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A B S T R A C T   

The economic dispatch problem is a fundamental problem in power system operations. An extensive body of 
literature has focused on providing fast and robust algorithms for solving the various instances of the economic 
dispatch. In order to capture physical effects such as the power losses of the network or the valve-point loading 
effect of combined cycle gas turbines, non-convex models of the economic dispatch have been considered. 
However, these features of the problem render the convergence analysis more challenging, and few methods in 
the literature provide insights on the global optimality of the derived solution. In this work, we propose an 
algorithm that efficiently provides a feasible solution, along with a lower bound, to a non-smooth and non- 
convex instance of the economic dispatch problem. We test our method on extensively studied test cases, and 
show that, in comparison with state-of-the-art methods and within a comparable computation time, it provides a 
solution with a much lower deviation from the power balance constraint, while furthermore producing a lower 
bound with an optimality gap below one percent.   

1. Introduction 

With the recent large-scale integration of renewable energy sources 
in the energy mix, there is an increasing need for flexible units that can 
counteract the inevitable uncertainties on the supply side of power 
systems. Therefore, large gas units such as combined cycle gas turbines 
(CCGT) also become an important resource in modern power system 
operations, due to their ability to quickly respond to renewable supply 
fluctuations. The European Commission foresees a slight increase in gas- 
based electricity production for the 2030 European power mix and a 
stabilisation around 20% for 2050 [12]. Thus, the accurate representa-
tion of the constraints and the complex cost function of such units is 
becoming increasingly important in system operations, see, e.g., [24]. 

The economic dispatch (ED) problem aims at the optimal scheduling 
of committed units to serve a given load profile at minimal cost. Two sets 
of constraints are considered. On the one hand, operational constraints 
ensure the feasibility of the dispatch and include limited power ranges, 
ramp rates, and prohibited operation zones. On the other hand, balance 
constraints require that the supply meets the load and guarantee that 
enough reserves are available. 

In the economic dispatch problem, only the variable part of the cost 

function is considered because the units are already committed. There-
fore, for gas units, the cost is linked to the fuel that is being consumed for 
producing power. This input-output function is often modelled as a 
smooth convex quadratic function. However, such a function fails to 
accurately model large CCGT units due to the valve-point effect (VPE) 
[9]. The valve-point effect refers to the increase of throttling losses when 
operating a turbine off a valve-point, i.e., just after the opening of the 
valve. Consequently, the unit operates most efficiently when loaded at a 
valve-point, that is just before the next valve is open. A non-smooth and 
non-convex function, see Eq. 1, is commonly used for modelling this 
effect. This non-convexity allows for the existence of a plethora of local 
minima and the non-smoothness of the objective function prevents the 
use of conventional derivative-based techniques. 

In order to solve this problem, the literature mostly follows two 
approaches: i) randomized heuristics which aim at efficiently spanning 
the search space in order to rapidly converge to a good solution, and ii) 
deterministic methods based on approximations of the objective and the 
feasible set, or using logarithmic barrier functions. Instances of i) are 
numerous and include imperialist algorithms [26,43], other evolu-
tionary algorithms [29,28,4,25,5,22], genetic algorithms [27], and 
simulated annealing algorithms [40,32]. Examples of ii) include 
[31,42,30], where the authors use approximations of the objective 
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without providing lower bounds, [33,6] using gradient-based algo-
rithms with logarithmic barriers, and previous work by the authors 
[37,36] where power losses are neglected. The first type of approach 
often suffers from several problems, namely the lack of convergence 
guarantees, the inability to exploit the structure of the problem, and the 
need to tune various hyper-parameters. 

Losses are another source of non-convexity of growing relevance, 
due to the advent of renewable resources. Concretely, renewable re-
sources are typically located wherever it is most geographically favor-
able, e.g., in sites with high wind potential. These locations usually 
happen to be far from load centers. By consequence, the role of networks 
has become increasingly important in recent years in delivering power 
from remote locations to load centers [20,2], and correspondingly losses 
have increased, thereby motivating a need to represent such losses more 
accurately. Network constraints require, in principle, the consideration 
of the AC power flow equations, which are highly non-linear and non- 
convex. A more tractable alternative which captures an essential 
aspect of network operations is to focus on losses. In this context, Kron 
[19] introduced a quadratic model for the power losses which has been 
popularized by Kirchmayer [18]. 

As these above-mentioned methods become more and more sophisti-
cated, and computational power increases, it becomes easier to compute 
low-cost solutions. However, the stopping criteria of the aforementioned 
methods often remain basic. Indeed, without knowledge of a sufficiently 
good lower bound, it may be impossible to know if the best cost found so far 
is within a prescribed accuracy of the globally optimal cost. Moreover, in 
the absence of a suitable convergence analysis, it is unknown if, given 
enough time, the algorithm is able to find the globally optimal cost within 
any prescribed accuracy. 

This motivates the present study, which extends previous contribu-
tions by the authors [37,36] to non-convex feasible sets due to power 
losses, and develops a method that is feasible—in the sense that all the 
iterates satisfy the constraints. Hence, it is possible to stop early and save 
computational power. The method also returns lower bounds that rely 
on the solution of mixed integer programming problems, defined with a 
piecewise approximation of the objective. Such approximations have 
been studied originally in [44,17,41], then in [31,1,30]. 

Since lower and upper bounds are computed by our proposed 
method, it is possible to detect whether a prescribed accuracy is 
attained, and henceforth to stop the algorithm early. Alternatively, if the 
difference between the upper and lower bounds does not meet the 

prescribed accuracy sufficiently quickly, then the user can decide to 
mobilize more computational power. The latter observation exploits the 
fact that the algorithms that we propose in the present work are paral-
lelizable. This favorable situation contrasts with most existing algo-
rithms where a sufficiently good lower bound is unavailable, making it 
impossible to know if the best cost found so far is within a prescribed 
accuracy of the globally optimal cost. 

The contributions of this work are the following. We first describe 
how to obtain an accurate approximation of the convex hull of the 
feasible set of an economic dispatch problem with quadratic power 
losses. Secondly, we extend the local method of [6] to accommodate the 
multi-period economic dispatch problem. This local method is a Rie-
mannian subgradient method which takes advantage of the inherent 
characterization of the feasible set as a Riemannian manifold. Lastly, we 
show how to leverage this convex-hull approximation of the feasible 
set—or convex relaxation—in our previous work [36] in order to obtain 
a good lower bound to the global solution, and how to combine this 
approach with the extended local method in order to provide a high- 
quality objective. 

The paper is organized as follows. Section 2 describes the non-smooth 
and non-convex optimization problem of interest, namely the economic 
dispatch problem with valve-point effects and quadratic losses. Different 
surrogate optimization problems, that will be used throughout this paper in 
order to tackle the main problem, are also introduced, and a study of the 
feasible set as well as the proposed relaxation is performed. The methods 
employed in our proposed approach are detailed in Section 3: we briefly 
describe the adaptive piecewise linearization method from [37], as well as 
the extended Riemannian subgradient method. We also provide ingredients 
of differential geometry that are required for the subgradient method. 
Section 4 gathers the results of the methods for several test cases and 
compares the objectives with state-of-the-art methods. The lower bounds 
derived from our method allow us to assess how close the solution of our 
proposed method and other methods in the literature are to the optimal 
solution. Finally, conclusions are drawn in Section 5. 

2. Problem formulation 

This section is organized as follows. After a brief description of the 
notation used in our paper, we introduce the main problem that is 
considered in this work in Section 2.2. The full method is then outlined 
in Section 2.3. This method depends on several auxiliary optimization 

Nomenclature 

d Quadric center. 
f Total cost. 
fg Cost function of unit g. 
fQ

g , f
VPE
g Quadratic and rectified-sine part of the cost function of 

unit g. 
f feas Feasibility objective. 
g, t Indices of generating unit and time. 
h Surrogate function. 
nt Normal of the quadric Q (Ψt) at p̃0

t . 
ploss

t Power losses at time t. 
pgt Output power of generator g at time t. 
pt Output power vector at time t where pt =

(
p1t , p2t ,…, p|G|t

)
. 

p̃0
t t-feasible solution. 

p0 Best returned solution of the relaxed problem. 
vk Line-search direction at iteration k. 
Ag,Bg,Cg,Dg,Eg Coefficients parameters. 

B,B0,B00 Losses coefficients. 
G Set of generating units. 
NpQ

tot Normal space of Q tot at point p. 
P−

g ,P
+
g Minimum and maximum power output of unit g. 

Pp(⋅) Projection on the tangent space of Q tot at point p. 
PD

t System demand at time t. 
PS

t System reserves requirement at time t. 
Q tot,Q (Ψt) Total quadric, and quadric of time step t. 
R(⋅, ⋅) Retraction on the quadric Q tot. 
R−

g ,R
+
g Ramp-down and ramp-up rate of unit g. 

S*
t Shift value for the plane-relaxation at time t. 

T Set of time steps. 
TQ tot Tangent bundle of Q tot. 
TpQ

tot Tangent space of Q tot at point p. 
Xgt Set of knots of unit g at time t. 
αk Line-search step at iteration k. 
λN,λQ Parameters of the feasibility objective.  
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problems which are introduced in Section 2.4: the surrogate problems, 
providing lower bounds to the main problem; the feasibility problems, 
which are used to find a feasible solution, or to prove that no feasible 
solution exists; and finally the optimization problems that are used for 
obtaining a relaxation of the feasible set. Lastly, the topology of the 
feasible set is studied in Section 2.5. 

2.1. Notation 

All vectors in the paper are indicated in bold, e.g., x. An implicit 
partition is used for dealing with double indices: if x depends on both 
indices g = 1,…, |G| and t = 1,…, |T|, then x is partitioned as follows, 

x =
(

x11 … x|G|1 x12 … x|G‖T|
)⊺

=
(

x⊺
1 x⊺

2 … x⊺
|T |
)⊺
.

The index g stands for the generator unit g listed in the set G and the 
index t stands for the time step t listed in the set T. 

2.2. Main problem: economic dispatch with VPE and transmission losses 

The main problem, denoted as (P), aims at minimizing the fuel cost, f, 
which is defined as the sum of the production cost of every generator 
unit fg at each time step. The production of unit g at time step t is denoted 
as pgt . A quadratic function is often used for modeling the fuel cost of a 
given unit. However, this fails to model the inherent non-convex char-
acteristic of the problem when the VPE is taken into account. Following 
the literature [8,14,38], we model the cost function as the sum of a 
smooth quadratic part, fQ

g , and a non-smooth rectified sine aimed at 

capturing the VPE, fVPE
g : 

fg
(
pgt
)
= Agp2

gt + Bgpgt + Cg
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

:=f Q
g (pgt)

+

⃒
⃒
⃒Dg sinEg

(
pgt − P−

g

)⃒
⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
:=f VPE

g (pgt)

. (1)  

Here, P−
g is the minimum power production of generator g and Ag,Bg,Cg,

Dg,Eg are parameters. 
The full objective reads 

f (p) =
∑

t∈T

∑

g∈G
fg
(
pgt
)
, (2)  

and a single term, fg(pgt), is depicted in Fig. 1. 
The constraints considered in this work are the following:  

• Power range limits 

P−
g ⩽pgt⩽P+

g ∀g = 1,…, |G|, t = 1,…, |T|, (3)  

where P−
g and P+

g are the minimum and maximum power output of 
unit g.  

• Ramp rate restrictions 

R−
g ⩽pgt − pg(t− 1)⩽R+

g ∀g = 1,…, |G|, t = 2,…, |T|, (4)  

where R−
g and R+

g are the ramp-down and ramp-up rates of unit g, 
respectively.  

• Power balance 
∑

g∈G
pgt = PD

t + p⊺
t Bpt + B0pt + B00
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

:=ploss
t

∀ t = 1…|T|. (5)  

where PD
t is the demand and ploss

t is an approximation of the trans-
mission losses in period t. This approximation is obtained using 
Kron’s formula [34], for a given matrix B, vector B0 and parameter 
B00. The matrix B, which contains the loss-coefficients, is symmetric, 
because it is obtained as the real part of a Hermitian matrix. How-
ever, this matrix is not necessarily positive definite [34], e.g., the 
matrix is indefinite for the 10-unit test case in Section 4.2. These 
coefficients are discussed in Section 2.5.  

• Spinning reserve constraints 
The reserve requirements are modeled as in [28], ∀t ∈ T: 
(

Δ(1)
t =

∑

g∈G
P+

g −

(

PD
t + ploss

t + PS
t

))

⩾0 (6)  

(

Δ(2)
t =

∑

g∈G
min

(

P+
g − pgt,R+

g

)

− PS
t

)

⩾0 (7)  

(

Δ(3)
t =

∑

g∈G
min

(

P+
g − pgt,

R+
g

6

)

−
PS

t

6

)

⩾0 (8)  

for a given reserve requirement PS
t . 

Eq. 6 and 7 model the requirement for the spinning reserve that can 
respond within one hour. Eq. 8 models the requirement for the spinning 
reserve that can respond within 10 min. Note that, if the losses are 
neglected, i.e., ploss

t = 0, then Eq. 6 does not depend on decision vari-
ables and is therefore simply a test on the feasibility of the problem. This 
feasibility test is used in Section 4.2 to show that a given problem is 
infeasible. 

Taking all these constraints into account, the optimization problem 
at hand reads 

min
p

f (p) =
∑

t∈T

∑

g∈G
f g(pgt),

s.t. (3) − (8).
(P)  

This is a non-smooth and non-convex continuous optimization problem. 
The feasible set is the intersection of a polytope—Eq. 3,4 and 6,7,8—and 
a quadratic hypersurface—Eq. 5—which is further described in Section 
2.5. 

2.3. Outline of the method 

Before introducing the other optimization problems that will be used 
in the remainder of the paper, we first outline the full method. This 
method, denoted as APLA-RSG, is depicted in Fig. 2 and consists of the 
following steps:  

1. Obtaining a lower bound and an initial (infeasible) candidate 
through the solution of a relaxation of (P); Fig. 1. Illustration of a single term of the main and surrogate objectives.  

L. Van Hoorebeeck et al.                                                                                                                                                                                                                      



International Journal of Electrical Power and Energy Systems 134 (2022) 107143

4

2. Projecting this candidate onto the feasible set;  
3. Improving the projected candidate with a local search. 

The first step is based on an adaptive piecewise-linear approximation 
(APLA) of the objective, and a relaxation of the feasible set. It requires 
solving three different optimization problems: (S), (F)t, and (Shift)t. The 
second step solves the feasibility problem (F). These problems are 
introduced in the next section: Section 2.4.1, Section 2.4.2, and Section 
2.4.3, respectively. The last step is a Riemannian subgradient descent 
scheme (RSG), and depends on a quadratic subproblem, (Sub), defined 
in Section 3.1. 

2.4. Auxiliary optimization problems 

2.4.1. Surrogate problem 
One way of coping with the non-linearities of the objective is to 

approximate it as a piecewise-linear function and then solve this surro-
gate problem, which can be formulated as a mixed integer programming 
(MIP) problem [37]. 

The surrogate problem, (S), aims at i) finding a good initial point for 
a local search and ii) providing a lower bound to the solution of (P). This 
is achieved through an under-approximation of the objective (as in [37]) 
and a relaxation of the quadratic constraint Eq. (5). This relaxation is 
explained in Section 2.4.3. 

The piecewise-linearization of a given function, f, is entirely defined 
by the set of knots, which refer to the points where the pieces of the cost 

function meet. Let Xgt :=
(

Xgt1,…,Xgtnknot
gt

)
be the set of knots of unit g at 

time t. We can then approximate the cost function as follows: 

hgt
(
pgt
)
:= Π

[
fg,Xgt

](
pgt
)
. (9)  

In this expression, Π[f ,X] stands for the piecewise-linear interpolation of 
a function f given the knots X. These approximations of the fuel costs are 
then aggregated as in equation Eq. 2, in order to form the total surrogate 
objective h, 

h(p) =
∑

t∈T

∑

g∈G
hgt
(
pgt
)
. (10) 

This surrogate objective is illustrated in Fig. 1. 
Note that, even if the fuel cost fg does not depend on the time step t, 

the approximation hgt is dependent on t, because the set of knots which 
define the approximation also depends on this time index. 

Equipped with this surrogate objective, we define the surrogate 
problem as 

min
p

h(p) =
∑

t∈T

∑

g∈G
hgt
(
pgt
)
,

s.t. (3) − (4), (5)R, (6) − (8),
(S)  

where (5)R stands for the relaxation of constraint (5), and is defined in 
Section 2.4.3. Two relaxations are considered, a linear relaxation and a 
(convex) quadratic one, depending on whether B is positive definite or 
not. The case of a semidefinite B is not considered: this matrix is 
assumed to be invertible, as detailed in Section 2.5. 

2.4.2. Feasibility problems 
The feasibility problem, (F), focuses on converting an infeasible so-

lution, p0, into a feasible one. More specifically, this problem will be 
used to project the solution of (S) onto the feasible set. 

We define the feasibility objective f feas as 

f feas( p; p0, λN, λQ
)
= λN

⃒
⃒
⃒
⃒p − p0

⃒
⃒
⃒
⃒2

2+λQ

∑

t∈T

∑

g∈G
f Q

g

(
pgt
)
, (11)  

for given parameters λN, λQ ∈ R⩾0 and fQ
g defined as in (1). We discuss 

these parameters hereafter. 
The feasibility problem reads, 

min
p

(11)

s.t. (3) − (8).
(F) 

This problem depends on the parameters λN and λQ. When λQ = 0, (F) 
becomes a projection on the feasible set. If no initial guess p0 is available, 
λN is set to zero and the problem is a quadratically constrained quadratic 
program (QCQP). Finally, if both parameters are set to zero, (F) becomes 
a usual feasibility problem without any objective. Note that (F) is easier 
than the main problem (P): on one hand because the objective is convex 
and on the other hand because the primary goal is to obtain a feasible 
solution, hence (F) will not be solved to optimality, saving therefore 
computational resources. 

The fixed-time feasibility problem is also considered. It is similar to 
(F), except that the problem is decoupled with respect to a given time 
step t. It reads as follows: 

min
pt

λQ

∑

g∈G
f Q

g

(

pgt

)

s.t. (3)t, (5)t − (8)t,

(F)t 

where (⋅)t indicates that the constraint must only hold for the given time 
step t. Note that constraint (4) is dropped, as it depends on two 
consecutive time steps. 

2.4.3. Relaxation problem 
The goal of the relaxation problem is to compute a convex relaxation 

of the constraint (5), written (5)R. Two different cases are considered: 
either the coefficient matrix B is positive definite, or there are at least 
two eigenvalues of opposite sign, in which case the matrix is indefinite. 
Note that this relaxation problem is decoupled with respect to the time 

Fig. 2. Block diagram of the method APLA-RSG for solving (P).  
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index t. Indeed, if (5)t,R is the relaxation of (5)t, then taking the Cartesian 
product of every time step yields a relaxation of Eq. (5). Hence, the 
discussion is made here for a given t ∈ T, and the full relaxation is ob-
tained as the Cartesian product over t: 

×t∈T (5)t,R (5)R 

Case I: B is positive definite. In this case, the feasible set generated by 
constraint (5)t is the surface of an ellipsoid, see Section 2.5. However, 
the power ranges of (3)t restrict the feasible set to a box which is, in 
practice, very small with respect to the ellipsoid, because the losses are 
small. This explains why a linear approximation is often used, as in 
[31,30]. In order to obtain a relaxation, the set induced by (5)t, R should 
include the set induced by (5)t. This condition is fulfilled if (5)t, R is the 
intersection between the interior of the ellipsoid, the interior of the 
power ranges, and the half space induced by any secant plane that has no 
intersection with the feasible set of (P)—in Fig. 3, π0 and π1 are valid 
planes while π2 is not. Ideally, the secant plane should be chosen so as to 
minimize the relaxed set. However, computing the optimal secant plane 
can be complicated. For example, in the specific case where there are 
exactly n := |G| intersections between the ellipsoid and the box, the 
optimal secant plane (π0 in Fig. 3) is the one defined by the n in-
tersections. Unfortunately, getting the n intersections in order to find 
such an ideal plane (π0) is challenging. The simple enumeration of the 
vertices of the hyper-cube becomes intractable for a small number of 
generators |G|. 

Note that the relaxation may be exact—meaning that the optimal 
solution of the relaxed problem is feasible for the unrelaxed one—or 
inexact, depending on the position of the box. This type of behaviour has 
been studied in [23] for non-convex network constraints. 

The procedure to obtain a relaxed plane at a given time step t is the 
following: first a feasible point for time step t,p̃0

t , is computed by solving 
(F)t, then the slope of the plane is obtained as the tangent plane of the 
ellipsoid in ̃p0

t , and finally, the plane is shifted toward the interior of the 
ellipsoid. The value of the shift is given with the following optimization 
problem 

S*
t := maxpt∈X t n̂t⋅

(

pt − p̃0
t

)

, (Shift)t 

where X t is the feasible set of (F)t. This procedure is illustrated in Fig. 4a 
which is a magnification of Fig. 3 around the available power ranges. 
The explicit procedure is presented in Algorithm 1. 

For a given time t, the relaxed balance constraint, (5)t,R, reads 

∑

g∈G
pgt⩾ PD

t + p⊺
t Bpt + B0pt + B00,

0⩾ pt⋅nt −
(
p̃t

0 + n̂tS*
t

)
⋅nt.

(5)t,R 

Algorithm 1. Procedure to obtain relaxation at given time step t   
Require: B positive definite  

p̃0
t ← solution of (F)t  

nt←Bp̃0
t + bt  

n̂t←
nt

||nt | |2  

S*
t ←maxpt∈X t n̂t ⋅

(
pt − p̃0

t

)

(5)t, R ←
(
0⩾pt⋅nt −

(
p̃t

0 + n̂tS*
t
)
⋅nt
)
∪
(∑

g∈Gpgt⩾PD
t + ploss

t

)

return (5)t, R  

This convex relaxation is motivated by the fact that the size of the 
quadric is much larger than the admissible ranges of the unit, and the 
linear relaxation is almost on the quadratic surface. This phenomenon is 
illustrated in Fig. 5 for a 3-unit problem at a given time step t. 

Case II: B is indefinite. In this case, there are at least two eigenvalues 
of B of opposite sign, and therefore the set defined by the power balance 
(5)t is no longer the boundary of a convex set. Fig. 6 illustrates an 
example of this case. Figs. 6b and 6c show that a single plane will not be 
enough to construct the relaxation: Fig. 6b prompts the use of an interior 
relaxation plane, in a similar way as case I, however Fig. 6c demon-
strates that en exterior plane should also be used. To tackle this issue, we 
solve (Shift)t for both directions n̂t and − n̂t. The whole procedure is 
explicitly given in Algorithm 2 and depicted in Fig. 4b. Remark that in 
this case, the relaxation is linear. 

Algorithm 2. Procedure to obtain relaxation at given time step t for a 
non-convex quadric.   

p̃0
t ← solution of (F)t  

nt←Bp̃0
t + bt  

n̂t←
nt

||nt | |2  

S*,int
t ←maxxt∈X t n̂t ⋅

(
xt − p̃0

t

)

S*,ext
t ←maxyt∈X t − n̂t ⋅

(
yt − p̃0

t

)

(5)t, R ←
(

0⩾pt⋅nt −
(

p̃0
t + n̂tS*,int

t

)
⋅nt

)
∪
(

0⩽pt ⋅nt −
(

p̃0
t + n̂tS*,ext

t

)
⋅nt

)

return (5)t, R   

2.4.4. Comparison of the optimization problems 
The characterization of each optimization problem is presented in 

Table 1. The last two problems are decoupled with respect to the time 
step which reduces significantly the size of the problem. They are 
considered as easy, relatively to the first three problems and, in the test 
cases studied in the present work, they can be solved to optimality in less 
than a second. Among the three larger problems, (P) is unquestionably 
the most difficult. Problem (F) is arguably easier than (S): the reason is 
that any feasible solution of (F) is acceptable, since the goal is to find a 
feasible solution. On the other hand, (S) is a true optimization problem 
in the sense that we are interested in the lowest possible objective and 
especially a high lower bound. 

2.5. Topology of the feasible set 

Let us now study the feasible set defined by Eq. 5. In particular, we 
define the quadratic surface, or quadric, and express Eq. 5 as a Cartesian 
product of quadrics. Finally, we characterize this quadric as a quadric 
with middle point. This middle point will be used in Section 3.1 to 
compute the retraction mapping. 

Characterization of the hypersurfaces [3]. Let V be a vector space on 
the field K = R or K = C. A relation 

Fig. 3. Illustration of the relaxation induced by the interior of the ellipsoid, the 
power ranges, and several secant planes, for a very simple case with only two 
generators at a given time step. The area induced by π0 (gray fill) and π1 (blue 
dots) are valid relaxations while the one induced by π2 (red hashed lines) is not 
a valid relaxation as some feasible points are cut off. The relaxation induced by 
π0 is optimal, and corresponds to the convex hull of the feasible set (blue line). 
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V→K : x ↦ Ψ(x) = ρ(x) + 2ϕ(x) + a  

with a quadratic form ρ, a linear form ϕ and a constant a ∈ K is called a 
quadratic function. 

Let Ψ : Rn→R be a nonzero quadratic function, then its zero set 

Q (Ψ) = {x|Ψ(x) = 0 }

is a quadric of Rn. 
For a given time step t, Eq. 5 can be written as a quadric by choosing 

the relation 

Rn→R : pt ↦ Ψt
(
pt
)
= p⊺

t Bpt + 2b⊺pt + ct (12)  

with n = |G|, b = B0 − 1
2 and ct = B00 + PD

t . Since this constraint holds for 
every time step, this yields the following set: 

Q
tot := Q (Ψ1) × Q (Ψ2) × ⋯ × Q

(
Ψ|T |

)
(13)  

Let r be the rank of B. If we assume that B is invertible, as it is the case in 
all the instances we found in the literature, then r = n. Following the 
classification of [3], the quadric hypersurface is said to be of type 2 
(Mittelpunktsquadrik or quadric with middle point). Indeed, let us 
compute the rank of 

Bt =

(
B b
b⊺ ct

)

. (14)  

Since B is invertible, the Guttman rank additivity formula yields [46] 

Fig. 4. Procedure to obtain the relaxation.  

Fig. 5. Illustration of the relative size of the power ranges with respect to the quadric (ellipsoid) for a 3-unit problem at a given time step t. The admissible power 
range, (3)t, is the interior of the red cube and the power balance, (5)t, the surface of the blue ellipsoid. The right figure is a magnification around the admissible power 
ranges. The red dots, in the right figure, are the vertices of the box. 

Fig. 6. Illustration of the relative size of the power ranges with respect to the 
quadric for a 3-unit problem at a given time step t. In this example Kron’s 
matrix is not positive definite: two eigenvalues are positive and the last one is 
negative. The quadric is a onesheet hyperboloid. The admissible power range, 
(3)t, is the interior of the red cube, too small to be distinguishable, and the 
power balance, (5)t, the surface of the blue hyperboloid. Figs. 6b and 6c show 
different views. The green point is the center of the quadric. 

Table 1 
Comparison of the optimization problems.   

(P) (S) (F) (F)t (Shift)t 

Classification NLP MIQP QCQP QCQP QCLP 
Convexity Non- 

convex 
Non- 

convex 
Non- 

convex 
Non- 

convex 
Non- 

convex 
Objective Non- 

convex, 
non- 

smooth 

Piecewise- 
linear 

Quadratic Quadratic Linear 

Feasible set Non- 
convex 

Convexa Non- 
convex 

Non- 
convex 

Non- 
convex 

Problem size |T||G| |T||G| |T||G| |G| |G|

a The initial feasible set is convex, nevertheless the modelization of the 
piecewise-linear objective is made through integer variables which makes the 
feasible set inherently non-convex, see [15] for more details about the modeli-
zation of non-convex functions as piecewise-linear functions. 
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rankBt = rankB+ rank
(

ct − b⊺B− 1b
)
. (15)  

In general, ct ∕= b⊺B− 1b. Thus, it follows that rankBt > r = rankB and 
henceforth Q (Ψt) is a type-2 quadric. When all the eigenvalues of the 
quadratic form are positive, the non-degenerate type-2 quadric is an 
ellipsoid, illustrated in Fig. 5, otherwise it is an elliptic hyperboloid, 
illustrated in Fig. 6.1 A feature of the type-2 quadric is the existence of a 
center, d, computed as 

d = − B− 1b. (16)  

This center will be used in Section 3.1 to compute the relaxation on the 
manifold defined by the quadric. 

3. Methods 

In this section, we explain how to combine all the elements devel-
oped in Section 2 to solve (P). First, we describe how to derive a lower 
bound of the problem. We then show how to obtain an upper bound, i.e., 
a feasible solution, and improve it using a Riemannian gradient descent. 
Finally, both steps are combined in a single algorithm. 

3.1. Deriving a lower bound 

In a similar fashion as [37,36], the lower bound is obtained through 
an underapproximation of the objective via piecewise-linearization. 
However, this is not sufficient here as the feasible set is the subset of a 
quadric. Hence, this non-convex set is relaxed using the solution of 
(Shift)t which requires for each time step t a point p̃0

t feasible for (F)t. 
The goal here is to obtain a lower bound but also a candidate which is 

globally efficient, meaning that its objective is close to the global opti-
mum. In general, this candidate will not be feasible due to the relaxation 
of the feasible set, but we expect it to be sufficiently close to the feasible 
set such that when we project it back to this set, it remains close to the 
global optimum. 

Feasible set relaxation. A t-feasible point, p̃0
t , is readily obtained for 

each t with Algorithm 3. Notice that the point is not globally feasible and 
hence f(p̃0

) is not an upper bound to the global solution. This point is 
simply a starting point for Algorithms 1 and 2 depending on whether B is 
positive definite or not. 

Algorithm 3. Find p̃0 feasible for each time step t   
for t ∈ T do  

p̃0
t ←argmin(F)t  

end for 
return p̃0   

Solution of the surrogate problem. The lower bound can be obtained via 
the adaptive piecewise-linearization algorithm (APLA) described in 
[37]. However, this method suffers from long execution time. In prac-
tice, we are not interested in spending too much time to obtain the lower 
bound. Therefore, in the numerical experiments of Section 4, we rather 
use the heuristic based on APLA that is described in [36]. In order to 
simplify the discussion, the description that we provide in the present 
paper is based on the APLA method. 

The APLA method can be summarized as follows. Firstly, a set of 
knots which define the piecewise-linear approximation is defined. Then, 
the (first) surrogate problem (S)1 defined with the (first) set of knots X1 

is solved using a MIP solver. If we neglect the fact that the feasible set is 
relaxed, the solution returned by the solver is non-optimal because i) 
optimality is guaranteed up to a given tolerance and ii) the surrogate 
objective approximates the real objective. To remedy the latter point, 

the approximation is refined around the returned solution; this adaptive 
refinement results in a lower number of integer variables than a global 
refinement that consists in doubling the number of linear pieces. It is 
proven in [37] that this method converges up to the solver tolerance, i.e., 
the second cause of sub-optimality vanishes as the number of APLA it-
erations tends to infinity. The method is outlined in the dotted frame of 
Fig. 7. The surrogate objective and the knots are depicted in Fig. 1. 

Note that this method cannot be directly applied to our problem, 
because of the non-convex constraint Eq. 5. This explains the need of the 
relaxation developed in Section 2.4.3. 

3.2. Deriving an upper bound: riemannian subgradient scheme 

A simple and direct method for obtaining a feasible point, i.e., a first 
upper bound to the global solution, is to project the candidate obtained 
at the end of the procedure depicted in Fig. 7 on the feasible set of (P). 
However, the projection is, in general, not a global optimum nor even a 
local optimum, and it is worthwhile to attempt to improve the obtained 
feasible solution through a local search. In [31], the authors use an 
interior-point method as a local solver. Nevertheless, this method mildly 
improves the solution and it relies on barrier parameters that are diffi-
cult to choose a priori. In this section, we propose to adapt the Rie-
mannian gradient descent described in [6] to account for reserves and 
multiple time steps. 

The Riemannian subgradient descent can be described as a classical 
line-search scheme, 

pk+1 = pk + αkvk (17)  

where αk is the step size and vk the (descent) direction at iteration k. 
Usually, the question remains on how to choose the step size and the 
descent direction in order to fully determine the scheme. Here, it is also 
required to redefine the “+“ operation in order to fully define the 
method; since the feasible set is not a vector space, it is not true in 
general that Eq. 17 yields a feasible point, even for small αk. A simple 
idea would be to project the resulting point on the feasible set. This 
defines a projected line-search scheme. This is not a good idea for our 
problem for two reasons. Firstly, the projection onto the feasible set of 
(P) is a costly operation (see classification of (F) in Table 1), and a usual 

Fig. 7. Flowchart of the method for obtaining a lower bound along with a first 
(infeasible) candidate with low objective. 

1 In this paper we consider that the problem is feasible. Hence, we do not 
study the case where all eigenvalues of B are negative. 
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line-search scheme requires at least a few dozen iterations. Secondly, the 
geometry of the feasible set exhibits a rich structure of a manifold which 
can be exploited. 

In the following paragraphs, the general Riemannian geometry is 
introduced, then the retraction—the extension of the “+“ operator, 
illustrated in Fig. 8—and the descent direction are described. Finally, 
the step size rule and some implementation details are given. 

3.2.1. Riemannian geometry 
In a similar way as [6], we define the quadric manifold. Then, we use 

it to define the extended quadric manifold. 

Proposition 3.1. (Quadric manifold) Let 
Ψt : Rn→R : pt ↦ Ψt(pt) = p⊺

t Bpt +2b⊺pt +ct, be a quadratic function. If B is 
nonsingular and ct ∕= b⊺B− 1b, then the quadric Q (Ψt) is an n − 1 dimen-
sional smooth manifold of Rn. 

Proof. As Ψt ∈ C
∞, the quadric Q (Ψt) := Ψ− 1

t (0) is an algebraic va-
riety, it is a manifold if DΨt(pt) ∕= 0 ∀pt ∈ Q (Ψt), that is if the critical 
points of Ψt do not belong to the quadric. Since B is nonsingular, the only 
critical point is the center d: 

d = − B− 1b,

and this point cancels Ψt only if ct = b⊺B− 1b. □ 
Remark that the assumptions of Proposition 3.1 are equivalent to the 

needed assumptions for the quadric to be of type 2 in Section 2.5. 

Definition 3.1. (Extended quadric manifold) The Cartesian product of 
the quadrics defined for each time step t as in Eq. 12 is called extended 
quadric manifold and computed as 

Q
tot := Q (Ψ1) × Q (Ψ2) × ⋯ × Q

(
Ψ|T |

)
.

The extended quadric manifold is effectively a manifold because the 
Cartesian product of smooth manifolds is also a manifold. In this case, 
the dimension of the manifold is |T|(|G| − 1). 

A first important object to be described when dealing with manifolds 
is the tangent space. Intuitively, it refers to the first-order approximation 
of the manifold at a given point p. This mathematical object is used in 
numerous algorithms on manifolds in the following way. The tangent 
plane is defined at a given point p belonging to the manifold. Then, any 
other point p′ of the manifold, sufficiently close to p, is mapped to the 
tangent space through the logarithmic map. In this tangent space, the 
usual vector operations can be used, and the resulting vector can be 
mapped back to the manifold via the exponential map. 

The tangent space of the quadric manifold Q (Ψt) at a given point pt is 
defined in general as 

Definition 3.2. Let Q (Ψt) be a smooth real manifold, the tangent space 
reads 

Tpt Q (Ψt) =
{

ξ ∈ R|G||∃c : R ↦ Q (Ψt)with c(0) = 0, c′

(0) = ξ
}
.

Using the specific structure of the quadric manifolds, this tangent 

space is computed as [6], 

Tpt Q (Ψt) =
{

ξ ∈ R|G||ξ⊺(2Bpt + b) = 0
}
, (18)  

and dimTpt Q (Ψt) = |G| − 1. This tangent plane is illustrated in Fig. 8 for 
a positive definite matrix B. 

Definition 3.3. (Tangent bundle) The tangent bundle TQ (Ψt) of a 
manifold Q (Ψt) is defined as the disjoint union of every tangent space at 
every point of the manifold, 

TQ (Ψt) = ⨆
pt∈Q (Ψt)

Tpt Q (Ψt).

Since every tangent space is a linear subspace of R|G|, each can be 
endowed with an inner product 〈⋅, ⋅〉pt 

defined as the restriction of the 
canonical Euclidean product on the tangent space Tpt Q (Ψt), 

〈⋅, ⋅〉pt
: Tpt Q (Ψt) × Tpt Q (Ψt)→R : (ξ, ζ) ↦〈ξ, ζ〉pt

= ξ⊺ζ. (19) 

Similarly, we define an inner product 〈⋅, ⋅〉p as the restriction of the 
canonical inner product on the tangent space TpQ

tot, 

〈⋅, ⋅〉p : TpQ
tot × TpQ

tot→R : (ξ, ζ)↦ 〈ξ, ζ〉p = ξ⊺ζ =
∑

t∈T
〈ξt, ζ t〉pt

(20)  

This inner product induces the canonical norm: ‖ξ‖p = 〈ξ, ξ〉1/2
p . A 

smooth manifold equipped with an inner product on the tangent space at 
every point is called a Riemannian manifold. 

The normal space can be computed as the orthogonal complement of 
the tangent space. 

Definition 3.4. Let Q (Ψt) be a |G| − 1 smooth manifold embedded in 
R|G| and Tpt Q (Ψt) its tangent space, the normal space is defined as 

Npt Q (Ψt) = Tpt Q (Ψt)
⊥ (21)  

where •⊥ is defined with respect to the canonical inner product on 
R|G|. It follows from Eq. 18 that 

Npt Q (Ψt) = {τ(2Bpt + b)|τ ∈ R }, (22)  

and dim Npt Q (Ψt) = 1. 
Now that an expression for the tangent and normal space of each 

individual manifold has been obtained, both can be computed for the 
extended quadric manifold. 

Proposition 3.2. TpQ
tot = Tp1 Q (Ψ1)× Tp2 Q (Ψ2)× ⋯× Tp|T|Q

(
Ψ|T|

)

Proof. See [13, Chap. 1.2]. □ 

Proposition 3.3. NpQ
tot = Np1 Q (Ψ1)× Np2 Q (Ψ2)× …Np|T|Q

(
Ψ|T|

)

Proof. We first show that NpQ
tot =

(
TpQ

tot)⊥⫆Np1 Q (Ψ1) ×

Np2 Q (Ψ2) × ⋯ × Np|T|Q
(
Ψ|T|

)
and then we conclude with an argument 

on the dimensions.  

i) Let p ∈ TpQ
tot and p′

∈ Np1 Q (Ψ1)× Np2 Q (Ψ2)× ⋯× Np|T|Q
(
Ψ|T|

)
, 

both are partitioned as follows: p =

⎛

⎜
⎜
⎝

p1
p2
⋮
p|T|

⎞

⎟
⎟
⎠ and p′

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p′

1

p′

2

⋮
p′

|T|

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. It 

follows from Proposition 3.2 and Definition 3.4 that p⊺p′

= 0 and 
therefore that p′

∈
(
TpQ

tot)⊥.  

ii) Since TpQ
tot is a linear subspace of R|G||T|, we have |G||T| −

dimTpQ
tot = dim

(
TpQ

tot)⊥ = |G||T| − |T|(|G| − 1 ) = |T|. This con-
cludes the proof as Fig. 8. Illustration of the retraction, Rt(pt , ξt).  
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dimNp1 Q (Ψ1) × Np2 Q (Ψ2) × ⋯ × Np|T|Q
(
Ψ|T|

)
= |T|. □  

Since we have shown that both tangent and normal spaces of the 
extended quadric are the Cartesian products of the tangent and 
normal space of the individual manifold Q (Ψt), we can easily extend 
the projection operator from [6] by working componentwisely. 

The projection Pp(v) of a vector v ∈ R|G||T| partitioned as 
(v1

⊺, v⊺
2,…, v⊺

|T|)
⊺ onto TpQ

tot can be constructed by removing the normal 
component of v: 

Pp(v) =
(

v̂1
⊺
,…, v̂⊺

|T|

)⊺
, (23)  

where ̂vt = vt − τt(2Bpt + b) and τt is chosen to ensure that Ppt (vt) belong 
to Tpt Q (Ψt), i.e., 

τt =
v⊺

t (2Bpt + b)
||(2Bpt + b) | |22

. (24)  

3.2.2. Retraction 

Definition 3.5. (Retraction)  
A retraction R is a smooth mapping from the tangent bundle of a 

manifold to the manifold itself,   

It is clear that the retraction is not unique, and in fact, the retraction 
can be seen as an approximation of the exponential map. Indeed, in this 
specific case the exponential map cannot be easily computed, see the 
discussion in [6], but some retractions can be easily computed. 

The retraction considered in this work and introduced in [6] is 
illustrated in Fig. 8: the retraction Rt(pt , ξt) is obtained by looking at the 
intersection qt between the quadric and the line between pt + ξt and the 
quadric center d, as defined in Eq. 16. Note that this intersection is not 
supposed to be unique (see q’

t); to remedy this, the closest point to pt + ξt 
is chosen. A closed-form solution of this procedure is given in [6, Section 

3.3]. 
In general, the direction vt may not lie in the tangent space of pt. An 

extra step of projection is then needed in Eq. 17, ξt = Pp(vt). 
This retraction can be readily extended to the multistep case: it 

suffices to work with each component independently: 

R : TQ
tot→Q

tot : (p, ξ) ↦ q :=

⎛

⎜
⎜
⎝

q1
q2
⋮

q|T|

⎞

⎟
⎟
⎠, (26)  

with qt = Rt(pt , ξt). Notice that, if the retraction is illustrated with an 
ellipse in Fig. 8, it is not limited to this specific quadric. Any type-2 
quadric or quadric with a middle point (see Section 2.5), can be 
considered. Also, an interesting feature of this procedure is the fact that 
it does not require a lot of computational power: the tangent space has a 
closed-form Eq. 18, as well as the projection onto this tangent space Eq. 
23, and finally the retraction itself can also be efficiently computed—it 
amounts to solving |T| one-dimensional quadratic equations and 
choosing for each equation the root the closest to zero [6]. 

Going back to Eq. 17, if the direction vk does not belong to the 
tangent space of the current iterate pk, it reads 

pk+1 = R
(
pk,Ppk

(
αkvk) ). (27)  

3.2.3. Descent direction on a manifold 
Before the discussion on the descent direction, we define the concept 

of Q -admissible direction which accommodates the set defined by Eq. 5. 

Definition 3.6. A Q -admissible direction defined at point p ∈ Q tot is a 
vector v ∈ TpQ

tot for which there exists ∊ > 0 such that R(p, αv) belongs 
to Q tot for all α ∈ [0,∊]. 

The gradient is inherent in the concept of steepest descent, but the 
function Eq. 1 is only smooth almost-everywhere, and the zero-measure 
set where it is non-smooth is located at positions where the argument of 
the absolute value in Eq. 1 changes sign. This set simply corresponds to a 
multidimentional grid which can be computed as 

S :=

{

p ∈ R|G||T||∃g ∈ G, t ∈ T, j ∈ Jg with pgt = P−
g +

(j − 1)π
2Eg

}

, (28)  

where 

Jg :=

{

j = 1, 2,…, 1 + ⌈(P+
g − P−

g

)
2Eg

π ⌉}. (29) 

For a non-smooth function, the gradient is often replaced by the 
subgradient, however this mathematical object cannot be used for the 
non-convex functions (1). Here, we consider the closely connected 
concept of generalized gradient introduced in [7]. First, let us define the 
generalized directional derivative f ◦

(p; v) of the Lipschitz function 
f : X→R, for a Banach space X, in the direction v as 

f ◦

(p; v) = limsup
λ↓0 h→0

f (p + h + λv) − f (p + h)
λ

.

This function is convex in v, independently on the convexity of f. The 
generalized gradient of f at p, written ∂f(p), is defined as the sub-

differential of the convex function f ◦

(p, ⋅) at 0. In particular we have, 

∂f (p) = {ζ ∈ X*|f ◦

(p; v)⩾〈v, ζ〉 ∀v ∈ X }, (30)  

with X* the dual space of X. The generalized gradient shares some 
important properties with the subdifferential of a convex function, 
namely the fact that it is a nonempty convex and compact set and that if 
a point p is a local minimizer of f, then 0 ∈ ∂f(p). Furthermore, if f is 
convex, then the generalized gradient coincides with the subdifferential, 
and for a point p differentiable, we have ∂f(p) = {∇f(p)}. 

Function (2) is a Lipschitz function that can be computed as the 
pointwise maximum of m := 2|G||T| smooth functions2, i.e., 

f (p) = max
j=1,…,m

fj(p). (31) 

In this specific case, [6] shows that the generalized gradient can be 
described as 

∂f (p) = co
{
∇fj(p)|j ∈ I f (p)

}
, (32) 

Rt : TQ (Ψt)→Q (Ψt) : (pt, ξt)↦ qt := Rt(pt, ξt),with
dRt(pt, αξt)

dα

⃒
⃒
⃒
⃒

α=0
= ξt and Rt(pt, 0) = pt. (25)   

2 Since |x| = max{x, − x} and there are |G||T| absolute values in Eq. 2. 

L. Van Hoorebeeck et al.                                                                                                                                                                                                                      



International Journal of Electrical Power and Energy Systems 134 (2022) 107143

10

where co{⋅} denotes the convex hull and I f the set of indices for which 
the maximum in Eq. 31 is attained. 

This framework is valid for the unconstrained problem (P). Let us 
now integrate the manifold constraint Eq. 5, and then the other linear 
constraints. 

Given a smooth function fj from the pointwise maximum in Eq. 31, 
the projected gradient is defined as follows 

grad fj
(
p
)
= Pp

(
∇fj
(
p
))
, (33)  

and the projected generalized gradient is given by 

grad f (p) = co
{

grad fj(p)|j ∈ I f (p)
}
. (34) 

The steepest Q -admissible direction vk from iterate pk is obtained by 
computing the shortest vector in grad f(pk), see [6] for more details. This 
can be computed by minimizing the norm of the convex combination of 
the projected gradients. If the coefficients of the convex combination are 
given by 

λk = arg min
λ⩾0∑

λj=1

⃒
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒

∑

j∈I f (pk)

λjgrad fj
(
pk)

⃒
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒

2

2

= arg min
λ⩾0∑

λj=1

⃒
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒
Ppk

⎛

⎝
∑

j∈I f (pk)

λj∇fj
(
pk)

⎞

⎠

⃒
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒

2

2

(35)  

then the steepest-descent Q -admissible direction is computed as 

vk = − Ppk

⎛

⎝
∑

j∈I f (pk)

λk
j ∇fj

(
pk)

⎞

⎠. (36) 

This optimization problem is defined on a high dimensional (2|G||T|) 
simplex and should be solved at each iteration. To remedy the high 
expected solving time, [6] also introduces a reformulation which ex-
ploits the specific form of the function (2) and considerably reduces the 
dimension of the problem. We show here how to apply this reformula-
tion to the extended quadric manifold. 

Let S
(
pk) be the set of indices of pk where the sine components of the 

objective function evaluate to zero, and F
(
pk) the remaining indices, i. 

e., 

S
(
pk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
gs

1, t
s
1

)

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
:=s1

,
(
gs

2, t
s
2

)

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
:=s2

,…,
(

gs
nk

s
, ts

nk
s

)

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
:=snk

s

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= ∪
t∈T

S t
(
pk

t

)

= ∪
t∈T

{
(g, t)|g ∈ G, f VPE

g

(
pgt
)
= 0

}

(37)  

F
(
pk) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
gf

1, tf
1

)

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
:=f1

,
(
gf

2, tf
2

)

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
:=f2

,…,

(

gf
nk

f
, tf

nk
f

)

⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟
:=fnk

f

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= ∪
t∈T

F t
(
pk

t

)

= ∪
t∈T

{
(g, t)|g ∈ G, (g, t) ∕∈ S

(
pk

t

) }

(38)  

and we have naturally T × G = S
(
pk)∪F

(
pk) for all pk ∈ Q tot,

⃒
⃒S
(
pk)
⃒
⃒ = nk

s and 
⃒
⃒F
(
pk)
⃒
⃒ = nk

f = |T||G| − nk
s . Note that, in order to 

lighten the notation, we sometimes omit the superscript k that denotes 
the dependency on k. Using these sets, the projected generalized 
gradient can be efficiently split between a smooth and a non-smooth 
part. Let gk be the smooth part and Sk the matrix containing the non- 
smooth parts to be combined, 

Sk =

[

Ppk

(

∇ f̂
S
sk

1

(
pk)
)

,…,Ppk

(

∇ f̂
S
sk

nk
s

(
pk)
)]

∈ R|T||G|×nk
s (39)  

gk = Ppk

⎛

⎝∇f Q

⎛

⎝pk

⎞

⎠+
∑

(g,t)∈F (pk)

∇

⃒
⃒
⃒ f̂

S(
pk
)⃒
⃒
⃒

⎞

⎠ ∈ R|T||G| (40)  

where fS is the sine part of Eq. 1, and f̂ s(p) := fs(ps). Note that, as the 
fuel cost is independent of time, we define with a slight abuse of notation 
fgt := fg. 

The subproblem Eq. 35 can be rewritten as 

λk = argmin
− 1⩽λ⩽1

⃒
⃒
⃒
⃒gk + Skλ

⃒
⃒
⃒
⃒2

2, (41)  

and the Q -admissible descent direction vk is computed as vk =

−
(
gk + Skλk). The subproblem Eq. 41 is a convex quadratic program-

ming (QP) problem of dimension nk
s ⩽|T||G|, which is much easier to 

solve than any problem in Table 1. 
Notice that, until now, the unique constraint that we consider is Eq. 

5. The generalization of the descent direction on a constrained manifold, 
such as the feasible set of (P) is presented hereafter. 

3.2.4. Descent direction on constrained manifold 
If, as in (P), the feasible set is a manifold further constrained by q 

linear constraints under the form c⊺
i p⩽0 with i = 1…q, we define the 

matrix Ck of the projected active constraints at point pk, whose columns 
are given by 

Ck
*,j = Ppk

(
cj
)

for all j ∈ {1…q} such that c⊺
j pk = 0. (42)  

We have Ck ∈ R|T||G|×nk
c with 0⩽nk

c ⩽q. 
The subproblem Eq. 41 becomes 

(
λk, μk) = arg min

− 1⩽λ⩽1
μ⩾0

⃒
⃒
⃒
⃒gk + Skλ + Ckμ

⃒
⃒
⃒
⃒2

2, (Sub)  

and the descent direction vk = −
(
gk + Skλk + Ckμk). 

Note that the dimension of (Sub), the number of decision variables, is 
between 0 and |T||G| + q≪2|G||T|. Furthermore, for a smooth point 
located in the interior of the domain, (Sub) is trivial and the direction is 
given by the gradient: vk = − gk = − Ppk

(
∇f
(
pk) ). 

In order to complete the description of the line-search scheme, it 
remains to choose a step-size rule and a stopping criterion. 

3.2.5. Stopping criterion, step rule and implementation details 
It can be shown that the direction vk at a stationary point pk yields the 

zero vector [7]. Thus, a natural stopping criterion is to monitor the di-
rection norm. Unfortunately, as studied in [11], this type of criterion on 
the norm of the KKT violation—which is here equivalent to the norm of 
the descent direction—is not reliable as this norm varies non-smoothly 
around stationary points. Hence, the second criterion used here is the 
step-size αk. If the step-size becomes too small for the point to be ad-
missible, i.e., feasible for (P), the algorithm stops. 

A common practice for the step-size is to use Armijo’s rule. This rule 
ensures that the step-size αk at iteration k renders the next iterate pk+1 =

R
(
pk, αkvk) feasible, while sufficiently decreasing the objective. An 

explicit implementation of Armijo’s rule is described in [6, Algorithm 
3]. We slightly modify it such that it returns 0 if vk = 0 (up to a given 
tolerance) and − 1 if no step size above a given treshold is found. 

It appears that, for problems which are sufficiently large, the sub-
problem (Sub) becomes problematic, in the sense that the direction 
obtained is only admissible, i.e., feasible for (P), in a tiny neighbourhood 
around the previous iterate. This can arise when a given component of 
an iterate pk

gt is binding at multiple operational constraints, e.g., pk
gt = P−

g 

(Eq. 3 is tight) and pk
gt − pk

g(t− 1) = R+
g (Eq. 4 is tight). To remedy this sit-

uation, the variable is frozen at its value and is no longer a decision 
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variable—giving the right feedback loop in Fig. 9. This allows us to 
provide a temporary degree of freedom to the algorithm, which may find 
an other direction for which an admissible step-size is available. This 
procedure, as well as the complete method for obtaining a feasible so-
lution and improving it, is described in Fig. 9. 

Finally, it should be noted that in general, it is very unlikely that a 
given iterate would be exactly located at a non-smooth point. This im-
plies that Sk from Eq. 39 is likely to be empty. Hence, and in a similar 
fashion as [6], we consider that the equalities from Eqs. 39 and 42 
should be satisfied within a small ∊ accuracy. 

4. Test cases 

In a similar fashion as [31], the method is tested on several data sets 
with a different number of units and a time horizon of 24 h. For each 
data set, the best objective (or upper bound) is reported, along with the 
best lower bound. The optimality gap, defined as the difference between 
the best known upper and lower bound, is also reported. 

In order to account for the different processor speeds from other 
methods in the literature, the scaled CPU time is used [45]: 

S-time =
Given CPU Speed
Base CPU speed

Given CPU time, (43)  

where the base CPU time used in this paper is 3.6 GHz. However, it is 
important to realize that the execution time is affected by other factors 
than the CPU clock rate, notably the number of cores. The purpose of the 
S-time is thus chiefly to check if the run time remains reasonable. The 
key contribution of the proposed method is to be found in the “Lower 
bound” column; see also Section 1 for a discussion of its purpose. The 
scaled CPU time is denoted as S-time and given in minutes. 

In addition to the main objective, the deviation and the losses are 
computed. The deviation corresponds to the mismatch between the 
point and the ellipsoid, and is computed by rearanging Eq. 5: deviation =
∑

t∈T

⃒
⃒
⃒
∑

g∈Gpgt − PD
t − ploss

t

⃒
⃒
⃒. It is reported in the column "Deviation". The 

losses correspond to the value of 
∑

t∈Tploss
t , and are reported in the col-

umn "Losses". 
The data, final solutions, and algorithm implementations are avail-

able on GitLab [35]. 

4.1. 5-unit, 24 time steps, test case 

We use the data from [32]. The data consists of a 5-unit case, where 
all units obey a valve-point effect. The reserve is set to 5% of the 
demand. 

We compare the solution obtained with our proposed method to 
other methods from the literature in Table 2. The three first columns 
report the minimum (Min), average (Avg), and maximal (Max) solution. 
For deterministic methods, only the first column includes values. The 
best solution that is available in the literature is plugged into our model, 
in order to validate the objective, compute the losses and the demand 
deviation. The latter is defined as the violation of Eq. 5. Only the pro-
posed method provides a lower bound which allows us to bound the final 
optimality gap at 0.86%. Remark that, since the lower bound is only 
improved in the first part of the proposed method, i.e., APLA, this lower 
bound will always be equal to the one of the full method APLA-RSG. 

The proposed method, APLA-RSG, achieves a competitive objective 
with respect to other methods in the literature. It is outperformed by 
BBOSB and MILP-IPM. Nevertheless, we note that i) APLA-RSG provides 
a lower bound, ii) the deviation of APLA-RSG is much smaller, and iii) a 
fair comparison should take the run time into account. BBOSB [43] only 
reports the number of function evaluation (∼ 2e5). Function evaluations 
(FEs) allow an accurate comparison between methods run on different 
computers, however they cannot be computed in our case due to the call 
to the MIP solver in APLA. We note, nonetheless, that the RSG method 
requires 24750 FEs for converging. We can therefore estimate the 
equivalent FEs for the entire APLA-RSG procedure as being equal to 100 
000, which is half of the BBOSB procedure. 

Note that Table 2 also presents the results of Ipopt [39] with default 
parameter settings. Unfortunately, Ipopt times out, and the returned 

Fig. 9. Flowchart of the method that projects the candidate from Fig. 7 and improves it through a Riemannian subgradient descent.  
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objective (35592) does not match the evaluation of the returned solution 
at the true objective (45514). This mismatch results from the interme-
diate variables required for modeling the non-convex objective Eq. 1 
using JuMP [10,16]. 

4.2. 10-unit, 24 time steps, test case 

The data originates from [32] and consists of a 10-unit case. All units 
obey a VPE, and the matrix B is indefinite. Similarly as [42], the reserve 
is set to 3.5% of the demand and not 5%. As a matter of fact, the problem 
with 5% reserve is not feasible: this can be shown by examining the 
static dispatch at the highest demand. Since Eq. 6 must hold for all t, we 
have 

∑

g∈G
P+

g −

(

PD
t + min

pt∈P t
ploss

t + PS
t

)

⩾0, (44)  

where P t corresponds to the intersection of the power ranges Eq. (3)t 
with a relaxed version of the power balance Eq. (5)t, 
∑

g∈G
pgt⩾PD

t . (45)  

This is a relaxation because negative losses ploss
t are physically impos-

sible. It is clear that, if the problem (P) is feasible, then (6)t holds for all t, 
which implies that (44)t also holds for all t. Conversely, if (44)t does not 
hold for any t then (P) must be infeasible. In this test case, the highest 
demand occurs for t = 12 with PD

t = 2220 MW and PS
t = 111 MW. The 

sum of the maximum power ranges is 2358 MWand the minimal power 
losses are computed as 49.7 MW. Hence, we conclude that the 10-unit 
test case with a 5% reserve requirement is not feasible. This may 
explain why [31], despite developing the method to account for re-
serves, do not test the 10-unit test case with reserve. This may also 
explain why [42] choose a 3.5% reserve instead of the usual 5% 
requirement. This also raises questions about certain methods in the 
literature, reported in [42, Table V], which claim to solve this infeasible 
problem. 

Table 3 compares the different methods from the literature. The 
discussion is analogous to the previous case (Section 4.1); the proposed 
method provides a competitive objective function value in a similar 
amount of time. The optimality gap (0.58%) is better relative to the 

previous case. Remark that the returned solution also exhibits the lowest 
power losses for both cases, with the exception of Ipopt applied to the 
10-unit case, which returns an infeasible dispatch. 

4.3. 15-unit, 24 time steps, test case 

The data for this test case originates from [47]. The original instance 
consists of 15 units in a static dispatch. All units obey a valve-point effect 
in the original instance. As in [36], we model a demand over 24 time 
steps with ramping constraints. We compare the solution of APLA-RSG 
with Ipopt. Fig. 10a depicts the relative changes in objective and 
power losses between the returned solution of APLA-RSG and Ipopt, for 
twelve different load profiles. The load profiles are presented in Fig. 10b. 
The objective of APLA-RSG always outperforms the objective of Ipopt, 
and the improvement is approximately equal to 1%. The power losses of 
APLA-RSG are also lower than the losses of Ipopt for eleven of the twelve 
problems, and the improvement goes up to 25%. Note that a lower (or 
higher) mean demand μPD than the one considered in the present ex-
periments results in an infeasible problem. 

Concerning the computational time, APLA-RSG running times range 
from 88 to 113 s and Ipopt from 204 to 215 s. The deviation is around 
1E-10 MW for APLA-RSG and 0.003 MW for Ipopt. In other words, the 
solution from APLA-RSG is obtained twice as fast while strictly meeting 
the constraints, decreasing the losses, and reducing the objective of 
around 1%. 

5. Conclusion 

In this work, we develop a method for tackling a non-smooth and 
non-convex economic dispatch problem. Non-convexities originate from 
the inclusion of the valve-point effect, which is an important effect in the 
operation of large gas units, and from the consideration of power losses, 
which are modelled as a non-convex quadratic equation. 

We demonstrate that power balance with quadratic power losses can 
be expressed as quadrics, which exhibit the rich structure of a Rie-
mannian manifold. The hypothesis of the positive definitiveness of the 
quadratic constraint is not made, as it is not always the case in practice, 
and we demonstrate how to construct tight relaxations whether the 
matrix is positive definite or not. The structure of the Riemannian 
manifold is exploited, and we describe how to compute all elements 

Table 2 
Summary results: 5-unit case.   

Cost     

Method Min Avg Max S-Time Loss (MW) Deviation (MW) Lower bound 

BBOSB [43] 43018 43066 43197 – 194.65 0.01 – 
HIGA [26] 43125 43162 43259 1.37 194.79 0.074 – 
ICA [27] 43117 43144 43210 – 194.80 0.014 – 
MILP-IPM [31] 43084 – – 0.58 195.26 0.00095 – 
Ipopt 45514 (35592) – – 0.6 196 0.35 – 
APLA 43250 – – 0.38 193.98 1.6e-9 42527.85 
APLA-RSG 43098 – – 0.5 194.02 3e-11 42527.85  

Table 3 
Summary results: 10-unit case.   

Cost     

Method Min Avg Max S-Time Loss (MW) Deviation (MW) Lower bound 

BBOSB[43] 1039169a 1041539 1039969 – 818.22 83 – 
TSMILP [42] 1037487 – – 1.9 832.32 0.013 – 
MILP-IPM[31] 1040676 – – 0.75 882.74 0.0019 – 
Ipopt 1054180 (1038060) – – 2.8 740.3 0.015 – 
APLA 1040475 – – 1.6 882.02 1.9e-9 1032045 
APLA-RSG 1038108 – – 2.3 809.05 1.3e-11 1032045  

a This value differs from the reported value of [43] and has been computed from the given solution of [43]. This may come from a mistake in the solution reported. 
This mistake could explain the high balance deviation, meaning that this reported solution is not feasible. 
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required for implementing a subgradient Riemannian descent 
algorithm. 

The resulting method that we propose, referred as APLA-RSG, con-
sists of i) finding a lower bound and first candidate solution through the 
solution of a relaxation of the problem—the APLA part—, and ii) pro-
jecting this candidate to the feasible set and locally improving it with a 
Riemannian subgradient descent—the RSG part. 

Numerical experiments illustrate that the method reaches a 
competitive objective in a similar amount of time as other methods from 
the literature. However, APLA-RSG benefits from other advantages, 
namely the fact that it provides a lower bound and strictly satisfies the 
balance constraint. The lower bound allows the estimation of an opti-
mality gap, despite the fact that the problem is non-convex. Such a lower 
bound can also prove useful for other methods, so as to assess whether 
derived solutions are of acceptable quality. Additionally, the lower 
bound can be used in order to detect whether a solution is infeasible, e.g., 
if the objective is below the lower bound. 

Further work may include the following extensions. Firstly, we are 
interested in considering a more complex model: prohibited operation 
zones (POZ) [21] could be easily applied to APLA, but then the local 
search (RSG) will be limited to a given connected subset of the feasible 
set. Secondly, a better way of converting the infeasible solution of APLA 
to a feasible one is of interest: currently, it is possible to strongly dete-
riorate the performance in term of objective value at the projection step. 
And finally, the extension of the method to optimal power flow and more 
specifically convex or non-convex ACOPF is of interest. This last 
extension will open the door to other interesting problems such as the 
security-constrained optimal power flow (SCOPF). Indeed, if generator 
contingencies can be dealt with the current method—the main differ-
ence being an increase in the number of variables and constraints, e.g., 
failing the largest unit amounts to doubling the number of variables—, 
dealing with line contingencies, such as the N-1 criterion, requires a 
direct representation of the network. 
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