
w∈S1\S2

δw + Σ
w∈S2\S1

δw − I(S1 \ S2|E)−O(S2 \ S1|E)

≥ − Σ
w∈S1\S2

δw + Σ
w∈S2\S1

δw − I(S1|E)−O(S2|E). (3.41)

Since Σ
w∈(S1∩S2)\v1

(r+w + r−w ) ≥ 0, (3.41) implies

Σ
w∈S1\v1

r+w + Σ
w∈S2\v1

r−w ≥ − Σ
w∈S1

δw + Σ
w∈S2

δw − I(S1|E)−O(S2|E), (3.42)

which is equivalent to the lower bound of (3.38) for S1 ≤ the upper bound of
(3.39) for S2. Thus, p̂v1 satisfying Eqs. (3.37) - (3.39) exists for the case where
R1 = ∅.

For the next step of mathematical induction, assume that, for i ≥ 1, there
exists p̂vk for 1 ≤ k ≤ i satisfying (3.37) - (3.39). For Ri+1 = Ri ∪ vi and
vi+1 ∈ V \ Ri+1, our goal is to show that all the possible combinations of the
upper bounds and the lower bounds from Eqs. (3.37) - (3.39) can be implied by
other inequalities so that we can show that p̂vi+1 exists. First, we show it for the
combinations of upper bounds and lower bounds between (3.37) and (3.38) -
(3.39). Here, we show one out of the two cases: the lower bound of (3.38) ≤ the
upper bound of (3.37). The other case can be shown in a similar fashion. The
set W(G) can be divided into two cases : i) Ri+1 ∩S = ∅ and ii) Ri+1 ∩S ̸= ∅.
For case i), Σ

w∈Ri+1∩S
p̂w = 0 and Σ

w∈S\{Ri+1∪vi+1}
r̂+w = Σ

w∈S\vi+1

r̂+w , so (3.30)

implies that the lower bound of (3.38) ≤ the upper bound of (3.37). For case
ii), from the set {v : v ∈ Ri+1 ∩ S}, pick the node with the largest index l.
Observe that Σ

w∈Ri+1∩S
p̂w = Σ

w∈Rl∩S
p̂w + p̂vl and Σ

w∈S\Ri+1

r̂+w = Σ
w∈S\{Rl∪vl}

r̂+w .

This can be proven by contradiction. Assume that it is not true. Then ∃vm
such that m ̸= l, vm ∈ Ri+1, vm ̸∈ Rl, and vm ∈ S. This contradicts the fact
that l is the largest index. Thus, (3.38) with Rl and vl implies that the lower
bound of (3.38) ≤ the upper bound of (3.37).

For showing why the lower bound of (3.38) ≤ the upper bound of (3.39),
pick S1, S2 ∈ {S ∈ W(G) : v ∈ S}. We have four different cases to show
: i) Ri+1 ∩ S1 = ∅, Ri+1 ∩ S2 = ∅, ii) Ri+1 ∩ S1 ̸= ∅, Ri+1 ∩ S2 = ∅, iii)
Ri+1 ∩ S1 = ∅, Ri+1 ∩ S2 ̸= ∅, iv) Ri+1 ∩ S1 ̸= ∅, Ri+1 ∩ S2 ̸= ∅. Since it is
similar to the other cases, here we only show the argument for case ii) where
Ri+1 ∩ S1 ̸= ∅, Ri+1 ∩ S2 = ∅. From the set {v : v ∈ Ri+1 ∩ (S1 \ S2)},

5It is possible that S1 \S2 ̸∈ W(G) or S2 \S1 ̸∈ W(G), but in this case there exist disjoint
SA, SB ∈ W(G) such that SA ∪SB = S1 \S2 or SA ∪SB = S2 \S1, and we can get the same
results as Eq. (3.41) by summing up (3.29) or (3.30) for SA and the same for SB .
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pick the node with the largest index l. Similar to what we have shown above,
observe that Σ

w∈Ri+1∩(S1\S2)
p̂w = Σ

w∈Rl∩(S1\S2)
p̂w + p̂vl

and Σ
w∈(S1\S2)\Ri+1

r̂+w =

Σ
w∈(S1\S2)\{Rl∪vl}

r̂+w . From (3.38) for S1 \ S2 with Rl, vl and (3.29) for S2 \ S1

using Lemma 3.5, following a similar process as in (3.41) and (3.42) we get the
inequality,

Σ
w∈Ri+1∩S1

p̂w + Σ
w∈S1\Ri+1

r+w + Σ
w∈S2

r−w ≥

− Σ
w∈S1

δw + Σ
w∈S2

δw − I(S1|E)−O(S2|E), (3.43)

which is equivalent to the lower bound of (3.38) for S1 ≤ the upper bound of
(3.39) for S2.

Thus, p̂vi+1
satisfying (3.37) - (3.39) exists and it proves the existence of p̂.

Q.E.D.

Proof of Claim 3.4.2

Lemma 3.6. For a graph G(V,E) for all S1, S2 ⊆ V,E′ ⊆ E,

O(S1 ∪ S2|E′) +O(S1 ∩ S2|E′) = O(S1|E′) +O(S2|E′)− Φ(S1, S2|E′)

I(S1 ∪ S2|E′) + I(S1 ∩ S2|E′) = I(S1|E′) + I(S2|E′)− Φ(S1, S2|E′)

where

Φ(S1, S2|E′) = Σ
v,w∈(S1\S2)∪(S2\S1):(v,w)∈E′

(T+
(v,w) + T−

(v,w)).

Proof. Since it follows an almost identical reasoning, we only show the
case of Maximum Output Flow. For the sake of compactness, without loss of
generality, we leave out the conditions (v, w) ∈ E′ or (w, v) ∈ E′ under the
summation sign. Notice that O(S|E′) consists of the terms related to T+

(v,w)

and those of T−
(v,w). In this proof, the patterns for T+

(v,w) and T−
(v,w) are exactly

the same and what is important is the relationship of summations, so we omit
T+
(v,w) and T−

(v,w) over the course of the equations. Notice that the right-hand-

side can be written as follows:

O(S1|E′) +O(S2|E′)− Φ(S1, S2|E′) =

Σ
v∈S1,w∈Sc

1

+ Σ
v∈S2,w∈Sc

2

− Σ
v∈S1\S2,w∈S2\S1

− Σ
v∈S2\S1,w∈S1\S2

(3.44)

Since

Σ
v∈S1,w∈Sc

1

= Σ
v∈S1\S2,w∈S2\S1

+ Σ
v∈S1\S2,w∈(S1∪S2)c



3.5. Exact Method Using Projection 77

+ Σ
v∈S1∩S2,w∈S2\S1

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

(3.45)

Σ
v∈S2,w∈Sc

2

= Σ
v∈S2\S1,w∈S1\S2

+ Σ
v∈S2\S1,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈S1\S2

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

(3.46)

the first terms of (3.45) and (3.46) are crossed out with the third and the fourth
term of (3.44). From the rest of the terms, observe that

Σ
v∈S1\S2,w∈(S1∪S2)c

+ Σ
v∈S2\S1,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

= Σ
v∈(S1∪S2),w∈(S1∪S2)c

(3.47)

Σ
v∈S1∩S2,w∈S2\S1

+ Σ
v∈S1∩S2,w∈S1\S2

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

= Σ
v∈(S1∩S2),w∈(S1∩S2)c

. (3.48)

The right-hand-side of (3.47) is O(S1∪S2|E′) and the right-hand-side of (3.48)
is O(S1∩S2|E′). Thus, O(S1∪S2|E′)+O(S1∩S2|E′) = O(S1|E′)+O(S2|E′)−
Φ(S1, S2|E′). Q.E.D.

Definition 3.3 (Net Output Flow). For a directed graph G(V,E) where ∀e ∈
E, f̂(e) denotes the flow in e, for all S ⊆ V,E′ ⊆ E, the Net Output Flow on
E′, Γ(S|E′) is defined as follows:

Γ(S|E′) = Σ
(v,w)∈E′:v∈S

f̂(v,w) − Σ
(v,w)∈E′:w∈S

f̂(v,w). (3.49)

Lemma 3.7. For a graph G(V,E),

Γ(S1|E′)− Γ(S2|E′) = Γ(S1 \ S2|E′)− Γ(S2 \ S1|E′),∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. For the sake of compactness, without loss of generality, we leave out
the conditions (v, w) ∈ E′ under the summation sign.

Γ(S1|E′) = Σ
v∈S1\S2

f̂(v,w) + Σ
v∈S1∩S2

f̂(v,w)

− Σ
w∈S1\S2

f̂(v,w) − Σ
w∈S1∩S2

f̂(v,w) (3.50)

Γ(S2|E′) = Σ
v∈S2\S1

f̂(v,w) + Σ
v∈S1∩S2

f̂(v,w)

− Σ
w∈S2\S1

f̂(v,w) − Σ
w∈S1∩S2

f̂(v,w) (3.51)
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Observe that

Γ(S1|E′)− Γ(S2|E′) = ( Σ
v∈S1\S2

f̂(v,w) − Σ
w∈S1\S2

f̂(v,w))

− ( Σ
v∈S2\S1

f̂(v,w) − Σ
w∈S2\S1

f̂(v,w))

= Γ(S1 \ S2|E′)− Γ(S2 \ S1|E′).

(3.52)

Q.E.D.

Lemma 3.8. For a graph G(V,E),

Γ(S1 ∪ S2|E′) + Γ(S1 ∩ S2|E′) = Γ(S1|E′) + Γ(S2|E′),∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. It can be easily shown by the fact that Σ
v∈(S1∪S2)

+ Σ
v∈(S1∩S2)

=

Σ
v∈S1

+ Σ
v∈S2

. Q.E.D.

Algorithm 4: Finding feasible f̂ to F from (r̂+, r̂−, p̂) ∈ Fp

Input: G = (V,E), (r̂+, r̂−, p̂) ∈ Fp

Output: f̂
Start with an empty set Q← ∅;
while Q ̸= E do
1. Choose (v, w) ∈ E \Q ;

2. Fix f̂(v,w) satisfying (3.53) - (3.57);

−T−
(v,w) ≤ f̂(v,w) ≤ T+

(v,w) (3.53)

For all S ∈ W(G) : v ∈ S,w ̸∈ S

f̂(v,w) ≥ Σ
u∈S

(p̂u + δu)− Γ(S|Q)−O(S|E) +O(S|Q ∪ (v, w)) (3.54)

f̂(v,w) ≤ Σ
u∈S

(p̂u + δu)− Γ(S|Q) + I(S|E)− I(S|Q ∪ (v, w)) (3.55)

For all S ∈ W(G) : v ̸∈ S,w ∈ S

f̂(v,w) ≥ − Σ
u∈S

(p̂u + δu) + Γ(S|Q)− I(S|E) + I(S|Q ∪ (v, w)) (3.56)

f̂(v,w) ≤ − Σ
u∈S

(p̂u + δu) + Γ(S|Q) +O(S|E)−O(S|Q ∪ (v, w)) (3.57)

3. Q← Q ∪ (v, w);
end while

Claim 3.4.2 Proj(r+,r−,p)(F ) = Fp.
Proof. First, we show that Proj(r+,r−,p)(F ) ⊆ Fp. Notice that (3.25) and

(3.28) are identical. So, it suffices to show that Eqs. (3.24) and (3.26) imply
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Eq. (3.27). From Eq. (3.24),

Σ
v∈S

(pv + δv) = Σ
v∈S,w∈Sc

f(v,w) − Σ
v∈S,w∈Sc

f(w,v), S ∈ W(G). (3.58)

Now, it is easy to see that Eqs. (3.58) and (3.26) imply Eq. (3.27). Second, we
show that Fp ⊆ Proj(r+,r−,p)(F ). It suffices to show that for all (r̂+, r̂−, p̂) ∈
Fp, there exists f̂ such that (r̂+, r̂−, p̂, f̂) ∈ F. We show that we can find such f̂
from Algorithm 4 and that it always exists. If it exists, it is easy to show that
f̂ satisfies (3.26) from (3.53). Also, observe that f̂ satisfies (3.24) from Eqs.
(3.54) - (3.57). For all v ∈ V , let E(v) = {e ∈ E : e = (v, ·)∪e = (·, v)}. During
the course of Algorithm 4, when we pick (v, w) such that E(v) ⊂ Q ∪ (v, w),
with such Q and S = {v}, Eqs. (3.54) and (3.55) become Eq. (3.24). Likewise,
when we pick (w, v) such that E(v) ⊂ Q ∪ (w, v), with such Q and S = {v},
Eqs. (3.56) and (3.57) become Eq. (3.24).

Now, we show the existence of such f̂ in Algorithm 4. We use mathemati-
cal induction. For the first step we consider the case where Q1 = ∅. Then,
Γ(S|Q1) = 0 for all S ∈ W(G). We want to show that (3.27) implies all the
possible combinations of upper bounds and lower bounds among Eqs. (3.53)
- (3.57). This can be done through Lemma 3.5 and 3.6. For the next step

of mathematical induction, assume that for i ≥ 1, there exists f̂(vk,wk) for
1 ≤ k ≤ i satisfying Eqs. (3.53) - (3.57). For Qi+1 = Qi ∪ (vi, wi) and
(vi+1, wi+1) ∈ E \Qi+1, our goal is to show that all the possible combinations
of the upper bounds and the lower bounds from Eqs. (3.53) - (3.57) can be

implied by other inequalities so that we can show that f̂(vi+1,wi+1) exists. First
we show this for the combinations of upper bounds and lower bounds between
Eqs. (3.53) and (3.54) - (3.57). This can be done through Lemma 3.5 and 3.7.
Lastly, we need to show that the lower bound of (3.54) ≤ the upper bound of
(3.57) and the upper bound of (3.55) ≥ the lower bound of (3.56). This can

be done through Lemma 3.6 and 3.7. Thus, f̂(vi+1,wi+1) satisfying Eqs. (3.53)

- (3.57) exists and it proves the existence of f̂ . Q.E.D.

Corollary 3.9. Proj(r+,r−)(F
+/−) = F

+/−
r , where

F−
r = {r− ∈ R|Z|

+ : (3.29)}, F+
r = {r+ ∈ R|Z|

+ : (3.30)}.

Theorem 3.4 and Corollary 3.9 show that the set Fr is indeed an explicit
representation of the projection of F on the space of the first-stage variables

r+/−, resulting in Proj(r+,r−)(F
+/−) = F

+/−
r .

Theorem 3.10. Fr is a minimal representation on the space of (r+, r−).

Proof. Since the proof for the set of inequalities (3.29) is similar to the
case for Eq. (3.30), we show here the case for Eq. (3.29). In order to show
that Eq. (3.29) is a minimal representation on the space of r−, to arrive at a
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contradiction, first let us assume that there exists a set S′ ∈ W(G) such that
there exist mutually different sets S′

1, . . . , S
′
n ∈ W(G) by which the inequality

constructed in the form of Eq. (3.29) dominates the inequality for the set S′.
Formally, this means that there exist coefficients α1, . . . , αn ≥ 0 that satisfy
the following conditions (3.59) and (3.60):

α1 Σ
v∈S′

1

r−v + · · ·+ αn Σ
v∈S′

n

r−v ≤ Σ
v∈S′

r−v (3.59)

α1 Σ
v∈S′

1

δv + · · ·+ αn Σ
v∈S′

n

δv − α1O(S′
1|E)− · · ·

− αnO(S′
n|E) ≥ Σ

v∈S′
δv −O(S′|E) (3.60)

In order to satisfy the inequalities (3.59) and (3.60) for all possible values
of r−v and δv, Σ

i:v∈S′
i

αi = 1 for all v ∈ S′ and Σ
i:v∈S′

i

αi = 0 for all v ∈ V \ S′.

This implies that for all i ∈ {1, . . . , n}, S′
i ⊆ S′ and

⋃n
i=1 S

′
i = S′. Notice that

the left-hand side and the right-hand side of Eq. (3.59) are equal, and (3.60)
becomes

O(S′|E) ≥ α1O(S′
1|E) + · · ·+ αnO(S′

n|E). (3.61)

Since the right-hand side of Eq. (3.61)

α1O(S′
1|E) + · · ·+ αnO(S′

n|E) =

Σ
i:v∈S′

i

αi · ( Σ
v∈S′,w∈(S′)c

T+
(v,w) + Σ

v∈S′,w∈(S′)c
T−
(w,v)) + Õ

= O(S′|E) + Õ,

where

Õ =
n

Σ
i=1

n

Σ
j=1

αi( Σ
v∈S′

i,w∈(S′
i)

c∩Sj

T+
(v,w) + Σ

v∈S′
i,w∈(S′

i)
c∩Sj

T−
(w,v)) > 0,

this contradicts the initial assumption. Q.E.D.

Corollary 3.11. F
+/−
r is a minimal representation on the space of r+/−.

Theorem 3.10 and Corollary 3.11 show that the sets of inequalities (3.29)
and (3.30) are indeed minimal representations for the projection of F (or
F+/−). Notice that the inequalities (3.29) and (3.30) have an intuitive ex-
planation. For certain combinations of zones, the sum of the reserve capacities
should cover the total imbalances for the zones net of the maximum input [resp.
output] flow for upward [resp. downward] reserves. For the case of infinite line
capacities, where T+/− is infinity, our multi-area problem amounts to a single-
zone problem. This can be checked from Eqs. (3.29) and (3.30), where the
only non-redundant constraints are when S ∈ W(G) is equal to the set of all
the zones Z, which is equivalent to the case where we aggregate all the zones
in one region.
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Figure 3.6: A directed graph for illustrating reformulations.

Example 3.3 (Minimal Projection). In order to illustrate the reformulation
more explicitly, we provide a three-node example in Fig. 3.6. Firstly, the
connected vertex set for the three-node graph is

W(G) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.

Accordingly, we write down all the constraints for F+
r as follows:

r+1 ≥ −δ1 − T−
(1,2)

r+2 ≥ −δ2 − T+
(1,2) − T−

(2,3)

r+3 ≥ −δ3 − T+
(2,3)

r+1 + r+2 ≥ −δ1 − δ2 − T−
(2,3)

r+2 + r+3 ≥ −δ2 − δ3 − T+
(1,2)

r+1 + r+2 + r+3 ≥ −δ1 − δ2 − δ3.

F−
r can be written down in a similar fashion.

As in Example 3.3, the representation r+/− ∈ F+/− in constraint (3.3b)
can be replaced by A+/−r+/− ≥ ξ+/−, where A+ and A− are linear maps,
and there are uncertain parameters only in the right-hand-sides ξ+ and ξ−.
The resulting new formulation is only involving the first-stage variables. Now
that we have derived an explicit representation with inequalities, this new for-
mulation enables us to apply the integer programming techniques for joint
chance-constrained programs, introduced in chapter 1. Thanks to Corollary
3.11, we are guaranteed that our representation is minimal, so that the number
of inequalities within the probabilistic constraints is minimized. This is crucial
for the computational performance of our method, since, as the number of in-
equalities increases, the linear programming relaxation gap tends to be larger.
We can now introduce a tightening step using integer programming techniques.
In the following subsection, we introduce one such technique known as strong
extended formulation.

3.5.2 Strengthened Formulation

Thanks to the projection formulation in the previous subsection, our problem
(3.3) can be represented as follows.
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min Σ
z∈Z

(r+z + r−z )

s.t. Pr{A+/−r+/− ≥ ξ+/−} ≥ 1− ϵ+/−

r+/− ≥ 0

(3.62)

The main difference between this representation and Eq. (3.3b) is that the
polyhedron on the space of the variables r+/− in the probabilistic constraint is
now explicitly known in the form of a set of inequalities.

Again, we use sample approximation approach to reformulate the proba-
bilistic constraint. For i ∈ [N ], δzi denotes the imbalance of scenario i at zone

z and T
+/−
ei the transmission network capacities of line e for scenario i. Notice

that, in Eq. (3.62), ξ+/− is a linear combination of δz and T
+/−
e , as in Exam-

ple 3.3. Here, ξ
+/−
i refers to the right-hand-side vector under scenario i. By

introducing new binary variables u
+/−
i for each scenario i, our problem can be

reformulated as follows.

min Σ
z∈Z

(r+z + r−z )

s.t. A+/−r+/− + ξ
+/−
i u

+/−
i ≥ ξ

+/−
i , ∀i ∈ [N ]

Σ
i∈N

u
+/−
i ≤

⌊
ϵ+/−N

⌋
r+/− ≥ 0, u+/− ∈ {0, 1}N ,

(3.63)

where u
+/−
i = 1 indicates that, under scenario i, the constraint of balancing

the system is violated; thus, the number of violated scenarios should be less
than or equal to ϵ+/−N , according to the direction of the reserves.

The reformulation Eq. (3.63) is a mixed-integer linear programming prob-
lem. Although it is a form that can be plugged into a commercial solver, this
step alone cannot solve large-scale instances to optimality due to the big LP
relaxation gap. In order to close this gap, we need to exploit the specific struc-
ture of the formulation. In Eq. (3.63), our main constraint has a form that
is widely studied, the mixing set, that is introduced in chapter 1. Note that,
when y is equal to the j-th row of A+/−r+/−, and hi = ξij , where ξij denotes
the j-th component of the vector ξi, our formulation in Eq. (3.63) has the
form of a mixing set. In fact, there are multiple mixing sets, as many as the
number of rows of A+/−r+/−. Each of these sets is tightened independently
through the special types of inequalities named mixing inequalities. This allows
us access to a set of techniques that help us close the LP relaxation gap. By
utilizing the extended formulation Eq. (1.28), we obtain a new reformulation,
the strengthened minimal projection formulation.
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3.5.3 Strengthened Minimal Projection Formulation

Formulation

The strengthened minimal projection formulation using F
+/−
r (Eq. (3.29), Eq.

(3.30)) and EG in Eq. (1.27) is formally defined as follows:

min Σ
z∈Z

(r+z + r−z )

s.t. Σ
z∈S

r+/−
z +

q+/−

Σ
i=1

(h
+/−
S,i − h

+/−
S,i+1)w

+/−
S,i ≥ h

+/−
S,1 , S ∈ W(G)

w
+/−
S,i − w

+/−
S,i+1 ≥ 0, ∀i ∈ [q+/− − 1], S ∈ W(G)

u
+/−
σ
+/−
S,i

− w
+/−
S,i ≥ 0, ∀i ∈ [q+/−], S ∈ W(G)

N

Σ
i=1

u
+/−
i ≤ q+/−

r+/− ≥ 0, u+/− ∈ {0, 1}N , w+/− ∈ {0, 1}q
+/−·|W(G)|,

(3.64)

where q+/− =
⌊
ϵ+/−N

⌋
.

For S ∈ W(G),

h+

S,σ+
S,i

= − Σ
v∈S

δv,i − Ii(S|E) (3.65a)

h−
S,σ−

S,i

= Σ
v∈S

δv,i −Oi(S|E), (3.65b)

where σ
+/−
S,i are the permutations that rearrange the indices as h+

S,1 ≥ h+
S,2 ≥

· · · ≥ h+
S,N and h−

S,1 ≥ h−
S,2 ≥ · · · ≥ h−

S,N , and for i ∈ [N ]

Ii(S|E) = Σ
v∈S,w∈Sc:(v,w)∈E

T−
(v,w),i + Σ

v∈S,w∈Sc:(w,v)∈E
T+
(w,v),i, (3.66)

Oi(S|E) = Σ
v∈S,w∈Sc:(v,w)∈E

T+
(v,w),i + Σ

v∈S,w∈Sc:(w,v)∈E
T−
(w,v),i. (3.67)

Implementation

The formulation of Eq. (3.64) is a Mixed-Integer Linear Programming prob-
lem which can be directly solved by commercial solvers such as CPLEX and
GUROBI. However, in order to implement the algorithm, three elements are

required: the connected vertex set W(G), the coefficients of mixing sets h
+/−
S,i

and the permutations σ
+/−
S,i for all S ∈ W(G) and i ∈ [N ].
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Generation of Connected Vertex Set

Algorithm 5: Generation of W(G)
Input: G = (V,E)
Output: W
Select a start node v0 ∈ V ;
Initialize W = {{v0}}, Vsel = {v0}, Esel = ∅;
while Esel ̸= E do
Choose
e = (v, w) ∈ E(Vsel) = {e′ ∈ E : ∃v′ ∈ Vsel s.t. e

′ = (v′, ·) or e′ = (·, v′)};
Esel ← Esel ∪ {e};
if v, w ∈ Vsel then
Wv ← {S ∈ W : v ∈ S};
Ww ← {S ∈ W : w ∈ S};
for S1 ∈ Wv, S2 ∈ Ww do
W ←W ∪ {S1 ∪ S2};

end for
else
(WLOG assume v ∈ Vsel and w ̸∈ Vsel);
W ←W ∪ {{w}};
Vsel ← Vsel ∪ {w};
Wv ← {S ∈ W : v ∈ S};
for S ∈ Wv do
W ←W ∪ {S ∪ {w}};

end for
end if

end while

The connected vertex set of a graph G = (V,E) can be generated using
Algorithm 5. The size of the resulting connected vertex set W(G) varies ac-
cording to the topology of the graph G. When the graph is radial and all the
nodes are connected (such as chains), the size of the connected vertex set is
minimal and it is |W(G)| = 1/2 · |V |(|V |+1). The worst-case scenario is when
the graph is a complete graph where all the nodes are connected to each other.
In this case, the size of the connected vertex set is |W(G)| = 2|V | − 1. For the
graph in Fig. 3.4, there are 5 zones, so the size (|W(G)| = 21) is within the
range of 4 · 5/2 = 10 ≤ 21 ≤ 25 − 1 = 31.

The W(G) Generation algorithm presented in this section has a worst-case
complexity6 of O(|E| · 2|V |). This is significantly lower than the complex-
ity of general-purpose projection methods. For instance, the Fourier-Motzkin-
Elimination algorithm [Mot36], which is a well-known general projection method,

is known for its double exponential complexity, that is O((|E|+ |V |)2(|E|+|V |)
)

for our case. A recently developed general algorithm [JMMT20] enjoys a sin-

6The algorithm scans every e ∈ E, and for each e in a worst-case scenario it can scan all
the pairs of v ∈ V , which has a complexity of O(2|V |).
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gle exponential complexity, but with much higher exponents; namely O((|E|+
|V |)2.5(|E|+2|V |) · (|E|+ 2|V |)3) for our problem.

Sorting

Now that we have |W(G)|, we are ready to generate the remaining elements

h
+/−
S,i and σ

+/−
S,i . An easy way to obtain the parameters h

+/−
S,i , σ

+/−
S,i is to calcu-

late the right-hand-side for each scenario i in (3.65) and sort these right-hand
side parameters in non-increasing order. Then, the resulting non-increasing

sequence becomes h
+/−
S,i and the corresponding permutation of the indices be-

comes σ
+/−
S,i . As the size of the connected vertex set can be exponential with

respect to the number of zones, the time for the process of calculating h
+/−
S,i

and σ
+/−
S,i is non-negligible. In the next subsection, we present the calculation

time for pre-processing as well as the solver time for the optimization problem
when we present the computational results for a case study.

3.5.4 Computational Results

In this section, we compare our strengthened minimal projection method with
the alternatives of previous sections. First, we compare the projection method
with another exact method using Benders’ Decomposition in section 3.4. Ad-
ditionally, we also compare with the heuristic method by [PBA+21] introduced
in section 3.3.

Comparison with an Exact Method

In this subsection, we compare our method with another exact method that
also guarantees to solve the problem to optimality [CP22], introduced in sec-
tion 3.4. This method uses the theory in [Lue14], which is based on Bender’s
Decomposition [Ben62]. Roughly, it tries to solve the two-stage chance con-
straint problem directly instead of reformulating it. It does so by generating
inequalities of the type of Eq. (1.26) through Bender’s Decomposition. The
computational results of this alternative method are much faster than solving
the Big-M formulation of Eq. (3.7) to optimality shown in section 3.4.3. How-
ever, this direct approach to solving two-stage chance-constrained problems
is not scalable to the size of realistic instances. The method in [CP22], for
example, requires approximately 30 minutes to solve instances of four zones
with 5,000 samples to optimality. On the other hand, our method using the
formulation of Eq. (3.64) can achieve the optimal solution for the same size of
instances within 1 second. One of the reasons for the subpar performance of
this alternative method is the inequality generation step. For methods based
on Bender’s Decomposition in chance-constrained problems, in order to gener-
ate a single inequality that is similar to Eq. (1.26), a linear program should be
solved N times, the number of scenarios. As the size of the problem increases,
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the number of inequalities and scenarios increase at the same time. On the
contrary, through the minimal projection step and the additional strengthen-
ing step, our formulation is already in a compact form that does not require
any inequality generating steps. Since this method has been found to not scale
to large instances, we proceed to compare our method with a heuristic method
using the Big-M formulation of Eq. (3.7).

3.5.5 Case Study: Comparison with a Heuristic Method

For the comparison, a case study of the Nordic system is considered. In this
case study, as indicated in Fig. 3.7, three Nordic countries (Norway, Sweden
and Finland) are involved, and they account for 10 bidding zones with 15
links. The reference data for imbalances for each zone and the network capacity
are sourced from [Boe17]. For the imbalances, we generate samples from a
normal distribution with zero mean and a standard deviation equal to the
reference imbalances. For the network capacity, we add perturbations to the
reference data for each sample. The perturbations are distributed according to
a normal distribution with zero mean and a standard deviation equal to 5%
of the value of the reference data. For all the figures Fig. 3.8 - 3.11, the bar
charts refer to the mean of 100 simulations in which the middle lines indicate
the standard deviation. Throughout the case study, we use GUROBI version
9.51 as optimization solver with JuMP embedded in the programming language
Julia, and computing equipment with a SkyLake CPU (2.3GHz).
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Figure 3.7: Bidding zones and transmission network lines for a case study of the
Nordic countries.

Figure 3.8: Comparison between Strengthened Minimal Projection Method and the
LP Based Heuristic Method when the sample size is N = 25, 000 in terms of optimal
objective function value.
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Figure 3.9: Comparison between Strengthened Minimal Projection Method and the
LP Based Heuristic Method when the sample size is N = 25, 000 in terms of total
solving time.

We compare the minimal projection based method and the LP based heuris-
tic method in [PBA+21], introduced in section 3.3. In Fig. 3.8 and Fig. 3.9,
the results comparing the optimal reserve sizes and the total solving time7 are
presented for varying degrees of reliability levels (ϵ) when the sample size is
N = 25, 000. The Minimal Projection Method can be solved notably faster
than the LP Based Heuristic, and finds the optimal solution. This seemingly
counter-intuitive result can be explained by the fact that the strengthened min-
imal projection formulation (3.64) often has a smaller size than the formulation
(3.7) in terms of the number of variables and constraints. Notice that q << N ,
thus each set of constraints in Eq. (3.64) is repeated q times whereas that
in Eq. (3.7) is N times. Additionally, even though the size of the connected
vertex set W(G) is exponential, it is often the case that h+/− in (3.65) are all
negative, resulting in adding redundant constraints that can be ignored or auto-
matically removed in pre-processing steps of commercial optimization solvers.
This phenomenon happens more often when the capacities of lines T+/− are
sufficiently large compared to the level of imbalances δ. In an extreme case
where T+/− is infinity, the only constraints left are

∑
z∈Z r+/− ≥ ∓

∑
z∈Z δz,

which is equivalent to a single-zone problem.
The gap between the optimal solution and the sub-optimal solution from the

LP method when ϵ = 1% is around 18.9%. As ϵ becomes smaller, since q also
becomes smaller, the optimization problem becomes less complex, resulting in
a smaller gap between the optimal solution and the sub-optimal solution and

7The total solving time includes the data pre-processing time and the time for optimiza-
tion solved by the commercial solver. The data pre-processing time refers to the time for
generating a connected vertex set and sorting, which are necessary for actually running the
solver.
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a faster solving time. However, the high value of the standard deviation in
the optimal solution for ϵ = 0.1% implies that the sample size is not sufficient.
When we increase the sample size, then the gap also increases.

Figure 3.10: Sensitivity analysis for the sample approximation approach over sample
size when epsilon is 1%.

Figure 3.11: Solving time for the Strengthened Minimal Projection Method over
sample size when epsilon is 1%.

Additionally, in Fig. 3.10, we present a sensitivity analysis of the sample
approximation approach with respect to the sample size for our case study.
There are two issues when the number of samples is low. First, the variance of
the optimal objective function value is high. In Fig. 3.10, this is captured with
the coefficient of variance (CV), which is the variance divided by its mean. One
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can observe that CV is the highest (1.1%) for the case of N = 10, 000, and as
the sample size increases, the CV decreases and the value of reserve stabilizes.
Secondly, a typical phenomenon of the sample approximation method that
is introduced in [LA08] is an underestimation of the true objective function
value, in the sense that the resulting optimal objective function value tends to
be lower than the true optimal objective function value of the problem. This
can be observed in Fig. 3.10.

Lastly, we analyze the solving time for the Strengthened Minimal Projection
Method over different sample sizes in Fig. 3.11. Notice that ϵ = 1% is the most
computationally complex problem among the three different levels of ϵ. Our
method allows us to solveN = 500, 000 samples in less than 30 minutes in terms
of optimization time. In general, the data pre-processing time is non-negligible
due to the exponential size of the connected vertex set W(G); however, the
bottleneck complexity is O(N logN) due to the sorting algorithm that is still
scalable. In practice, if one needs to solve the problem dynamically, adding
new samples to an already-sorted list (which can be expected to be the case in
practice, based on information communicated to us by Nordic TSOs) is much
easier than sorting the entire list, and in this case the data pre-processing time
is negligible.

3.6 Conclusion

In this chapter, several methods are introduced for solving the chance-constrained
multi-area reserve sizing problem. Even though the basic formulation is the
same for all the methods, there can be various approaches especially through
different types of reformulations. First, a heuristic algorithm is presented us-
ing “Big-M” method, that is one of the most generic way of reformulating such
type of problem. Later, other two algorithms are based on integer programming
techniques, mixing sets, mixing inequalities, and the strong extended formula-
tion. The algorithm in section 3.4 is the Branch-and-Cut algorithm based on
Benders’ Decomposition. Finally, the last method using the minimal projection
concept is exhibited. By identifying a minimal representation of the projected
set of our feasible region, this approach can deal with instances of realistic size,
and this is shown in a case study of the Nordic system.

All the three methods introduced in this section assume transportation-
based networks. This means that all the approaches can also be used in different
domains. Nevertheless, in future work, it is possible to extend the model with
different approximations of power flow constraints in order to represent power
systems more accurately. For example, a DC (Direct Current) approximation
can be an option. Furthermore, from the perspective of better calculation,
more recent IP techniques can be applied for solving the minimal projection
formulation.



4 Conclusion

4.1 Summary of the contributions

The increasing need for considering uncertainty in power systems calls for ad-
vancements in optimization under uncertainty, providing decision-makers with
the tools to make more informed choices. As practical requirements become
more specific and complex, standard methodologies are no longer sufficient. In
addition to algorithmic developments, modeling plays a crucial role as one of
the essential foundations for further enhancements. Modeling not only bridges
the gap between practical needs and current computational capabilities, but
also contributes to improving the performance of specific problem types. This
dissertation presents two primary examples to illustrate the importance and
potential of modeling. The first example focuses on pricing under uncertainty,
specifically in the context of real-time markets. The second example addresses
the determination of the optimal reserve size while satisfying explicit proba-
bilistic reliability constraints across multiple zones. The thesis is organized into
two main parts, each corresponding to one of these distinct examples.

Chapter 2 studies pricing under uncertainty in multi-interval real-time mar-
kets. Considering the inter-temporal constraints of market participants, some
system operators operate their markets in a multi-interval manner. One in-
evitable consequence of such multi-interval consideration is the rolling imple-
mentation of market clearing, where the market horizon is shifted at each time
step, leading to the addition of new future information while losing past in-
formation. The analysis of the effects of this procedure is not straightforward,
even in deterministic cases.

This chapter first discusses theories in deterministic cases, starting with
the assumption of a fixed horizon, then addressing rolling implementation with
a fixed horizon, and finally examining rolling implementation with a moving
horizon. A fundamental finding in this analysis, which aims to mitigate the dis-
tortions resulting from rolling operation, is that the model for optimal dispatch
decisions and the optimization model for pricing are not the same. This seem-
ingly counterintuitive fact is discussed in terms of minimizing lost opportunity
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costs over a longer horizon, which aligns more closely with reality. Later, this
is empirically demonstrated through a case study.

The analysis in the deterministic case allows us to extend our exploration to
the uncertain case. In doing so, two alternative metrics are introduced, which
are generalizations of the concept of lost opportunity cost. By unveiling the
relationships between all these metrics, a method is proposed that minimizes
one of the metrics, serving as an upper bound for all the others. This approach,
which identifies the potential for reformulation, employs the stochastic gradi-
ent algorithm to solve the proposed method instead of resorting to multi-stage
stochastic programming. As a result, it becomes possible to obtain reason-
ably close to optimal solutions for realistic-scale problems within a short time
frame (5 - 15 minutes). This serves as an exemplary demonstration of the
power of modeling because it establishes a connection between typical multi-
stage stochastic programming and unconstrained stochastic programming by
identifying their underlying relationship and addressing a practical need.

Chapter 3 addresses the multi-area reserve dimensioning problem. The
goal of this problem is to find optimal allocations of reserves under reliabil-
ity constraints explicitly specified as probabilistic constraints. Starting from
a two-stage chance-constrained programming formulation, three different re-
formulations are explored, each leading to different methodologies. The last
approach, in particular, exploits the minimal description of projection on first-
stage variables and manages to solve real-world problems to optimality. Thanks
to the simplicity of the method and its high performance, it has actually been
adopted by one of the Nordic TSOs (Transmission System Operators) in their
operation. This exemplifies the necessity of modeling, especially in problems
involving integer (binary) variables.
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