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Abstract

Power systems present a variety of characteristics which makes their opera-
tion challenging. One complication of power system operation is the necessity
of the overall structure to react to uncertain events, which are becoming in-
creasingly important as the energy transition results in the expansion of re-
newable technologies, and decision makers are faced with the task of reacting
to unforeseen events. From a methodological point of view, this novel energy
landscape implies that the scale of the scheduling and planning problems at
hand is becoming increasingly large, which poses challenges to state-of-the-art
optimization techniques. This dissertation aims at proposing novel algorithmic
schemes, supported by high performance computing, that help with addressing
the increasingly relevant paradigm of optimization under uncertainty in power
systems.

The first part of this thesis considers a class of problems referred to as
multistage stochastic optimization problems. We specifically focus on the long-
term hydrothermal scheduling problem. This class of problems is known to
be difficult to tackle. We build upon the SDDP algorithm, and extend the
algorithm through high performance computing. We specifically exploit high
performance computing in order to study a variety of strategies for speeding up
the overall algorithmic performance. We benchmark our proposed algorithmic
scheme against PSR SDDP, an industrial scale implementation, and report
favorable performance comparisons. Furthermore, we discuss the connections
between our techniques and the reinforcement learning framework.

The second part of this dissertation considers the ongoing European Re-
source Adequacy Assessment. This study aims at measuring the capacity of
the power system network to react to future uncertain conditions. Institution-
ally, the adequacy concerns identified through such a study support Member
States in determining the need for national capacity mechanisms. A critical
methodological step of the overall study is to determine the generation capac-
ity expansion opportunities as well as decommissioning decisions of existing
capacity that will occur in the upcoming years, thus naturally leading us to
a framework of optimization under uncertainty. As a first step to address the
problem, this thesis considers the single-year setting used for the 2021 version
of the study. We leverage the two-stage stochastic programming framework,
and propose parallel computing algorithmic schemes for tackling the problem.
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1 Introduction

1.1 Context and motivation

In an uncertain world, how can we make good decisions? Decision-makers are
often faced with the responsibility of taking actions within complex systems,
actions which have to be taken so as to react properly to future uncertain events.
One such complex system, often described as the largest device ever built by
humankind, is the electrical power system. The increased supply in energy
derived from power systems has boosted our technological development, leading
to a remarkable progress of society. However, consequences have emerged as
well, unveiling the crucial importance of the decision-making processes that
take place in power systems.

On the one hand, the greenhouse gas emissions resulting from the electrical
infrastructure have impacted our environment. In order to mitigate such an
adverse effect, during recent years, a proliferation of renewable resources has
been observed and governments have put legislation in place in order to reduce
greenhouse gas emissions, an example being the European Commission’s target
to reduce the European Union carbon footprint by 55% by 2030 [Com19a].
These renewable resources are inevitably controlled by nature’s unpredictable
availability of natural resources, and decision-makers are now faced with the
task of making optimal decisions in such an increasingly uncertain environment.
Moreover, unfortunate recent events such as the Russian invasion in Ukraine
unveil the lack of preparedness of the electrical power system for reacting to
unforeseen events. In fact, this conflict has created a disruption in gas supply,
leading to a massive increase in electricity prices all across Europe [Com22], and
leading to major efforts in order to secure enough gas reserves for the winter of
2022. As such, the electrical power system is expected to react to a variety of
uncertain conditions, and tools must be developed that allow decision-makers
to reach optimal decisions in such a complex and uncertain setting.

An approach for modeling the decision-making process is through mathe-
matical programming. Specifically, stochastic programming [BL11] is a branch
of math programming that focuses on optimization under uncertainty. The

1
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past few decades have witnessed a proliferation of stochastic programming ap-
plications within power system operations. Systems where a decision must
be reached before the realization of uncertainty have often been modeled as
two-stage stochastic problems. Examples range from early applications in gen-
eration expansion planning [Blo82] or stochastic unit commitment [TBL96], to
recent developments that target real-world capacity generation expansion prob-
lems [GAC14], large-scale stochastic unit commitment [POR14] or resource
adequacy assessments [EE21]. Systems where multiple decisions have to be
reached over time, each one without knowledge of the future, have been mod-
eled as multi-stage stochastic programs. From early developments aiming at
long-term hydrothermal scheduling [PP91], to recent developments targeting
trading decisions within hydro systems [LWM13], real-time storage dispatch
[PMCS17], gas storage valuation [LW20] or demand side response [GÁM+22],
both industry and academia have seen a widespread usage of these techniques.
Nonetheless, limitations have become a matter of concern as well.

In the context of multi-stage stochastic programming, with specific applica-
tions in hydrothermal scheduling, questions have emerged regarding the com-
putational tractability of finding an optimal solution [STdCS13]. Concretely,
it has been observed that after days of computation, state of the art algorithms
can be far from reaching an optimal solution. Such an observation is not an
isolated one, and in fact our research has detected a similar behaviour using
the state-of-the-art commercial software.

Insofar as applications in resource adequacy are concerned, regulation (EU)
943\2019 [Com19c] of the European Commission foresees the European Re-
source Adequacy Assessment (ERAA) [EE21], which aims at measuring the
ability of the electric power system to react to adverse uncertain conditions. In
particular, the adequacy concerns identified through this study can become the
basis for member states to apply for capacity mechanisms. This consequently
results in an institutional urge to develop an accurate resource adequacy as-
sessment methodology. The scale of the problem at hand is of significant mag-
nitude. Empirical evidence suggests that high performance computing servers
equipped with the state-of-the-art commercial software are not able to tackle
the problem.

The aforementioned empirical evidence indicates that, despite the existence
of tools which aim at enabling the decision making process, as the scale of power
system models increases and as the amount of uncertainty increases, state of the
art commercial tools are becoming insufficient to address these novel concerns.
The present thesis aims at bridging this methodological gap, by proposing novel
algorithmic methods based on ideas from stochastic programming and high
performance computing in order to provide feasible computational solutions for
a variety of problems. We specifically focus on two applications: the multi-stage
stochastic programming formulation of the long-term hydrothermal planning
problem, and the two-stage stochastic capacity expansion problem, which is
part of the European Resource Adequacy Assessment.

The present chapter aims at providing the relevant background for the
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methods that are subsequently described in this dissertation. The organiza-
tion of the chapter is as follows. Section 1.2 introduces two-stage stochastic
programs, where two stages of decision-making are allowed, as well as standard
techniques used to tackle them. Section 1.3 considers an extension of previous
setting, multi-stage stochastic programs, where extra stages of decision-making
are allowed. Algorithmic strategies to deal with these problems are introduced
as well. Section 1.4 introduces Markov decisions processes. The introductory
material is finalized with section 1.5 which introduces a key concept within
the thesis: parallel computing. The chapter is concluded by presenting the
contributions and organization of the dissertation in section 1.6.

1.2 Two-stage stochastic programming

Two-stage stochastic programming problems model the decision-making pro-
cess by allowing for two stages of decisions. The first-stage decisions are reached
before the realization of uncertainty, and once the uncertainty realizes a set of
second-stage decisions is reached. The goal is to select first-stage decisions
which minimize the current stage cost, while minimizing the expected costs of
the second stage. Mathematically, we can write the problem as follows.

min
x1,y1

uT
1 x1 + vT1 y1 + E

[
min
x2(ω)

uT
2 (ω)x2(ω)

]
(1.1)

s.t. A1x1 +D1y1 = b1 (1.2)

x1, y1 ≥ 0 (1.3)

B2(ω)x1 +A2(ω)x2(ω) = b2(ω), for all ω ∈ Ω (1.4)

x2(ω) ≥ 0, for all ω ∈ Ω (1.5)

Here u1, v1, b1 are vectors and B1, A1, D1 are matrices which define the
first-stage objective function and first-stage constraints. The set of uncertainty
realizations is given by Ω, which we assume to be a finite set, and for ω ∈ Ω we
have the stochastic data u2(ω), b2(ω), B2(ω), A2(ω). Note that the set of vari-
ables is distinguished between first-stage decisions x1, y1 and second-stage de-
cisions x2, y2. Note that first-stage decisions do not depend on the uncertainty
realization, while second-stage decisions do depend on ω ∈ Ω. Furthermore,
second-stage decisions depend upon the first-stage decision x1, as described by
constraint 1.4.

In theory problem (1.1)-(1.5) can be formulated as a large linear program
(and thus solved by standard linear programming solvers). However, it is often
the case that the uncertainty set is prohibitively large, to the point loading
the problem into memory is infeasible due to hardware constraints. Therefore,
several decomposition strategies have been proposed in the literature. We
proceed by describing some relevant strategies. Subsection 1.2.1 describes the
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Figure 1.1: Decomposition of the two-stage stochastic problem. Each node represents
an uncertainty realization and has associated to it an optimization problem that aims
at minimizing the costs of the stage.

l-shaped method, which is the cornerstone of the cutting plane methods that
we develop later in this dissertation. Subsection 1.2.2 describes the subgradient
method while subsection 1.2.3 considers the progressive hedging scheme.

1.2.1 The L-Shaped algorithm

The L-shaped method breaks down the two-stage problem into smaller sub-
problems. The idea is to first consider separating the first and second stage,
and then to consider a separate subproblem for each uncertainty realization of
the second stage, as presented in Figure 1.1. Given an uncertainty realization
ω̂ ∈ Ω and a first-stage decision x̂1, the second-stage subproblem is as follows:

V(x̂1, ω̂) = min
x2(ω̂)

uT
2 (ω̂)x2(ω̂)

s.t. B2(ω̂)x̂1 +A2(ω̂)x2(ω̂) = b2(ω̂) (λω̂)

x2(ω) ≥ 0

Here, λω̂ are the dual multipliers, which happen to be subgradients for
V(x, ω̂) around x̂ [BL11], and are the basis for the iterative schemes that will
be developed. These subproblems allow us to re-write problem (1.1)-(1.5) as:

min
x1,y1

uT
1 x1 + vT1 y1 + E

[
V(x1, ω)

]
s.t. A1x1 +D1y1 = b1

x1, y1 ≥ 0

(R)

The function E
[
V(x1, ω)

]
is piece-wise linear convex in x1 [BL11], and can

therefore be under-approximated by supporting hyperplanes, commonly re-
ferred as to cuts. These cuts are computed by calculating the subgradients of
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the second-stage functions V(x1, ω) [BL11]. Consequently, given a collection of
N cuts {ci(x1)}Ni=1, the previous problem can be approximated as follows:

min
x1,y1,θ

uT
1 x1 + vT1 y1 + θ

s.t. A1x1 +D1y1 = b1

θ ≥ ci(x1) for all i ∈ 1, . . . , N

(M)

The L-Shaped algorithm advances by finding, at each iteration, a new sup-
porting hyperplane for problem M. Each iteration begins by solving problem
M, which leads to a trial x̂i

1. The second-stage subproblems V(x1, ω) are then
solved given x̂i

1. The dual multipliers λω are subgradients of the value functions
V(x1, ω) at x̂i

1, and can therefore be used for computing a supporting hyper-
plane [BL11], which is added to problem M. As we move through iterations,

the method starts building an accurate representation of E
[
V(x1, ω)

]
around

the optimal region, eventually finding the optimal value. In fact, the method
converges after finitely many iterations [PG08]. The algorithm is illustrated in
pseudo-code as follows:

Algorithm 1: L-Shaped

Input: Provide a lower bound for θ. A maximum number of iterations N .
Output: Set of cuts {ci(x1)}Ni=1 and first-stage solution x̂N

1 .

for i = 1, · · · , N

1. Forward Pass: Solve problem M and get the optimal action x̂i
1.

2. Backward Pass for ω ∈ Ω:

(2.1) Solve the second stage subproblem V(x̂i
1, ω) at trial action x̂i

1.

(2.2) Using the dual multipliers λω compute a supporting hyperplane
around x̂i

1.

(2.3) Add the supporting hyperplane to problem M.

1.2.2 Projected stochastic subgradient algorithm

The idea of this algorithm is as follows: given an initial trial first-stage solution
x̂1
1, calculate a subgradient of the objective function of problem (1.1)-(1.5)

around x̂1 and update the trial first-stage solution along the direction of such a
subgradient. This method has the following advantages: (i) it does not require a
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hyperplane description of E
[
V(x1, ω)

]
in order to advance to the next candidate

x̂2
1; (ii) it can be initialized around a trial x̂1

1 which is known in advance to be
somewhat close to the optimal value, thus ensuring that if the starting value is
close to the optimal solution then the iterates remain near the optimal point
and lead to few iterations of the algorithm.

We start by decomposing problem (1.1)-(1.5) by rewriting it as problem R.
Note that a subgradient of the objective function along the x1 coordinate is:

ρ = u1 + E
[
λω

]

Due to the reformulation R, the calculation of these slopes can be decomposed
into calculating several subproblems, concretely by solving V(x1, ω) for each
ω ∈ Ω. This decomposition allows us to apply the following scheme described
as pseudo-code in algorithm 2:

Algorithm 2: Projected stochastic subgradient algorithm

Input: Provide an initial trial first-stage solution x̂1
1, and a maximum

number of iterations N .
Output: First-stage solution x̂1

N .

for i = 1, · · · , N

1. for ω ∈ Ω: solve the subproblem V(x̂i, ω) at trial x̂i.

2. Using the dual multipliers, calculate the objective function slope ρi.

3. Apply a projected subgradient step as:

x̂i+1
1 = max{0, x̂i

1 + αi · ρi}

We commence by providing an initial candidate action x̂1
1. During each

iteration, the subproblems V(x̂i
1, ω) are solved for all ω ∈ Ω. Using the dual

multipliers of these subproblems, the subgradients ρ are calculated. Finally,
the trial action is updated through a projected subgradient step: x̂i+1

1 =
max{0, x̂i

1 + αi · ρi}. The term αi is a stepsize which is crucial to the perfor-
mance of the algorithm [Boy]. For example one can select the Polyak stepsize
[Boy], which ensures convergence. The Polyak stepsize can be described as

follows: αi = W∗−W i

||pi||2 . Here, W ∗ is the optimal value of the R problem, while

W i is the objective value of the current iterate. As the optimal value W ∗ is
not known in advance, an approximate value can be used. No lower bound is
obtained, thus upper bound stabilization is used as stopping criterion.
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1.2.3 Progressive hedging

Progressive hedging [RW91] has emerged as an alternative approach for tackling
large-scale stochastic programming problems. For this approach we introduce
the so-called non-anticipativity constraints, for which extra first-stage variables
are introduced by defining a variable x1(ω) for all ω ∈ Ω. Problem (1.1)-(1.5)
is reformulated as:

min
x1,y1

uT
1 x1 + vT1 y1 + E

[
min

x1(ω),x2(ω)
uT
2 (ω)x2(ω)

]
(1.6)

s.t. A1x1 +D1y1 = b1 (1.7)

x1, y1 ≥ 0 (1.8)

x1 = x1(ω) for all ω ∈ Ω (1.9)

B2(ω)x1(ω) +A2(ω)x2(ω) = b2(ω), for all ω ∈ Ω (1.10)

x2(ω) ≥ 0, for all ω ∈ Ω (1.11)

Equation 1.9 are referred as the non-anticipativity constraints. The progressive
hedging algorithm relaxes these constraints, thereby allowing us to consider an
independent subproblem for each scenario. The algorithm approximates the
dual multipliers of the relaxed non-anticipativity constraints and additionally
introduces a quadratic regularization term ρ. The steps of the algorithm can be
interpreted as a process of building consensus between scenarios until reaching
convergence.

The progressive hedging scheme proceeds by proposing the following set of
subproblems for each ω ∈ Ω:

f(x̄1, ω, w
T
ω ) = min

x1,y1,x2

[
uT
1 x1 + vT1 y1 + uT

2 (ω)x2

]
+ wT

ω (x1 − x̄1) +
1

2
ρ||x1 − x̄1||2

s.t. A1x1 +D1y1 = b1

x1, y1 ≥ 0

B2(ω)x1 +A2(ω)x2 = b2(ω)

x2 ≥ 0

The first term corresponds to the objective cost of problem (1.1)-(1.5) for
a single ω ∈ Ω, the second term corresponds to the relaxation of the non-
anticipativity constraint associated to x1 (consequently wω is the dual multi-
plier associated to this constraint), and the latter part is a regularization term
associated to x1. During each iteration of the progressive hedging algorithm,
an approximation of the dual multipliers wω is found, and a first stage decision
approximation x̄1 is found by averaging the first-stage solutions found by each
subproblem. A description of the algorithm is presented in Algorithm 3.
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Algorithm 3: Progressive hedging

Input: Provide an initial trial action x̄0
1 and set w0

ω equal to 0 for all
ω ∈ Ω, and maximum number of iterations N.
Output: First-stage solution x̄N

1

for i = 1, · · · , N

1. for ω ∈ Ω: solve the subproblem f(x̄0
1, ω, w

0
ω), thus obtaining a

first-stage solution x1,ω.

2. Aggregate the first-stage decision as: x̄i
1 = E[x1,ω].

3. Update dual multipliers as:

wi
ω = wi−1

ω + ρ(x1,ω − x̄i−1
1 )

Tuning the parameter ρ is critical for the performance of the algorithm. In
particular, an adequate tuning can reduce the number of iterations required for
convergence. As discussed in [BSdG+22] tuning such a parameter is problem
dependant, and tuning strategies are followed for each particular problem.

1.3 Multi-stage stochastic programming

Multi-stage stochastic programming involves several stages of decision making.
Let us consider a multistage stochastic linear program over T stages, given by:

min
A1x1+D1y1=b1

x1,y1≥0

uT
1 x1 + vT1 y1 + E

[
min

B2x1+A2x2+D2y2=b2
x2≥0

uT
2 x2 + vT2 y2

+E

[
· · ·+ E

[
min

BT xT−1+AT xT+DT yT=bT
xT≥0

uT
TxT + vTT yT

]]]
(MSP-P)

For each stage, we have vectors ut, vt, bt as well as matrices Bt, At, Dt that
constitute the stochastic data process ξt = (ut, vt, bt, Bt, At, Dt). We assume
that u1, v1, b1, B1, A1, C1 are deterministic, and that we are given an initial
condition x0. To avoid notational clutter, we drop the dependence of Bt on ωt

that indicates stochasticity of the data process. Let us assume that, at each
stage, there are finitely many outcomes Ωt, and that the data process follows
a Markov chain. We therefore consider that we can define transition matrices
P (ξt+1|ξt).

Similarly as for two-stage stochastic linear problems, multistage stochastic
linear problems can be formulated as large linear problems. Unfortunately, it
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is typically the case that the exponential growth in the number of scenarios,
as the number of stages increase, makes such an approach infeasible due to
hardware restrictions. Leveraging on the success of cutting-plane methods
on two-stage settings the literature has proposed algorithmic techniques to
deal with the multi-stage setting. Subsection 1.3.1 introduces the so-called
nested benders decomposition algorithm that builds off of the l-shaped method,
while subsection 1.3.2 introduces the Stochastic Dual Dynamic Programming
(SDDP) algorithm, a central concept in the thesis, which proposes a sampling
methodology as to provide a tractable algorithmic scheme.

1.3.1 Nested L-Shaped

The Nested L-Shaped method, described in [BL11], is a generalization of the
L-Shaped method for the multi-stage setting. Similarly as for the two-stage
setting, the algorithm works by finding supporting hyperplanes that provide
tight outer approximations of the value functions of the dynamic programming
formulation in regions of the state space that can be reached by the optimal
policy.

The dynamic programming equations of problem MSP-P can be written as

Vt(xt−1, ξt) = min
xt,yt

uT
t xt + vTt yt + Vt+1(xt, ξt)

s.t. Btxt−1 +Atxt +Dtyt = bt

xt, yt ≥ 0

Vt+1(xt, ξt) =E
[
Vt+1(xt, ξt+1)

∣∣∣ξt]
for t = 2, · · · , T − 1. There is no associated function VT in the last stage. Note
that, due to the Markov property, the cost-to-go functions Vt(xt−1, ξt) and the
expected value cost-to-go functions Vt+1(xt, ξt) depend only on ξt, and not on
the entire history of the data process. Moreover Vt+1(xt, ξt) is a convex function
of xt [BL11] and can therefore be approximated by a piecewise linear function.
The idea of the Nested L-Shaped method is to generate approximations of the
expected value cost-to-go functions through supporting hyperplanes, commonly
referred to as cuts. Given a collection of N cuts {ciξt(xt)}Ni=1 the cost-to-go
functions can be approximated as:

V̂t(xt−1, ξt) = min
xt,yt

uT
t xt + vTt yt + θξt

s.t. Btxt−1 +Atxt +Dtyt = bt

θξt ≥ ciξt(xt) for all i ∈ 1, . . . , N

xt, yt ≥ 0

To describe the algorithm, we introduce the set Φ = {(ξ1, . . . , ξT ) : ξt ∈
Ωt and P (ξt|ξt−1)) ̸= 0}, which is the set of all possible (non-zero probability)
uncertainty paths of the multistage stochastic problem. The cuts are generated
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through an iterative process which consists of forward and backward passes.
During forward passes, the algorithm moves forward in the number of stages,
visiting the different paths of uncertainty in set Φ, and computes trial solutions
for each stage. During backward passes, the algorithm proceeds backwards in
the number of stages, building cuts around the trial solutions obtained in the
forward pass. A pseudo-code description of the algorithm can be found in Al-
gorithm 4.

Algorithm 4: Nested L-Shaped

Input: A lower bound for θξt for t = 1, . . . , T − 1, ξt ∈ Ωt. A maximum
number of iterations N .
Output: A cutting-plane approximation {ciξt(xt)}Ni=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for i = 1, · · · , N .

1. Forward Pass.

(1.1) for (ξk1 , . . . , ξ
k
T ) ∈ Φ:

for t = 1, · · · , T :

Solve V̂t(x̂
k
t−1, ξ

k
t ) and store the trial action x̂k

t .

2. Backward Pass.

(2.1) for t = T, . . . , 2:

for (ξk1 , . . . , ξ
k
T ) ∈ Φ:

(2.1.1) for ξt ∈ Ωt: Solve V̂t(x̂
k
t−1, ξt) and store the dual

multipliers.

(2.2.2) Using the dual multipliers compute a supporting
hyperplane around x̂k

t−1.

(2.2.3) Add the supporting hyperplane to problem V̂t−1.

One way to understand the algorithm is by relying on a lattice representa-
tion (see definition 1.1), which is a graphical way of representing the underlying
structure of the problem.
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Definition 1.1. A lattice is an undirected graph. Each column of nodes rep-
resents a stage of the problem and each node represents an uncertainty real-
ization ξt. Each node is associated to an optimization problem which aims
at minimizing the current period costs plus the future costs, given xt−1, for
the uncertainty realization ξt. This problem corresponds to the calculation of
the cost-to-go function Vt(xt−1, ξt). Note also that each node has an expected
cost-to-go function associated to it.

The nested L-Shaped algorithm is described graphically over a lattice in
Figure 1.2. The problem has three stages, and two uncertainty realizations for
stages 2 and 3. The algorithm starts in the forward pass. During this step,
all uncertainty paths are visited, 4 in this example. Next, we proceed with
the backward pass. Starting from the last stage (the third stage), the second-
stage decision obtained in the red path is evaluated in all nodes of the third
stage. Using the dual solution information of the subproblems, a cut is built.
The process is repeated with the second-stage decisions obtained by the other
uncertainty paths. Once all third-stage nodes have been solved, the procedure
continues with the second stage.

Figure 1.2: The nested L-Shaped algorithm described graphically over a lattice. In
the forward pass, trial points are obtained for every uncertainty path. The backward
pass proceeds backward in the number of stages. Starting form the last stage, the
algorithm solves the subproblems at the trial points obtained during the forward pass,
producing cuts for the expected value functions corresponding to the nodes of stage
2. The backward pass continues in this manner throughout the remaining stages.
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1.3.2 Stochastic Dual Dynamic Programming (SDDP)

The nested l-shaped algorithm provides a decomposition approach to tackle
multistage problems. However, the forward search across all possible uncer-
tainty paths translates in a large number of subproblems that need to be solved
during each iteration of the algorithm. In particular, as the number of stages
increase the amount of uncertainty paths increases exponentially, thus lead-
ing to an intractable approach. The Stochastic dual dynamic programming
(SDDP) algorithm proposes a sampling strategy at the level of the forward
pass to cope with this exponential growth.

The SDDP algorithm has emerged as a scalable algorithm for solving mul-
tistage stochastic programming problems. Since the seminal work of [PP91],
SDDP has captivated the interest of the stochastic programming community
and achieved widespread adoption in industrial applications [FBP10, DMPFG10,
PBM13, LWM13, LW20, DPMD19]. PSR, a consulting firm based in Rio de
Janeiro, has invented and pioneered the SDDP algorithm, which is at the core
of its hydro-thermal planning software that is marketed under the same name
[PSR]. Similarly as for the nested L-Shaped method, the SDDP algorithm pro-
ceeds by building supporting hyperplane approximations of the value functions
of the dynamic programming equations. Furthermore, each iteration also con-
sists of forward and backward passes, but as opposed to the nested L-Shaped
method, a Monte Carlo sampling is introduced at the level of the forward pass.
The SDDP algorithm is described in pseudo-code in algorithm 5.

Figure 1.3: The SDDP algorithm described graphically over a lattice. The computa-
tional time evolves along the x-axis. The length of the red dashed boxes represents
the elapsed computational time. In the forward pass, a scenario is drawn and trial
points are obtained. The backward pass starts by solving the last stage, which pro-
duces a cut for the expected value functions corresponding to the nodes of stage 2.
The backward pass continues in this manner throughout the remaining stages.
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Algorithm 5: SDDP

Input: Provide a lower bound for θξt for t = 1, . . . , T − 1, ξt ∈ Ωt. A
maximum number of iterations N .
Output: A cutting-plane approximation {ciξt(xt)}Ni=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for i = 1, · · · , N .

1. Forward Pass.

(1.1) Draw K Monte Carlo scenarios of the realization of uncertainty
throughout the entire time horizon of the problem. This yields
sequences ξk1 , · · · , ξkT , where ξkt ∈ Ωt for k = 1, · · · ,K.

(1.2) for k = 1, · · · ,K:

for t = 1, . . . , T :

Solve V̂t(x̂
k
t−1, ξ

k
t ) and store the trial action x̂k

t .

2. Backward Pass.

(2.1) for t = T, . . . , 2:

for k = 1, . . . ,K:

(2.1.1) for ξt ∈ Ωt: Solve V̂t(x̂
k
t−1, ξt) and store the dual

multipliers.

(2.2.2) Using the dual multipliers compute a supporting
hyperplane around x̂k

t−1.

(2.2.3) Add the supporting hyperplane to problem V̂t−1.

Figure 1.3 presents the SDDP algorithm as it traverses the lattice. The com-
putational time evolves along the x-axis. The forward pass starts by sampling
a scenario. The transition probabilities are used for this purpose, selecting as
a result the nodes that are indicated with a red dashed box, namely nodes 1,
4, 7. The cost-to-go function Vt corresponding to these nodes is calculated,
starting from the first, and ending with the last stage, that is to say beginning
with node 1, then 4, and finally 7. As a result, we obtain trial points x̂1, x̂2, x̂3.
The backward pass is then executed. Starting from the last stage, the value
functions for all nodes, evaluated at the trial point x̂2, are calculated. In Figure
1.3, this corresponds to solving nodes 5, 6 and 7. The solution information of
the nodes is used to build a cut of the expected value function at the trial point
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x̂2. The backward pass then proceeds in the same way for stage 2.

1.4 Markov decision processes

Markov decision processes (MDP) are a framework for analyzing decision mak-
ing over time and under uncertainty. An MDP is defined by the tuple (St,At,
Ct, P ), where St is the set of states, At is the set of actions, Ct : St×At → R is
the reward function of an agent, and P (st+1|at, st) is the probability of transi-
tioning to state st+1 ∈ St if we are in state st ∈ St and select action at ∈ A(st).
The set A(st) indicates the set of feasible actions when in state st. A policy
π = (π1, π2, . . .) is a vector of functions, where each function maps states to
actions1, namely πt : St → At. We will focus on finite horizon models with
a time horizon T . Further details on the definition of MDPs can be found in
[Pow07, SB18, Put14]. The objective in MDPs is to obtain a policy π ∈ Π that
minimizes the expected cost over the decision-making horizon:

min
π∈Π

E
[ T∑

t=1

Ct(s
π
t , a

π
t )
]

The optimal expected reward is often calculated with the help of the value
functions of the problem. Concretely, the value function V π

t (st) is the expected
reward when starting in state st and following policy π. Mathematically, value
functions are defined as

V π
t (st) = E

[ T∑
n=t

Cn(s
π
n, a

π
n)
∣∣∣st]

We will use the notation

Vπ
t+1(st, at) = E

[
V π
t+1(st+1)|st, at

]
to refer to the value functions after taking expectation. The value functions
that correspond to an optimal policy satisfy the following optimality conditions
[SB18, Put14]:

V ∗
t (st) = min

at∈A(st)
Ct(st, at) + E

[
V ∗
t+1(st+1)|st, at

]
= min

at∈At(st)
Ct(st, at) + V∗

t+1(st, at)

Another noteworthy concept within the MDP framework are Q-factors. A
Q-factor Qπ(st, at) represents the expected reward that is obtained after se-
lecting action at while being in state st, and then following policy π. Formally,

1The literature presents more general policies, where a state is mapped to a probability
measure over the set of actions. However we will focus on deterministic policies.
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we can define Q-factors as

Qπ
t (st, at) = E

[ T∑
n=t

Cn(s
π
n, a

π
n)
∣∣∣st, at].

Note that we can express our Q-factors in terms of the value functions as

Qπ
t (st, at) = Ct(st, at) + E

[
V π
t+1(st+1)|st, at

]
= Ct(st, at) + Vπ

t+1(st, at)

Note also that the optimal value functions can be expressed in terms of the
optimal Q-factors as

V ∗
t (st) = min

at∈A(st)
Q∗

t (st, at)

1.5 Parallel computing

High performance computing has become critical in tackling large-scale power
system optimization problems. Early work on the topic [MPG87, TPPM90] de-
scribes parallel computing schemes for addressing security-constrained optimal
power flow and hydro system scheduling, respectively, using Bender’s decom-
position. Parallel computing schemes for Lagrangian decomposition have been
developed for solving optimal power flow problems [KB97, BB03]. In recent
years, parallel computing has enabled tackling large-scale instances of stochas-
tic unit commitment [POR14]. In particular, the use of asynchronous parallel
computing has resulted in a reduction of computation time from weeks to a
few hours for certain stochastic unit commitment instances [AP20]. Within
the hydrothermal scheduling framework, and by means of the stochastic dual
dynamic programming algorithm, a widespread usage of parallel computing has
emerged as well [dSF03, PBM13, HB15, DK21]. This has allowed the research
community to reduce the computational time for a variety of configurations
and to open further areas of research.

This section aims at developing the high performance computing termi-
nology that will be used throughout the dissertation. Subsection 1.5.1 will
describe distributed and shared memory configurations, while subsection 1.5.2
will describe synchronous and asynchronous computing.

1.5.1 Distributed and shared memory computing

Hardware configurations are crucial in order to establish parallel computing
strategies. One such configuration is the distribution of computing cores across
the HPC infrastructure.

Physical cores are commonly arranged in the so-called computing nodes.
Each node is a computational device with its own motherboard, processor (a
processor typically contains a few tens of physical cores) and RAM. Thus, each
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computing node can be considered as a single computer. A high performance
computing infrastructure is built by connecting several such nodes (or com-
puters), leading to a device with a large array of cores. A peculiarity of such
a configuration is noteworthy to emphasize: each core will have access just
to the RAM memory and data available within the node. This leads to two
paradigms within parallel computing: distributed memory and shared mem-
ory configurations. The difference between these two paradigms is of practical
relevance.

Distributed configurations are those where algorithms are run using several
computing nodes. Naturally, these configurations have access to a larger array
of cores. However, an important drawback arises: there is a non-negligible
start-up and communication time between two different cores. This implies
that the algorithm has to be designed so as to minimize data transfers and
ensure that enough work is allocated within each core so as to limit the start-
up costs.

On the other hand, shared memory configurations are those where a single
computing node is used. These schemes have the advantage that no start-up
and communication time is present, as well as no data transfers, between two
different cores. These advantages come at the cost of the limitation on the
number of cores that are available (typically a few tens of cores per node).

1.5.2 Synchronous and asynchronous computing

The previous subsection discussed hardware configurations and how these affect
the communication across CPUs. The present subsection aims at describing
two common software paradigms within CPU communication: synchronous
and asynchronous computing [BT89].

Let us consider a parallel computing algorithm. A synchronous computing
scheme is one in which a CPU commences a task, finishes, but before proceed-
ing to the next task has to wait for all other CPUs to finish their respective
task. One may encounter this situation when the subsequent task requires the
information gathered by all CPUs before being able to commence. An advan-
tage of these schemes is that all CPUs have access to the information collected
by all CPUs. A disadvantage is the computational time lost due to the need
to wait for the slowest CPU, thus leading to bottlenecks which may harm the
performance of the algorithm. On the other hand, asynchronous algorithms
are those were a CPU does not need to wait for the full set of CPUs in order
to proceed to the next task, but can proceed using the CPU information of
the CPUs that have already finished their job. The main advantage of these
algorithms is that no computational time is lost, which allows such algorithms
to use the computational resources more effectively. A disadvantage is that the
CPUs may not have access to the most updated information of other CPUs,
and implementation in code is more challenging.

As an example, let us consider an iterative algorithm, where the work re-
quired to complete each iteration is distributed among the available CPUs.
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Figure 1.4: Parallel computing iterative algorithm. The synchronous scheme is pre-
sented in the left panel, while the asynchronous scheme is shown in the right panel.

Figure 1.4 presents the evolution of the algorithm in a synchronous and asyn-
chronous fashion. The left figure presents the former setting while the right
figure presents the latter configuration. In the synchronous setting, during
each iteration, all 3 CPUs have to wait for the slowest CPU before starting a
new iteration, thus leading to idle times for some CPUs. On the other hand,
the asynchronous setting does not have idle times, as each CPU continues to
the next iteration without waiting for others. Note that, in the synchronous
setting, the CPUs have access to the information of the preceding iteration of
other CPUs before starting a new iteration, while in the asynchronous setting
each CPU only has the information of the CPUs that have already finished
their iteration.

1.6 Structure of the dissertation and contribu-
tions

This dissertation is organized into four chapters. We make the distinction
between the developments used to tackle two-stage and multi-stage stochastic
problems. Consequently, the thesis is organized into two parts. Following the
research evolution throughout the years, the first part focuses on multi-stage
stochastic problems, the latter on two-stage stochastic problems.

Part I - Parallel Computing and Multi-stage Stochastic Program-
ming: Hydrothermal Scheduling Applications.

• Chapter 2. Parallel and Distributed Computing for Stochastic Dual Dy-
namic Programming.

The stochastic dual dynamic programming (SDDP) algorithm, developed
by [PP91], has emerged as a scalable approximation method for tackling
multistage stochastic programming problems. While the algorithm has
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shown success in a wide range of areas, computational challenges have
also been raised in the literature [STdCS13]. This chapter aims at propos-
ing and investigating various parallel computing strategies for easing the
computational burden. The results of this chapter have been published
in the following work:

⋄ Ávila, D., Papavasiliou, A., Löhndorf, N., Parallel and Distributed
Computing for Stochastic Dual Dynamic Programming, Comput
Manag Sci, 19, 199–226 (2022).

• Chapter 3. Batch Learning SDDP for Long-Term Hydrothermal Plan-
ning : The parallelization strategies that are studied in Chapter 2 point
towards a common point: parallelism in its own may not be able to
overcome convergence issues. Inspired by this observation, this chapter
introduces a variant of SDDP, named Batch Learning SDDP (Bl-SDDP),
which proposes a diligent approach for computing value functions with
the objective of reducing the back-propagation of errors, and in turn pro-
viding faster convergence. These notions are connected to ideas in the
reinforcement learning community, which are described in the chapter.
This chapter is based on the following publication:

⋄ Ávila, D., Papavasiliou, A., Löhndorf, N., Batch Learning SDDP for
Long-Term Hydrothermal Planning, to appear in IEEE Transactions
on Power Systems (2023).

Part II - Parallel Computing and Two-stage Stochastic Program-
ming: European Resource Adequacy Assessment.

• Chapter 4. Applying high performance computing to the ERAA study :
This work considers the European Resource Adequacy Assessment (ERAA),
which is a pan-European resource adequacy assessment process that is
being developed by the European Networks of Transmission System Op-
erators for Electricity (ENTSO-E). A critical part of this process is the
so-called Economic Viability Assessment (EVA) model, which aims at de-
termining future capacity expansion and retirement opportunities for the
entire European network. As such, the problem is stochastic. Neverthe-
less, due to computational constraints, simplified approaches have been
followed by ENTSO-E. Our work formulates the problem as a two-stage
stochastic program and proposes two decomposition algorithms for solv-
ing the problem. These algorithms are implemented in high-performance
computing infrastructure. The first is a subgradient-based algorithm, and
the second uses a relaxation of the second stage (the economic dispatch)
in order to speed up subgradient calculation, thus achieving a consider-
able reduction in solution time. We compare our schemes against the
commonly used L-Shaped algorithm and against the progressive hedg-
ing algorithm. We compare the obtained stochastic solution against the

https://link.springer.com/article/10.1007/s10287-021-00411-x
https://link.springer.com/article/10.1007/s10287-021-00411-x
https://ieeexplore.ieee.org/document/10049084
https://ieeexplore.ieee.org/document/10049084
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deterministic solution proposed by ENTSO-E for their 2021 study and
analyze the impact of the stochastic solution on various adequacy indi-
cators. The results of this chapter have been submitted for publication
in the following manuscript:

⋄ Ávila, D., Papavasiliou, A., Junca, M., Exizidis, L., Applying High
Performance Computing to the European Resource Adequacy As-
sessment, to appear in IEEE Transactions on Power Systems (2023).

• Chapter 5. Applying scenario reduction to the ERAA study : The high
computational complexity of the Economic Viability Assessment (EVA),
within the ERAA, has led ENTSO-E to seek scenario reduction strategies
in order to reduce the overall computational complexity of the problem.
This chapter proposes a scenario reduction methodology for the EVA
study, which is still under development by the candidate. Our prelim-
inary research show advantages as compared to the approach followed
by ENTSO-E for ERAA 2021, in particular related to the accuracy of
quantifying load shedding, which is critical for adequacy metrics. We
highlight that this is a preliminary work, where we explore preliminary
aspects. Our proposed scenario reduction scheme has been implemented
by ENTSO-E for their 2022 edition and has been published as part of the
ERAA 2022 methodology as follows:

⋄ Methodology for the European resource adequacy assessment, ENTSO-
E, 35-36 (2022).

https://www.researchgate.net/publication/365743272_Applying_High_Performance_Computing_to_the_European_Resource_Adequacy_Assessment
https://www.researchgate.net/publication/365743272_Applying_High_Performance_Computing_to_the_European_Resource_Adequacy_Assessment
https://www.researchgate.net/publication/365743272_Applying_High_Performance_Computing_to_the_European_Resource_Adequacy_Assessment
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/2022/data-for-publication/ERAA2022_Annex_2_Methodology.pdf
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2 Parallel and Distributed Computing
for SDDP

2.1 Introduction

The stochastic dual dynamic programming (SDDP) algorithm has emerged as
an attractive approach to deal with multistage stochastic problems. Although,
other alternatives have been proposed (such as the nested L-Shaped method),
in practice the sampling strategy introduced by the SDDP algorithm has proven
to be better suited from a computational perspective. Nonetheless, multistage
stochastic programming problems are generally computationally intractable
and therefore pose serious computational challenges, even for SDDP. Such chal-
lenges are documented in [STdCS13], where SDDP is unable to close the opti-
mality gap for the problem under investigation, even after several hours of run
time. In order to speed up convergence, several approaches have been proposed
in the existing literature. Such methods include cut selection techniques for
removing redundant hyperplanes [DMPF15, Gui17, GB19, LWM13], regulariza-
tion techniques for selecting better trial points during the forward pass [AP18],
forward sampling schemes that exploit problem structure [DB06, HP14], as well
as parallel computing [dSF03, PBM13, HB15, MDBB21].

2.1.1 Parallelism in Large-Scale Optimization

Parallelism can be crucial for tackling large-scale optimization problems, but
is often undermined by synchronization bottlenecks. In power system appli-
cations, for instance, parallelism has allowed tackling large-scale day-ahead
stochastic unit commitment problems [POR14]. While synchronous parallel
computing algorithms require run times in the order of weeks for certain in-
stances of stochastic unit commitment, asynchronous implementations of La-
grange relaxation have been shown to reduce these run times to a few hours
[AP20]. This allows us to hope for an eventual deployment of stochastic oper-
ational planning models in actual operations, where run time constraints are
critical.

This objective motivates our research on the parallelism attributes of SDDP.

23
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Nevertheless, the existing literature on SDDP shows limited results in this
front. The literature provides a narrow set of parallel schemes, which rely on
increasing the number of Monte Carlo samples that are used in the forward pass
of the algorithm [dSF03, PBM13, HB15, DK21]. The aforementioned literature
provides evidence that such schemes are superior relative to a serial approach.
The literature, however, does not focus on how different schemes may compare
relative to each other.

In [PBM13] and [dSF03] the authors propose a synchronous parallel scheme,
according to which subproblems are solved in parallel at every stage. Paral-
lelization is also applied in the backward pass of the algorithm. This introduces
a natural synchronization bottleneck at each stage. In [HB15] the authors pro-
pose a relaxation in the synchronization points of this synchronous parallel
scheme. According to the proposed scheme, a worker waits for a subset of
subproblems at each stage of the backward pass. The authors provide empiri-
cal evidence that demonstrate that their approach achieves performance gains
relative to the synchronous setting. However, the analysis is not sufficiently
robust, since the authors declare convergence once the lower bound is within
the 95% confidence interval of the upper bound. This convergence criterion
has been criticized in [Sha11].

In our work, we propose a richer family of parallelizable algorithms for
SDDP. Our analysis considers synchronous as well as asynchronous computa-
tion. We develop a taxonomy of (i) parallelization by scenario of Monte-Carlo
samples in the forward pass of the algorithm, and (ii) parallelization by node
of the underlying stochastic process. Our taxonomy encompasses the tradi-
tional parallel schemes that are encountered in the literature, and gives rise
to new parallel formulations. We present an analysis for the resulting class of
algorithms, and compare the relative strengths and weaknesses of the proposed
algorithms.

2.1.2 Limitations of Parallelism

Parallelism is often viewed as a one-way procedure, where more processors nec-
essarily imply better performance. The SDDP literature tends to consider an
increase in the number of Monte Carlo samples in the forward pass, in order
to be able to rely on more processors [dSF03, PBM13, HB15, DK21]. Never-
theless, there is a lack of evidence for assessing the effect of such an increase
on the performance of the SDDP algorithm. In our work, we present empirical
evidence which indicates that increasing the number of Monte Carlo samples in
the forward pass of the SDDP algorithm may in fact undermine performance.
This indicates a serious drawback with traditional parallel schemes that have
been proposed in the literature, since these traditional parallel schemes may
not scale well.
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2.1.3 Contributions

Our contribution to the literature on SDDP parallelization is two-fold. First,
we enrich the set of available parallel schemes that have been considered in the
literature, by considering both synchronous as well as asynchronous computa-
tion, and we present a taxonomy that categorises existing and new schemes.
Second, we conduct an extensive numerical experiment in order to compare the
relative performance of these schemes when the objective is to achieve tight op-
timality gaps with high confidence. Moreover, our analysis provides empirical
evidence that indicates that increasing the number of parallel processors may
harm the performance of traditional parallel schemes that have been proposed
for SDDP.

The chapter is organized as follows. In section 2.2 we describe our pro-
posed parallelization schemes for SDDP. In section 2.3 we present numerical
case studies which constitute the basis for our empirical observations. Finally,
in section 2.4 we summarize our conclusions and outline future directions of
research that are inspired by this work.

2.2 Parallel Schemes For SDDP

We begin this section by presenting parallel strategies for SDDP and then
proceed to explain how these strategies can be implemented in a synchronous
and asynchronous setting. These schemes span the different strategies that
have been proposed in the literature [dSF03, PBM13, HB15, DK21, MDBB21]
and some new schemes that, to the best of our knowledge, have not yet been
considered.

2.2.1 Parallel computing attributes for SDDP

The SDDP algorithm presents various opportunities for parallelization. The
main bottleneck within SDDP appears when building the cuts to approximate
the value functions of each stage. Fortunately, such a calculation can be highly
parallelized. On the one hand, the value function is composed of several cuts,
thus one can envision strategies that distribute the cut calculation among cores.
Furthermore, the work required to calculate each cut can be parallelized as
well. On the other hand, each stage carries an associated value function ap-
proximation. The value function approximation related to different stages can
be parallelized as well.

These different parallel computing strategies for SDDP can be combined
within common high performance computing paradigms, such as synchronous
and asynchronous computing, or distributed and shared memory configura-
tions. These different flavors of parallelism open the path for a rich set of
parallel computing configurations which we intend to explore in the present
chapter.
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2.2.2 Parallelizing by Scenario and by Node

Parallelizing by Scenario (PS)

We start by defining the notion of scenario, which is a trajectory of the stochas-
tic process from the beginning to the end of the time horizon. As we demon-
strate graphically in panel (a) of Figure 2.1, in this approach, each processor
generates a cut that supports the expected value cost-to-go functions at dif-
ferent sample points of the state space. The forward and backward steps are
executed as follows:

• Forward pass: The forward pass consists of N Monte Carlo scenarios.
Each processor computes a different scenario, thus producing trial points
xn
1 , · · · , xn

T in the state space, for n = 1, · · · , N .

• Backward pass: At stage t, the n-th processor generates a cut for the
expected cost-to-go functions of stage t− 1 at point xn

t−1.

The Parallel Scenario approach appears to be the most common paralleliza-
tion strategy for SDDP in the literature. Different variants have been proposed,
ranging from synchronous schemes [dSF03, PBM13] to relaxations in the syn-
chronization points [HB15], to asynchronous schemes [DK21].

Parallelizing by Node (PN)

In panel (b) of Figure 2.1 we can observe that, as opposed to the PS strategy,
the idea in PN strategies is to use the available processors in order to generate a
single cut at a single trial point. The forward and backward steps are executed
as follows:

• Forward Pass: The main processor computes trial points along a single
scenario. This produces a sequence x1, · · ·xT . Note that there is no
parallelization at this step.

• Backward Pass: Moving backwards in time through the lattice, each
processor selects a node of the lattice that has not yet been updated and
solves the corresponding subproblem.

A competitive implementation for this scheme is unfortunately limited to a
shared memory setting. This is due to the fact that, when a CPU commences
a task in a distributed memory setting, there is a non-negligible communica-
tion startup time involved with receiving the required data for commencing the
task. This implies that the task executed by each processor must require sig-
nificantly more time than this start up time if parallelism is to deliver benefits,
otherwise the latency of the network becomes an important factor in slowing
down the algorithm. In the PN scheme, at stage t, each processor withdraws
a subproblem from the list of |Ωt| problems and proceeds to solve it. In a
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(a) Parallelizing by Scenario (b) Parallelizing by Node

Figure 2.1: Representation of SDDP parallel schemes. The height of the red and blue
dashed boxes represents the elapsed time. Panel (a) presents the parallel scenario
scheme. At each iteration a cut is built at 2 different points, and each cut is computed
by a different CPU. Panel (b) presents the parallel node scheme. The grey dashed
boxes represent outcomes that belong to the same time stage. At each iteration, a
cut is computed at a single point of the state space. The work that is required for
computing such a cut is distributed among the available CPUs.

distributed memory setting, this solve time is comparable to the startup time
of the processor. Thus, the latency of the network becomes problematic.

In [MDBB21] a similar approach is followed, where a single scenario is
considered and the work required to compute the scenario is distributed among
the workers. However, the authors consider a different scheme to distribute the
nodes among the processors. They allow processors to be attached to a stage.
The processors are then constantly generating cuts for the given stage.

2.2.3 Synchronous and Asynchronous Computing

As is commonly the case in parallel computing algorithms [BT89], the inter-
action between processors in our proposed schemes can unfold synchronously
or asynchronously. In what follows, we propose synchronous and asynchronous
schemes for both the parallel scenario (PS) and parallel node (PN) versions of
SDDP. This leads to a variety of algorithms, which are summarized in table
2.1.
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Table 2.1: SDDP schemes compared in this chapter.

Synchronous Asynchronous

PS Each processor produces a cut, Each processor produces a cut,
processors have access to all cuts processors may not have

[dSF03, PBM13] access to all cuts [DK21]
[HB15]

PN Each processor computes a node, Each processor computes a node,
processors have access processors may not have access

to the solution of all nodes to the solution of all nodes [MDBB21]

Note that no reference is attached to the synchronous PN scheme. To the
best of our knowledge, there such a parallel scheme has not been proposed
previously in the literature.

Synchronous Parallel Scenario (Sync PS)

As we discuss in subsection 2.2.2, in the PS scheme each processor builds a
cut. The difference between the synchronous and asynchronous version of the
algorithm is how these cuts are exchanged between processors. Given N pro-
cessors, the forward and backward procedures for the synchronous PS scheme
are described in pseudo code in Algorithm 6.

In panel (a) of Figure 2.2 we present the evolution of the algorithm over a
lattice. In the forward pass, the processors compute a scenario and synchronize
at the end of the forward pass. In the backward pass, at stage 3, both processors
compute a cut which is shared in order to approximate the expected value cost
to go functions. Because of the synchronization, both processors must wait
until receiving the cut of the other processor. If one processor is faster when
computing a cut, then it must stay idle until all other processors have computed
their cut. Note that, apart from the synchronization at the end of each stage
during the backward pass, synchronization also occurs at the end of stage 1.
Consequently, in the next iteration, all processors commence with the same set
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of cuts.

Algorithm 6: SDDP Sync PS

Input: Provide a lower bound for θξt for t = 1, . . . , T − 1, ξt ∈ Ωt, and
maximum number of iterations K.
Output: A cutting-plane approximation {ciξt(xt)}Ki=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for i = 1, · · · ,K.

1. Forward Pass.

(1.1) The n-th processor computes a Monte Carlo scenario, thus
obtaining a sequence ξn1 , · · · , ξnT , where ξnt ∈ Ωt.

(1.2) for t = 1, · · · , T :

Solve the linear problem associated to V̂t(x̂
n
t−1, ξ

n
t ) and

store the trial action x̂n
t .

At the end of this step, the processors synchronizea

2. Backward Pass.

The n-th processor solves:

(2.1) for t = T, . . . , 2:

(2.1.1) for ξt ∈ Ωt: Solve the linear problem associated to

V̂t(x̂
n
t−1, ξt) and store the dual multipliers.

(2.2.2) The multipliers are used for computing a cut. The
processors synchronize, and the expected value cost-to-go
function is updated with the gathered cuts.

aThe processors could in fact start as soon as possible. Nevertheless, since the forward
pass represents a small part of the computational effort, the algorithm is implemented as
described here.
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(a) Sync PS (b) Async PS

Figure 2.2: Synchronous and Asynchronous Parallel Scenario Schemes. The height of
the red and blue dashed boxes represents the elapsed time.

The synchronous version appears in a number of publications [dSF03, PBM13].
In [HB15] the authors propose a relaxation in the synchronization points of each
stage of the backward pass, whereby a processor waits for a subset of proces-
sors. This work discusses empirical evidence that indicate benefits relative to
a fully synchronous version.

Asynchronous Parallel Scenario (Async PS)

The difference between Async PS and the synchronous version is that proces-
sors do not wait for cuts that have not been computed yet. The algorithm is
described in Algorithm 7.

As we can observe in panel (b) of Figure 2.2, in the forward pass each
processor computes a sample and proceeds immediately to the backward pass.
In the backward pass, once a processor computes a cut, this cut is shared with
the master process. The processor then asks for available cuts and proceeds
without waiting for cuts that have not been computed yet. For instance, at
stage 3, the blue processor computes a cut faster than the red processor, sends
the cut and asks if the cut provided by the red processor is already available.
Since the red processor has not finished its job, the blue processor proceeds to
stage 2 without waiting for the cut provided by the red processor. On the other
hand, once the red processor finishes stage 3, it will receive the cut provided by
the blue processor. A disadvantage of this scheme is that, since every processor
operates with a different set of cuts, it is not clear how to estimate an upper
bound. In section 2.3 we discuss how the convergence evolution is measured.

In [DK21] the authors follow the aforementioned asynchronous strategy,
nevertheless no evidence of its benefits is developed in detail.
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Algorithm 7: SDDP Async PS

Input: Provide a lower bound for θξt for t = 1, . . . , T − 1, ξt ∈ Ωt, and
maximum number of iterations K.
Output: A cutting-plane approximation {ciξt(xt)}Ki=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for i = 1, · · · ,K.

1. Forward Pass. The n-th processor performs the same steps as in the
synchronous setting, the difference is that there is no synchronization.

2. Backward Pass.

The n-th processor solves:

(2.1) for t = T, . . . , 2:

(2.1.1) for ξt ∈ Ωt: Solve the linear problem associated to

V̂t(x̂
n
t−1, ξt) and store the dual multipliers.

(2.2.2) The processor asks for available cuts, and updates the
expected value cost-to-go function with available cuts.
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Synchronous Parallel Node (Sync PN)

In section 2.2.2 we present the PN scheme, according to which different proces-
sors are allocated to different nodes of the lattice for a given stage. The syn-
chronous and asynchronous schemes then differ on whether a processor waits
for the nodes computed by other processors. The forward and backward passes
are presented in Algorithm 8.

In Figure 2.3, panel (a), we present this process graphically over a lattice.
Note that, in stage 3, the blue processor solves the subproblem associated with
the first node, while the red processor solves the subproblem associated with
the second node. The red processor finishes first and proceeds with the third
node. Note that, once the blue processor finishes, it must stay idle as there
are no more nodes available for that stage. The solution information of all the
nodes is then used in order to compute a cut, which is then transmitted to
stage 2. Note that, before passing to stage 2, all the subproblems of the third
stage must be solved.

(a) Sync PN (b) Async PN

Figure 2.3: Synchronous and asynchronous parallel node schemes. The height of
the red and blue dashed boxes represents the elapsed time. The dashed grey box
represents outcomes that belong to the same stage.
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Algorithm 8: SDDP Sync PN

Input: Provide a lower bound for θξt for t = 1, . . . , T − 1, ξt ∈ Ωt, and
maximum number of iterations K.
Output: A cutting-plane approximation {ciξt(xt)}Ki=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for i = 1, · · · ,K.

1. Forward Pass.

(1.1) The main process computes a single Monte Carlo scenario, thus
obtaining a sequence ξ1, · · · , ξT , where ξt ∈ Ωt.

(1.2) for t = 1, · · · , T :

Solve the linear problem associated to V̂t(x̂t−1, ξt) and
store x̂t.

Note that there is no parallelization in this step.

2. Backward Pass.

(2.1) for t = T, . . . , 2:

(2.2.1) There is a list of |Ωt| problems. The n-th processor selects
a ξt ∈ Ωt that has not been selected yet, and solves the
linear problem associated to V̂t(x̂t−1, ξt). The dual
multiplier is stored.

(2.2.2) The processors synchronize, and the multipliers are
collected and used for building the cut.

(2.2.3) The expected value cost-to-go function is updated with
the generated cut.
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Asynchronous Parallel Node (Async PN)

In contrast to the synchronous version, in the asynchronous version the pro-
cessors do not wait for nodes that have not been solved. The procedures in the
backward and forward passes can be described in Algorithm 9.

This process is presented graphically in panel (b) of Figure 2.3. At stage 3,
the blue processor solves the subproblem associated to the first node. When it
completes its computation, there are no more subproblems available for that
stage, since the red processor has already solved the second node and is now
working on the third node. Then the blue processor starts processing the nodes
of the second stage. However, in order to compute a cut for stage 2, without
having access to the solution information from the subproblem of node 3, the
processor uses the subproblem information of node 3 of the cut obtained in the
previous iteration. The blue processor is thus able to build a cut, and can start
processing the nodes of stage 2.

The following lemma shows that the proposed cuts are valid. The proof can
be found in the appendix.

Lemma 2.1. The cuts built in the Async PN scheme are valid cuts.

Following a similar argument as the one presented in [PG08], we can show
that, after a finite number of iterations, no new cuts will be added. The proof
can be found in the appendix.

Lemma 2.2. Let Gt,ω
k be the set of cuts at stage t, node ω and iteration k.

There exists mt,ω such that |Gt,ω
k | ≤ mt,ω for all k, 1 ≤ t ≤ T − 1.

It is worth mentioning that although convergence after finitely many iter-
ations is ensured, it may not be to the optimal value. However, as the value
function is a lower approximation, we can always ensure that the convergence
will be an under-estimation. The reason is two fold. As described in [PG08]
to guarantee convergence to the optimal value we require three properties (i)
the cut generation property, (ii) the backward pass sampling property and (iii)
the forward pass sampling property. The proposed approach does not satisfy
properties (i) and (ii). Property (i) states that missing information is com-
pleted by using the previous’ iterations dual multipliers that maximize the cut
at the current trial point. In our case missing information is completed by pre-
vious iteration dual multiplier. Property (ii) states that each node, during the
backward pass, is visited infinitely many times. Our approach doesn’t include
a scheduling scheme that allows each processor to visit infinitely many times
each node during the backward pass.

Following the cut generation property, as in [PG08], we have also tested the
approach that uses the dual multiplier that maximizes the cut at the current
trial point, however no considerable difference is observed. In practice, the con-
sidered test cases have shown that Async PN presents a convergence behaviour
comparable to the one obtained by the other schemes that are implemented in
the chapter.
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As stated previously, the authors in [MDBB21] consider a variant in the
distribution of the nodes among the processors. Instead of distributing the
nodes at each stage, the processors are attached to the nodes of a fixed stage.
The authors propose an asynchronous version. The results of the authors vary.
In certain instances, such an approach exhibits superior performance relative
to a synchronous PS implementation. In other instances, the performance of
the proposed method is comparable to a synchronous PS implementation.

Algorithm 9: SDDP Async PN

Input: Provide a lower bound for θξt for t = 1, . . . , T − 1, ξt ∈ Ωt, and
maximum number of iterations K.
Output: A cutting-plane approximation {ciξt(xt)}Ki=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for i = 1, · · · ,K.

1. Forward Pass. The same process as in the synchronous PN setting
is executed. There is no parallelization in this step.

2. Backward Pass.

(2.1) for t = T, . . . , 2:

(2.2.1) There is a list of |Ωt| problems. The n-th processor selects
a ξt ∈ Ωt that has not been selected yet, and solves the
linear problem associated to V̂t(x̂t−1, ξt). The dual
multiplier is stored.

(2.2.2) If there are no more subproblems available, the available
multipliers are collected. The multipliers of the previous
iteration are used for a subproblem that has not been
computed yet.

(2.2.3) The cut is computed and the expected value cost-to-go
functions are updated.
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2.3 Case Studies

In this section we present results for an instance of the Brazilian hydrothermal
scheduling problem. The results are further complemented with an inventory
control problem. Our experimental results can be summarized as follows.

i Asynchronous computing is not helpful for achieving tight optimality gaps
faster. Nevertheless, in certain cases, there is a temporary advantage
in the asynchronous PS scheme in early stages of the execution of the
algorithm.

ii The PN scheme performs better than the PS scheme during early stages
of the execution of the algorithm.

iii The PS scheme scales poorly when increasing the number of Monte Carlo
samples.

iv The PN scheme exhibits desirable parallel efficiency properties, neverthe-
less a competitive implementation is limited to a shared memory setting.

We proceed by briefly introducing the test cases that we analyze in this
work. The models are presented in further detail in the appendix.

Hydrothermal Scheduling Problem: The Brazilian interconnected power
system is a multistage stochastic programming problem that has been analyzed
extensively in the literature due to its practical relevance [PP91, STdCS13,
PBM13, DMPF15, LS19]. The Brazilian power systems comprises, as of 2010,
more than 200 power plants. Among these, 141 are hydro units.

The objective of the problem is to determine optimal operation policies for
power plants, while minimizing operation costs and satisfying demand. Rep-
resenting the 141 hydro plants as well as their associated inflows results in
a high-dimensional dynamic problem. In order to tackle this problem, the
literature typically separates it into long-term, medium-term and short-term
operational planning. The value functions obtained in the long-term oper-
ational planning problem are used as input for medium-term planning. The
value functions from medium-term planning are then used, in turn, as input for
the short-term operational planning problem. The SDDP algorithm is applied
in the long-term operational planning problem. The problem is simplified by
aggregating reservoirs into equivalent energy reservoirs [AR70]. The literature
typically considers four energy equivalent reservoirs for this problem instance:
North, Northeast, Southeast, South and a Transshipment node. The Trans-
shipment node has no loads or production. The system is presented in Figure
2.4.

The problem aims at satisfying the demand at each node by using the hy-
dro and thermal power of that node, as well as power that is imported from
other nodes. However, there is a limit in the power that can flow trough the
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Figure 2.4: Brazilian hydrothermal test case - equivalent reservoirs

transmission lines of the electricity network. In the literature, the problem is
typically solved for a 60-month planning period. However, in order to rep-
resent the continuation of operations at the end of the planning horizon, 60
additional months are considered. Following [LS19], the uncertainty model is
represented by considering a Markov chain, the so-called MC-SDDP, thus lead-
ing to an uncertainty lattice. This leads to a multi-stage stochastic program in
4 dimensions and 120 stages. We consider a setting with 100 nodes per stage.

Inventory Control Problem: We model a stochastic inventory problem
with Markovian demand. The objective of the problem is to maximize expected
profits by placing optimal order quantities xtn for products n ∈ N over periods
t ∈ H. Demand is satisfied from on-hand inventory vt−1,n by selling a quantity
stn of each product. Any excess demand is considered as being lost. We
consider a case with 10 products, which is the dimension of the random vector.
The problem horizon is equal to 10 stages, with 100 nodes per stage.

2.3.1 Experimental Results

The computational work is performed on the Lemaitre3 cluster, which is hosted
at the Consortium des Equipements de Calcul Intensif (CECI). It comprises 80
compute nodes with two 12-core Intel SkyLake 5118 processors at 2.3 GHz and
95 GB of RAM (3970MB/core), interconnected with an OmniPath network
(OPA-56Gbps). The algorithms are implemented in Julia v0.6 [BEKS17] and
JuMP v0.18 [DHL17]. The chosen linear programming solver is Gurobi 8.

Synchronous and Asynchronous Computation

Figure 2.5 presents the evolution of the optimality gap for all algorithms against
run time. The algorithms are run with 20 CPUs. Obtaining a reliable upper
bound at each point in time can be very time consuming. Thus, providing a
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reliable gap evolution can be time-consuming as well. Moreover, estimating
an upper bound for the Async PS scheme is difficult, since there is a policy
that is evolving differently on each CPU. Therefore, in order to provide a fair
comparison between the different schemes, we have pre-calculated a best avail-
able lower bound and compared the lower bound evolution of all the algorithms
against this best known solution. Concretely, the gap is measured as the rel-
ative difference between the lower bound evolution of the algorithm and the
“best available lower bound” L that we are able to compute for the problem.
What we refer to as the “best available lower bound” L is a lower bound that
corresponds to a high-quality policy. The way in which we verify a high-quality
policy is by verifying that the relative difference between the upper bound es-
timate of said policy and L is below 1%. The upper bound estimate for this
policy is calculated with a sufficient number of samples so as to ensure a 1%
difference between the performance of this policy and L with a confidence of
95%. Once this best lower bound L is calculated, the reported gaps are calcu-
lated as follows: (L − Lt) · 100/L, where Lt is the lower bound calculated as
each algorithm progresses. More specifically, for the PN schemes and the Sync
PS scheme, Lt is the lower bound at the end of iteration t. For the Async PS
scheme, each CPU is performing its own SDDP run and sharing cuts whenever
they are available. Namely, on each CPU the policy is evolving differently.
Therefore, Lt corresponds to the lower bound at the end of iteration t of the
fastest CPU.

1. Parallelizing by Scenario: For the inventory test case, the asynchronous
schemes tend to perform better during early iterations, as indicated in
panels (a) and (b) of Figure 2.5. Instead, for the hydrothermal test case
there is no considerable difference, see panels (c) and (d) of Figure 2.5.
The difference in the behaviour between both test cases can be explained
as follows. As pointed out in [DMPF15], the expected value cost-to-go
function approximations tend to be myopic at early iterations, when the
gap is high. This implies that the trial points and the cuts obtained when
there is a high gap tend to produce low-quality information. Therefore,
the following possibilities can occur:

• When the algorithm struggles to decrease the gap during early it-
erations, the synchronous version tends to perform poorly. This is
due to the fact that the processors wait for the generation of loose
cuts. Instead, an asynchronous version benefits from the fact that
the fastest processor is not waiting for these low-quality cuts.

• On the other hand, when the algorithm manages to reduce the op-
timality gap during early iterations, the disadvantage of the syn-
chronous version diminishes. This is due to the fact that, since the
gap reduces quickly, the value functions are of good quality. Conse-
quently, the synchronous version will wait for useful information.

The inventory test case corresponds to the former case, whereas the
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(a) (b)

(c) (d)

Figure 2.5: Comparison of algorithms. Panels (a) and (b) present the evolution of the
optimality gap against time for the inventory test case. Panels (c) and (d) present
the evolution of the optimality gap for the hydrothermal problem. Panels (a) and
(c) show the gap evolution throughout the entire execution time, with emphasis on
presenting the differences when the gap is low. Panels (b) and (d) present a close up
at the beginning of the run time, emphasizing the differences between the PS and PN
schemes at the early steps of execution.

Brazilian hydrothermal test case corresponds to the latter. Panel (a)
of Figure 2.6 demonstrates that, after 500 scenarios, the gap for the PS
methods is above 100% for the inventory test case. Instead, the same
number of scenarios analyzed results in a gap below 20% for the hy-
drothermal test case, as we can observe in panel (c) of Figure 2.6. More-
over, as we can observe in panel (b) of Figure 2.6, the PS scheme is able to
process more scenarios compared to the PN scheme for the inventory test
case. Nevertheless, the PS gap is worse, thus supporting the observation
that the value functions computed during early steps of the algorithm are
poorly approximated.

Despite these observations, we note that there is no significant difference
between the synchronous or asynchronous schemes when aiming for tight
optimality gaps. This can be observed in Figure 2.5. When we target
tight gaps, many additional scenarios are required, as we can observe in
panels (a) and (c) of Figure 2.6. Unfortunately, Async PS is not able to
visit many more scenarios than the synchronous counterpart, see panels
(b) and (d) of Figure 2.6. As a consequence, although Async PS may
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(a) (b)

(c) (d)

Figure 2.6: Scenarios Analyzed by each method. The scenarios analyzed refers to
the number of scenarios visited during the training process for each method. The
first row corresponds to the inventory test case, the second row corresponds to the
hydrothermal test case. Panels (a) and (c) present the evolution of the optimality
gap against the number of scenarios analyzed. Panels (b) and (d) present the number
of scenarios analyzed against time.

reduce the optimality gap faster during early iterations, both synchronous
and asynchronous schemes achieve similar performance after a significant
amount of computation time has elapsed.

2. Parallelizing by Node: As seen in panels (b) and (d) of Figure 2.6 the
asynchronous version is able to process more scenarios as compared to the
synchronous counterpart. Nevertheless, the main observation of Figure
2.5 is that there is no significant benefit in an asynchronous implementa-
tion for parallelizing by node. Both the synchronous and asynchronous
parallel node algorithms are attaining comparable performance in terms
of gap throughout the entire course of the execution of the algorithms.

In order to evaluate the reproducibility of the results under different runs, 5
repetitions are performed for each method. We use Student’s t-distribution to
construct 95% confidence intervals. The results are presented in Figure 2.7. As
we can observe, the convergence trend of each algorithm remains.
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(a) Inventory Test Case (b) Hydrothermal Test Case

Figure 2.7: Reproducibility of the results

Parallel Node versus Parallel Scenario

Interestingly, as we can observe in panels (b) and (d) of Figure 2.5, the PN
strategy is behaving much better than the PS strategy during early iterations.
The reason is that, as we discuss previously, the value function approximations
tend to be poor in early iterations [DMPF15]. Thus, at each iteration, the
PS version generates several cuts that are loose approximations of the value
functions, whereas the PN setting generates a single cut. Nevertheless, if the
goal is to obtain tight gaps, the difference is not significant. The reason is that,
once value functions of better quality have been obtained by either algorithm,
there is a benefit of visiting more than one scenario per iteration. This works
in favor of the PS setting.

In addition to the experiments shown, an out-of-sample estimation was per-
formed. Concretely, for every x visited scenarios (i.e. for every x scenarios that
are used for training) we perform an out-of-sample simulation by considering
2000 scenarios that are not used during the training process. For the inven-
tory test case, the out-of-sample simulation is performed every 400 scenarios,
while for the hydrothermal test case the out-of-sample is performed every 60
scenarios. We chose to select a finer granularity for the hydrothermal test case
because the PS policies improve faster in terms of visited scenarios for this test
case. The results are presented in Figure 2.8.

From the performed experiments, one can observe that the PN methods
tend to perform better during early iterations. However, there is a point in
which both PN and PS attain comparable performance, as our previous exper-
iments also demonstrate. We also observe that, for the inventory test case, the
Async PS scheme behaves considerably better than the Sync PS counterpart,
which our previous experiments have also demonstrated.

Scalability of Parallel Scenario

Panel (a) of Figures 2.9, 2.10 presents the evolution of the PS algorithms when
increasing the number of CPUs. Figure 2.9 corresponds to the hydrothermal
test case, and Figure 2.10 corresponds to the inventory test case. The target
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(a) Inventory Test Case (b) Hydrothermal Test Case

Figure 2.8: Out Of Sample Simulation. After every x scenarios used for training,
an out-of-sample upper bound estimate is performed. For the Inventory test case, x
is chosen to be 400 scenarios. For the hydrothermal test case, x is chosen to be 60
scenarios.

(a) (b)

Figure 2.9: Hydrothermal test case - CPU scalability.

gap for terminating the algorithms is set to 10%. As in the previous experi-
ments, the gap refers to the relative difference between the lower bound and the
best available solution. The algorithms present an inherent uncertainty due to
Monte Carlo sampling in the forward pass. Consequently, the run time itself is
random. Therefore, for each CPU count we conduct the experiment 5 times,
in order to construct 95% confidence intervals, which are based on Student’s
t-distribution. Panels (a) and (b) of Figures 2.10 and 2.9 demonstrate that an
initial increase in the number of CPUs results in a notable performance im-
provement. Nevertheless, there is a point at which this trend is reversed. This
is especially true for the inventory test case. We arrive to the same observation
when reporting the speedup1 of the algorithms. Note, in panel (b) of the Fig-
ures, that there is a point beyond which the speedup decreases. This is due to
the fact that, as more CPUs are introduced, more samples are introduced per
iteration. As we have argued, the expected value cost-to-go functions are my-

1The speedup is defined as the ratio between a serial run (i.e. a run using a single CPU)
and a parallel run using X CPUs.
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opic at early steps. Consequently, more samples tend to introduce information
that is not entirely useful for the algorithm, more so in early iterations. This
results in a slowdown of the PS algorithm.

In order to tackle the poor quality of cuts that is produced as a result
of the myopic value function that is found at early steps, the cut selection
methodology proposed in [LWM13] is implemented for the Sync PS algorithm.
Our choice to focus on the Sync PS algorithm is motivated by the fact that it
suffers the most due to the aforementioned effect. This cut selection technique
rejects a cut, calculated at point xt, if the value function is not improved by
some ϵ > 0 when adding the cut at point xt. The strategy has been applied
to the inventory test case, which is the case study for which the performance
deteriorates the most. As one can observe in panel (c) of Figure 2.10, we
observe that introducing such a cut selection method has a damping effect: the
issue is diminished but is not solved. The cut selection technique helps by not
adding some non-useful cuts to the linear programs, nevertheless computational
resources are wasted as several scenarios end up building non-useful cuts.

(a) (b)

(c)

Figure 2.10: CPU scalability for the inventory test case.
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Parallel Node Scalability

Panel (a) of Figures 2.9, 2.10 presents the performance when increasing the
number of CPUs for the parallel node setting. As in the previous case, the
target optimality gap is set to 10% and 95% confidence intervals are presented.
Note that the performance of the algorithm improves with additional CPUs.
Since the algorithm is building one cut per iteration, as more CPUs are intro-
duced, that single cut is computed faster. This is an important difference as
compared to the PS scheme, where the speedup can decrease.

Although this scheme exhibits favorable scalability behavior, it is limited
to a shared memory setting. As stated in subsection 3.1.2, the reason behind
this limitation is that the solve time of a subproblem is comparable to the
startup cost of a worker in a distributed memory setting. Concretely, after some
hundreds of iterations the solve time per subproblem for both test cases ranges
in the order of a few milliseconds, a time which is comparable to the startup cost
which is about 3 milliseconds. Therefore, the latency of the network becomes
an issue.

2.4 Conclusions

In this chapter we propose a family of parallel schemes for SDDP. These schemes
are differentiated along two dimensions: (i) using parallel processors in order
to distribute computation per Monte Carlo sample of the forward pass (per
scenario) or per node of the lattice at every stage of the problem (per node); (ii)
implementing the exchange of information among processors in a synchronous
or asynchronous fashion. We compare the performance of these algorithms in
two case studies: (i) an inventory management problem, and (ii) an instance
of the Brazilian hydrothermal scheduling problem. The case studies deliver
consistent messages, which we summarize below in the form of four conclusions.

(i) Asynchronous computing is not helpful in the studied experiments, when
the goal is to achieve a tight optimality gap in a shorter time. Asynchronous
schemes, on the other hand, may be beneficial at early stages of the Parallel
Scenario strategy. (ii) We have proposed a Parallel Node strategy for SDDP,
which performs better at early iterations than the traditional parallel scheme
for SDDP. (iii) Parallel schemes that are based on increasing the number of
scenarios which are processed during the forward pass may not scale well with
extra CPUs. This is the case for the PS scheme. (iv) The Parallel Node
strategy presents desirable CPU scalability properties, but only in a shared
memory setting.

In our work we have indicated some of the weaknesses in the parallelization
of SDDP. On the one hand, we have empirically demonstrated scalability issues
with the commonly proposed parallel scenario scheme. On the other hand, We
have proposed a new set of parallel schemes, the parallel node configurations,
with better scalability properties. These proposed algorithms are restricted to
a shared memory setting, thus limiting the amount of CPUs available for use.
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However, recent advances of message passing in distributed computing infras-
tructures open the path for future developments of parallel node configurations
in such infrastructures. These scalability issues motivate future research into
scalable parallel SDDP schemes based on backward dynamic programming.
These schemes, which present desirable scalability properties, are closer to the
per-node strategy in the sense that a pool of fixed amount of work is distributed
among processors, but are also implementable in distributed memory settings,
such as high performance computing clusters.

Interestingly, we have observed that the different configurations tend to
behave similarly after a certain amount of time has elapsed, in the sense that
the different optimality gaps are close and reach a steady-state behaviour. This
observation motivates the search for algorithmic configurations which focus on
the optimality gaps rather than on speeding up the SDDP iterations.

2.A Hydrothermal Scheduling Problem

We use a transportation model to approximate the operation of the transmis-
sion network. The cost to go function Vt(vt−1, ξt) can then be computed by
solving the following problem:

min
∑
i∈G

Mi · gt,i +VOLL
∑
n∈N

lst,n + Vt+1(vt, ξt)

s.t. vt,n = vt−1,n +At,n(ξt)− qt,n − st,n n ∈ N

qt,n +
∑
i∈G

gt,i +
∑
i∈Fn

ft,i = Lt,n n ∈ N

gt ≤ Ḡ

vt ≤ V̄

qt ≤ Q̄

ft ≤ F̄

gt, lst, vt, qt, st, ft ≥ 0

The variables can be described as follows:

vt: The state variable vector, which represents the stored energy of the
equivalent reservoir.

qt, st : Decision variables which represent the generated hydro energy and
the spillage, respectively.

lstn : Decision variable which represents load shedding.

gt: The vector of generated power from thermal plant i ∈ G.

The parameters can be described as follows:
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Mi: The generation cost of thermal plan i ∈ G.

V OLL: The value of lost load.

Pi: The hydro generation coefficient of hydro plant i ∈ H.

At: The inflow vector.

Lt: Load at stage t.

Ḡ, V̄ , Q̄, F̄ : Physical upper limits on the variables.

Further details for the Brazilian hydrothermal model, and the description of
the data, can be found in [STdCS13].

2.B Inventory Control Problem

The inventory control problem can be modeled as a multistage stochastic prob-
lem. The uncertainty in the problem is due to stochastic demand, which is
assumed to follow a Markov Chain. The cost-to-go function Vt(vt−1, ξt) is
computed by solving the following problem:

max
∑
n∈N

P · st,n −HC · vt,n − PC · xt,n + Vt+1(vt, ξt)

s.t. vt,n = vt−1,n + xt,n − st,n n ∈ N
st,n ≤ vt−1,n n ∈ N
st,n ≤ Dt,n(ξt) n ∈ N
vt,n ≤ C n ∈ N
vt,n, st,n, xt,n ≥ 0 n ∈ N

The variables are given as follows:

vt,n: The state variable, which represents the on-hand inventory for prod-
uct n ∈ N .

st,n: Variable representing the amount of sold items for product n ∈ N .

xt,n : Variable representing the ordered quantities for product n ∈ N .

The parameters can be described as follows:

P : The sales price.

HC: The inventory holding cost.

PC: the purchase cost.
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Dt,n: The demand for product n ∈ N .

C: The inventory capacity.

The problem is set up for 10 products. This is the dimension of the random
vector. The time horizon is equal to 10 stages. We consider 100 nodes per
stage.

2.C Convergence of the Async PN Scheme

The proposed strategy to build cuts for the Async PN scheme is a valid strategy,
as the following lemma shows.

Lemma 2.1. The cuts built in the Async PN scheme are valid cuts.

Proof. Let x̂k
t−1 be the obtained trial point for stage t− 1 at iteration k. Con-

sider the cut for the cost-to-go function Vt(xt−1, ξt), which is given by

Vt(xt−1, ξt) ≥ αk
ξt,t + βk

ξt,t · xt−1 (2.1)

The expected cost-to-go function satisfies

Vt(xt−1, ξt−1) =
∑
ξt∈Ωt

Vt(xt−1, ξt) · P (ξt|ξt−1) (2.2)

Then, a cut for Vt(xt−1, ξt−1) is given by

Vt(xt−1, ξt−1) ≥
∑
ξt∈Ωt

αk
ξt,t · P (ξt|ξt−1) +

∑
ξt∈Ωt

βk
ξt,t · P (ξt|ξt−1) · xt−1 (2.3)

Let us now build a cut for the expected cost-to-go function at iteration k + 1
using incomplete information. Assume that, at iteration k+1, we do not have
access to the solution information of outcome ξ̂t. Note that, as equation 2.1
holds for any xt−1, and given equation 2.2, we can write

Vt(xt−1, ξt−1) ≥
∑

ξt∈Ωt−{ξ̂t}

αk+1
ξt,t

· P (ξt|ξt−1) + αk
ξ̂t,t

· P (ξ̂t|ξt−1)

+
[ ∑
ξt∈Ωt−{ξ̂t}

βk+1
ξt,t

· P (ξt|ξt−1) + βk
ξ̂t,t

· P (ξ̂t|ξt−1)
]
· xt−1 (2.4)

Note that, in equation 4, the missing information, at iteration k+1, of outcome
ξ̂t is completed by using the information of the previous iteration, namely by
using the cut coefficients αk

ξ̂t,t
, βk

ξ̂t,t
of the previous iteration.

In [PG08] the authors show that any sequence of cuts will necessarily be
finite, in the sense that after a finite number of iterations no new cuts will be
computed. Concretely, the following lemma, which is just an adaptation of
the proof shown in [PG08], proves that after a finite number of iterations the
algorithm will not produce new cuts.
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Lemma 2.2. Let Gt,ω
k be the set of cuts at stage t, node ω and iteration k.

There exists mt,ω such that |Gt,ω
k | ≤ mt,ω for all k, 1 ≤ t ≤ T − 1.

Proof. We proceed by induction on t. For t = T − 1. Note that, as there are
no cuts in the last stage, the set of multipliers in the last stage is given by,

{π|πT ·AT (ω) ≤ cTT (ω)}

Thus, there are at most say MT,ω possibilities for multipliers. Assuming there
are Nt nodes for stage t, then this implies that at stage T there are at most∏NT

i=1 MT,ωi
combinations of multipliers. As a consequence, for any node ω at

stage T − 1, there are at most mT−1,ω :=
∏NT

i=1 MT,ωi possibilities to build a

cut. Let us now assume that for t we have mt,ω such that |Gt,ω
k | ≤ mt,ω for all

k. We have to show that the property holds for t− 1.
Due to the assumption at the end of the previous paragraph, we know that

for node ω in stage t, |Gt,ω
k | ≤ mt,ω, in particular this implies that there exists

a k̂ such that Gt,ω

k̂
= Gt,ω

k for all k > k̂, and so any cut after iteration k̂ is

already in the set of cuts. Then, after iteration k̂, the linear program of node
ω at stage t will not have new cuts. As a consequence, the set of multipliers
for node ω at stage t is finite, say Mt,ω. This implies that, at stage t, there are∏Nt

i=1 Mt,ωi possible combinations of multipliers. Therefore, for any node ω at

stage t− 1 there will be at most mt−1,ω :=
∏Nt

i=1 Mt,ωi
possibilities to build a

cut, which proves the result.



3 Batch Learning SDDP for
Long-Term Hydrothermal Planning

3.1 Introduction

While SDDP has exhibited superior performance in solving large-scale instances
of difficult optimization problems, there are instances where the algorithm fails
to converge. For instance, gaps of nearly 22% are reported for a widely stud-
ied instance of the long-term planning problem of the Brazilian power system
[STdCS13]. This is despite theoretical guarantees of convergence [PG08]. Fail-
ure to converge is a problem of practical relevance in short-term planning,
where solutions need to be available within a certain period of time. Strate-
gies to speed up the algorithm includes cut selection techniques, which aim
at selecting and removing redundant hyperplanes [DMPF15, Gui17, GB19,
LWM13]. While these techniques have shown promising results for increasing
the computational speed during each iteration, failure of convergence is not
addressed. Parallel computing has been proposed as well to speed-up the algo-
rithm [dSF03, PBM13, HB15, MDBB21], as it is has shown significant promise
for solving unit commitment problems [AP20]. However, as we have observed
in the previous chapter, parallelism in its own may not be able to circumvent
the issue of prompt convergence. Concretely, parallelization may not scale well,
and different parallelization strategies may yield somewhat similar results when
targeting tight optimality gaps [ÁPL21].

In this chapter, We propose to use experience replay - a batch learning
technique that is popular within the reinforcement learning framework - to
improve SDDP convergence as well as its parallel efficiency. We show how batch
learning makes better use of parallel computations than conventional SDDP,
and we compare it with a commercial implementation of SDDP - the PSR
SDDP software [PSR]1. We argue that our findings open the door for a number
of relevant applications in short-term planning, which are to be explored further
in future work.

1PSR is a consulting firm based in Rio de Janeiro that has pioneered the commercialization
of the SDDP algorithm for hydro-thermal planning

49
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3.1.1 Batch learning

Reinforcement learning (RL) is an area of machine learning that aims at train-
ing computational agents in order to enable them to reach decisions in a dy-
namic and uncertain environment, so that these agents can maximize their
rewards.

There is a distinction in reinforcement learning between model-free and
model-based methods. In model-free RL, the objective is to train an agent by
observing its interaction with an environment for which no model exists. In
model-based RL, the objective is to train an agent that interacts with a model
of the environment. Since stochastic programming provides us with a model of
the environment, we focus on model-based methods.

Conventional RL algorithms apply a sequential strategy that updates a deci-
sion policy as soon as new information arrives. It has been found that it can be
better to delay and batch these updates so as to avoid costly matrix multiplica-
tions when updating gradients or simply to reduce noise [KS07]. This so-called
batch learning approach has emerged as an attractive alternative that often
outperforms other reinforcement learning algorithms [Lin92, KS07, LGR12].

Experience replay [Lin92], a batch learning technique, resamples states and
actions that have been visited in previous iterations, thereby replacing the old
belief regarding expected cost associated with those state-action pairs with
new information. In this way, the algorithm decreases the delay of revisiting
previously explored states, which may have a significant impact on the de-
cision policy [Lin92, LGR12]. Google’s DeepMind algorithm uses experience
replay in combination with Q-learning as a strategy for obtaining human-level
performance in a series of Atari games [MKS15].

We propose to use batch learning and experience replay in order to accel-
erate learning and thereby the convergence of SDDP. The proposed algorithm
applies experience replay during the backward pass, where experiences corre-
spond to the trial points of previous iterations. The updates of these trial
points can be batched and parallelized during the backward pass.

3.1.2 Parallel computing

As argued in the previous chapter, parallel schemes are a natural choice for
countering the computational complexity of multistage stochastic program-
ming [PBM13]. The extant literature mostly discusses parallel Monte Carlo
sampling during the forward and backward passes of the SDDP algorithm
[dSF03, PBM13, HB15, DK17]. This view is somewhat limited, as we have
argued in last chapter. Experimental evidence suggests [DMPF15, DMPFG10,
ÁPL21] that a downside of increasing the number of parallel forward passes
is that it often leads to an accumulation of trial points that are similar, or
that are far from the optimal region, which in turn leads to an accumulation of
redundant cuts that hardly improve the approximation but severely slow down
the convergence of the algorithm.
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Furthermore, past research has shown that different techniques tailored
for exploiting synchronous and asynchronous parallel computing present a be-
haviour that is dependent on the problem and may not hold for long runs of
the algorithms [ÁPL21, MDBB21]. These results have allowed us to identify
that forward exploration is not sufficient for creating a highly parallelizable
algorithm, but that the focus should rather be on the backward pass. This
motivates the idea of being accurate during backward passes, a notion which
has connections with certain ideas originating from the reinforcement learning
framework.

3.1.3 Organization & Contributions

In this chapter, (i) we introduce a novel variant of SDDP, which we refer to as
Batch Learning SDDP (BL-SDDP) and show its connection to reinforcement
learning (RL); (ii) we compare the algorithm to the widely used commercial
SDDP implementation of PSR; (iii) we demonstrate its suitability for parallel
computing; (iv) we test its performance in both risk neutral and risk-averse
settings.

In Section 3.2 we formulate multistage stochastic programming problems
as Markov decision processes (MDPs), and we cast SDDP as a reinforcement
learning algorithm, similar to Q-learning. In Section 3.3, we introduce BL-
SDDP. BL-SDDP uses experience replay, a batch learning technique from re-
inforcement learning, as a novel approach for accelerating the convergence of
the algorithm. We describe a novel parallel scheme for BL-SDDP in Section
3.4. In Section 3.5, we benchmark the new algorithm, not only against our
own implementation of SDDP, but also against the commercial PSR SDDP
software. The benchmark is performed against a high-dimensional, real-world
instance of a hydro-thermal planning problem.

3.2 Problem Formulation

In this section, we discuss the connection between SDDP and reinforcement
learning, so as to motivate our algorithmic developments. The section is divided
into two subsections. The first subsection provides a link between multistage
stochastic programs and MDP. In particular, in lemma 2.1, we establish that
multistage stochastic programs which can be tackled through SDDP can be
cast as MDPs, which in turn can be tackled through reinforcement learning.
The last subsection presents Lemma 2.2, which demonstrates that SDDP is
a reinforcement learning algorithm. This development allows us to access a
wealth of algorithms from reinforcement learning that have delivered impressive
performance in applications outside of power systems optimization.
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3.2.1 Multistage stochastic programming and MDP

We motivate the connections between multistage stochastic linear programs
and MDPs using the familiar example of a two-stage hydrothermal scheduling
problem. The problem can be cast as follows:

min C · g1 +VOLL · ls1 + E[C · g2(ξ2) + VOLL · ls2(ξ2)]
s.t. q1 + g1 + ls1 = L1

x1 = X0 +A1 − q1

q2(ξ2) + g2(ξ2) + ls2(ξ2) = L2

x2(ξ2) = x1 +A2(ξ2)− q2(ξ2)

gt(ξt) ≤ Ḡ

xt(ξt) ≤ X̄

gt(ξt), xt(ξt), qt(ξt) ≥ 0, for all ξt ∈ Ωt

Here, gt is the power generated by thermal units at a marginal cost C. The
thermal generators can produce up to Ḡ units of power per period. The system
can shed load at a high cost V OLL, and lst is the amount of power that is
curtailed from consumers. The variable qt is the power generated from hydro
units, which is generated at zero cost. The variable xt represents the amount
of available energy in the hydro reservoir at the end of period t. The hydro
reservoir can store a maximum amount X̄ of energy, and has as initial condition
X0. The system is subject to uncertain natural inflows represented by At. We
assume that there are finitely many outcomes Ωt. Note that there is a single
realization Ω1 = {ξ1} in the first stage. Using standard MDP notation, we can
write the problem as follows.

• The set of states are defined as below:

S1 = {(X0, ξ1)}

S2 =
{
(x1, ξ2) : exists q1, g1 s.t. x1 = X0 +A1 − q1

q1 + g1 + ls1 = L1

g1 ≤ Ḡ, x1 ≤ X̄, g1, x1, q1 ≥ 0, ξ2 ∈ Ω2

}
• The actions for a state st = (xt−1, ξt) are defined as

At(st) = {(xt, qt, gt, lt) : qt + gt + lst = Lt

xt = xt−1 +At(ξt)− qt

gt ≤ Ḡ, xt ≤ X̄, gt, xt, qt ≥ 0}

We use at to refer to an action.

• The reward function is given by

Ct(st, at) = C · gt + V OLL · lst
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• The probability of transitioning to state s2 while being in state s1 = (X0, ξ1)
and selecting action at = (xt, qt, gt, lt) is defined as:

P (st+1|st, at) =

{
P (ξ2|ξ1) s2 = (xt, ξt+1)

0 otherwise

These definitions allow us to translate the multistage stochastic program into
the MDP framework.

Now let us recall the general case of a multistage stochastic linear program
over T stages (see 1.3), given by:

min
B1x0+A1x1+D1y1=b1

x1,y1≥0

uT
1 x1 + vT1 y1 + E

[

min
B2x1+A2x2+D2y2=b2

x2≥0

uT
2 x2 + vT2 y2 + E

[
· · ·+

E

[
min

BT xT−1+AT xT+DT yT=bT
xT≥0

uT
TxT + vTT yT

]]]
(MSP-P)

Following the standard MDP description [Put14], we cast the MSP as an
MDP by defining a tuple (St,At, Ct, P ) in the following way. To simplify the
description we define the following feasible set:

Feast(xt−1, ξt) = {(xt, yt) ∈ Rn : ∃ xt, yt ≥ 0,

Bt(ξt)xt−1 +At(ξt)xt +Dt(ξt)yt = bt(ξt)}

• States: The set of states is defined recursively as:

S1 = {(x0, ξ1)}

St =
{
(xt−1, ξt) : ξt ∈ Ωt and (xt−1, yt−1) ∈

Feast−1(xt−2, ξt−1) for some (xt−2, ξt−1) ∈ St−1

}
• Actions: For each state st = (xt−1, ξt), the feasible actions are defined as
At(st) = Feast(xt−1, ξt). To improve readability, we define at = (xt, yt) to refer
to an action.

• Reward: The reward function is given by Ct(st, at) = ut(ξt)
Txt+vt(ξt)

T yt.

• Dynamics: The probability of transitioning to state st+1 while being in
state st = (xt−1, ξt) and selecting action at = (xt, yt) is as follows:

P (st+1|st, at) =

{
P (ξt+1|ξt) st+1 = (xt, ξt+1)

0 otherwise
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Furthermore, the state transition equation can be expressed as (xt, ξt+1) =
ft(st, at, ξt+1).

Remark 3.1. Note that problem MSP-P is a linear program. Consequently,
the optimal action is at the vertex of the feasible set. Therefore, we can always
restrict the actions to such a set, and have finitely many actions and states.

With these definitions, with the presented choice of (St,At, Ct, P ), we can
pose the MDP problem as one of finding a policy that minimizes the expected
reward:

min
π∈Π

E
[ T∑

t=1

Ct(s
π
t , a

π
t )
]

(MDP-P)

To link reinforcement learning with stochastic dual dynamic programming,
we establish the following relationship.

Lemma 3.1. The problems MDP-P and MSP-P are equivalent.

Proof. Let us consider a feasible solution of problem MSP-P. Furthermore, we
can ask such a solution to be a vertex of the polyhedra defining the linear
programs. Then, for every t and ξt ∈ Ωt, we have feasible values xt(ξt), yt(ξt)
and an objective cost

uT
1 x1 + v1y1 + E

[
uT
2 x2 + vT2 y2 + E

[
· · ·+ E

[
uT
TxT + vTT yT

]]]
Note that we can define a policy πt such that for st = (xt−1(ξt−1), ξt) we have
πt(st) = (xt(ξt), yt(ξt)). Moreover, under such a policy,

E
[ T∑

t=1

Ct(s
π
t , a

π
t )
]
= uT

1 x1 + v1y1 + E
[
uT
2 x2 + vT2 y2+

E
[
· · ·+ E

[
uT
TxT + vTT yT

]]]
Therefore, every vertex solution of MSP-P gives a policy π which, when eval-
uated in MDP-P, yields the same cost. Thus, MDP-P ≤ MSP-P. Similarly,
given any policy π, we can define a feasible solution for MSP-P which, when
evaluated, yields the same result as when evaluating the policy, and so MDP-P
≥ MSP-P.

3.2.2 Stochastic dual dynamic programming as a rein-
forcement learning algorithm

Following a similar structure as double-pass algorithms [Pow07], we can de-
scribe SDDP as a reinforcement learning algorithm that can be used to tackle
problem MDP-P. Through an iterative procedure, this algorithm approximates
the Q-factors. Supporting hyperplanes are used in order to approximate the
value functions V∗

t+1(st, at). The Bellman optimality equation is then used in
order to approximate the value functions of preceding stages.
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Lemma 3.2. SDDP is a reinforcement learning algorithm used to solve MDP-
P.

Proof. As presented in subsection 1.4, the Q-factors satisfy

Q∗
t (st, at) = Ct(st, at) + V∗

t+1(st, at)

Moreover, V∗
t+1 can be approximated by building a supporting hyperplane

around xn
t [STdCS13], where (xn

t , y
n
t ) = ant is a trial action. Thus, we can

consider an update rule that adds a supporting hyperplane around xn
t to the

current approximation of the value function, Vt+1, and updates the Q-factor
as Qt(st, at) = Ct(st, at)+Vt+1(st, at). Building such a supporting hyperplane
requires a model-based scheme. A detailed exposition on how the supporting
hyperplane is built can be found in [STdCS13]. Let us express this update rule
as Qt = U(at, Qt+1). We can now formulate the SDDP algorithm following a
similar structure as double-pass algorithms:

Algorithm 10: SDDP as an RL algorithm

Input: Provide an initialization of the Q-factors Q0
t (st, at) for st ∈ St,

at ∈ At(st) and t = 1, · · · , T , and a maximum number of iterations N .
Output: A cutting-plane approximation {ciξt(xt)}Ni=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for n = 1, · · · , N

1. Forward Pass: Initialize at state s1. for t = 1, · · · , T

(1.1) Find the decision using the current Q-factors.

ant ∈ argmin
at∈X (snt )

Qn−1
t (snt , at)

(1.2) Take action ant and transition to state snt+1.

2. Backward Pass: for t = T, · · · , 1

(2.1) Update Qn−1
t using the update rule.

Qn
t = Ut(a

n
t , Q

n
t+1)

return QN
t estimates for t = 1, · · ·T

Remark 3.2. Double-pass algorithms, with the proper update rule, include
commonly known reinforcement learning algorithms such as TD(1) [Pow07].
Furthermore, single-pass algorithms, where just a forward pass is applied and
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the updates evolve forward in time, include algorithms such as Q-learning or
more generally TD(0) algorithms [Pow07].

3.3 Batch Learning SDDP (BL-SDDP)

The motivation of Batch Learning SDDP is to exploit parallel computing for
proposing a novel and effective approach to perform backward passes, aiming
at back-propagating the information accurately across stages.

The relevance of the backward pass can be understood as follows. Poor
value function approximations in the last stage, which SDDP will build at
early steps, will produce even looser cuts for the previous stage, with approxi-
mation errors increasing as we move backwards in time stages. The BL-SDDP
algorithm addresses this drawback by allowing previously visited trial actions
or experiences to have access to the value function updates carried out in later
stages. The idea of re-visiting previous experiences, a technique known as ex-
perience replay, has gained popularity in the reinforcement learning literature
due to its success in accelerating learning speed [Lin92, PW16, MKS15].

This section presents a novel application of the experience replay framework
in the context of SDDP as a corollary of the results presented in section 3.2.
The first subsection presents the experience replay scheme, and the second
subsection introduces our novel batch learning SDDP algorithm.

3.3.1 Experience replay

The experience replay framework, introduced first by [Lin92], aims at updat-
ing Qt using previously computed states and actions, commonly referred to as
experiences. The motivation behind this is that updating a state-action pair
(st, at) at stage t may affect some preceding states st−1. Nevertheless, this
information will not back-propagate until state st−1 is re-visited. Furthermore,
states preceding st−1 will need to be re-visited after the update of st−1 be-
fore being able to see the update carried out in the upper layers. Therefore,
the back-propagation of information is not possible unless states are re-visited.
Given an arbitrary update rule Qt = Ut(st, at, st+1, Qt+1), the experience re-
play algorithm, which has been adapted for the finite horizon setting, can be
described as follows [Lin92, PW16, MKS15].



3.3. Batch Learning SDDP (BL-SDDP) 57

Algorithm 11: Experience Replay

Input: Initialization of the Q-factors Q0
t (st, at) for st ∈ St, at ∈ At(st),

t = 1, · · · , T . For each stage, provide a set of experiences
Mt = {(snt , ant , snt+1) : n = 1, . . . , N} and let K be the batch size K ≤ |Mt|.

for t = T, · · · , 1

1. Retrieve a subset {(skt , akt , skt+1) : k = 1, . . . ,K} ⊂ Mt.

2. for k = 1, · · · ,K update Q0
t using the update rule.

Q1
t = Ut(s

k
t , a

k
t , s

k
t+1, Q

1
t+1)

return Q1
t estimates for t = 1, · · ·T

Note that this process can be repeated iteratively. That is to say, a set of
experiences is collected, the experience replay algorithm is applied, afterwards
more experiences are collected, and the experience replay algorithm is applied
again. In the literature, when K equals the total set of experiences, the method
is usually referred to as a full-batch update, whereas when K is less than the
total size it is referred to as a mini-batch update.

3.3.2 BL-SDDP description

As presented in section 3.2.2, the SDDP algorithm can be described as a type
of double-pass algorithm, of the sort that can be encountered in the reinforce-
ment learning literature (lemma 3.2). As a consequence, we can apply known
techniques for MDP algorithms, such as the experience replay scheme. This
leads to the Batch Learning SDDP algorithm described as follows.
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Algorithm 12: BL-SDDP

Input: Initialization of the Q-factors Q0
t (st, at) for st ∈ St, at ∈ At(st),

t = 1, · · · , T . Let K be the batch size, Z be the number of collected
experiences before applying experience replay. Let M = ∅ be the set of
experiences. A maximum number of iterations N .
Output: A cutting-plane approximation {ciξt(xt)}Ni=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

for n = 1, · · · , N

1. Apply SDDP, collecting up to Z experiences, and add them to the
replay memory M .

2. Consider a batch of K experiences of M .

Apply experience replay on the K experiences.

return Q1
t estimates for t = 1, · · ·T

Note that, as we are using the update rule based on supporting hyperplanes,
the replay memory simply requires M = {ant : n = 1, . . . , N}. The proposed
scheme can also be seen as an update of cuts, which is carried out for a batch
of K cuts every Z SDDP iterations. Note that the procedure can be combined
with other schemes. For instance, during step 1 the forward sampling procedure
could be changed to the one presented in [DB06, HP14] in order to adjust the
sampling to the problem structure.

The BL-SDDP algorithm can be described using the flow chart shown in
Fig. 3.1. The algorithm commences by performing usual SDDP iterations,
collecting the trial actions obtained during the forward passes. These trial
actions are added to the replay memory. The procedure continues until Z new
trial actions are added to the replay memory. Next we proceed to the experience
replay scheme. This step receives as an input the replay memory, which is a
collection of trial actions, and builds a cut for a batch of these trial actions. As
an output of this step, we obtain cuts around a batch of trial actions, which
can then be used as an input for SDDP.

The difference between SDDP and BL-SDDP can be illustrated graphi-
cally in Figure 3.2. The red line corresponds to the cuts calculated by SDDP
while the blue line corresponds to BL-SDDP. The super index j in x̂j

i refers
to the SDDP iteration while the lower index i refers to the stage. Follow-
ing this notation, the SDDP cut around x̂1

1 is calculated using the first cut of
the second-stage value function. Similarly, the SDDP cut around x̂1

2 is built
using the first cut of the third-stage value function. During each iteration,
the third-stage value function improves. Nevertheless, this improvement is not
seen by x̂1

2. Similarly, the second-stage value function improves during each
iteration but this is not seen by x̂1

1. Concretely, improvements made in upper
stages are not seen by previously visited trial actions, namely, there is lim-
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Figure 3.1: Flow chart describing the BL-SDDP scheme. The algorithm commences
by performing usual SDDP iterations, until Z trial actions or experiences are collected.
A batch of K trial actions is selected and the cuts around these trial actions are
updated.

ited back-propagation of information. On the other hand, BL-SDDP allows a
back-propagation of information. The trial actions are collected in the replay
memory and re-visited, which means that the cut around x̂1

2 is calculated using
the most recent value function in the third stage, and thus the cut is expected
to be of better quality. A similar effect takes place in the preceding stages.

Relative to standard SDDP, the improved performance of BL-SDDP stems
from the fact that it approximates the value functions more diligently in the
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Figure 3.2: Value function differences between SDDP and BL-SDDP. The red line
corresponds to the cuts calculated by SDDP while the blue corresponds to BL-SDDP.
The black line corresponds to the true value function.

backward pass. It thus prevents the back-propagation of approximation errors
of value functions at later stages of the problem from “contaminating” the
approximations of value functions at earlier stages of the algorithm. This comes
at the cost of increased computational effort at each backward pass relative
to standard SDDP. We propose resorting to parallel computing in order to
cope with this increased computational burden, and thus to combine the most
appealing attributes of experience replay and SDDP into a single and highly
parallelizable algorithmic procedure.

3.4 Parallelization Strategies

As discussed in the previous chapter, the parallel SDDP literature presents
parallelization schemes that are mostly focused on increasing the number of
Monte Carlo forward samples and distributing these samples among the avail-
able processors [dSF03, PBM13, HB15, DK17]. As the Sync PS parallel scheme
described in Fig. 2.2 is the most commonly adopted strategy for parallelizing
SDDP, we use it as a benchmark for the parallel strategy that we develop in
the next subsection.

3.4.1 Parallelization of BL-SDDP

We present a novel parallelization scheme for SDDP based on the BL-SDDP
algorithm that we propose in section 3.3. The developed BL-SDDP algorithm is
divided into two parts. The first part is a common SDDP run. The second part
employs the experience replay framework. We propose a synchronous parallel
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Figure 3.3: Parallelization of the BL-SDDP algorithm. The SDDP iterations are
parallelized by considering a small number of samples in the forward pass, which are
then distributed among the available processors. In the backward pass, the problems
at each stage are distributed among the processors.

computing strategy for each one of these parts.

• SDDP parallelization. As we have discussed, the standard parallelization
strategy for SDDP can result in inferior performance. In order to avoid a
possible deterioration in performance, our proposed parallelization proceeds
by fixing a small number of samples in the forward pass. We illustrate the
parallelization strategy through the example depicted in Fig. 3.3. The forward
pass consists of 2 samples. Each processor computes one sample. Note that
the blue CPU remains idle at this point. There is a synchronization point at
the end of the forward pass. During the backward pass, at every stage, there
are 6 problems, since there are 2 samples and 3 nodes per stage in the lattice.
These 6 problems are then distributed among the available processors. Once
the problems of the stage have been computed, the processors synchronize, the
cuts are built, and the obtained cuts are shared among the available processors.
Note that, as presented in the picture, the scheme has several synchronization
points.

• BL parallelization. Let us assume that the replay memory is given by
Mt = {ant : n = 1, . . . , N} where ant = (xn

t , y
n
t ) is an action. Let us introduce

the parallelization through the example shown in Fig. 3.4. For the present
example, let us assume we have a batch of size 5. Therefore, the algorithm
starts by selecting a batch of 5 experiences (trial actions), for each stage, among
the collected experiences in the replay memory. These selected experiences are
distributed among the available processors. Then, proceeding backwards in
time, each processor updates the Q-factors around the corresponding actions.
That is to say, each processor builds supporting hyperplanes for the expected
value functions around the experiences that it receives. Note that, at the end
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Figure 3.4: Parallelization of the BL-SDDP algorithm. The BL steps are parallelized
by distributing the trial actions of the replay memory among the available processors.
The processors update the cuts around those trial actions. .

of each stage, the processors synchronize in order to receive the cuts obtained
by other processors. This procedure naturally scales up with the introduction
of additional CPUs, since additional processors imply that each processor will
have a smaller set of experiences.

3.5 Case Studies

We carry out computational experiments over a realistic instance of a long-term
planning problem for a network of hydropower plants in Colombia. We further
analyze the impact of the methodology on an instance of long-term hydro-
thermal planning from Brazil that is well-know for its difficulty. As in the case
of the previous chapter, the methodology is tested under a different class of
problems: an inventory control problem with lead times, the results of which
can be found in the Appendix. Our experimental results can be summarized
as follows: (i) The BL-SDDP algorithm is able to produce tighter gaps in less
time, compared to the PSR SDDP commercial implementation. (ii) The BL-
SDDP parallel scheme is better suited for parallel computing, and responds
more favorably to an increase in parallel computing capacity than standard
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SDDP. (iii) The superior performance of BL-SDDP can be observed in both
risk-neutral and risk-averse formulations of multistage stochastic programming.

We proceed by briefly introducing the hydrothermal test cases analyzed in
this chapter. The SDDP literature has focused extensively on hydrothermal
scheduling problems due to their practical relevance [PP91, STdCS13, PBM13,
DMPF15, LS19]. The objective of the problem is to determine optimal storage
levels for the hydro reservoirs of a power system under inflow uncertainty,
while respecting operational constraints and satisfying demand, in such a way
that the total expected operational costs of the system are minimized. The
mathematical description of the problem can be found in the Appendix, in
particular it differs from the previous chapter in that the Colombian test case
considers a river network. Moreover, we consider the Markov Chain approach
in addition to a time series for representing uncertainty [LS19].

The first test case that we consider is an instance of the Colombian power
system that has been provided by PSR. The case study comprises 32 thermal
plants and 42 hydro plants, 25 of which have storage capacity. The case study
considers a river network that consists of a 54-dimensional inflow vector. Since
transmission network data is not available to us, it is not considered. The
instance considers long-term planning and exhibits a time horizon of 10 years
and monthly steps, i.e., 120 stages in total. Inflow uncertainty is modeled
using PSR’s SDDP software that fits a periodic autoregressive (PAR) model to
historical inflow data. We expand the state space, as discussed in [STdCS13],
who propose to add equality constraints into the problem. Historical inflow
data from 1937 to 2019 is used to calibrate a PAR(1) model. This inflow model
is then used in PSR’s SDDP model as well as our own implementations, so as
to arrive to a meaningful comparison. Uncertainty is represented by drawing a
sample of 100 realizations of the error terms of the PAR model. The result is
a high-dimensional multi-stage stochastic program. The test case is analyzed
in subsections 3.5.1 to 3.5.5.

The introduction of a transmission network increases the complexity of
the problem. Therefore, we consider an additional test case, described in
[STdCS13], which includes a transmission network. The case study consid-
ers an instance of the Brazilian power system, where the reservoirs have been
aggregated into equivalent energy reservoirs [AR70]. The instance has 4 energy
equivalent reservoirs. The transmission network is formulated as a transporta-
tion network. The model spans a time horizon of 10 years. We consider monthly
time increments, and 100 uncertainty realizations per stage. In [STdCS13], the
users use this instance to study risk-neutral and risk-averse formulations and
find that SDDP struggles to close the optimality gap in the presence of time-
dependent inflows. Similar observations have been made in [LS19]. In addition
to analyzing the impact of a transmission network, this test case allows us to
test the methodology under two uncertainty assumptions: time series modelling
and Markov Chain modelling. The last subsection analyzes this case study.

Our algorithms are implemented in Julia v0.6 [BEKS17] and JuMP v0.18
[DHL17]. The chosen linear programming solver is Gurobi 8. In order to avoid
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confusion in the subsequent sections regarding which codes are being compared,
the following nomenclature is adopted. PSR SDDP: This scheme refers to the
PSR software. The language used to code PSR SDDP is FORTRAN and uses
the XPRESS solver. SDDP: This refers to our base Julia SDDP implementa-
tion. BL-SDDP: This refers to our proposed algorithm, which we describe in
section 3.3.

3.5.1 Comparison of BL-SDDP to PSR SDDP

The present subsection aims at comparing the performance of the BL-SDDP
algorithm against the PSR SDDP commercial software. The PSR SDDP com-
mercial software is developed for solving hydrothermal scheduling problems.
We conduct our comparison on the basis of an instance of the Colombian power
system that has been provided to us by PSR. The experimental results for this
subsection were obtained on an Intel Core i5-6198DU CPU with 2.30 GHz and
8 GB of RAM, using a single CPU.

Both codes are run with the exact same parameters. Specifically, each
SDDP iteration consists of 20 samples for the forward pass. Each stage consists
of 100 uncertainty realizations, namely 100 nodes per stage. Regarding the BL-
SDDP algorithm, we perform batch updates at every 5 SDDP iterations. The
batch size corresponds to a full-batch update, namely all the experiences are
used for the update. The time horizon is defined to be equal to 120 stages.

Fig. 3.5 presents the convergence behavior for each of the two algorithms.
Panel (a) presents the evolution of the lower and upper bound over iterations for
the PSR software, while panel (b) presents the evolution for our BL-SDDP code.
The upper bound estimate presented in panel (a) is the one reported by the PSR
software. In our approach, in order to provide reliable estimates, we estimate
the upper bound every 5 iterations by simulating our current policy over a large
collection of samples, concretely 4000 inflow samples. As the samples used to
estimate the upper bound for both algorithms can be different, we have also
performed an out-of-sample evaluation, whose results are later discussed and
presented in table 3.1. Note that the PSR SDDP software reaches a steady
state behaviour after approximately 150 iterations, at which point the difference
between the lower and upper bound remains relatively constant. On the other
hand, the BL-SDDP approach is able to reduce the difference between upper
and lower bound significantly after each batch update.

Table 3.1 presents the total run time and the reported gap after 34 hours of
run time. Note that the BL-SDDP algorithm is able to produce a tighter gap.
The table also presents the mean cost of an out-of-sample evaluation of both
policies. Concretely, 2000 out-of-sample inflow samples are generated using
PSR software. The policies are then tested against these inflows. As we can
observe, the improved gap of the BL-SDDP algorithm also results in a superior
out-of-sample performance relative to the policy generated by the PSR SDDP
commercial software.

Interestingly, such a superior performance in computing tighter optimality
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Figure 3.5: Lower and upper bound evolution over iterations for the Colombian hy-
drothermal test case. The left panel presents the PSR SDDP software while the right
panel presents the BL-SDDP algorithm.

Table 3.1: Comparison of the policies after 34 hours of run time.

PSR SDDP BL-SDDP

Reported Gap (%) 6.2 4.2
Time (h) 34 (1 CPU) 34 (1 CPU)

Out-Of-Sample Inflows ($) 1.437e9 1.39e9

gaps holds even though our base SDDP implementation is considerably slower
as compared to the PSR SDDP implementation. Concretely, PSR SDDP re-
quires approximately 30 minutes in order to compute 20 iterations while our
base SDDP implementation requires approximately 3 hours in order to compute
the same number of iterations.

The superior performance of the BL-SDDP algorithm in computing tighter
optimality gaps, despite the less optimized performance of the subproblem
solvers, can be understood in terms of the amount of “work” that each ap-
proach is performing, and in particular the number of linear programs that
both approaches are solving. For ease of exposition, let us ignore the forward
pass as it comprises a very small part of the overall computational effort. The
problems solved when performing the backward pass can be described as fol-
lows:

(i) PSR SDDP: Evaluating a single trial point involves solving, at each
stage, 100 LPs. Since the time horizon is equal to 120 stages, this amounts to a
total of 119·100 problems. Every iteration considers 20 forward samples. Thus,
20 trial points are generated per iteration. Consequently, a total of 100 ·119 ·20
problems are solved per iteration. Over 370 iterations, this amounts to a total
of 100 · 119 · 20 · 370 = 88, 060, 000 problems.

(ii) BL-SDDP: The algorithm performs a total of 25 usual SDDP iterations.
As explained in the previous paragraph, this results in 100·119·20·25 = 5950000
problems after the execution of the 25 usual SDDP iterations. In this case,
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we have to add the problems that are solved when performing the full-batch
updates. After N iterations, a total of N · 20 trial points need to be solved. As
we mention previously, for each trial point a total of 119 · 100 LPs need to be
solved. Thus, performing a full-batch update after N iterations would require
solving 119 · 100 · 20 · N LPs. As the full-batch update is performed every 5
iterations, this means that N evolves according to the following sequence: 5,
10, 15, 20, 25. Thus, the full-batch update step throughout the entire execution
of the algorithm requires solving 100 · 119 · 20 · (5+ 10+15+25) = 17, 850, 000
problems. Adding the full-batch update LPs and the LPs of the usual SDDP
iterations results in a total of 23, 800, 000 problems, which represents 27% of
the problems that the PSR software is solving. In short, the difference is due
to the fact that the BL-SDDP algorithm avoids over-exploring and thus avoids
redundant computation in additional iterations.

As a consequence of the aforementioned observation, we additionally note
that the expected value function approximations for the BL-SDDP algorithm
are considerably lighter. Concretely, PSR SDDP performs 370 iterations be-
fore terminating, thus the expected value function approximation consists of
approximately 370 · 20 = 7, 400 cuts per stage. Instead, the BL-SDDP code
requires approximately 25 · 20 = 500 cuts per stage.

3.5.2 Comparison of parallel BL-SDDP to parallel SDDP

The present subsection aims at analyzing how the BL-SDDP algorithm re-
sponds to parallelizaiton, compared to the standard SDDP scheme. For this
purpose, we resort to the same base Julia implementation. The computational
work is performed on the Lemaitre3 cluster of UCLouvain, which is hosted
at the Consortium des Equipements de Calcul Intensif (CECI). The cluster,
where the algorithms are run, consists of 80 compute nodes, each consisting
of two 12-core Intel SkyLake 5118 processors at 2.3 GHz and 95 GB of RAM
(3970MB/core), interconnected with an OmniPath network (OPA-56Gbps).

Figure 3.6 presents the convergence evolution when using 20 CPUs. The
algorithms are set up to compute, at each iteration, 20 samples in the forward
pass. The BL-SDDP algorithm performs full-batch updates every 5 iterations.
The figures demonstrate that the BL-SDDP algorithm produces considerably
tighter gaps throughout the execution of the algorithm2. Note that for this
particular test case the upper bounds are very close, so both codes produce
very similar policies.

Increasing the number of CPUs produces a similar behaviour. Fig. 3.7
presents the scaling of the algorithm with respect to an increasing number of
CPUs. Panel (a) of the figure presents the elapsed time until achieving a certain
target optimality gap in the y-axis. Panel (b) presents the obtained gap after a
fixed run time in the y-axis. As we can observe, the BL-SDDP scheme is able
to attain a considerable improvement relative to the standard SDDP scheme.

2Note that, as the upper bound is a statistical one, there is randomness in the estimate
of the true upper bound which occur during the execution of the algorithm.
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Figure 3.6: Convergence evolution for the Colombian hydrothermal test case using
20 CPUs

Figure 3.7: Performance of algorithms with respect to increasing CPUs for the Colom-
bian hydrothermal test case.

A common measure for estimating the scalability of a parallel algorithm is
the so-called Parallel Efficiency (PE), which measures how the reported parallel
computing time would compare against a perfect parallelization of the reported
serial time. Mathematically, it is defined as PE = ST /(N · PT ). Here, PT is
the parallel time using N cores and ST is the best serial time. Note that the
best possible outcome would be a parallel efficiency of 1. Fig. 3.8 presents the
parallel efficiency results for both test cases. We can observe that both SDDP
and BL-SDDP achieve a parallel efficiency approximately equal to 0.8 for the
hydrothermal test case. We observe that BL-SDDP demonstrates favorable
parallel efficiency, with the added value that is able to attain tighter optimality
gaps.

The literature discusses changes to the forward pass in order to improve
exploration of the state space [DB06, HP14]. As described in Section 3.3,
the BL-SDDP scheme can be easily combined with these exploration schemes.
However, initial tests performed by the authors that compare and combine
BL-SDDP with the schemes described in [DB06] and [HP14] showed only small
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Figure 3.8: Parallel efficiency for the Colombian hydrothermal problem.

improvements in performance, so that we decide not to further explore this
topic. It should be noted that the scheme presented in [DB06] appears to be
better suited for problems with many realizations per stage but only few stages,
which is not the case for the studied problem instances.

3.5.3 Comparison of the value functions

In order to illustrate the differences between the value functions calculated
by SDDP and BL-SDDP, we compare the expected value functions obtained
through SDDP and BL-SDDP after running both codes for the same amount of
time. The comparison is performed as follows. Let ft, gt denote the expected
value function approximation obtained by BL-SDDP and SDDP respectively
at stage t. At stage t, we consider the trial points obtained by SDDP and
evaluate them at both ft and gt. The relative difference, for each trial point,
is computed as

ft(x)− gt(x)

max{|ft(x)|, |gt(x)|}
· 100

The relative difference at each stage is then averaged among the trial points.
Note that this procedure should in principle lead to an advantage for SDDP,
because we are using the trial points where the SDDP cuts are calculated.

Fig. 3.9 presents the results of this procedure. The x axis corresponds to
the stage number and the y axis corresponds to the relative difference. The
first observation is that the relative difference is a positive number for almost
all stages. This indicates that the BL-SDDP algorithm is computing tighter
cuts. Moreover, negative values are only encountered for a few stages at the
end of the time horizon. In certain cases the differences are significant. For
example, in the hydrothermal test case, the relative difference in the last stage
is approximately equal to −20%. Note that negative values are expected: the
value functions are evaluated at the trial points visited by SDDP. Recall that,
in the last stages, the cuts produced by SDDP are tight at the trial points
of the SDDP algorithm. Therefore, it is expected that SDDP would perform
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Figure 3.9: Comparison of expected value functions for the Colombian hydrothermal
test case. The x axis represents the current stage. The y axis represents the relative
difference between the expected value functions obtained through SDDP and BL-
SDDP.

better at these points (even if these points do not correspond to where an
optimal policy would have “landed” at the given stage). The second observation
is that the relative difference becomes greater as we move backwards in the
number of stages. SDDP builds a cut for the previous stage using the current
stage approximation of the expected value function. A poor approximation at
the present stage will result in an even poorer approximation for the previous
stages, thereby resulting in a back-propagation of errors. BL-SDDP is less
susceptible to such an effect as the batch update results in expected value
function approximations that are calculated at a large collection of trial points
and therefore high-quality approximations of the expected value functions.

3.5.4 Batch Choices

The present subsection aims at providing a brief study on the effect of different
batch choices. We consider the following rules for selecting a batch.

F Corresponds to a full batch update.

R Corresponds to a random batch.

B Let Ci correspond to a cut calculated around xi. Let δi be defined as the
distance between the cut Ci and the value function at point xi, namely:

δi = V (xi)− Ci(xi)

The batch corresponds to the smallest δi: the best cuts.

W Using the same notation as in previous item, the batch corresponds to
the highest δi. These are the worst cuts.
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Figure 3.10: Batch choices for BL-SDDP applied to the Colombian hydrothermal
test case. The batch size is set to 50%, except for the F BL-SDDP that performs a
full-batch update.

The results are presented in Fig. 3.10. As in the previous experiments, 20
samples are considered in the forward pass. The batch update is performed ev-
ery 5 iterations for the hydrothermal test case. The chosen batch size for batch
choices R, B and W is 50%. Fig. 3.10 shows that the W and R strategies tend
to behave the worst. On the other hand, there is a significant improvement in
the B strategy at the early steps, as compared to the F strategy. Nevertheless,
in the long run, both strategies behave similarly. We highlight that developing
selection rules is of high practical relevance, as they can improve substantially
the running times. Several alternative strategies for batch selection can be con-
sidered, in particular investigating strategies developed by the reinforcement
learning community may prove beneficial. Such a detailed investigation is left
for future research.

3.5.5 Risk-Averse SDDP

The objective of a risk-averse model is to avoid risky decisions that would
lead to high costs for certain unfavorable scenarios. From a practical point of
view, these measures have gained interest due their capabilities of protecting
the user against catastrophic outcomes. As a practical examples we encounter
instances of robust unit commitment [LSLZ16] or instances of the Brazilian
hydrothermal power system [STdCS13], the latter being used by practitioners
in actual operations. We consider the risk measure:

ρt[Z] = (1− λ)Et[Z] + λAV@Rα[Z]

where λ ∈ [0, 1] is a weighting parameter and AV@Rα[Z] is the Average Value-
at-Risk (also referred to as Conditional Value-at-Risk). It is defined as

AV@Rα[Z] = V@Rα[Z] + α−1Et[Z − V@Rα[Z]]+
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Figure 3.11: Risk averse BL-SDDP applied to the Colombian hydrothermal test case.
The blue color corresponds to the BL-SDDP code, while the red color corresponds to
SDDP.

Intuitively, AV@Rα[Z] is the expected value given that Z is greater than the
(1 − α)-quantile. The minimization then aims at minimizing the costs found
at the tail of the distribution. As stated in [STdCS13], the SDDP algorithm
can be adapted to handle such a measure. Nevertheless, the algorithm only
provides a lower bound approximation. Thus, stabilization criteria are used for
deciding on convergence [STdCS13]. Being nested conditional expectations,
the calculation of an upper bound would require to perform a conditional sam-
pling process, for every stage of decision. That is to say, for every conditional
event, perform a sampling process, however due to the nested structure such a
calculation would have to be done from the most outer layer to the most inner
layer, leading to an intractable approach [PDM12]. Some recent work proposes
a tractable risk averse SDDP algorithm which allows the computation of upper
bounds [GLCP23]. We are then interested in examining whether the BL-SDDP
algorithm provides better lower bound estimates in a shorter amount of time.

Fig. 3.11 presents the results when employing the risk measure introduced
in section 3.2.2 for different choices of weighting parameters λ ∈ [0, 1]. As
we can observe, the BL-SDDP method, which corresponds to the blue color,
is consistently able to achieve a better lower bound relative to the standard
SDDP method, which corresponds to the red color.

3.5.6 BL-SDDP on models with a transmission network

The present subsection aims at testing the BL-SDDP algorithm on a known
hard instance of the Brazilian interconnected power system, which is described
in [STdCS13]. In particular, this allows us to test the effectiveness of BL-SDDP
in a system with a transmission network. Inflow uncertainty is modeled as a
geometric periodic autoregressive (GPAR) process [STdCS13]. Two scenarios
are considered: (i) Following [STdCS13], inflows are modeled as decision vari-
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ables. This requires additional equality equations in the optimization problem.
We refer to this setting as the time series approach. (ii) Following [LS19], the
GPAR process is discretized to a Markov chain using vector quantization. We
refer to this setting as the Markov Chain approach.

Figures 3.12, 3.13 present the convergence evolution when using 20 CPUs.
The former is the Markov Chain case, while the latter is the time series case.
The algorithms use 20 forward samples and, in the case of BL-SDDP, a full
batch update is performed every 5 iterations. In both cases, BL-SDDP is
able to provide a notable improvement as compared to standard SDDP. As in
[LWM13], we observe that convergence of the time series approach is slower
than with the Markov chain approach.

Figure 3.12: Convergence evolution for the Brazilian hydrothermal test case using 20
CPUs. The inflows are modeled as a Markov chain.

Figure 3.13: Convergence evolution for the Brazilian hydrothermal test case using 20
CPUs. The inflows are modeled using the time series approach.

The discussed Brazilian time series model is known to be a difficult problem.
To finalize this section, we have let our BL-SDDP algorithm run for a longer
period of time. The convergence evolution is presented in Figure 3.14. The total
run time was 37 hours using 80 CPUs. The deviations in the gap are due to the
fact that, for this particular problem, obtaining a reliable upper bound requires
a considerable amount of samples. Therefore, for computational reasons, we
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Figure 3.14: Convergence evolution for the Brazilian hydrothermal test case using
80 CPUs for 37 hours of run time. The upper panel shows the case with serial
independence. The lower panel shows the Markov Chain case.

have restricted the upper bound measurement to 5000 inflow scenarios. This
measurement is made every few iterations. At the end of the run time, we
perform a reliable upper bound measurement by testing the policy on 200 000
inflow scenarios. Table 3.2 presents the results of this measurement, where we
observe that we were able to solve the problem up to a 3.6% optimality gap. To
the best of our knowledge, this is the best gap achieved so far for this particular
instance.

Table 3.2: Obtained solution: Brazil time series model

cost lower 95 % C.I. upper 95 % C.I.
lower bound 2.369e8 - -
upper bound 2.454e8 2.449e8 2.459e8

gap (%) 3.58

3.6 Conclusions

In this chapter we propose a novel variant of the SDDP algorithm by applying
ideas from the reinforcement learning framework in the multistage stochastic
programming framework. The SDDP variant that we propose, which we refer
to as Batch Learning SDDP, is shown to improve the convergence behavior
of the SDDP algorithm. The algorithm is evaluated on a realistic instance of
hydrothermal scheduling in Colombia and Brazil. The main observations of
this chapter are summarized below, in the form of the following conclusions.

(i) We propose a description of SDDP as a reinforcement learning technique
and (ii) propose an algorithm that applies ideas of reinforcement learning in
the SDDP framework. (iii) The BL-SDDP algorithm converges faster than the
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commercial PSR SDDP software. (iv) The BL-SDDP parallel scheme exhibits
favorable performance in terms of parallel efficiency. (v) The proposed BL-
SDDP algorithm can handle different risk measures such as risk neutral and
risk averse formulations. (vi) The BL-SDDP algorithm narrows the optimality
gap of the tested instances by relying on fewer iterations than SDDP and thus
provides lighter descriptions of the value functions.

In our work, we demonstrate how the combination of reinforcement learn-
ing ideas and the standard SDDP algorithm can lead to a novel scheme with
superior convergence for a variety of case studies. This opens a research path
for investigating whether other reinforcement learning techniques can be in-
tegrated into the SDDP framework. In particular, strategies for selecting a
proper batch could prove to be of great help for the performance of the algo-
rithm. Furthermore, we have proposed a parallel variant with positive results.
Nevertheless, as the algorithm is synchronous, it remains susceptible to well-
known synchronization issues [BT89]. This motivates the question of how to
improve the scheme so as to avoid synchronization bottlenecks and thus improve
the usage of computational resources. These questions will be investigated in
future research.
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3.A Results for an inventory test case with lead
times

In this section we present the results obtained for an inventory control problem
with lead times and lost sales. Given T stages, and assuming uncertain demand,
which is assumed to follow a Markov Chain, the problem can be modeled as
a multistage stochastic program. We denote the expected value function as
Vt+1(zt, ξt). We then compute the value function Vt(zt−1, ξt) by solving the
following problem at each stage:

Vt(zt−1, ξt) = max
∑
n∈N

P · st,n −HC · vt,n − PC · xt,n + Vt+1(zt, ξt)

s.t. vt,n = vt−1,n + xt−L,n − st,n n ∈ N
st,n ≤ vt−1,n n ∈ N
st,n ≤ Dt,n(ξt) n ∈ N
xt,n ≤ C n ∈ N
vt,n, st,n, xt,n ≥ 0 n ∈ N

The variables can be described as follows:

zt,n: The state variable. This is a vector containing the on-hand inventory
vt,n for product n ∈ N , as well as the ordered quantities xt−l,n for l =
1, ..., L with L being the lead time.

st,n: Variable representing the amount of sold items for product n ∈ N .

The parameters can be described as follows:

L: The considered lead time.

P : The sales price.

HC: The inventory holding cost.

PC: the purchase cost.

Dt,n: The demand for product n ∈ N .

C: The buying capacity.

The sets are defined as:

N : The set of possible products.

The instance that we consider is defined for 1 product and a lead time of 5
periods, thereby producing a 6-dimensional state space. The considered time
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horizon is equal to 50 stages. We consider 100 realizations of uncertainty at
each stage.

Following the experiments performed for the hydrothermal setting, Figure
3.15 presents the parallel performance of the BL-SDDP scheme. Panels (a) and
(b) show the convergence evolution when using 20 CPUs, while Panels (c) and
(d) present the performance when increasing the CPU count. As in the case
of the hydrothermal setting, the BL-SDDP scheme is able to achieve better
performance.

(a) Gap evolution. (b) Evolution of bounds.

(c) Performance for 7% optimality
gap.

(d) Performance for 8 hours of run
time.

(e) Parallel efficiency.

Figure 3.15: Parallel performance of the BL-SDDP algorithm. Panels (a) and (b)
present convergence for the inventory test case using 20 CPUs, while panels (c) and (d)
present the effect of CPU increase. Panel (e) presents the resulting parallel efficiency.

Figure 3.16 presents a summary of the variety of experiments that were
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performed in this chapter, applied to the inventory test case. Panel (a) shows
the value function comparison (BL-SDDP against SDDP). Panel (b) presents
the results obtained when using different batch choice strategies. Finally, panel
(c) shows the results when using the CVaR measure. These results are in
accordance with the results shown in this chapter and further strengthen the
case for the proposed methodology.

(a) Value function comparison. (b) Batch choices.

(c) CVaR comparison.

Figure 3.16: Inventory test case experiments.

3.B Colombian Hydrothermal Scheduling Prob-
lem Formulation

The problem aims at minimizing the operational costs of thermal plants and
curtailed demand by determining optimal water levels in the hydro reservoirs.

For the uncertainty model, we have considered stage-wise dependent inflows.
The inflow model that we consider corresponds to the PAR inflow model used
in the PSR SDDP software. Concretely, we have run the PSR software using
the PAR(1) inflow model option. To make the comparison against PSR SDDP
as fair as possible, we store the parameters of the PAR(1) model. Using these
parameters, we run our SDDP algorithm. This implies that the inflow zt,n at
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location n and stage t follows the equation:

zt,n −Mm,n

Σm,n
= Φm,n

(zt−1,n −Mm−1,n

Σm−1,n

)
+At,n

Here, Mm,n is the mean inflow of month m, Σm,n is the standard deviation
of inflow for month m, Φm,n is the auto-regressive parameter of order 1, and
At,n is a noise term with 0 mean and variance Σ2

m,n. Further details regarding
the uncertainty model can be found in [PSR].

Following [STdCS13], the inflow zt is considered as a state variable, the pre-
vious equation is included in the optimization, and the noise At is discretized.
Note that this inflow model was selected so as to have a model that is identical
to PSR SDDP, and thus provide a comparison that is as fair as possible.

We can now formulate the problem. Let Vt+1(vt, ξt) denote the expected
value function. Each stage is described in terms of the value function Vt(vt−1, ξt),
which is defined by solving the following problem:

Vt(vt−1, ξt) = min
∑
n∈G

Cn · gn,t +VOLL · lst + Vt+1(vt, ξt)

s.t.
∑
n∈H

Pn · qt,n +
∑
n∈G

gt,n + lst = Lt

vt = vt−1 + zt +M(qt + st)

zt,n −Mm,n

Σm,n
= Φm,n

(zt−1,n −Mm−1,n

Σm−1,n

)
+At,n(ξt) ∀n ∈ H

gt ≤ Ḡ

vt ≤ V̄

qt ≤ Q̄

gt, vt, qt, st ≥ 0

The sets are described as follows:

H: The set of reservoirs.

G : The set of thermal plants.

The variables are described as follows:

vt,n: The storage level of reservoir n ∈ H.

zt,n: The inflow at location n ∈ H.

qt,n : Water turbined outflow of reservoir n ∈ H.

st,n : Spilled volume of water at reservoir n ∈ H.

gt,n: Vector of thermal power from n ∈ G.
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lst: Variable which accounts for load shedding.

The parameters are given as follows:

Cn: The generation cost of thermal plant n ∈ G.

Pn: The energy generation coefficient for the turbined outflow for hydro
plant n ∈ H.

Lt: Load at stage t.

At: The inflow vector.

M : Matrix representing the hydrological topology.

Ḡ, V̄ , Q̄ : Upper limits on the variables.

Mm,n: Mean inflow of month m.

Σm,n: Standard deviation of inflow for month m.

Φm,n: Auto-regressive parameter of order 1.

At,n: Noise term with 0 mean and variance Σ2
m,n.

3.C Brazilian Hydrothermal Scheduling Prob-
lem Formulation

The formulation of the problem follows the mathematical description presented
in Chapter 2. The difference relates to the uncertainty model, for which we have
considered two alternatives: (i) the time series model presented in [STdCS13],
and (ii) the Markov Chain model, as discussed in [LS19].

The former model fits the historical (1931 to 2008) log-inflows into a first-
order periodic auto-regressive process, referred to as a geometric periodic auto-
regressive process (GPAR). This leads to a model of the form:

ln zt = µt +Φt ln zt−1 + ϵt, ϵt ∼ N (0,Σt)

Here, µt,Φt,Σt have a periodical behavior which spans 12 months and the
error terms ϵt are stagewise independent.

One way to include this uncertainty model into the problem is to consider
the inflow zt as a state variable and add the previously described equation as
a constraint of the optimization problem. Unfortunately, such an approach
would destroy the overall structure of each subproblem (i.e. it would destroy
the value function convexity). To deal with this, the authors of [STdCS13]
propose a linearization of said equation by using a first-order approximation:

zt = expϵt ◦(At +Φtzt−1), ϵt ∼ N (0,Σt)
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Here, At,Φt,Σt have a periodical behavior which spans 12 months and the
error terms ϵt are stagewise independent. The notation ◦ indicates that the
operations are performed componentwise. The time series formulation proceeds
by adding this last equation into the optimization problem. Our numerical
experiments are run with the same parameters as in [STdCS13].

On the other hand, the Markov Chain model described in [LS19] proceeds
by considering a large collection of inflow scenarios (over the whole planning
period). These inflow scenarios are then partitioned, stage by stage, thus creat-
ing a lattice of inflows which serves as the uncertainty model for the stochastic
problem. Note that, for this approach, a mere training set consisting of inflow
paths is required. Thus, no linearization of the GPAR inflow model is required,
as opposed to the previously discussed time series model. Furthermore, note
that, in this approach, there is no need to consider the inflow as a state variable.
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4 Applying High-Performance
Computing to the ERAA study

4.1 Introduction

Within an uncertain world, measuring and analyzing the ability of the electric
power system to react to adverse uncertain conditions has become increasingly
important. The Clean Energy Package [Com19a] has recognized the importance
of this task with Regulation (EU) 941/2019 [Com19b] and Regulation (EU)
943/2019 [Com19c]. The latter stipulates the need for a robust European
resource adequacy assessment that provides an instrument for detecting and
measuring adequacy concerns [erac]. In particular, resource adequacy concerns
identified through the European Resource Adequacy Assessment (ERAA) are
to become the basis for justifying the implementation of capacity mechanisms
within European Member States. As required in Regulation (EU) 943/2019
[Com19c], Member States wishing to introduce capacity mechanisms must do
so on the basis of an adequacy concern that is identified in the ERAA study,
complemented possibly with a national resource adequacy study. Consequently,
there is an institutional urge to develop a reliable and robust ERAA study at
a pan-European level.

The European Network of Transmission System Operators for Electricity
(ENTSO-E) is the body mandated by regulation to develop the methodology
and conduct the study on an annual basis [erad]. The ERAA is a pan-European
resource adequacy assessment for up to 10 years ahead, which aims at measur-
ing the ability of the power system to react to a set of future uncertain events
[erac]. The ERAA study covers the entire pan-European interconnected sys-
tem, thus modeling 56 bidding zones in 37 countries. Adequacy concerns are
identified with the help of adequacy indicators, with the Loss of Load Expec-
tation (LOLE) being the most common indicator used among the EU Member
States to define the respective reliability standards. The Expected Energy not
Served (EENS) indicator is also computed in the ERAA study, in order to as-
sess the depth (MW) of the curtailments. Such indicators are naturally linked
to the installed capacity mix. For the purpose of determining the installed
capacity mix, the ERAA study introduces the so-called Economic Viability

83
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Assessment (EVA), which aims at modeling economic parameters that affect
the available generation capacity within Europe. Unfortunately, due to the
scale of the ERAA, incorporating an EVA that integrates the stochastic nature
of future events has thus far been considered as being out of scope. Therefore, a
deterministic approach has been followed in ERAA 2021 [erab], while in ERAA
2022 a tractable formulation is obtained by considering a reduced stochastic
model. This simplification consists of using 3 of 35 uncertainty realizations.
ENTSO-E is moving towards a stochastic programming formulation [erae], en-
dorsed by ACER, but currently limited to three scenarios. This motivates the
development of a framework which allows tackling the EVA in its stochastic
version.

Our work aims at bridging this methodological gap by proposing a novel
parallel computing algorithm, based on ideas from stochastic programming, and
implemented on high-performance computing infrastructure. Our approach
allows us to account for the stochastic nature of the EVA study in ERAA.
Furthermore, we study the potential impact of ignoring the stochastic nature
of the EVA on the capacity mix, and in turn, the consequences that this could
have on adequacy indicators.

The EVA aims at determining capacity expansion and capacity retirement
opportunities for the entire European network. As such, it relates to two
streams of literature: (i) stochastic capacity generation expansion, with the
added complexity of considering retirement opportunities; (ii) large-scale opti-
mization, which is tackled with the aid of high-performance computing.

4.1.1 Stochastic capacity generation expansion

The stochastic capacity generation expansion literature presents a variety of
strategies for addressing generation expansion1. When the size of the prob-
lem is manageable, the problem is solved directly by a commercial solver
[BBC12, AABA14, GAC14, BAT21]. In order to decrease the computational
burden, certain authors have followed scenario selection techniques, and re-
port solving time improvements with corresponding losses in the quality of the
solution [KS10, JRWW11, FR13, GAC14]. Note that these approaches typi-
cally still rely entirely on a commercial solver for solving the reduced problem.
By relying on stochastic programming formulations [BL11], certain authors
use Benders decomposition in order to tackle the problem [Blo82, GCCP93,
STK07, RSW09]. Furthermore, modelling tools have been developed in or-
der to solve the problem in practical applications. Examples of open-source
software include the EMPIRE model [BSdG+22] which solves the problem as
a large-scale linear problem, while [RM18] has proposed extensions of EM-
PIRE where the problem is decomposed by using progressive hedging. Recent
approaches [SSAG22], applied to the Brazilian power system, have proposed

1Note that transmission expansion is out of scope for the EVA, and thus we do not concern
ourselves with this aspect in the present work.
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extensions to Benders decomposition in order to speed up convergence. Exam-
ples of commercial tools include the PLEXOS software, which allows solving
the problem as a large-scale linear problem or using Benders decomposition. It
is worth emphasizing that the PLEXOS software has been the modelling tool
used by ENTSO-E for their past studies. Certain heuristics have also been
proposed, including a rolling-horizon scheme [PB16] and an hourly aggregation
of time series [GBD21].

The modelling specifications of the EVA prevent us from solving the prob-
lem directly using a commercial solver. These specifications result in a large-
scale problem, due to its wide geographical scope, combined with the time step
chosen by ENTSO-E, as well as the endogenous representation of uncertainty.
We highlight that a small set of uncertainty realizations are already enough to
produce a problem of considerable size, thus preventing the use of a scenario
reduction technique which allows tackling the problem in its extended for a
reduced number of scenarios. On the other hand, a drawback of Benders de-
composition is that its performance diminishes as the number of expansion /
retirement candidates increases. The progressive hedging algorithm presented
in [RM18] appears to deteriorate in performance as the size of each scenario
subproblem increases, which renders it impractical for our purposes.

Some early theoretical work from 1986 [SY86] presented the possibility
of employing subgradient schemes in deterministic capacity expansion prob-
lems. Furthermore, past research has proven the effectiveness of subgradient
algorithms when dealing with large instances of stochastic unit commitment
[POO11, AP20]. Consequently, our work aims at translating this success into
the ERAA study. Due to the EVA modelling specifications, the calculation
of each subgradient is time-consuming. Therefore, our work, in addition to
putting forward a subgradient-based algorithmic framework, proposes a fur-
ther algorithm that calculates approximations of the subgradients efficiently,
thus providing notable computational benefits.

4.1.2 High performance computing

As highlighted in previous chapters, high performance computing has become
critical in tackling large-scale power system optimization problems. The paral-
lelization of decomposition techniques such as Benders decomposition or sub-
gradient methods has been studied in the past [MPG87, TPPM90, BB03,
POR14, AP21]. Nevertheless, the stochastic capacity expansion literature has
not entirely exploited the benefits of parallel computing. In this work, we
bridge this methodological gap by proposing a parallelization strategy for the
considered algorithms, which allows us to arrive at solutions for the stochastic
formulation of EVA within a few hours of computation.
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4.1.3 Organization and contributions

(i) In terms of methodological contribution, we solve the stochastic EVA con-
sidering all available uncertainty conditions. (ii) Our algorithmic contribution
amounts to proposing a parallel computing subgradient-based method and a
novel parallel computing second-stage relaxation scheme, which decreases com-
putational burden significantly. These algorithms are benchmarked against
the commonly used Benders decomposition scheme (which is also the algo-
rithm that the PLEXOS commercial software uses) and the progressive hedging
scheme. (iii) Our policy analysis contribution amounts to testing the quality of
the solution by comparing it against the ERAA 2021 deterministic approach.

The organization of the work is as follows. The EVA is formulated as a two-
stage stochastic capacity expansion problem in section 4.3. This formulation
leads to a large-scale stochastic programming problem. A customized algorithm
for tackling such a problem is proposed in section 4.4. Section 4.5 proposes
parallel schemes for the described algorithms. Finally, the results are discussed
in section 4.6.

4.2 European resource adequacy assessment

The European resource adequacy assessment proposes a methodology for mea-
suring the ability of the power system to react to uncertain events [EE21].
The overall methodology consists of two main blocks. The first block aims
at determining investment and retirement opportunities (which we refer to as
the expansion plan), the so-called Economic Viability Assessment (EVA). The
second block uses these opportunities in order to measure adequacy indicators.

Figure 4.1 provides a visual representation of the overall ERAA methodol-
ogy. During the first step (the EVA), a variety of uncertain climate conditions
are considered (ENTSO-E considers a total of 35 climatic years for ERAA 2021
and ERAA 2022). The objective is to decide on investment and retirement that
minimize the expected operational cost of the system. Note that this has to
be decided before the realization of uncertainty, thus leading to a stochastic
problem. During the second step, the adequacy indicators are calculated. The
previously computed expansion plan is used for this purpose, and it is evalu-
ated over an uncertainty set that consists of climate years as well as random
outage patterns.

We highlight a critical difference between these steps. Step 2 can be decou-
pled into several independent problems, one for each climate year and outage
pattern. This implies that it is computationally tractable. The situation re-
garding step 1 is considerably more involved, as it naturally links all climate
years into a single problem, meaning that it is not possible to decouple the cli-
matic years into independent problems. In our work, we focus on the first step.
In order to tackle it, we propose a parallel computing algorithmic framework.

Due to increased computational complexity, ENTSO-E has considered sim-
plified approaches in order to tackle step 1. For ERAA 2021 the simplification
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Figure 4.1: The ERAA methodology consists of 2 steps. The first step, the so-
called economic viability assessment, is calculated using a set of uncertain climatic
conditions. The second step computes adequacy indicators, which use the previously
computed expansion plan over an uncertainty set that consists of climatic conditions
as well as random outages.

has been two-fold. (i) On the one hand, a scenario reduction methodology is
applied which selects 7 out of 35 climatic years. (ii) The optimal expansion
plan for each one of the selected climatic years is calculated, thus obtaining 7
expansion plans. The average between these expansion plans is selected as the
approximate solution of the stochastic problem. For ERAA 2022, a stochas-
tic model is proposed. However, due to increased computational complexity,
the model is reduced to 3 out of 35 climatic years, which are selected using a
scenario reduction technique.

ENTSO-E has provided access to the ERAA 2021 input data for our team
in the context of this work. For ERAA 2021, the EVA is modeled as a two-
stage problem: the expansion plan is decided for a single target year. Note
that ERAA 2022 adopts a multi-stage approach, namely there are consecutive
years and the expansion is decided just before each year. In this work, we focus
on ERAA 2021, which is the more natural step, since not even this model can
be tackled in its stochastic form by state-of-the-art solvers.

The ERAA 2021 data considers the entire interconnected pan-European
network, which is represented by considering 56 bidding zones that correspond
to 36 countries. This is depicted in Figure 4.2. In terms of generators, the
data contains the installed capacity mix per zone. We highlight that the gen-
erator data is aggregated per technology, per zone. A detailed overview of the
installed capacity mix per zone can be found in [eraa]. The generator data also
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Figure 4.2: The pan-European power system modelled in the ERAA 2021.

contains time series of planned maintenance of generators, de-rating factors,
and must-run profiles of the generators. The data represents the transmission
network as a transportation network, and includes transmission lines between
zones, together with their limits. The data contains several candidate retire-
ment opportunities, per zone, for thermal generators. Two thermal investment
candidates, per zone, are considered. The uncertainty arises in the form of the
so-called climatic years, each one being a time series (per zone) of demand, PV,
wind, and inflow profiles. ENTSO-E has considered 35 climatic years for the
EVA of the ERAA 2021 edition, which are depicted in Figure 4.3.

ENTSO-E uses the ERAA 2021 data as input for the PLEXOS modeling
tool for compiling the EVA expansion problem. As this tool is unable to tackle
the problem in its stochastic form, we instead use the exact same input data
in order to put together an open-source Julia [BEKS17] version, which enables
us to develop a decomposition scheme for solving the problem, using the full
set of 35 climatic years. We highlight that both models are built with the same
modelling specifications. In particular, similarly to the EVA PLEXOS model,
ours is a linear model which takes into account the installed capacity mix per
zone for proposing investment and retirement decisions (meaning that it is not
a greenfield model).

4.3 Expansion problem

The stochastic capacity expansion problem is formulated as a two-stage stochas-
tic program [BL11]. The first stage determines investments and retirements of
technologies. The second stage solves an economic dispatch over a target year.
The introduction of uncertainty takes place during the second stage. Each un-
certainty realization corresponds to a so-called climatic year, which consists of
a time series of demand, solar production, wind production, and hydro inflows.
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Figure 4.3: An overview of climatic years of the 4 main European regions. The upper
and lower bounds represent the 0.75 and 0.25 quantiles. The upper left panel presents
wind production, the upper right is PV production, while the lower figure corresponds
to hydrological inflows.

In order to ease the exposition, the sets, variables, and parameters of the prob-
lem are presented in the appendix. Furthermore, parameters are denoted in
upper case while optimization variables are in lower case.

4.3.1 Expansion constraints

There is a maximum amount of plausible invested/retired capacity. This is
modeled with the following constraints:

xn,g ≤ Xn,g for all n ∈ N , g ∈ G (4.1)

x∗
n,g ≤ X∗

n,g for all n ∈ N , g ∈ G∗ (4.2)

4.3.2 Generator constraints

Given ω ∈ Ω, the minimum and maximum power generation capabilities of
units are described by the following constraints:

p∗n,g,t,ω ≤ x∗
n,g for all n ∈ N , g ∈ G∗, t ∈ T , ω ∈ Ω (4.3)
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pn,g,t,ω ≤ Pmax
t,n,g − xn,g (4.4)

Pmin
t,n,g ≤ pn,g,t,ω (4.5)

for all n ∈ N , g ∈ G, t ∈ T

Constraints 4.3, 4.4 model the power production of new and existing capacity.
Constraint 4.5 models must-run obligations.

4.3.3 Transmission network

The transmission network is modeled as a transportation network. The con-
straints are then bounds on the transfer capacity. Given ω ∈ Ω, these can be
described by the following constraints:

Lmin
n,l ≤ fn,l,t,ω ≤ Lmax

n,l (4.6)

for all n ∈ N , l ∈ L(n), t ∈ T

Transportation models fail to accurately represent the true physics of power
flow in European network models. This has motivated the introduction of a
zonal PTDF approximation in European market clearing models. This implies
the addition of linear constraints, which do not affect the overall structure of
the decomposition schemes that are proposed in this chapter.

4.3.4 Batteries

Batteries are modeled as energy storage resources available per zone. For a
given ω ∈ Ω, they are modeled as follows:

bvn,t,ω = bvn,t−1,ω +BCE · bcn,t,ω −BDE · bdn,t,ω (4.7)

bvn,t,ω ≤ BV (4.8)

bcn,t,ω ≤ BC (4.9)

bdn,t,ω ≤ BD (4.10)

for all n ∈ N , t ∈ T

Constraint 4.7 models the load balance of the battery. Constraints 4.8, 4.9,
4.10 model the maximum capacity, charge, and discharge capabilities of the
battery.

4.3.5 Hydro power

Hydropower generation is modeled using four different hydro technologies: run-
of-river, reservoir, pumped storage open loop, and pumped storage closed loop.
The hydrology is simplified by ENTSO-E by considering the aggregated hydro-
logical capabilities of each zone. The inflows are measured as equivalent energy
inflows (MW). For a given ω ∈ Ω, each one of these technologies is modeled as
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follows. For ease of exposition, a variable associated with a certain technology
has an associated subscript: run-of-river R, reservoir S, pumped storage open
loop O, and pumped storage closed loop C.

• Run-of-River. There is no storage capability, therefore the net inflows are
considered as turbined water.

qn,R,t,ω = An,R,t,ω for all n ∈ N , t ∈ T (4.11)

• Reservoir: There is storage capability, consequently the water can be tur-
bined or stored.

vn,S,t,ω = vn,S,t−1,ω +An,S,t,ω − qn,S,t,ω − sn,S,t,ω (4.12)

vn,S,t,ω ≤ Vn,S (4.13)

qn,S,t,ω ≤ Qn,S (4.14)

for all n ∈ N , t ∈ T

Constraint 4.12 describes the reservoir dynamics, while constraints 4.13, 4.14
describe the maximum storage and maximum power production capacities re-
spectively.

• Pumped storage open loop: There are head and tail reservoirs. The head
turbines water to the tail reservoir, thus producing power. In low-demand
periods the tail pumps water back to the head reservoir, thus consuming power.
The system is additionally exposed to natural inflows.

vHn,O,t,ω = vHn,O,t−1,ω +An,O,t,ω + PE · dn,O,t,ω

− qn,O,t,ω − sn,O,t,ω (4.15)

vTn,O,t,ω = vTn,O,t−1,ω − PE · dn,O,t,ω + qn,O,t,ω (4.16)

vHn,O,t,ω ≤ Vn,O (4.17)

qn,O,t,ω ≤ Qn,O (4.18)

dn,O,t,ω ≤ Dn,O (4.19)

for all n ∈ N , t ∈ T

Constraints 4.15, 4.16 are the water balance constraints of the head and tail
reservoirs respectively. Note that the head reservoir is subject to rainfall uncer-
tainty. Constraint 4.17 bounds the maximum storage, while constraints 4.18,
4.19 bound the turbined and pumped water respectively.

• Pumped storage closed loop: this is modeled in the same way as the open
loop case, with the difference that no natural inflows are considered.

vHn,C,t,ω = vHn,C,t−1,ω + PE · dn,C,t,ω
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− qn,C,t,ω − sn,C,t,ω (4.20)

vTn,C,t,ω = vTn,C,t−1,ω − PE · dn,C,t,ω + qn,C,t,ω (4.21)

vHn,C,t,ω ≤ Vn,C (4.22)

qn,C,t,ω ≤ Qn,C (4.23)

dn,C,t,ω ≤ Dn,C (4.24)

for all n ∈ N , t ∈ T

4.3.6 Load balance

The load balance constraint aims at satisfying the demand of each zone using
the resources of each zone plus imports from neighbouring zones. For a given
ω ∈ Ω, it is formulated as follows:

pn,g,t,ω + p∗n,g,t,ω + bdn,t,ω +
∑

h∈H(n)

qn,h,t,ω +
∑

l∈L(n)

fn,l,t,ω

+ lsn,t,ω + PVn,t,ω +Wn,t,ω

= Dn,t,ω + psn,t,ω + bcn,t,ω +
∑

r∈{C,O}

dn,r,t,ω (4.25)

for all n ∈ N , t ∈ T

We highlight that reserve requirements are modelled in the ERAA 2021 study
as extra load. More accurate models for reserve requirements have been studied
in the past [PO13]. Their inclusion implies the addition of linear constraints
which do not disrupt the overall structure of the algorithms developed in this
paper.

4.3.7 Objective function

For a given ω ∈ Ω, we define the following quantities:

∑
n∈N ,g∈G∗

ICg · x∗
n,g + FOMg · x∗

n,g −
∑

n∈N ,g∈G
FOMg · xn,g (4.26)

∑
n∈N ,g∈G,t∈T

V OMg · pn,g,t,ω + FCg · pn,g,t,ω (4.27)

∑
n∈N ,g∈G∗,t∈T

V OMg · p∗n,g,t,ω + FCg · p∗n,g,t,ω (4.28)

∑
n∈N ,l∈L(n),t∈T

fn,l,t,ω ·WC (4.29)
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∑
n∈N ,h∈H(n),t∈T

sn,h,t,ω · SC (4.30)

∑
n∈N ,t∈T

lsn,t,ω ·VOLL (4.31)

Equation (4.26) is the first-stage cost. It consists of the investment cost
plus the fixed maintenance cost of new capacity x∗

n,g, minus the fixed main-
tenance cost of retired capacity xn,g. Equation (4.27) corresponds to the cost
of producing pn,g,t,ω units of power, similarly equation (4.28) corresponds to
the generation cost of new capacity. Equation (4.29) corresponds to the cost
of transporting power through the transmission network. Equation (4.30) cor-
responds to a penalty for water spillage. Finally, equation (4.31) is the cost
of involuntary load shedding, which is penalized at VOLL. Putting these el-
ements together leads to the stochastic capacity expansion problem, which is
described as follows:

min
x,x∗

(4.26) + Eω

[
min

pω,p∗
ω,fω,lsω

(4.27) + (4.28) + (4.29) + (4.30) + (4.31)
]

s.t. (4.1)− (4.2)

(4.3)− (4.25) for all ω ∈ Ω

(CEP)

Note that we have distinguished between two sets of constraints. The for-
mer refers to the so-called first-stage constraints, therefore they do not depend
on ω ∈ Ω. The latter set of constraints constitutes the second-stage con-
straints, these depend on uncertainty, and there is one such set of constraints
for each ω ∈ Ω. Note that this formulation implies that the first-stage variables
xn,g, x

∗
n,g are decided before uncertainty materializes, and thus these decisions

do not depend on ω ∈ Ω.

4.4 Solution Strategy

The stochastic capacity generation expansion literature has often relied on Ben-
ders decomposition (also known as the L-Shaped method when uncertainty is
introduced) [BL11]. This scheme performs poorly as the number of expansion
/ retirement possibilities increases. In view of this, we propose a subgradi-
ent algorithm that is better suited for such situations. This technique allows
us to reduce the number of iterations. However, it can still be computation-
ally costly, as the calculation of each subgradient is non-trivial. Consequently,
we further propose a relaxation of the economic dispatch, which allows us to
calculate subgradient approximations efficiently. The approximation is refined
throughout iterations, thus ensuring convergence. Such a technique allows us
to reduce the computational burden significantly. We begin by describing how
we decompose the problem, followed by our algorithmic contributions.
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Following standard procedures [BL11], we break down the overall problem
into smaller subproblems, first by considering separate subproblems for the first
and second stages, and secondly by considering a subproblem for each uncer-
tainty realization for the second stage (recall the lattice description presented
in Figure 1.1). Given an uncertainty realization ω and a first-stage decision
x, x∗, the second-stage subproblem for a given ω is as follows:

V(x, x∗, ω) = min
pω,p∗

ω,fω,lsω
(4.27) + (4.28) + (4.29) + (4.30) + (4.31)

s.t. (4.3) (λ∗
n,g,t,ω)

(4.4) (λn,g,t,ω)

(4.5)− (4.25)

where λ∗
n,g,t,ω, λn,g,t,ω are dual multipliers of constraints (4.3), (4.4) respec-

tively. These subproblems allow us to re-write the CEP problem as

min
x,x∗

(4.26) + Eω

[
V(x, x∗, ω)

]
s.t. (4.1)− (4.2) (CEP-R)

Using such a formulation, one could now employ, for instance, the L-Shaped
method described in Alg. 1. However, as the computational experiments show
subsequently, such a technique fails to converge in a reasonable amount of time,
thus motivating the development of algorithmic alternatives.

4.4.1 Subgradient algorithm

A drawback of the L-Shaped scheme is that, as the dimensionality of x, x∗

increases, additional supporting hyperplanes are required in order to describe

Eω

[
V(x, x∗, ω)

]
. Consequently, finding the optimal region may require many

extra costly iterations. Instead, in this work we use a subgradient algorithm.
Following the description presented in Alg. 2, given an initial expansion can-
didate x̂, x̂∗, we specifically calculate a subgradient of the objective function
of the CEP-R problem around x̂, x̂∗ and update the candidate expansion plan
along the direction of such a subgradient.

We decompose problem CEP by rewriting it as CEP-R, and so a subgradient
of the objective function along the x∗

n,g coordinate is:

ρ∗n,g = ICn,g + FOMn,g +Eω

[∑
t∈T

λ∗
n,g,t,ω

]
And a subgradient along the xn,g coordinate is:

ρn,g = −FOMn,g +Eω

[∑
t∈T

λn,g,t,ω

]
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Figure 4.4: Chronological decomposition. The second stage is partitioned into several
consecutive chronological blocks.

Note that the reformulation CEP-R decomposes the calculation of these
slopes by calculating several subproblems, concretely by solving V(x, x∗, ω) for
each ω ∈ Ω. This decomposition allows us to apply the algorithmic scheme
described in Alg. 2.

4.4.2 Second-stage relaxation algorithm

Each iteration of the subgradient scheme can be costly, because it carries the
computational burden of solving each second-stage subproblem. For this rea-
son, we propose a scheme that relaxes the second stage, namely the economic
dispatch. Using such a relaxation, each iterate of a trial x̂i, x̂∗i becomes effi-
cient, thus allowing us to increase the search speed. The relaxation can then
be refined in order to tighten the search and ensure convergence.

Let us begin by describing the second-stage relaxation. To achieve this, we
resort to dynamic programming [B+11], and partition the second-stage horizon
1, . . . , T into K consecutive blocks: {1, t1}, {t1+1, t2}, · · · , {tK−1+1, T }. This
leads to the representation shown in Figure 4.4, where the second stage has been
partitioned into several blocks. The subproblems at each block are given by
the dynamic programming equations. The equation at block k is given by:

Vk(x, x
∗, bvtk−1,ω, vtk−1,ω, ω) =

min
[
(4.27) + (4.28) + (4.29) + (4.30) + (4.31)

]tk
t=tk−1+1

+ Vk+1(x, x
∗, bvtk,ω, vtk,ω, ω)

s.t.
[
(4.3)− (4.25)

]tk
t=tk−1+1

Here, the notation indicates that the objective function and the constraints
are restricted to t = tk−1 + 1, . . . , tk. Note that, at the initial time boundary,
i.e. at t = tk−1 + 1, constraint (4.7) requires the battery state of charge at
t = tk−1. Consequently, the notation indicates that Vk depends on bvtk−1,ω,
the battery state of charge at stage tk−1. Similarly, Eqs. (4.12), (4.15), (4.16),
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(4.20), (4.21) require the reservoir level at stage tk−1, and this information is
summarized in the vector vtk−1,ω. At the final time boundary at t = tk, the
objective function includes Vk+1, which captures the future costs of the system.
Note that the subproblem of the first block satisfies V1(x, x

∗, ω) = V(x, x∗, ω).
Each function Vk+1 is piecewise linear convex in x, x∗, bvtk,ω, vtk,ω [BL11],

and so we can approximate it using supporting hyperplanes. Thus, given a col-
lection of supporting hyperplanes {ci(x, x∗, bvtk,ω, vtk,ω)}Ni=1, an approximation
of the subproblem at the k-th block is given by:

V̂k(x, x
∗, bvtk−1,ω, vtk−1,ω, ω) =

min
[
(4.27) + (4.28) + (4.29) + (4.30) + (4.31)

]tk
t=tk−1+1

+ θk+1,ω

s.t.
[
(4.3)− (4.25)

]tk
t=tk−1+1

θk+1,ω ≥ ci(x, x
∗, bvtk,ω, vtk,ω), i = 1 . . . N

In particular, the approximation of the first-block subproblem V̂1 is an
approximation of the second-stage subproblem, namely the economic dispatch.
Consequently, we can approximate problem CEP-R as follows:

min
x,x∗

(4.26) + Eω

[
V̂1(x, x

∗, ω)
]

s.t. (4.1)− (4.2) (CEP-A)

Calculating each V̂1 is straightforward, therefore problem CEP-A can be
solved efficiently. Note, however, that, due to the approximation, the ob-
tained solution is suboptimal. Consequently, the approximation is tightened
throughout iterations, thus ensuring convergence. An initial approximation of
V1(x, x

∗, ω) is calculated at the beginning of the algorithm. The objective of
doing so is to, similarly to the subgradient scheme, have an initial candidate
expansion plan to start the search. These ideas are the basis of our algorithmic
scheme, which is depicted in pseudo-code in algorithm 13.

The second-stage relaxation algorithm is illustrated graphically in Figure
4.5. The figure presents step 2) of the algorithm. For ease of exposition, step
1), where a warm-start is calculated, is described afterward. Step 2) is subdi-
vided into two steps. Step 2.1) focuses on the first node and the first time step
/ nodes of the second stage. This corresponds to problem CEP-A. The algo-
rithm uses the current approximation of V1(x, x

∗, ω) to solve problem CEP-A
(which approximates CEP) and obtain a candidate expansion plan x̂i, x̂∗i. The
algorithm proceeds with step 2.2), which aims at refining the approximation
of V1(x, x

∗, ω) around x̂i, x̂∗i. To do so, the algorithm performs a forward pass
(step 2.2.1) and a backward pass (step 2.2.2). The forward pass proceeds for-
ward in the number of second-stage nodes, solving the first-node subproblem
and proceeding until arriving at the last node. The algorithm continues with
the backward pass. This step computes supporting hyperplanes around the
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Figure 4.5: Step 2) of the second-stage relaxation algorithm. Step 2.1) solves the cur-
rent approximation of problem CEP. Step 2.2) refines the approximation of problem
CEP around the trial expansion plan found during step 2.1).

storages found during the forward pass and around the trial expansion plan
x̂i, x̂∗i. Starting from the last second-stage node, the subproblem is solved,
and the dual multipliers that are computed at this stage are used for estimat-
ing a supporting hyperplane for the subproblem of the preceding node. The
process is repeated until reaching the node associated with the first node of
the second stage. The algorithm performs this procedure for all uncertainty
realizations. Having described step 2), we can now describe the warm-start of
step 1). Given an initial candidate expansion plan x̂0, x̂∗0 the objective is to
provide an approximation of V1(x, x

∗, ω) around the given initial point. To do
so, the warm-start performs step 2.2) over several iterations. These iterations
are performed in order to ensure that the storages found during the forward
pass provide a reasonable approximation.

Remark 4.1. Note that both steps 2.1) and 2.2) can be solved efficiently. The
former is a relatively small problem, which can be solved either by Benders
decomposition or subgradient schemes. In this work, we use Benders decompo-
sition. The latter step involves solving several small subproblems and thus does
not pose a computational burden. As a consequence, this algorithmic approach
is able to perform far more iterations than the subgradient algorithm.

Upper and lower bounds can be obtained as follows. An upper bound
is computed by using the optimal values found during step 2.1) and during
step 2.2.1). A lower bound can be obtained by the solution of step 2.1). By
comparing upper and lower bounds, one can measure the optimality gap, which
can be used as a stopping criterion. The convergence of the decomposition
algorithm is guaranteed due to the following lemma.
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Algorithm 13: Second-stage relaxation algorithm

Input: Provide a lower bound for θk,ω for k = 1, . . . ,K, ω ∈ Ω, and an
initial trial action x̂0, x̂∗0. A maximum number of iterations N.
Output: A cutting-plane approximation {ciξt(xt)}Ni=1 for t = 1, . . . , T ,
ξt ∈ Ωt.

1. Warm-start: Calculate an initial approximation of V1 for all ω ∈ Ω,
around x̂0, x̂∗0.

2. for i = 1, · · · , N .

(2.1) Solve CEP-A using the current approximation of V1. This
produces a trial action x̂i, x̂∗i.

(2.2) for ω ∈ Ω:

(2.2.1) Forward Pass. for k = 1, . . . ,K:

Solve the approximated problem

V̂k(x̂
i, x̂∗i, b̂v

i

tk−1,ω
, v̂itk−1,ω

, ω) and get the optimal

storage b̂v
i

tk,ω
, v̂itk,ω.

(2.2.2) Backward Pass. for k = K, . . . , 2:

(2.2.2.1) Solve the approximation problem

V̂k(x̂
i, x̂∗i, b̂v

i

tk−1,ω
, v̂itk−1,ω

, ω).

(2.2.2.2) Using the dual multipliers, compute a supporting

hyperplane around x̂i, x̂∗i, b̂v
i

tk−1,ω
, v̂itk−1,ω

.

(2.2.2.3) Add the supporting hyperplane to problem

V̂k−1(x, x
∗, bvtk−2,ω, vtk−2,ω, ω).
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Lemma 4.1. Algorithm 13 converges in a finite number of iterations to CEP.

Proof. We prove that if no new cuts are added to V̂1(x, x
∗, ω) for ω ∈ Ω,

then we are at the optimal of CEP. Suppose that no new cuts are obtained
after iteration i and consider the expansion plan at that iteration, denoted as
xi, xi∗. Note that, if no new cuts are added, then V̂1(x

i, xi∗, ω) = V1(x
i, xi∗, ω)

(otherwise during the i+1 iteration we would have found a new cut). Now let
us assume that we have not converged, therefore there exists x̄, x̄∗ for which

(4.26) + Eω

[
V1(x̄, x̄

∗, ω)
]
< (4.26) + Eω

[
V1(x

i, x∗i, ω)
]
. CEP-A is an under-

approximation of CEP. Thus, its maximum possible value is the left-hand side
of the previous inequality. As a consequence,

(4.26) + Eω

[
V̂1(x

i, x∗i, ω)
]
< (4.26) + Eω

[
V1(x̄, x̄

∗, ω)
]

< (4.26) + Eω

[
V1(x

i, x∗i, ω)
]

= (4.26) + Eω

[
V̂1(x

i, x∗i, ω)
]

This leads to a contradiction, therefore we conclude that xi, x∗i is optimal.
Finally, let us show that this can be achieved in finite iterations. Following

the same idea as in [PG08], where it is shown that SDDP-type [PP91] algo-
rithms converge, we start from the subproblem of the last block. Note that the
set of dual multipliers of the subproblem associated to

VK(x, x∗, bvtK−1,ω, vtK−1,ω, ω)

corresponds to the vertices of the feasibility set of the dual problem, and this set
of dual multipliers does not depend on x, x∗, bvtK−1,ω, vtK−1,ω. Consequently,
there are finitely many supporting hyperplanes for the last subproblem. Thus,
after finitely many iterations, we arrive at the supporting hyperplane descrip-
tion of

VK(x, x∗, bvtK−1,ω, vtK−1,ω, ω)

. We can now use such a description for the subproblem at block K − 1,
and apply the same argument. Inductively, we can proceed backward in the
number of blocks. Note that, as opposed to the results provided in lemma
2.2, in the current situation we have convergence to the optimal solution. The
main difference being that here we don’t have the difficulty of dealing with
incomplete information.

4.5 Parallel scheme

The present section aims at describing a parallel scheme for the algorithms
presented in section 4.4. In this work, we have considered synchronous parallel
implementations.
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Figure 4.6: Parallel subgradient algorithm. The master CPU provides a trial expan-
sion plan, which is sent to the subproblems. The subproblems are distributed among
the CPUs and solved. The dual multipliers are sent to the master CPU.

• Parallel subgradient algorithm: The parallelization strategy followed for
the subgradient algorithm is presented graphically in Figure 4.6. Each iteration
proceeds as follows. The master CPU provides an initial candidate expansion
plan. The second-stage subproblems are distributed among the available CPUs.
Each CPU solves its associated subproblem, and the dual multipliers are col-
lected and sent to the master CPU. At this point, the CPUs synchronize, i.e, a
CPU stays idle until all other CPUs have finished their job. The master CPU
uses the dual information in order to apply a projected subgradient and update
the trial expansion plan.

• Parallel L-shaped algorithm: The parallelization follows a similar strat-
egy as in the previous scheme. The difference is that, during each iteration,
the master CPU calculates the master problem.

• Parallel second-stage relaxation algorithm: The parallel scheme for
our subgradient-relaxation algorithm follows a similar procedure. Step 2.1) is
parallelized using the strategy described in Figure 4.6. Step 2.2) is parallelized
as follows. The uncertainty realizations are distributed among the available
CPUs. Each CPU performs steps 2.2.1 and 2.2.2 of algorithm 13 (see Figure
4.5). At this point, the CPUs synchronize, so that the fastest CPU waits for
the slowest CPU.

4.6 Case study

The EVA problem aims at determining the expansion / retirement plans that
will occur, and our study considers the 2025 target year. We highlight that the
choice of a single year is, as a first step, to emulate the modeling procedure
that is performed for ERAA 2021, with the aim of tackling a multiyear setting
in future research. Furthermore, within the modeling an amortization of fixed
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cost is introduced and the model is equivalent to a multi-year model over the
lifetime of the invested plants where each year is identical. We consider a total
of 12 blocks per day.

Our algorithms are implemented in Julia v1.5 and JuMP v22. The chosen
linear programming solver is Gurobi 9. The computational work is performed
on the Lemaitre3 cluster of UCLouvain, which is hosted at the Consortium des
Equipements de Calcul Intensif (CECI). The cluster consists of 80 compute
nodes with two 12-core Intel SkyLake 5118 processors at 2.3 GHz and 95 GB
of RAM (3970MB/core), interconnected with an OmniPath network (OPA-
56Gbps).

4.6.1 Value of the stochastic solution

Due to the scale of the model, ENTSO-E has considered an approximate so-
lution in ERAA 2021. This approximation proceeds by solving the so-called
wait-and-see solution [BL11] of problem CEP. This leads to a candidate expan-
sion plan xω, x

∗
ω, for each ω ∈ Ω. The average expansion plan x̄, x̄∗ is used as an

approximation of the stochastic expansion plan. A natural question is whether
this is a good approximation. To measure this, we can use well-established
bounds. The following relationship holds [BL11]:

Wait-and-see ≤ CEP ≤ (4.26) +Eω

[
V(x̄, x̄∗, ω)

]
Note that the right-hand side is the objective of CEP when using the sub-
optimal average expansion plan x̄, x̄∗. We refer to this as the average-W.S. so-
lution. Note that these bounds do not require the calculation of the stochastic
solution, and thus provide a reasonable way to measure if a stochastic solution
is of interest for the problem. The wait-and-see solution has a cost of 5.0220e10
€, while the average wait-and-see solution has a cost of 5.2298e10 €. As one
can observe, the relative difference between both quantities is approximately
4.13%, and thus the stochastic solution stands to improve the deterministic
approximation by at most this quantity. This difference is of interest: ade-
quacy studies such as ERAA aim at capturing adequacy metrics that involve
curtailments. These curtailments, calculated as in equation (4.31), represent
less than 2% of the total costs.

4.6.2 Stochastic solution

The previous subsection demonstrates the interest in computing a solution to
the stochastic programming formulation. The present subsection discusses how
to obtain such a solution using the previously discussed algorithms. We high-
light that the extended formulation of this model, as a linear problem, does
not fit in memory (95 GB). This motivates the need for employing decompo-
sition approaches. The algorithms are run using 35 CPUs. In the case of the
subgradient relaxation, we decompose the second stage into 92 blocks.
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We begin by examining the convergence evolution of the L-shaped method.
To do so, we examine the evolution of the optimality gap, which is presented
in Figure 4.7. As one can observe, the L-shaped method struggles to close the
optimality gap. In fact, after more than a day of computation, the obtained
gap is not of practical use. On the other hand, our subgradient-relaxation
scheme is able to provide an optimality gap near 1% after about 4 hours of
computation. The reason behind the poor behaviour of the L-Shaped method
is that only a few iterations of the algorithm can be performed. This in turn is
due to the fact that each subproblem requires run time within the order of half
an hour to be solved. Note that as the proposed subgradient algorithm does
not provide a lower bound estimate, the calculation of an optimality gap is not
presented. Instead, we will use the upper bound to measure convergence.

Figure 4.7: The evolution of the optimality gap of the L-shaped method and our
subgradient-relaxation algorithm. The x-axis is the elapsed time, while the y-axis is
the relative difference between the upper and lower bounds.

We also implement the progressive hedging algorithm2 (described in sub-
section 1.2.3) for this problem, where the scenario subproblems correspond to
each one of the 35 climate years. Figure 4.8 presents the evolution of the upper
bound of the subgradient algorithm, the subgradient-relaxation scheme and the
progressive hedging algorithm. Recall that the subgradient-relaxation scheme
uses an approximation of the economic dispatch, thus it does not correspond
to the true value of using the expansion plan. Consequently, in order to have
comparable upper bound values, after running the subgradient-relaxation al-
gorithm we evaluate the true cost of using the obtained expansion plan. This
corresponds to the horizontal non-dashed green line. A similar procedure is
performed with the expansion plans obtained by the progressive hedging al-
gorithm. During each iteration, the true cost of using the expansion plan is
evaluated (the computational time to do so is not considered, so as to have
a fair comparison). These quantities and the upper bound of the subgradient

2It is well known that this algorithm is sensitive to the choice of the penalizatiion param-
eter ρ. In order to tune it, we consider a simplified version of the problem and test different
values of ρ = 1, 10, 100, 1000. We observe that moving from ρ = 1 to ρ = 100 reduces the
iteration count, while going beyond 100 seems to have an insignificant effect. Therefore, we
consider ρ = 100.
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algorithm are then comparable. As shown in Figure 4.8, we note that after
30 hours of computation the progressive hedging algorithm is unable to reach
the solution that our proposed algorithms reach. Each subproblem of pro-
gressive hedging is harder than Benders as (i) it includes a quadratic term in
the objective, and (ii) includes the optimization of the first and second stage.
This renders each iteration prohibitively expensive. Regarding the subgradient
scheme and the relaxation strategy, we note that both algorithmic schemes are
able to converge. However, it can be observed that the subgradient-relaxation
scheme converges considerably faster. In fact, for the 12-block formulation, af-
ter 30 hours of computation the subgradient scheme fails to achieve the bound
that the subgradient-relaxation scheme is able to find in just 4 hours. We note
that the obtained run times can be used in practice. ENTSO-E’s experience
with a stochastic model, which consists of climate years and is solved as a large
LP for a variety of target years, is that it requires longer run times.

Figure 4.8: The convergence evolution of the subgradient algorithm and the
subgradient-relaxation scheme. The x-axis is the elapsed time, while the y-axis is
the cost. The yellow horizontal lines correspond to the wait-and-see solution (lower
yellow horizontal) and ENTSO-E’s solution (upper yellow horizontal).

To assess the scalability of the methods, we consider a system with a granu-
larity of 24 blocks. The convergence is presented in Figure 4.9, where it is seen
that after almost 2 days of computation, the subgradient scheme fails to attain
the bound that the subgradient-relaxation scheme finds in 15 hours. This indi-
cates that the subgradient-relaxation scheme is better suited as the size of the
problem increases.

An alternative approach is considered for solving the problem, as a means
of further comparison. This includes Benders Decomposition With Multiple
Master Problems (BDMM) [SSAG22]. Unfortunately, this scheme is not suit-
able for our setting. The BDMM increases the amount of second-stage Benders
subproblems. In the case of the problem that we are interested in, this is not
tractable, as each Benders subproblem is large.

We highlight that the use of parallel computing has been crucial in order to
obtain the solutions that are indicated here. In fact, as each CPU is handling
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Figure 4.9: The convergence evolution of the subgradient algorithm and the
subgradient-relaxation scheme. The model uses 24 blocks per day.

Figure 4.10: Comparison of relative total cost between average wait-and-see (Av.
W.S.), Wait-and-See (W.S.), and Stochastic (St.) solutions.

one of the 35 climatic years, we expect a serial run to be approximately 35
times more time-consuming.

4.6.3 Analysis of the solution

The present subsection aims at studying the differences between the stochastic
solution obtained in subsection 4.6.2 and the deterministic solution obtained in
subsection 4.6.1. In terms of total cost, as presented in Figure 4.10, we observe
a difference of nearly 2.7% between the stochastic solution and the wait-and-see
solution. This difference justifies the effort in computing a stochastic solution.
Furthermore, we observe that the stochastic solution provides an improvement
of nearly 1.5% with respect to the average W.S. solution, implemented by
ENTSO-E in ERAA 2021.

This difference in total costs is examined in Figure 4.11 by decomposing
the total costs into operational costs, retired capacity savings, expansion plan
costs, and curtailment costs. The upper panel presents the costs for both
approaches, the stochastic solution, and the average W.S. solution, while the
lower panel presents the relative difference between these solutions (a positive
number indicates that the average W.S. solution has a higher value). Note that
the stochastic solution tends to result in significantly fewer curtailments, which
can be explained by the increased investments and fewer retirements, that is
to say, we arrive at a more conservative solution. On the other hand, the lack
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Figure 4.11: Cost breakdown. The upper panel presents the total costs, while the
lower panel presents the relative difference between the quantities shown in the upper
panel.

of information regarding the future possible outcomes in the average expansion
plan approach makes the solution prone to over-retiring and underestimating
the required investments. This implies that the power system is unable to
satisfy the demand as effectively as in the stochastic solution.

4.6.4 Adequacy metrics

One objective of the ERAA study is to measure the ability of the system
to maintain secure levels of supply. Two adequacy metrics are of particular
interest to ENTSO-E. The first one is loss of load expectation (LOLE), defined

as LOLE = Eω

[
LOLω

]
. Here, LOLω is the number of hours during which

demand is not served for the climatic year ω ∈ Ω. The second metric is the
expected value of energy not served (EENS), which is defined as EENS =

Eω

[
ENSω

]
. Here, ENSω is the number of curtailments obtained in climatic

year ω ∈ Ω. We consider the 35 climatic years that are used for formulating
the stochastic model, thereby aiming to compare its performance against the
approximate solution that is obtained by averaging the expansion plans (which
is the approach used by ENTSO-E in ERAA 2021). Therefore, there is no out-
of-sample testing. We calculate the metrics of interest and present the results
in Figure 4.12. We consider both the LOLE and the EENS for the four main
European regions: Central and Eastern Europe, Western Europe, Southern
Europe, and Northern Europe. Figure 4.12 demonstrates how the use of a
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Figure 4.12: The LOLE and EENS metrics for different European regions.

Figure 4.13: Convergence evolution when modeling and not modeling the transmission
network.

stochastic solution is able to provide consistent and significantly more accurate
metrics. This attribute is of particular interest to studies such as ERAA.

4.6.5 Impact of transmission congestion

In order to assess the impact of transmission congestion we have considered the
following setting. The transmission network has been eliminated by increasing
the network line limits. The stochastic model is then solved, and convergence
is presented in Figure 4.13. In particular, we note that the model tends to be
far easier to solve, in the sense that it converges faster. This is expected, since
without a transmission network the algorithm no longer has to determine local
expansions, but rather a global investment.
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We observe an interesting behaviour when examining the value of the stochas-
tic solution. Table 4.1 considers the optimal value of the stochastic solution
(which has non-anticipative constraints) and the wait-and-see solution. In the
wait-and-see solution, there is perfect foresight and thus the expansion plan
decisions are obtained with advance knowledge of future events. We see that
excluding the network largely diminishes the value of the stochastic solution
[BL11]. Concretely, we move from a 2.7 % difference in total costs to a differ-
ence of approximately 1 % when excluding the network. This is in line with
analogous observations in the literature [PO13], where the inclusion of network
constraints has been shown to approximately double the value of the stochas-
tic solution due to the fact that the endogenous representation of uncertainty
allows us to determine not only what the optimal mix should be, but where
it should be located, while ensuring delivery of the required energy over the
network.

Table 4.1: Value of the stochastic solution.

Approach stochastic solution (e) wait-and-see solution (e) %

Transp. model 5.157e10 5.022e10 2.7
No network 4.498e10 4.44e10 1.18

We also note that, in scarcity situations, the model with no congestion
is able to serve the load more evenly among the available generators. This
consequently results in lower EENS and LOLE, as shown in Figure 4.14.

Figure 4.14: LOLE and EENS metrics when modeling and not modeling the trans-
mission network.

These results highlight the relevance of transmission congestion in determin-
ing expansion decisions, and the impact of such an expansion on the adequacy
of the power system.
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Figure 4.15: Convergence evolution of the flow-based model.

4.6.6 Modelling extensions

As described in subsection 4.3.3, for ERAA 2021 a transportation model has
been considered for representing the transmission network. Transportation
models result in an endemic misrepresentation of the true physics of power
flow in European market models, and are related to the persistence of zonal
pricing in Europe. However, since we are interested in tackling the 2021 ERAA,
we limit ourselves to the same input data that ENTSO-E uses for its needs.
Our methodology can be generalized to more general models based on DC
power flow, and the essential decomposition steps are not affected. For in-
stance, ERAA 2022 has included a flow-based methodology in its study. Using
this flow-based data, we have developed a proof-of-concept algorithm which
includes a PTDF approximation of the transmission network. We highlight
that the decomposition algorithm remains unaffected. Figure 4.15 presents
the convergence evolution of said approach, where it is seen that, due to the
introduction of PTDF constraints, the problem becomes more intense com-
putationally, nevertheless the decomposition technique is able to manage it.

Similarly as for the flow-based scheme, the methodology can include several
extensions with relative ease, for example the algorithm remains unchanged if
we add reserve requirements or binary investments. In terms of uncertainty
modelling, additional sources of uncertainty may be included, for example gas
price uncertainty or generators outages. Each one of these extensions increases
the complexity the nature of the problem, thus likely leading to longer solution
times. The extent to which the methodology can handle these extensions is
out of scope for the present work, but opens the path for considering further
modeling generalization.
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4.7 Conclusions

In this work, we present a high-performance computing approach for obtaining
a stochastic solution for the EVA of ERAA 2021. We specifically propose a sub-
gradient algorithm implemented in parallel computing infrastructure, as well
as a subgradient-relaxation approach that emerges as being practically attrac-
tive due to its capability to tackle large-scale problems efficiently. We further
observe that the commonly used L-Shaped method is unable to provide a solu-
tion of practical use in a reasonable amount of time. Finally, we compare the
stochastic solution against a deterministic approach implemented by ENTSO-
E for the ERAA 2021 edition. A noticeable difference between both solutions
in terms of commonly used adequacy metrics emerges, which highlights the
practical value of the stochastic solution that we are able to compute.

Future ERAA studies aim at improving the EVA on two fronts. (i) On the
one hand, a multi-year stochastic model is considered, that decides investments
and retirements before the realization of each year. (ii) On the other hand, a
more robust model is considered, which includes further sources of uncertainty,
such as climate change patterns. These increased sources of uncertainty moti-
vate the study of scenario reduction techniques.

Furthermore, assumptions on fuel prices can have a significant impact on
the results. Fuel prices are quite volatile, as the recent European energy crisis
suggests. The proposed approach can handle objective function uncertainty,
thus allowing us to include these assumptions directly into the model. On the
other hand, ENTSO-E’s interaction with industry stakeholders indicates that
this uncertainty can be considered as a sensitivity run of the model, as opposed
to being modeled endogenously. Such a sensitivity analysis can provide insights
on the impact of fuel price variations without introducing further computational
complexity to the model.

4.A Nomenclature

• Sets:

Ω: The set of uncertainty realizations.

N : The set of zones.

G: The set of existing generators.

G∗: The set of new generators.

T : The time horizon of the economic dispatch.

L(n): The set of lines for zone n.

H(n): The set of hydro technologies for zone n.

• Parameters:

IC: The annualized investment cost (€/MW).
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FOM: The fixed operational and maintenance cost (€/MW).

VOM: The variable cost (€/MW).

FC: The fuel costs (€/MW).

WC: The wheeling charge cost (€/MW).

SC: The spillage cost (€/MW).

VOLL: A high cost for curtailment (€/MW).

Xn,g: Retirement limit for n ∈ N , g ∈ G (MW).

Xn,g: Expansion limit for n ∈ N , g ∈ G∗ (MW).

Pmax
t,n,g : Maximum production, t ∈ T , n ∈ N , g ∈ G∗ (MW).

Pmin
t,n,g: Minimum production, t ∈ T , n ∈ N , g ∈ G∗ (MW).

Xn,g: Expansion limit for n ∈ N , g ∈ G∗ (MW).

Lmax
n,l : Transfer limit, n ∈ N , l ∈ L(n) (MW).

Lmin
n,l : Transfer minimum, n ∈ N , l ∈ L(n) (MW).

BCE: Battery charge efficiency (%).

BDE: Battery discharge efficiency (%).

BV: Battery capacity (MW).

BC: Maximum charge capacity (MW).

BD: Minimum discharge capacity (MW).

Vn,h: Maximum storage for zone n, technology h (MWh).

Qn,h: Turbine capacity for zone n, technology h (MW).

Dn,h: Pump capacity for zone n, technology h (MW).

PE: Pump efficiency (%).

• Parameters with uncertainty:

An,h,t,ω: Inflow for n ∈ N , h ∈ H(n), t ∈ T , ω ∈ Ω (MW).

PVn,t,ω: PV production for n ∈ N , t ∈ T , ω ∈ Ω (MW).

Wn,t,ω: Wind production for n ∈ N , t ∈ T , ω ∈ Ω (MW).

Dn,t,ω: Demand for n ∈ N , t ∈ T , ω ∈ Ω (MW).

• Variables:

x∗
n,g: The invested capacity (MW).

xn,g: The retired capacity(MW).

pn,g,t,ω/p
∗
n,g,t,ω: Power produced with existing/new generators (MW).

fn,l,t,ω: Power transferred through lines (MW).

sn,h,t,ω: The amount of spillage (MW).
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lsn,t,ω: The load shedding (MW).

bvn,t,ω: The battery state of charge (MWh).

bcn,t,ω: Power charged into the battery (MW).

bcn,t,ω: The amount of charged power into the battery (MW).

bdn,t,ω: The battery discharged power (MW).

qn,h,t,ω : The hydro turbined produced power (MW).

vn,h,t,ω : The state of storage of the reservoir (MWh).

dn,h,t,ω : The pumped power (MW).





5 Applying scenario reduction to the
ERAA study

5.1 Introduction

Within the European Resource Adequacy Assessment (ERAA), the compu-
tational complexity of the Economic Viability Assessment (EVA) has been a
matter of concern. One of the fronts of modeling development aiming at sim-
plifying the description of the problem is the selection of a representative set of
climatic years, so as to reduce the overall size of the problem [erab]. This aspect
is to become more relevant as new sources of uncertainty appear and current
ones are expanded. On the one hand, ongoing discussions point towards a more
robust model which considerably expands the number of climatic conditions.
Despite the algorithmic improvements presented in chapter 4, these algorith-
mic improvements can not handle an arbitrarily large number of scenarios. On
the other hand, and taking into account the methodological difference between
steps 1 and 2 of the overall ERAA methodology (see Fig. 4.1), relevant sources
of uncertainty such as random outage patterns, or fuel price uncertainty, may
be considered as being relevant for the EVA in future ERAA versions. These
additions imply a cross product between the different sources of uncertainty,
thus leading to a stochastic problem with a prohibitively large set of uncer-
tainty realizations, thus leading to an intractable problem. Inspired by these
challenges, our work proposes a scenario reduction methodology which is still
under development. The goal of this methodology is to select a representative
set of uncertain realizations.

For ERAA 2021 a tailored scenario reduction methodology, based on sta-
tistical properties of the climatic years time series, was proposed and used by
ENTSO-E. A relevant drawback of this approach is that, because it is based
on statistical properties, it does not fully acknowledge the effect of scenarios
on the optimization model. Given the emphasis of the adequacy assessment on
load shedding, this suggests schemes that are based on assessing the impact of
scenarios on the optimization problem, rather than the statistical properties of
the scenarios alone. Of particular relevance is the fact that small perturbations
in the total objective system cost may result in considerable perturbations in
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the load shedding
The capacity generation expansion literature has proposed a variety of

strategies for scenario reduction [KS10, JRWW11, FR13, GAC14], where the
focus has rather been on statistical properties. Form the scenario reduction
literature, a methodology that is often adopted in various applications, and
has also been implemented in the GAMS software, is the so-called fast forward
selection algorithm [DGKR03, HR03]. This algorithm requires a mapping from
the uncertainty space into Rn, in order to develop a measure between scenar-
ios. In [MPCC09], the authors use the fast forward selection algorithm in
combination with a metric based on the cost of the optimization problem.

Leveraging on the results presented in [Mor19], our analysis aims at devel-
oping a methodology, supported by parallel computing, which (i) is based on
the effect of uncertainty on the optimization problem, rather than on statistical
properties; (ii) proposes hierarchical criteria, in which the structure of the al-
gorithm suggests natural stopping criteria (e.g. based on the distance between
merged clusters).

5.1.1 Organization and contributions

(i) Supported by parallel computing, we introduce a scenario reduction scheme
based on hierarchical clustering, which considers the optimization problem at
hand. (ii) We empirically demonstrate the advantages of the proposed scheme
to capture total costs of the system, which in turn resulted in the adoption of
part of the methodology for ERAA 2022.

The present chapter is organized as follows. Section 5.2 describes the con-
sidered methodology, while section 5.3 discusses some preliminary results. Sec-
tion 5.4 highlights open areas of study associated to the methodological scheme.
The chapter ends with section 5.5 which presents the conclusions.

5.2 Scenario reduction

The considered scenario reduction scheme consists of two fundamental steps:
(i) a definition of a distance between a pair of scenarios and (ii) a clustering
strategy to merge similar pairs of scenarios. As discussed earlier, the motivation
behind (i) is to account for the interplay between scenarios and the underlying
optimization problem, while (ii) aims at being able to define a stopping criterion
for selecting an optimal number of scenarios. We begin by introducing some
notation followed by the description of the defintion of the distance metric and
the clustering methodology.

Following the notation introduced in section 1.2, we consider a two-stage
stochastic linear problem given by:

min
x1,y1

uT
1 x1 + vT1 y1 + E

[
min
x2(ω)

uT
2 (ω)x2(ω)

]
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s.t. A1x1 +D1y1 = b1

x1, y1 ≥ 0

B2(ω)x1 +A2(ω)x2(ω) = b2(ω), for all ω ∈ Ω

x2(ω) ≥ 0, for all ω ∈ Ω

Note that x1 is coupled in time, while y1 not. To ease notation, we write
x̄ = [x1, y1] and introduce the function h(x̄, ω), which is defined as:

h(x̄, ω) = uT
1 x1 + vT1 y1 + min

x2(ω)
uT
2 (ω)x2(ω)

s.t. B2(ω)x1 +A2(ω)x2(ω) = b2(ω)

x2(ω) ≥ 0

Using this notation, we can equivalently write the stochastic optimization
problem as:

min
x̄

E
[
h(x̄, ω)

]

Given a subset ΩR ⊂ Ω, the reduced stochastic program can simply be

formulated as minx̄ ER

[
h(x̄, ω)

]
, where ER is the expectation operator taken

just over the subset ΩR, which is naturally easier to handle. Ideally, we want
to obtain a subset ΩR that approximates accurately the original stochastic
problem.

5.2.1 Distance between scenarios

Motivated by the search for an optimization-based strategy, we consider the
distance proposed in [HOR22]. We highlight that this distance definition is not
a distance in the mathematical sense, as it doesn’t satisfy the triangle inequality
property. According to this definition, the distance between two scenarios
is measured in terms of how far the scenarios are in arriving to a mutually
acceptable first-stage decision. This naturally leads to a clustering which groups
scenarios based on how close they are in terms of reaching mutually acceptable
first-stage decisions.

For each ω ∈ Ω, let x∗
ω represent an optimal decision under the assumption

that scenario ω will definitely occur. That is,

x̄∗
ω ∈ X∗

ω := argmin
x̄

h(x̄, ω)

Now, define the opportunity cost of taking the optimal decision associated
to scenario ω1, when scenario ω2 actually occurs, as:

δ(ω1|ω2) := h(x∗
ω1
, ω2)− h(x∗

ω2
, ω2) ≥ 0.
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We can now define a notion of distance1 between scenarios ω1 and ω2 as:

c(ω1, ω2) = δ(ω1|ω2) + δ(ω2|ω1).

Note that it is possible that there exists more than one optimal solution x̄∗
ω

for the problem min
x̄

h(x̄, ω), so that this distance may not even be well defined,

as the election of different optimal solutions may lead to different values of c.
A workaround is to re-define the opportunity cost as:

δ(ω1|ω2) := h(X∗
ω1
, ω2)− h(X∗

ω2
, ω2)

Here h(X∗
ω1
, ω2) equals the minimum value of h(x̄∗

ω1
, ω2) over all possible

optimal decisions x̄∗
ω1
. In practice, however, we cannot consider all the optimal

decisions x̄∗
ω1
, thus we will just consider the optimal solution obtained by the

solver when optimizing min
x̄

h(x̄, ω1).

5.2.2 Hierarchical clustering methodology

Now that a notion of distance between scenarios has been introduced, we can
introduce a notion of clustering. In this chapter we consider hierarchical clus-
tering, which is motivated by the seek for a stopping criterion heuristic. The
proposed procedure is presented in pseudo-code in Algorithm 14.

Here, a definition of a distance d(Ci, Cj) between two pair of clusters is
introduced. Some examples include single-linkage, average-linkage [ABDBL21]
or optimal transport problem [DGKR03]. For this work we consider the latter.

Let Ci be a cluster. We can induce a probability measure over this set

as Qi(ω) = P (ω)
P (Ci)

for ω ∈ Ci. Given a pair of clusters C1, C2, we define

its distance d(C1, C2) in terms of the optimal transport problem between the
associated probability distributions:

d(C1, C2) =

min
πi,j≥0

{ ∑
i∈Ω1,j∈Ω2

πi,jc(ωi, ωj)
∣∣∣ ∑
i∈Ω1

πi,j = Q2(ωj),
∑
i∈Ω2

πi,j = Q1(ωi)
}

1Recall that this is not defined in the proper mathematical sense, as the triangle inequality
may not be satisfied.
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Algorithm 14: Scenario reduction

Input: A desired number K of clusters.

1. Each scenario in Ω will constitute a cluster, so that the array of
clusters Z consists of |Ω| singletons.

2. while |Z| > K

(2.1) Compute the |Z| × |Z| distance matrix M , defined by

M(i, j) = d(Ci, Cj), Ci, Cj ∈ Z.

(2.2) Choose Ci∗ and Cj∗ in Z such that

d(Ci∗ , Cj∗) ∈ argmin
i ̸=j

M(i, j)

(2.3) Remove the clusters Ci∗ and Cj∗ from Z and replace them with
the cluster C = Ci∗ ∪ Cj∗ . In this step, the size of Z is reduced
by 1.

3. A representative element of each cluster is selected. From each cluster
Ci choose ωi such that ωi ∈ argmin

ω∈Ci

∑
ω′∈Ci

c(ω, ω′) and assign to it the

aggregate probability of the cluster, given by πi =
∑

ω∈Ci
pω.

5.2.3 Parallelization scheme

The present subsection aims at describing the parallelization strategy proposed
for the scenario reduction scheme. The most computationally expensive part
of the methodology is the calculation of the distance c(ωi, ωj) between a pair
of scenarios, which takes place in step (2.1) of Alg. 14. As this distance has
to be computed once, before running the scenario reduction methodology, we
calculate the distance between all pairs of scenarios.

To calculate this distance, we first calculate the optimal strategy h(x∗
ω, ω)

for each scenario ω. This is accomplished by distributing the scenarios among
the available cores. We next proceed by calculating the opportunity cost matrix
δ, described as:

δ =

 δ(ω1|ω1) δ(ω1|ω2) . . . δ(ω1|ωN )
...

δ(ωN |ω1) δ(ωN |ω2) . . . δ(ωN |ωN )


Each one of the entries of the matrix corresponds to δ(ωi|ωj) = h(x∗

ωi
, ωj)−

h(x∗
ωj
, ωj). We propose an embarrassingly parallel approach for calculating the
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matrix, namely, the matrix entries are distributed among the available cores.
As each entry is a non-trivial optimization problem, network latency is not
problematic. Note that, in principle, one could use a considerably large amount
of cores, as the bound of cores is given by the amount of entries in the matrix.

The other parts of the algorithm do not pose a computational burden and
therefore are not parallelized in our implementation.

5.3 Preliminary analysis

The present subsection aims to present a preliminary analysis regarding the
proposed scheme. For this purpose, we consider the expansion problem, based
on the ERAA 2021 data, developed in chapter 4. We compare our method-
ology against the scenario reduction strategy proposed by ENTSO-E for the
ERAA 2021 edition, which is based on statistical properties of the climatic
years [erab]. We further compare the methodology against the widely known
forward selection scenario reduction algorithm proposed in [DGKR03].

5.3.1 Comparison against ERAA 2021

We begin by describing the computational effort required to run the scenario
reduction algorithm. Our algorithms are implemented in Julia v1.5 and JuMP
v22. The chosen linear programming solver is Gurobi 9. The computational
work is performed on the Lemaitre3 cluster of UCLouvain, which is hosted at
the Consortium des Equipements de Calcul Intensif (CECI). The cluster con-
sists of 80 compute nodes with two 12-core Intel SkyLake 5118 processors at
2.3 GHz and 95 GB of RAM (3970MB/core), interconnected with an Omni-
Path network (OPA-56Gbps). As discussed earlier, the most expensive part
of the algorithm is the calculation of the distance function c(ωi, ωj). Using
the embarrassingly parallel strategy described in subsection 5.2.3, we find that
with 35 CPUs we require nearly 11 hours of computing time. We note that the
bound on the number of CPUs that can be used for the computation of the
matrix is large, therefore in principle we could have used a considerably larger
set of CPUs.

For ERAA 2021, a total of 7 climatic years are selected. In order to allow
for a fair comparison, we let our algorithm select 7 climatic years. For both
selections of climatic years we consider the associated stochastic problem and
solve it using the techniques developed in chapter 4. To test the quality of the
obtained expansion plans, we let the full uncertainty unveil and evaluate the
expansion plans over the whole set of 35 climatic years. We then compare the
obtained results against the true solution of the problem (i.e. the stochastic
solution using the full set of 35 climatic years, which is computed in chapter 4).
Figure 5.1 compares costs relative to the cost of the true solution. The costs
are divided into different categories: the expansion plan, the economic dispatch
and the load shedding. We note that the methodology is able to capture more
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accurately each item, with a particular interest in load shedding (since load
shedding determines the adequacy metrics of the models).

Figure 5.1: Cost comparison relative to the optimal solution.

In fact, Figure 5.2 presents the LOLE and EENS2 errors obtained when
comparing the optimal solution against the metrics obtained when using the
approximate expansion plans. The metrics are calculated as the average over
the 35 climatic years. The left panel presents the results for the LOLE while the
right panel presents the EENS results. We note that both metrics present im-
provements as compared to the scenario reduction strategy followed by ENTSO-
E. Furthermore, note that, while there are a few zones where the LOLE error
of the proposed methodology is higher than the approach of ENTSO-E, over-
all the LOLE error improves substantially. This indicates that our proposed
methodology is better suited for quantifying the adequacy metrics. Nonethe-
less, we highlight that in our study we have not considered the non-uniqueness
of load shedding patterns.

Figure 5.2: Adequacy comparison relative to the optimal solution for each zone. The
x-axis corresponds to the different zones while the y-axis is the absolute error. The
left panel presents the LOLE, while the right panel presents the EENS.

2The definition of LOLE and EENS is introduced in chapter 4, subsection 4.6.4.
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The analysis is complemented by considering the LOL and ENS 3 for each
individual climatic year, and comparing them against the true metric for each
climatic year (which was found by solving the stochastic problem using all 35
climatic years). Figure 5.3 presents a boxplot of the results. The boxplot
corresponds to the 35 error observations. The left panel presents the LOL,
while the right panel presents the results for the ENS. We observe that the
proposed approach reduces the width of the box, and the median error. We
further observe that the highest value whiskers are reduced and the outlier
error is also improved. This indicates that our proposed method achieves a
consistent improvement across the different climatic conditions.

Figure 5.3: The boxplot considers 35 error observations, each one corresponding to a
different climatic year. The y-axis corresponds to the absolute error. The left panel
presents the LOL error while the right panel presents the ENS error.

From a practical point of view, developing a technique that selects an ap-
propriate number of clusters is particularly relevant. In particular, given the
size of the optimization models and their associated run times, it is challenging
to perform experiments with a large variety of reduction sizes so as to find one
that is most suitable. In this sense, thanks to the hierarchical structure of the
methodology proposed in this chapter, it is possible to define certain heuristics.
Following a similar idea as when reducing the dimensionality through Princi-
pal Component Analysis (PCA), we can plot the distance of the joined clusters
(step 2.2 of Alg. 14) with respect to each reduction target, as presented in
Figure 5.4. Ideally, the figure gives us an estimate on how big the distances
become as the reduction proceeds. As a consequence, we can define a stopping
criteria heuristic by stopping the algorithm at the point where a further reduc-
tion leads to a drastic increase in the measured distance, while less reduction
does not provide remarkable benefits. In Figure 5.4 we observe that a choice
of 7 scenarios seems as a reasonable strategy, while using less than 4 seems to
decrease the quality of the solution considerably.

3The definition of LOL and ENS is introduced in chapter 4, subsection 4.6.4.
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Figure 5.4: Optimal reduction target heuristic. The x-axis corresponds to the number
of clusters, while the y-axis corresponds to the distance of the last two joined clusters.

For the present study, we consider 3 climatic years and, as for the case with 7
climatic years, we compare the solution against the optimal stochastic solution
that considers the full set of 35 climatic years. The results are presented in
Figure 5.5. We note that the choice of 3 climatic years worsens the quality
of the solution. In particular, the load shedding error increases substantially.
These results seem to be somewhat coherent with the heuristic presented in
Figure 5.4. Further investigation is required in order to determine the quality
of the heuristic and what can be considered as a good enough solution for the
purposes of the ERAA study.

Figure 5.5: Cost comparison relative to the optimal solution.

In order to finalize this preliminary analysis, we highlight that different
choices for measuring the distance between scenarios are possible. For instance,
one could instead measure the distance between scenarios as the distance asso-
ciated to their first-stage optimal decisions. Another possibility is to measure
the distance as the difference between the optimal cost associated to each sce-
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nario [MPCC09]. These different strategies are subject to future research.

5.3.2 Comparison against forward selection algorithm

The forward selection algorithm proposed in [DGKR03] is a common technique
used to achieve scenario reduction, which is implemented in commercial soft-
ware such as GAMS [sce]. The algorithm proceeds by selecting the scenario,
from the set of non-selected scenarios, that minimizes the Kantorovich distance
(i.e. the solution to the optimal transport problem) between the reduced set
of scenarios and the original set. Despite being a heuristic, meaning that no
theoretical guarantee is provided regarding its performance, empirical evidence
shows that in practice the obtained reduced sets perform well [DGKR03].

For ERAA 2021 a total of 7 climatic years were selected. As in the previous
subsection, we let our scheme and the forward selection algorithm select 7 of
35 climatic years. Next we solve the reduced stochastic problem, using the
methods described in chapter 4. Once the stochastic solution is obtained, its
performance is evaluated by solving the economic dispatch problem over the
full uncertainty set, and we compare it against the true optimal solution. The
results are presented in Figure 5.6, where it is observed that the proposed
approach is able to capture more accurately the different cost components, in
particular the cost of load shedding.

Figure 5.6: Cost comparison relative to the optimal solution. The scenario reduction
selects 7 climatic years.

Figure 5.7 presents the LOLE and EENS errors per region. We observe
that the LOLE tends to be better captured by the proposed scheme, while for
the EENS the difference is less notable and large differences are observed only
in specific regions.

Finally, in order to assess the quality of the reduction as the number of
selected scenarios decreases, we allow both scenario reduction techniques to
select 3 out of 35 climatic years. As before, we present the cost comparison
relative to the true stochastic solution over the full set of uncertainty realiza-
tions. The results are presented in Figure 5.8, where we observe a considerable
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Figure 5.7: Adequacy comparison relative to the optimal solution for each zone. The
x-axis corresponds to the different zones while the y-axis is the absolute error. The
left panel presents the LOLE, while the right panel presents the EENS.

deterioration in performance for the forward scenario technique.

Figure 5.8: Cost comparison relative to the optimal solution. The scenario reduction
selects 3 climatic years.

5.4 Open remarks

This section aims at summarizing relevant open questions and fronts of study,
which the purpose of improving the overall methodology.

• Thanks to the hierarchical structure of the clustering, one could envision
strategies for defining stopping criteria for scenario reduction. As dis-
cussed previously, this is a practically relevant question. The dissertation
proposes a heuristic for achieving this. Nevertheless, further testing is
required in order to understand the behaviour of the proposed heuristic.

• Theoretical results regarding the error bounds within each cluster are of
interest and are within the scope of future research.
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• The literature offers scenario reduction schemes that are not based on
hierarchical clustering. A relevant strategy is the forward selection algo-
rithm described in [DGKR03]. Although this approach requires mapping
each uncertainty realization to a vector in Rn (how this is done in the cur-
rent setting with composite uncertainty is unclear), other approaches are
available such as [MPCC09]. The effect of considering a forward selection
algorithm or a hierarchical clustering approach is unknown.

• The choice of the appropriate distance between scenarios is a matter
of experimental study. The distance considered in the present chapter,
which is proposed in [HOR22], has two major disadvantages: (i) it is
computationally expensive, and (ii) it is not a distance in the proper
mathematical sense, thus leading to situations where elements within a
cluster are in fact not near. The literature offers other possibilities, for
example the distance defined in [MPCC09].

• What should be considered as a good approximate solution? This is
especially relevant, given that one of the most relevant parts of adequacy
studies is load shedding, which represents a small portion of the total
system cost.

• The fact that multiple solutions of load shedding may exist.

• Given that the ultimate objective is to properly quantify load shedding,
one could define distances where the impact of load shedding is higher.

5.5 Conclusions

This chapter has introduced a scenario reduction scheme based on hierarchical
clustering and where the impact of scenarios on the objective function of the
underlying mode is accounted for. The preliminary analysis that we present in
this chapter identifies advantages, relative to the approach followed by ENTSO-
E for ERAA 2021. In particular, the approach seems to be better suited for
capturing impacts in the total system cost, such as load shedding, which are
of high relevance for the purpose of ERAA. The methodology proposed in this
chapter has been implemented by ENTSO-E in the ERAA 2022 study [erae].

We identify several open problems that inspire further research, in order to
develop a suitable strategy for reducing the complexity of the EVA study.



6 Conclusions and future perspectives

6.1 Summary of the contributions

Optimization under uncertainty has emerged within power systems, as a combi-
nation of tools for allowing decision makers to reach better informed decisions.
Nonetheless, as the modelling specifications increase, standard methodologies
become insufficient and the search for new algorithmic ideas becomes impera-
tive. The present thesis proposes high performance computing algorithms and
tailored solution methodologies for tackling relevant problems within power
systems. We specifically focus on: (i) the long-term hydrothermal scheduling
problem, and (ii) the European Resource Adequacy Assessment. This thesis is
organized into four main chapters.

Chapter 2 considers the class of problems referred to as multistage stochas-
tic linear problems. A famous example in this class of problems is the long-
term hydrothermal planning problem. In this class of problems, one algorithm
that has captivated the interest of both industry and academia is the SDDP
algorithm. This chapter studies several parallelization strategies for such an al-
gorithmic scheme, considering both synchronous as well as asynchronous com-
puting. The proposed algorithmic schemes are tested on an instance of the
Brazilian hydrothermal power system and an inventory problem. These case
studies allow us to quantify the performance of the different schemes. Our
results indicate that parallelization in its own may not be enough to achieve a
scalable algorithmic strategy.

The findings of chapter 2 allow us to identify parallel computing issues be-
hind SDDP. These revelations serve as an inspiration for the developments of
chapter 3, where the focus is directed into providing more accurate value func-
tion approximations during each stage of decision making. This idea leads to
the proposal of a novel algorithmic scheme, which we refer to as BL-SDDP. The
proposed algorithm converges faster than the PSR SDDP software on various
test instances, and we point out to connections between the proposed algorithm
and ideas from the reinforcement learning framework. Several computational
experiments are performed over two different instances of hydrothermal plan-
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ning. One set of tests considers an instance of the Colombian power system,
while another considers a known hard instance of the Brazilian power system.
Further tests are performed using an inventory management problem with lead
times.

Chapter 4 draws the attention to an ongoing European initiative, the Eu-
ropean Resource Adequacy Assessment (ERAA). This is a problem of high
institutional importance for the European market, since it aims at becoming
the key instrument for detect adequacy concerns in the pan-European region.
As such, it is likely to become a key ingredient for transmission system opera-
tors to apply for capacity mechanisms in the future European market. Within
this a study, a critical step is to determine expansion plans that occur in the
coming years, the so-called Economic Viability Assessment (EVA). The scale of
the problem has revealed that industry grade tools are unable to tackle it. This
dissertation proposes, as a first step, a way to tackle the two-stage formulation
of the problem, the solution of which has not been achieved by state of the art
methods so far, to the best of our knowledge.

Due to the increased computational challenges behind the EVA, ENTSO-E
has also pursued scenario reduction strategies in order to decrease the compu-
tational burden of the model. Chapter 5 proposes a scenario reduction method-
ology for scenario resuction. A preliminary analysis demonstrates benefits rel-
ative to the method used by ENTSO-E for ERAA 2021. The proposed scheme
is implemented by ENTSO-E for ERAA 2022.

6.2 Summary of the findings

Parallelization of the SDDP algorithm

• Parallel scenario and parallel node schemes. This dissertation pro-
poses a novel parallelization strategy for SDDP, referred to as the parallel
node strategy. This strategy is distinguished from the parallel scenario
scheme (which is the most common strategy found in the literature) by
the way in which the work for computing cuts is distributed. The paral-
lel node scheme is observed to converge faster than the parallel scenario
strategy at early steps of execution.

• Scalability of the parallel node scheme. The parallel node strat-
egy presents desirable scalability properties as the CPU count increases.
Unfortunately, such a behaviour is restricted to machines with shared
memory. In a distributed memory setting, the solve time of each sub-
problem has to be considerably larger than the latency of the network in
order for the scheme to work properly.

• Scalability of the parallel scenario scheme. The increase in forward
samples may lead to a deterioration in the performance of the algorithm.
This behaviour translates into poor scalability of the parallel scenario
strategy, for certain instances, as the CPU count increases.
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• Synchronous and asynchronous computing. The use of asynchronous
computing presents limited benefits for the parallel scenario and node
schemes.

• Limitations of parallelization strategies for SDDP. The different
parallel strategies reach a point in time where their difference in terms of
the obtained optimality gap is not significant.

Reinforcement Learning (RL) and SDDP

• Connection between stochastic programming and reinforcement
learning. This dissertation has presented a mapping between multistage
stochastic programming problems and Markov decision processes, which
underlie the RL framework. We note that our view compares with pre-
vious work [AP18], in that we propose a map between Markov decision
Processes and multistage stochastic problems, by providing an interpre-
tation of Q-factors in terms of the standard cost-to-go functions of the
multistage stochastic programming framework. We note that [AP18] does
not provide an interpretation as a Markov Decision Process.

• SDDP as an RL algorithm. Using the bridge between multistage
stochastic programs and Markov decision processes, the SDDP algorithm
is described as an RL algorithm. SDDP exhibits a similar structure as
double-pass algorithms in RL.

• Batch learning SDDP. This thesis introduces the Batch learning SDDP
(BL-SDDP) scheme. Supported by the description of SDDP as an RL
algorithm, this method uses batch learning through experience replay,
a method inspired by the RL framework. The algorithm exhibits faster
convergence than the industrial grade PSR SDDP commercial implemen-
tation. The parallel computing version of the algorithm is empirically
observed to be superior than the standard parallel SDDP method on
numerous test instanes.

• Back-propagation of information. This dissertation has empirically
demonstrated that the SDDP algorithm may tend to be susceptible to
back-propagating errors throughout stages. In turn, this undermines the
algorithmic performance of SDDP. The BL-SDDP scheme tackles this is-
sue by allowing the algorithm to arrive at a more accurate value function
approximation at every stage, as well as allowing previously visited ac-
tions to have access to the value function updates carried out in upper
stages.

European Resource Adequacy Assessment

• EVA stochastic solution. We use decomposition schemes and paral-
lel computing to solve the Economic Viability Assessment (EVA) of the
European Resource Adequacy Assessment (ERAA) 2021 edition.
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• Novel two-stage stochastic algorithms. We consider a subgradient
algorithm and a novel algorithmic relaxation scheme, capable of tack-
ling the Economic Viability Assessment (EVA) in its stochastic form. In
particular, the latter algorithm converges considerably faster than the
subgradient algorithm. It is observed to be better suited for larger and
more complex instances.

• Impact on adequacy metrics. We study the impact that approximate
approaches, such as the one used for ERAA 2021, may have in the overall
solution and in particular on adequacy metrics. Such adequacy metrics
are highly relevant for the purposes of the ERAA study.

• Scenario reduction. The dissertation has proposed a scenario reduc-
tion methodology for reducing the complexity of the EVA. The proposed
method is better suited for accounting for the impact of scenarios on total
system cost. The method is also able to capture the interaction between
scenarios and adequacy metrics, as compared to ENTSO-E’s strategy for
ERAA 2021.

6.3 Future perspectives

This subsection proposes a number of future research perspectives that are
inspired by the developments of this dissertation.

ERAA: Multi-year formulation. The ERAA aims at delivering adequacy
assessments for a time horizon of 10 years. As such, the Economic Viabil-
ity Assessment model has the task of determining expansion and retirement
opportunities in a multi-year setting. This naturally leads to a multi-stage
stochastic problem. The increased complexity of such a model likely means
that seeking for an exact solution is an intractable task. Therefore, a future
front of study must determine a reasonable approximation strategy for tackling
the problem. The hydrothermal scheduling framework inspires a workaround
of interest. The hydrothermal literature often breaks the overall problem into
long-term, medium-term and short-term problems. Each is of a finer granu-
larity than the previous one. The long-term value functions are used as end
conditions for the medium-term problem, while the medium-term value func-
tions are used as boundary conditions for the short-term models. By doing
this, instead of solving a intractable detailed model for a long-term horizon,
several subproblems are solved, where each one is focused on a different front
of the overall problem.

The success of such an approach may be translated to a feasible approach
for the purposes of ERAA. Concretely, using the developments presented in
chapter 3, a model with less granularity can be solved for a large horizon. The
obtained value functions can then be used as end conditions for solving the
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single-year problem, for which the developments carried out in chapter 4 can
be used.

ERAA: Scenario reduction. As discussed in Chapter 5, several open fronts
are left for investigation. In particular, a better understanding of the hierar-
chical structure of the clustering method would be of practical relevance as
it would allow to develop stopping criteria strategies. Further testing against
competitive strategies is required in order to strengthen the proposed approach.
On the other hand, as discussed previously, the Economic Viability Assessment
aims for a multi-year setting. Consequently, it remains an open question how
to develop a disciplined methodology to select scenarios in such a framework.

ERAA: Modelling assumptions. (i) Due to the scale of the Economic Vi-
ability Assessment, strategies for simplifying the model are of interest as a way
to cope with the computational burden. To do so, it is relevant to understand
which modeling aspects play an important role: the network, the stochastic
nature, the granularity, the multi-stage nature of the decisions, the hydrology
etc. This thesis has demonstrated the importance of uncertainty and network
constraints on the outcome of the adequacy analysis (the reader is referred to
chapter 4 for additional details). (ii) The system cost minimization approach,
followed in the Economic Viability Assessment, may yield undesirable results.
Cost minimization and profit maximization are equivalent as long as the prob-
lem is convex, eg if an EENS target is set as the criterion for adequacy. If a
LOLE criterion is used, then the problem is non-convex, and in general there
does not exist a decentralized profit-maximizing equivalent model which leads
to the same result as the centralized one. Which suggests a fundamental contra-
diction in an adequacy assessment which is performed as a means of simulating
a decentralized market environment. in particular, it does not guarantee a
unique pattern for shedding load. That is to say, there may be different opti-
mal solutions with different load shedding profiles, and thus different adequacy
indicators.

Further applications of RL within SDDP The presented map between
stochastic programming and RL, and in particular the description of SDDP
as an RL algorithm, allows us to envision applying further RL ideas within
the SDDP framework. The RL literature offers a wide range of techniques, for
example the TD-type algorithms. It would be interesting to understand how /
if such techniques can be coordinated with SDDP in order to lead to improved
algorithmic schemes.

Hyperplane selection rules. The BL-SDDP scheme proposes a scheme for
re-visiting a batch of visited trial actions. An open front for speeding up the
algorithmic procedure is to define priority rules over the set of visited trial
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actions, so as to avoid the computational burden of re-visiting the full set of
previous actions.

Asynchronous computing Both the BL-SDDP scheme and the algorithms
developed in Chapter 4 are susceptible to known parallel computing synchro-
nization issues. It remains open to investigate the effect of synchronization in
overall algorithmic performance.
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pacity expansion planning under hydro uncertainty using stochas-
tic mixed integer programming and scenario reduction. IEEE
Transactions on Power Systems, 30(4):1838–1847, 2014.

134

https://www.entsoe.eu/outlooks/eraa/2021
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_Annex_1_Assumptions.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_Annex_1_Assumptions.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_Annex_1_Assumptions.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_2021_Annex_3_Methodology.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_2021_Annex_3_Methodology.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_2021_Annex_3_Methodology.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_2021_Executive%20Report.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_2021_Executive%20Report.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_2021_Executive%20Report.pdf
https://www.acer.europa.eu/sites/default/files/documents/Individual%20Decisions_annex/ACER%20Decision%2024-2020%20on%20ERAA%20-%20Annex%20I_1.pdf
https://www.acer.europa.eu/sites/default/files/documents/Individual%20Decisions_annex/ACER%20Decision%2024-2020%20on%20ERAA%20-%20Annex%20I_1.pdf
https://www.acer.europa.eu/sites/default/files/documents/Individual%20Decisions_annex/ACER%20Decision%2024-2020%20on%20ERAA%20-%20Annex%20I_1.pdf
https://www.acer.europa.eu/sites/default/files/documents/Individual%20Decisions_annex/ACER%20Decision%2024-2020%20on%20ERAA%20-%20Annex%20I_1.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/2022/data-for-publication/ERAA2022_Annex_2_Methodology.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/2022/data-for-publication/ERAA2022_Annex_2_Methodology.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/2022/data-for-publication/ERAA2022_Annex_2_Methodology.pdf
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