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Abstract—An exact algorithm is developed for the chance-
constrained multi-area reserve sizing problem in the presence
of transmission network constraints. The problem can be cast as
a two-stage stochastic mixed integer linear program using sample
approximation. Due to the complicated structure of the problem,
existing methods attempt to find a feasible solution based on
heuristics. Existing mixed-integer algorithms that can be applied
directly to a two-stage stochastic program can only address small-
scale problems that are not practical. We have found a minimal
description of the projection of our problem onto the space of
the first-stage variables. This enables us to directly apply more
general Integer Programming techniques for mixing sets, that
arise in chance-constrained problems. Combining the advantages
of the minimal projection and the strengthening reformulation
from IP techniques, our method can tackle real-world problems.
We specifically consider a case study of the 10-zone Nordic
network with 100,000 scenarios where the optimal solution can
be found in approximately 5 minutes.

Index Terms—Multi-area reserve sizing, chance constraints,
probabilistic constraints, mixed-integer programming

I. INTRODUCTION

In Europe, transmission system operators (TSOs) are in-
creasingly coordinating their system operations in response
to the pan-European coupling of electricity markets [1]. One
of the objectives of this coupling is to organize a system
that encompasses multiple areas for dispatching balancing
energy from frequency restoration reserves in real time or
close to real time (the MARI and PICASSO platforms)1. An
important problem of interest that is emerging as a result of
cross-zonal coordination in balancing is to allocate the right
quantities of reserves in the right locations of the network
while accounting for possible congestion in the transmission
network. This problem is referred to as reserve sizing or
reserve dimensioning, with the associated challenge of reserve
deliverability [2], [3], depending on the context.

Article 157 of the System Operation Guideline (SOGL)
of the European Union [4] explicitly specifies probabilistic
requirements for reserve sizing. The Nordic System Operation
Agreement (SOA) [5] is an example of an effort for the
coordinated operation of frequency reserves among the Nordic
countries in response to the SOGL. A recent ENTSO-E report
[6] by Danish TSO Energinet demonstrates the continual pur-
suit in the direction of multi-area reserve sizing in accordance
with article 157 of the SOGL.

There exist a number of papers that attempt to address the
multi-area reserve sizing problem in the literature. However,

1MARI stands for “Manually Activated Reserves Initiative”, PICASSO
stands for “Platform for the International Coordination of Automated Fre-
quency Restoration and Stable System Operation”.

much of this literature [7]–[11] focuses on either chance
constraints or transmission constraints without treating these
aspects jointly. Other literature [12], [13] considers these two
aspects simultaneously; nonetheless, the underlying probabilis-
tic distributions are assumed to belong to a specific class.
Recent literature [14], [15], which has been proposed by the
authors of this paper, accounts for both of these characteristics.
In [14], the authors define a chance-constrained formulation
for the problem, but suggest a heuristic method that is not
guaranteed to furnish the optimal solution. Subsequently, in
[15], the authors attempt to solve this two-stage mixed-integer
programming to optimality by applying integer programming
techniques. However, the method proposed by the authors is
not scalable to the size of realistic problems.

Starting from [16], there exists a strand of literature about
using integer programming techniques for solving chance-
constrained optimization problems [17]–[26]. However, not all
of these methods can be directly applied to our problem due
to the strict requirements for the structure of the problem that
they impose. One of the common characteristics of these tech-
niques is that they all try to reduce the gap between the linear
programming relaxation solution and the true integer optimal
solution in order to enable Branch-and-Bound algorithms to
solve the problems more efficiently. These ’gap tightening’
techniques are typically designed for a specific structure of
the problems. Unfortunately, minor changes to the underlying
models can render these techniques no longer applicable.

Our problem is formulated as a two-stage chance-
constrained problem, because we decide reserves in the first
stage and react in the second stage given the reserves that
we have decided. Only some of the techniques referenced
previously [19], [20], [22] can be directly applied to this form
of the problem. However, these techniques do not scale well in
large-scale instances of two-stage problems. For example, [15]
is based on the method proposed in [19]; however this method
is not scalable. This is because the methods need to scan
all scenarios and solve a linear program for each one every
time the algorithm generates a single inequality to tighten the
gap. For large-size instances, the number of scenarios and the
number of generated inequalities are too high.

Nevertheless, by reformulating the two-stage model to an
one-stage problem, other methods can be utilized, such as
[16]–[18], [24]–[26]. These methods are designed for one-
stage joint2 chance-constrained problems. Thanks to the sim-
pler structure that they target, these methods are more powerful

2The term joint comes from the fact that a probabilistic requirement is
imposed on multiple constraints simultaneously.
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and can deal with larger instances. However, the reformulation
from a two-stage problem to an one-stage problem is not
straightforward. In general, finding a projection from a space
with a higher dimension is difficult. Applying general-purpose
projection methods [27], [28] requires a prohibitive amount
of computation, especially for large-scale instances. Addition-
ally, finding a minimal representation for this projection is
important because performance in joint chance-constrained
programs depends significantly on the number of constraints
that are contained in the probabilistic constraints. In this paper,
we provide a closed-form minimal projection formulation.
This allows us to develop a method that is scalable to realistic
problems, as we demonstrate in a case study at the end of the
paper.

Notice that, although it is a necessary step for the whole
approach, having a minimal projection formulation itself is
not enough to solve instances of realistic scale to optimality.
Tightening through integer programming techniques is also
an essential part. The projection enables us to utilize more
powerful techniques, but it does not solve the problems in
itself. Among several integer programming methods that are
available for joint chance-constrained programs, we introduce
a method that is powerful but also simple to implement [16].

In section II, we present a formal definition of the multi-area
reserve sizing problem. We introduce our minimal projection
formulation with mathematical proofs. In section III, we
further reformulate it in a form where we can use a com-
mercial solver and introduce integer programming techniques
for tightening the LP relaxation gap, which is crucial for the
performance of the method. First, we start with the sample
approximation scheme to tackle the probabilistic constraint.
Then, we present integer programming techniques based on
mixing inequalities and a strong extended formulation using
this concept. In section IV, we formally present our strength-
ened minimal projection formulation, which is a combination
of the minimal projection formulation in section II and the
integer programming techniques introduced in section III.
Detailed explanations for implementing our algorithm are
provided in this section. In section V, a realistic case study of
the Nordic system is presented. We compare our method with
the heuristic from [14] and another alternative exact method
from [15]. In-depth simulation results over different sample
sizes are also presented. Section VI summarizes the analysis
and proposes areas of future research.

II. PROBLEM FORMULATION

For a network G(Z,E), let r+z [resp. r−z ] denote the size
of upward [resp. downward] balancing capacity of reserve for
each zone z. Our goal is to minimize the sum of r+z and r−z
for all the zones in G(Z,E). Note that the objective function
can be extended straightforwardly to the case where total
procurement costs are considered through balancing capacity
offers. In this case, the coefficients of r+/−

z would be different
values from +1, but the method in this paper can manage this
type of adjustment. F+ [resp. F−] denotes the feasible region
for r+ [resp. r−] representing the region where the capacity

of reserve can cover imbalances δz for each zone z in the
network G(Z,E). Formally, F+/− are defined as (1) and (2).

F+ = {r+ ∈ R|Z|
+ : ∃(p, f) s.t.

pz + δz = Σ
e=(z,·)∈E

fe − Σ
e=(·,z)∈E

fe, ∀z ∈ Z

pz ≤ r+z , ∀z ∈ Z

− T−
e ≤ fe ≤ T+

e , ∀e ∈ E}
(1)

F− = {r− ∈ R|Z|
+ : ∃(p, f) s.t.

pz + δz = Σ
e=(z,·)∈E

fe − Σ
e=(·,z)∈E

fe, ∀z ∈ Z

− r−z ≤ pz, ∀z ∈ Z

− T−
e ≤ fe ≤ T+

e , ∀e ∈ E}
(2)

Here, pz and fe are the amounts of balancing energy acti-
vated at zone z and the flow from z1 to z2, where e = (z1, z2),
given that link e has capacity limits T+

e and T−
e in the

reference and opposite direction respectively. The equations in
the first lines denote the power balance equations for each zone
z. The inequalities in the second line impose that the activation
of balancing energy cannot exceed the amount of available
reserve. Flow limits are imposed in the last inequalities. Note
that the values of δz , T+/−

e can vary under different scenarios,
as we discuss in the sequel.

Notice that, in this paper, we assume that power flow
constraints are approximated using a transportation network
model. This assumption is aligned with the fact that, within
MARI, the platform for the activation of manual frequency
restoration reserve, the network will be approximated using an
ATC (Available Transfer Capacity) transportation-based model
[29], [30] at the launch of the platform.

Given reliability targets for upward/downward reserves
(1 − ϵ+/−), our problem can be written with probabilistic
constraints (3b) as follows.

min Σ
z∈Z

(r+z + r−z ) (3a)

s.t. Pr{r+/− ∈ F+/−} ≥ 1− ϵ+/− (3b)

r+/− ≥ 0 (3c)

This is a two-stage chance-constrained formulation where
the first-stage variables are r+, r− and the second-stage vari-
ables are pz and fe. There are two different directions that we
consider for reformulating the constraints (3b). In this paper,
we use a projection method to represent the feasible regions
of the first-stage variables r+, r− explicitly in the space of
the first-stage variables. Notice that it is more common to
use the second-stage variables pz and fe in order to represent
r+/− ∈ F+/−. One way to use this approach with a heuristic
method will be introduced and compared with our method in
section V.A.

A. Minimal Projection Formulation

In this subsection, we introduce a way to reformulate the
constraints (3b) so that they represent r+/− ∈ F+/− explicitly
in the space of r+/−. Intuitively, one might surmise that
imposing that the reserves should be greater than or equal
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Fig. 1. A graph with 5 zones for illustrating the definition of a connected
vertex set.

to the lowest possible aggregate imbalances corresponding
to each element of the power set3 of the vertex set would
suffice to represent F+/− explicitly with r+/−. Although this
is not trivial, it happens to be correct. However, this repre-
sentation is not minimal, since there are inequalities that can
be represented by a linear combination of other inequalities.
In this section, we present a compact representation that is
minimal. It turns out that using only the subsets of the vertex
set whose elements are “connected” on the network is enough
to obtain a minimal projection. We, therefore, define this set
as a connected vertex set in order to develop our analysis.
For each element of the connected vertex set, imposing that
the sum of the reserve capacities of the zones included in the
element is greater than equal to the size of the total imbalances
in the element minus the maximum input (or output) flow of
the element, is sufficient to represent F+/−. This statement
can be formally stated as Theorem 2.1, and we prove it in
the sequel. We commence by formally defining the following
objects: connected vertex set, and maximum input/output flow.

Definition 2.1 (Connected Vertex Set): For a graph G(V,E),
the connected vertex set W(G) is defined as follows:

W(G) = {S ⊆ V : ∀v, w ∈ S,

∃ a path P on G s.t. v, w ∈ V (P ) ⊆ S}, (4)

where V (P ) denotes the set of vertices in the path P .
Example 1 (Connected Vertex Set): For the graph in Fig.

1, {1, 2, 3} is an element of a connected vertex set, whereas
{1, 4} is not. For a vertex set {1, 2, 3}, as an example, when
v = 2, w = 3 there exists a path 3 → 1 → 2 such that
v, w ∈ V (3 → 1 → 2) = {1, 2, 3} ⊂ {1, 2, 3}. This is true
for all possible combinations of v, w ∈ {1, 2, 3}, so this is an
element of the connected vertex set. On the other hand, for a
vertex set {1, 4}, when v = 1, w = 4, there is no such path
whose vertex sets are subsets of {1, 4}, since all the paths
between v = 1 and w = 4 contain either 2 or 3, which are
not elements of {1, 4}.

Intuitively, if all the elements in a vertex set have an edge
that connects these vertices to any of the other elements in the
vertex set, such vertices are elements of a connected vertex set;

3Recall that the power set of a set is the set of all subsets of the set.

Fig. 2. A directed graph for illustrating maximum input/output flow.

hence the name of the definition. For the 5-zone example in
Fig. 1, the connected vertex set is

W(G) = {{1}, {2}, {3}, {4}, {5},
{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5},

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5},
{1, 2, 3, 4}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}},

and the size of the connected vertex set |W(G)| is 21.
Definition 2.2 (Maximum Input/Output Flow): For a directed

graph G(V,E) where ∀e ∈ E, f(e) denotes the flow in e and
−T−

e ≤ f(e) ≤ T+
e , for all S ⊆ V,E′ ⊆ E, the maximum

input flow I(S|E′) and the maximum output flow O(S|E′)
on E′ are defined as follows:

I(S|E′) = Σ
v∈S,w∈Sc:(v,w)∈E′

T−
(v,w)+ Σ

v∈S,w∈Sc:(w,v)∈E′
T+
(w,v),

(5)
O(S|E′) = Σ

v∈S,w∈Sc:(v,w)∈E′
T+
(v,w)+ Σ

v∈S,w∈Sc:(w,v)∈E′
T−
(w,v).

(6)
Notice that maximum input/output flows are properties of
the network since they are defined only on the basis of line
capacities T

+/−
e .

Example 2 (Maximum Input/Output Flow): In Fig. 2, ev-
ery edge of the directed graph has flow capacities in both
directions. For the edge (1, 2), the maximum capacity for the
direction 1 → 2 is T+

(1,2), and the maximum capacity for the
direction 2 → 1 is T−

(1,2). Maximum input/output flows are
defined on an edge subset E′ = {(1, 2), (2, 4), (4, 3)} ⊂ E
for a vertex subset S. In Fig. 2, S = {2, 4}, so the maximum
input flow is I(S|E′) = T+

(1,2) + T−
(4,3), and the maximum

output flow is O(S|E′) = T−
(1,2) + T+

(4,3).
Let us return to our problem. For the sake of brevity, let us

denoteW(G(Z,E)) for the network G(Z,E)) for our original
problem as W(G) from now on. Using this new notation, we
define the three following sets F, Fp, Fr.

F = {(r+, r−, p, f) ∈ R|Z|
+ ×R|Z|

+ ×R|Z|×R|E| : (7)− (9)}

pz + δz = Σ
e=(z,·)∈E

fe − Σ
e=(·,z)∈E

fe, z ∈ Z (7)

− r−z ≤ pz ≤ r+z , z ∈ Z (8)

− T−
e ≤ fe ≤ T+

e , e ∈ E (9)
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Fp = {(r+, r−, p) ∈ R|Z|
+ × R|Z|

+ × R|Z| : (10)− (11)}

− I(S|E) ≤ Σ
z∈S

(pz + δz) ≤ O(S|E), S ∈ W(G) (10)

− r−z ≤ pz ≤ r+z , z ∈ Z (11)

Fr = {(r+, r−) ∈ R|Z|
+ × R|Z|

+ : (12)− (13)}

Σ
z∈S

r−z ≥ Σ
z∈S

δz −O(S|E), S ∈ W(G) (12)

Σ
z∈S

r+z ≥ − Σ
z∈S

δz − I(S|E), S ∈ W(G) (13)

Notice that F is a set defined with the same types of
constraints as F+/− from (1) and (2), but considering upper
and lower bounds for the balancing energy pz at the same
time in Eq. (8). Another difference is that F is in the space
of (r+/−, p, f). The goal is to find a projection onto the
space of r+/− only. The resulting projection is the set Fr

and Fr = F+ ∩ F−. Fp is a projection of F onto the space
(r+/−, p), and it is used as an intermediate step to go from
F to Fr in order to prove that Fr is indeed a projection of F .
Since the proof for the set F is more general than the proofs
for Eqs. (1) or (2), we present the proof for F in this section.
From now on, for a set A defined in the space of variables
(x, y), we denote Proj(x)(A) as the projection of the set A
onto the space of x.

Theorem 2.1: Proj(r+,r−)(F ) = Fr.
Proof. The proof is based on two steps. First, in Claim 2.1.2,

we show that the projection of F onto the space of (r+, r−, p)
is Fp. Second, in Claim 2.1.1, we show that the projection of
Fp onto the space of (r+, r−) is Fr. Claim 2.1.2 and Claim
2.1.1 together imply that Proj(r+,r−)(F ) = Fr. Q.E.D.

Claim 2.1.1: Proj(r+,r−)(Fp) = Fr.
Claim 2.1.2: Proj(r+,r−,p)(F ) = Fp.
The proofs for Claims 2.1.1 and 2.1.2 are provided in the

appendices.
Corollary 2.2: F+/− = F

+/−
r , where

F−
r = {r− ∈ R|Z|

+ : (12)}, F+
r = {r+ ∈ R|Z|

+ : (13)}.

Theorem 2.1 and Corollary 2.2 show that the set Fr is indeed
an explicit representation of the projection of F on the space
of the first-stage variables r+/−, resulting in F+/− = F

+/−
r .

Theorem 2.3: Fr is a minimal representation on the space
of (r+, r−).

Proof. Since the proof for the set of inequalities (12) is
similar to the case for Eq. (13), we show here the case for Eq.
(12). In order to show that Eq. (12) is a minimal representation
on the space of r−, to arrive at a contradiction, first let us
assume that there exists a set S′ ∈ W(G) such that there
exist mutually different sets S′

1, . . . , S
′
n ∈ W(G) by which

the inequality constructed in the form of Eq. (12) dominates
the inequality for the set S′. Formally, this means that there
exist coefficients α1, . . . , αn ≥ 0 that satisfy the following
conditions (14) and (15):

α1 Σ
v∈S′

1

r−v + · · ·+ αn Σ
v∈S′

n

r−v ≤ Σ
v∈S′

r−v (14)

Fig. 3. A directed graph for illustrating reformulations.

α1 Σ
v∈S′

1

δv + · · ·+ αn Σ
v∈S′

n

δv − α1O(S′
1|E)− · · ·

− αnO(S′
n|E) ≥ Σ

v∈S′
δv −O(S′|E) (15)

In order to satisfy the inequalities (14) and (15) for all
possible values of r−v and δv , Σ

i:v∈S′
i

αi = 1 for all v ∈ S′

and Σ
i:v∈S′

i

αi = 0 for all v ∈ V \ S′. This implies that for all

i ∈ {1, . . . , n}, S′
i ⊆ S′ and

⋃n
i=1 S

′
i = S′. Notice that the

left-hand side and the right-hand side of Eq. (14) are equal,
and (15) becomes

O(S′|E) ≥ α1O(S′
1|E) + · · ·+ αnO(S′

n|E). (16)

Since the right-hand side of Eq. (16)

α1O(S′
1|E) + · · ·+ αnO(S′

n|E) =

Σ
i:v∈S′

i

αi · ( Σ
v∈S′,w∈(S′)c

T+
(v,w) + Σ

v∈S′,w∈(S′)c
T−
(w,v)) + Õ

= O(S′|E) + Õ,

where

Õ =
n

Σ
i=1

n

Σ
j=1

αi( Σ
v∈S′

i,w∈(S′
i)

c∩Sj

T+
(v,w)

+ Σ
v∈S′

i,w∈(S′
i)

c∩Sj

T−
(w,v)) > 0,

this contradicts the initial assumption. Q.E.D.
Corollary 2.4: F

+/−
r is a minimal representation on the

space of r+/−.
Theorem 2.3 and Corollary 2.4 show that the sets of

inequalities (12) and (13) are indeed minimal representations
for the projection of F (or F+/−). Notice that the inequalities
(12) and (13) have an intuitive explanation. For certain combi-
nations of zones, the sum of the reserve capacities should cover
the total imbalances for the zones net of the maximum input
[resp. output] flow for upward [resp. downward] reserves. For
the case of infinite line capacities, where T+/− is infinity, our
multi-area problem amounts to a single-zone problem. This
can be checked from Eqs. (12) and (13), where the only non-
redundant constraints are when S ∈ W(G) is equal to the set
of all the zones Z, which is equivalent to the case where we
aggregate all the zones in one region.

Example 3 (Minimal Projection): In order to illustrate
the reformulation more explicitly, we provide a three-node
example in Fig. 3. Firstly, the connected vertex set for the
three-node graph is

W(G) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.
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Accordingly, we write down all the constraints for F+
r as

follows:

r+1 ≥ −δ1 − T−
(1,2)

r+2 ≥ −δ2 − T+
(1,2) − T−

(2,3)

r+3 ≥ −δ3 − T+
(2,3)

r+1 + r+2 ≥ −δ1 − δ2 − T−
(2,3)

r+2 + r+3 ≥ −δ2 − δ3 − T+
(1,2)

r+1 + r+2 + r+3 ≥ −δ1 − δ2 − δ3.

F−
r can be written down in a similar fashion.
As in Example 3, the representation r+/− ∈ F+/− in

constraint (3b) can be replaced by A+/−r+/− ≥ ξ+/−,
where A+ and A− are linear maps, and there are uncertain
parameters only in the right-hand-sides ξ+ and ξ−. The
resulting new formulation is only involving the first-stage
variables. Now that we have derived an explicit representation
with inequalities, this new formulation enables us to apply the
integer programming techniques for joint chance-constrained
programs, which we address in the next section. Thanks
to Corollary 2.4, we are guaranteed that our representation
is minimal, so that the number of inequalities within the
probabilistic constraints is minimized. This is crucial for the
computational performance of our method, since, as the num-
ber of inequalities increases, the linear programming relaxation
gap tends to be larger. We can now introduce a tightening
step using integer programming techniques. In the following
section, we introduce one such technique known as strong
extended formulation.

III. STRENGTHENED FORMULATION

Thanks to the projection formulation in the previous section,
our problem (3) can be represented as follows.

min Σ
z∈Z

(r+z + r−z )

s.t. Pr{A+/−r+/− ≥ ξ+/−} ≥ 1− ϵ+/−

r+/− ≥ 0

(17)

The main difference between this representation and Eq. (3b)
is that the polyhedron on the space of the variables r+/− in
the probabilistic constraint is now explicitly known in the form
of a set of inequalities.

A. Sample Approximation

Sample approximation is a standard way of dealing with
probabilistic constraints in chance-constrained problems. This
approach is first introduced in [31]. As the name suggests,
it approximates a probabilistic constraint by sampling several
scenarios for uncertain parameters. By doing so, we do not
need to restrict the underlying uncertainty distribution to be
of a specific type, such as Gaussian. Assuming that we have
a sufficiently large sample set, this method is guaranteed
to converge to the true optimal solution of the optimization
problem. Since it is often the case that we do not know the
underlying distribution for the uncertain parameters, but do

have access to historical data, this approach is widely used in
many applications.

Given a positive integer n, let us denote [n] as the set
{1, . . . , n}. For i ∈ [N ], N being the number of scenarios, δzi
denotes the imbalance of scenario i at zone z and T

+/−
ei the

transmission network capacities of line e for scenario i. Notice
that, in Eq. (17), ξ+/− is a linear combination of δz and T

+/−
e ,

as in Example 3. Here, ξ
+/−
i refers to the right-hand-side

vector under scenario i. By introducing new binary variables
u
+/−
i for each scenario i, our problem can be reformulated as

follows.
min Σ

z∈Z
(r+z + r−z )

s.t. A+/−r+/− + ξ
+/−
i u

+/−
i ≥ ξ

+/−
i , ∀i ∈ [N ]

Σ
i∈N

u
+/−
i ≤

⌊
ϵ+/−N

⌋
r+/− ≥ 0, u+/− ∈ {0, 1}N ,

(18)

where u
+/−
i = 1 indicates that, under scenario i, the constraint

of balancing the system is violated; thus, the number of
violated scenarios should be less than or equal to ϵ+/−N ,
according to the direction of the reserves.

The reformulation of Eq. (18) is a mixed-integer linear
programming problem. Although it is a form that can be
plugged into a commercial solver, this step alone cannot solve
large-scale instances to optimality due to the big LP relaxation
gap. In order to close this gap, we need to exploit the specific
structure of the formulation. In (18), our main constraint has
a form that is widely studied, the so-called mixing set. This
allows us access to a set of techniques that help us close the
LP relaxation gap. In the following sub-sections, we briefly
introduce the mixing set and how we utilize this set for closing
the LP relaxation gap, followed by the technique we use for
our method.

B. Mixing Set and Mixing Inequalities

Given N scalars hi for i ∈ [N ], a mixing set is defined as

P = {(y, u) ∈ R+×{0, 1}N : y+hiui ≥ hi, i ∈ [N ]}. (19)

Note that, when y is equal to the j-th row of A+/−r+/−,
and hi = ξij , where ξij denotes the j-th component of the
vector ξi, our formulation in Eq. (18) has the form of a mixing
set. In fact, there are multiple mixing sets, as many as the
number of rows of A+/−r+/−. Each of these sets is tightened
independently through the special types of inequalities named
mixing inequalities.

Mixing inequalities, also known as star inequalities, are
developed by Atamturk et. al [32] and Gunluk and Pochet
[33]. If we assume that h1 ≥ h2 ≥ · · · ≥ hN without loss of
generality, the mixing inequalities for the mixing set (19) are
defined as

y +

l∑
j=1

(htj − htj+1
)utj ≥ ht1 ,∀{t1, . . . , tl} ⊂ [N ], (20)

where t1 < · · · < tl and htl+1
:= 0. It is known that the

mixing inequalities are valid and are sufficient for defining the
convex hull of the mixing set (19). Defining a convex hull with
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a certain set of inequalities implies that the LP relaxation gap
is zero; in other words, we can solve the Integer Programming
problem by solving a Linear Programming problem with these
convex hull defining inequalities. This fact can be used even
for more complex problems in which we are not necessarily
able to characterize the convex hull of the problem. When
problems are more complex, we can no longer guarantee a
zero LP relaxation gap; however, these mixing inequalities are
still valid for those problems, and this aids significantly in
reducing the LP relaxation gap, resulting in better performance
for solving the original Integer Programming problem with
binary variables u.

Furthermore, for the following set with a cardinality con-
straint induced by a reliability criterion ϵ, where we define
q = ⌊ϵN⌋,

G = {(y, u) ∈ R+ × {0, 1}N :

N∑
i=1

ui ≤ q,

y + hiui ≥ hi, i ∈ [N ]}, (21)

the strengthened mixing inequalities

y +

l∑
j=1

(htj − htj+1)utj ≥ ht1 ,∀{t1, . . . , tl} ⊂ [q] (22)

with t1 < · · · < tl and htl+1
:= htq+1

are facet-defining
for conv(G) if and only if t1 = 1 [16]. An inequality is
facet-defining for conv(G) when the inequality is crucial for
defining the convex hull of the set G. It implies that these
inequalities are expected to be the most effective for reducing
the LP relaxation gap among similar types of inequalities,
since the convex hull is the smallest convex set containing
all the feasible solutions.

In this paper, we assume that all the scenarios have equal
probabilities. There are similar techniques for knapsack con-
straints for unequal probabilities. In this case, the inequalities
are less tight. However, there is no significant loss of generality
since we can approximate the problem with equal probabilities
by resampling from the original distribution. The readers who
are interested are referred to [16].

C. A Strong Extended Formulation

Although these inequalities are useful for tightening the LP
relaxation gap, there are additional steps required to use them.
One might first consider completely enumerating all such
inequalities. However, since there are exponentially many such
inequalities, this will not be a practical approach. Alternatively,
there are ways to add a subset of the inequalities on-the-fly,
while we are running the Branch-and-Bound algorithm. This
is a potential way forward; however, it is not straightforward
to implement such algorithms. In this paper, we introduce a
method that is very easy to implement and achieves excellent
performance for our application.

The essence of this method is to use a very compact
formulation that has the same effect as when we add all
the inequalities (22) by introducing a new set of variables.
This new formulation is called a strong extended formulation
and is first introduced in [16]. The name ‘extended’ comes

from the fact that there are additional variables to the original
formulation, and ‘strong’ refers to the fact that this new
formulation is as strong as adding the entire exponential family
of valid inequalities (22) to the original one.

Formally, the extended formulation of G in Eq. (21) is
defined as follows:

EG := {(y, u, w) ∈ R+ × {0, 1}N+q :
N∑
i=1

ui ≤ q, (24a)− (24c)}, (23)

where

y +
q

Σ
i=1

(hi − hi+1)wi ≥ h1 (24a)

wi − wi+1 ≥ 0, ∀i ∈ [q − 1] (24b)
ui − wi ≥ 0, ∀i ∈ [q]. (24c)

Theorem 3.1: (Theorem 6 from [16]) Proj(y,u)(EG) = G.
Moreover, the projection of the linear relaxation of EG is the
linear relaxation of G with all the inequalities (22) added.

As Theorem 3.1 shows us, by simply introducing q binary
variables w, we can tighten the LP relaxation gap. Notice that
Eqs. (24) are easily implemented in a commercial solver. In
the next section, we present the end result of the combination
of section II and III. The minimal projection formulation in
section II is re-formulated with the idea of the strong extended
formulation in section III.

IV. STRENGTHENED MINIMAL PROJECTION
FORMULATION

A. Formulation

The strengthened minimal projection formulation using Fr

(Eqs. (12), (13)) and EG in Eq. (23) is formally defined as
follows:

min Σ
z∈Z

(r+z + r−z )

s.t. Σ
z∈S

r+/−
z +

q+/−

Σ
i=1

(h
+/−
S,i − h

+/−
S,i+1)w

+/−
S,i ≥ h

+/−
S,1 , S ∈ W(G)

w
+/−
S,i − w

+/−
S,i+1 ≥ 0, ∀i ∈ [q+/− − 1], S ∈ W(G)

u
+/−
σ
+/−
S,i

− w
+/−
S,i ≥ 0, ∀i ∈ [q+/−], S ∈ W(G)

N

Σ
i=1

u
+/−
i ≤ q+/−

r+/− ≥ 0, u+/− ∈ {0, 1}N , w+/− ∈ {0, 1}q
+/−·|W(G)|,

(25)
where q+/− =

⌊
ϵ+/−N

⌋
.

For S ∈ W(G),

h+

S,σ+
S,i

= − Σ
v∈S

δv,i − Ii(S|E) (26a)

h−
S,σ−

S,i

= Σ
v∈S

δv,i −Oi(S|E), (26b)
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where σ
+/−
S,i are the permutations that rearrange the indices as

h+
S,1 ≥ h+

S,2 ≥ · · · ≥ h+
S,N and h−

S,1 ≥ h−
S,2 ≥ · · · ≥ h−

S,N ,
and for i ∈ [N ]

Ii(S|E) = Σ
v∈S,w∈Sc:(v,w)∈E

T−
(v,w),i

+ Σ
v∈S,w∈Sc:(w,v)∈E

T+
(w,v),i, (27)

Oi(S|E) = Σ
v∈S,w∈Sc:(v,w)∈E

T+
(v,w),i

+ Σ
v∈S,w∈Sc:(w,v)∈E

T−
(w,v),i. (28)

B. Implementation

The formulation of Eq. (25) is a Mixed-Integer Linear
Programming problem which can be directly solved by com-
mercial solvers such as CPLEX and GUROBI. However, in
order to implement the algorithm, three elements are required:
the connected vertex set W(G), the coefficients of mixing
sets h

+/−
S,i and the permutations σ

+/−
S,i for all S ∈ W(G) and

i ∈ [N ].

Algorithm 1 Generation of W(G)
Input: G = (V,E)
Output: W
Select a start node v0 ∈ V
Initialize W = {{v0}}, Vsel = {v0}, Esel = ∅
while Esel ̸= E do

Choose e = (v, w) ∈ E(Vsel) = {e′ ∈ E : ∃v′ ∈
Vsel s.t. e′ = (v′, ·) or e′ = (·, v′)}
Esel ← Esel ∪ {e}
if v, w ∈ Vsel then
Wv ← {S ∈ W : v ∈ S}
Ww ← {S ∈ W : w ∈ S}
for S1 ∈ Wv, S2 ∈ Ww do
W ←W ∪ {S1 ∪ S2}

end for
else

(WLOG assume v ∈ Vsel and w ̸∈ Vsel)
W ←W ∪ {{w}}
Vsel ← Vsel ∪ {w}
Wv ← {S ∈ W : v ∈ S}
for S ∈ Wv do
W ←W ∪ {S ∪ {w}}

end for
end if

end while

1) Generation of Connected Vertex Set: The connected
vertex set of a graph G = (V,E) can be generated using
Algorithm 1. The size of the resulting connected vertex set
W(G) varies according to the topology of the graph G. When
the graph is radial and all the nodes are connected (such as
chains), the size of the connected vertex set is minimal and
it is |W(G)| = 1/2 · |V |(|V |+ 1). The worst-case scenario is
when the graph is a complete graph where all the nodes are
connected to each other. In this case, the size of the connected

vertex set is |W(G)| = 2|V |−1. For the graph in Fig. 1, there
are 5 zones, so the size (|W(G)| = 21) is within the range of
4 · 5/2 = 10 ≤ 21 ≤ 25 − 1 = 31.

TheW(G) Generation algorithm presented in this paper has
a worst-case complexity4 of O(|E| ·2|V |). This is significantly
lower than the complexity of general-purpose projection meth-
ods. For instance, the Fourier-Motzkin-Elimination algorithm
[27], which is a well-known general projection method, is
known for its double exponential complexity, that is O((|E|+
|V |)2(|E|+|V |)

) for our case. A recently developed general
algorithm [28] enjoys a single exponential complexity, but with
much higher exponents; namely O((|E| + |V |)2.5(|E|+2|V |) ·
(|E|+ 2|V |)3) for our problem.

2) Sorting: Now that we have |W(G)|, we are ready to
generate the remaining elements h

+/−
S,i and σ

+/−
S,i . An easy

way to obtain the parameters h
+/−
S,i , σ

+/−
S,i is to calculate

the right-hand-side for each scenario i in (26) and sort these
right-hand side parameters in non-increasing order. Then, the
resulting non-increasing sequence becomes h

+/−
S,i and the

corresponding permutation of the indices becomes σ
+/−
S,i . As

the size of the connected vertex set can be exponential with
respect to the number of zones, the time for the process of
calculating h

+/−
S,i and σ

+/−
S,i is non-negligible. In the next

section, we present the calculation time for pre-processing as
well as the solver time for the optimization problem when we
present the computational results for a case study.

V. COMPUTATIONAL RESULTS

In this section, we compare our strengthened minimal
projection method with several alternatives. First, we introduce
another way to reformulate the problem using the so-called
“Big-M” method. Even though this approach is not scalable
in practice, it is also a basis of a heuristic method introduced
in [14]. We compare both ways of using this reformulation
with our method. Additionally, we also compare with another
exact method using Benders’ Decomposition.

A. Big-M Based Formulation with Second-Stage Variables

In this alternative formulation, we also use the sample ap-
proximation approach to deal with the probabilistic constraints
of Eq. (3b).

min Σ
z∈Z

(r+z + r−z )

s.t. pzi + l+zi − l−zi + δzi = Σ
e=(z,·)∈E

fei

− Σ
e=(·,z)∈E

fei, ∀z ∈ Z, i ∈ [N ]

− r−z ≤ pzi ≤ r+z , ∀z ∈ Z, i ∈ [N ]

l+zi ≤ max{0,−δzi} · u+
i , ∀z ∈ Z, i ∈ [N ]

l−zi ≤ max{0, δzi} · u−
i , ∀z ∈ Z, i ∈ [N ]

− T−
ei ≤ fei ≤ T+

ei , ∀e ∈ E, i ∈ [N ]

Σ
i∈N

u
+/−
i ≤

⌊
ϵ+/−N

⌋
r+/− ≥ 0, l+/− ≥ 0, u+/− ∈ {0, 1}N

(29)

4The algorithm scans every e ∈ E, and for each e in a worst-case scenario
it can scan all the pairs of v ∈ V , which has a complexity of O(2|V |).
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Similarly to Eq. (18), binary variables u+/− are introduced to
represent whether the probabilistic constraint is violated or not
under scenario i. The difference here is to use the second-stage
variables p and f directly and use a Big-M method to represent
the logical expression5 u

+/−
i = 0 =⇒ r+/− ∈ F

+/−
i . This is

achieved by introducing slack variables l+/−. Slack variables
l
+/−
zi are non-zero only when u

+/−
i = 1, enabling the power

balance constraints to be violated. Notice that l+/−
zi is bounded

by max{0,−δzi} or max{0, δzi}; they are the upper and lower
bounds for pzi in absolute value. Thanks to this large bound
for l+/−

zi , when u
+/−
i = 1, there exists a feasible solution with

pi = 0, fi = 0, which allows scenario i to not be accounted
for when calculating the size of reserves r+/−.

Unfortunately, it is well known that formulations using
the Big-M method are not practical for solving problems to
optimality due to large LP relaxation gaps. However, the model
of Eq. (29) can be used for developing a heuristic method in
order to find a feasible solution. In [14], for example, the
authors first solve the LP relaxation of (29) and fix u

+/−
i

to 1 for the indices in which the optimal solutions for the LP
relaxation u∗+/−

i are in the sets of the
⌊
ϵ+/−N

⌋
largest values

when the solutions u∗+/−
i are sorted in descending order.

B. Comparison with an Exact Method

In this subsection, we compare our method with another
exact method that also guarantees to solve the problem to
optimality [15]. This paper uses the theory in [19], which is
based on Bender’s Decomposition [34]. Roughly, this method
tries to solve the two-stage chance constraint problem directly
instead of reformulating it. It does so by generating inequali-
ties of the type of Eq. (22) through Bender’s Decomposition.
The computational results of this alternative method are much
faster than solving the Big-M formulation of Eq. (29) to op-
timality. However, as discussed in the introduction, this direct
approach to solving two-stage chance-constrained problems
is not scalable. The method in [15], for example, requires
approximately 30 minutes to solve instances of four zones with
5,000 samples to optimality. On the other hand, our method
using the formulation of Eq. (25) can achieve the optimal
solution for the same size of instances within 1 second. One
of the reasons for the subpar performance of this alternative
method is the inequality generation step. Methods based on
Bender’s Decomposition in chance-constrained problems, in
order to generate a single inequality that is similar to Eq. (22),
a linear program should be solved N times, the number of
scenarios. As the size of the problem increases, the number
of inequalities and scenarios increase at the same time. On
the contrary, through the minimal projection step and the
additional strengthening step, our formulation is already in a
compact form that does not require any inequality generating
steps. Since this method has been found to not scale to large
instances, we proceed to compare our method with a heuristic
method using the Big-M formulation of Eq. (29).

5We denote F
+/−
i as the sets F+/− where all the random variables (δz ,

T
+/−
e ) are replaced by their realizations for scenario i; namely (δzi, T

+/−
ei ).

Fig. 4. Bidding zones and transmission network lines for a case study of the
Nordic countries.

C. Case Study: Comparison with a Heuristic Method

For the comparison, a case study of the Nordic system is
considered. In this case study, as indicated in Fig. 4, three
Nordic countries (Norway, Sweden and Finland) are involved,
and they account for 10 bidding zones with 15 links. The
reference data for imbalances for each zone and the network
capacity are sourced from [35]. For the imbalances, we gener-
ate samples from a normal distribution with zero mean and a
standard deviation equal to the reference imbalances. For the
network capacity, we add perturbations to the reference data
for each sample. The perturbations are distributed according to
a normal distribution with zero mean and a standard deviation
equal to 5% of the value of the reference data. For all the
figures 5 - 7, the bar charts refer to the mean of 100 simulations
in which the middle lines indicate the standard deviation.
Throughout the case study, we use GUROBI version 9.51 as
optimization solver with JuMP embedded in the programming
language Julia, and the computing equipment with a SkyLake
CPU (2.3GHz).

We compare our method in section IV and the LP based
heuristic method in [14], introduced in V.A. In Fig. 5, the
results comparing (a) the optimal reserve sizes and (b) the
total solving time6 are presented for varying degrees of re-
liability levels (ϵ) when the sample size is N = 25, 000.
The Minimal Projection Method can be solved notably faster
than the LP Based Heuristic, and finds the optimal solution.
This seemingly counter-intuitive result can be explained by

6The total solving time includes the data pre-processing time and the time
for optimization solved by the commercial solver. The data pre-processing
time refers to the time for generating a connected vertex set and sorting,
which are necessary for actually running the solver.
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(a) (b)
Fig. 5. Comparison between Strengthened Minimal Projection Method and the LP Based Heuristic Method when the sample size is N = 25, 000 in terms
of (a) optimal objective function value and (b) total solving time.

the fact that the strengthened minimal projection formulation
(25) often has a smaller size than the formulation (29) in
terms of the number of variables and constraints. Notice that
q << N , thus each set of constraints in Eq. (25) is repeated
q times whereas that in Eq. (29) is N times. Additionally,
even though the size of the connected vertex set W(G) is
exponential, it is often the case that h+/− in (26) are all
negative, resulting in adding redundant constraints that can be
ignored or automatically removed in pre-processing steps of
commercial optimization solvers. This phenomenon happens
more often when the capacities of lines T+/− are sufficiently
large compared to the level of imbalances δ. In an extreme
case where T+/− is infinity, the only constraints left are∑

z∈Z r+/− ≥ ∓
∑

z∈Z δz , which is equivalent to a single-
zone problem.

The gap between the optimal solution and the sub-optimal
solution from the LP method when ϵ = 1% is around 18.9%.
As ϵ becomes smaller, since q also becomes smaller, the
optimization problem becomes less complex, resulting in a
smaller gap between the optimal solution and the sub-optimal
solution and a faster solving time. However, the high value of
the standard deviation in the optimal solution for ϵ = 0.1%
implies that the sample size is not sufficient. When we increase
the sample size, then the gap also increases.

Additionally, in Fig. 6, we present a sensitivity analysis of
the sample approximation approach with respect to the sample
size for our case study. There are two issues when the number
of samples is low. First, the variance of the optimal objective
function value is high. In Fig. 6, this is captured with the
coefficient of variance (CV), which is the variance divided by
its mean. One can observe that CV is the highest (1.1%) for
the case of N = 10, 000, and as the sample size increases, the
CV decreases and the value of reserve stabilizes. Secondly, a
typical phenomenon of the sample approximation method that
is introduced in [31] is an underestimation of the true objective
function value, in the sense that the resulting optimal objective
function value tends to be lower than the true optimal objective

Fig. 6. Sensitivity analysis for the sample approximation approach over
sample size when epsilon is 1%.

function value of the problem. This can be observed in Fig.
6.

Lastly, we analyze the solving time for the Strengthened
Minimal Projection Method over different sample sizes in Fig.
7. Notice that ϵ = 1% is the most computationally complex
problem among the three different levels of ϵ. Our method
allows us to solve N = 500, 000 samples in less than 30
minutes in terms of optimization time. In general, the data
pre-processing time is non-negligible due to the exponential
size of the connected vertex setW(G); however, the bottleneck
complexity is O(N logN) due to the sorting algorithm that is
still scalable. In practice, if one needs to solve the problem
dynamically, adding new samples to an already-sorted list
(which can be expected to be the case in practice, based on
information communicated to us by Nordic TSOs) is much
easier than sorting the entire list, and in this case the data
pre-processing time is negligible.
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Fig. 7. Solving time for the Strengthened Minimal Projection Method over
sample size when epsilon is 1%.

VI. CONCLUSION

In this article, we propose a novel method for solving
the chance-constrained multi-area reserve sizing problem to
optimality. After identifying a minimal representation of the
projected set of our feasible region, we use integer program-
ming methods to strengthen our formulation. This approach
can deal with instances of realistic size, and this is shown in a
case study of the Nordic system. Since a transportation-based
network is used for our method, this approach can also be
used in different domains.

In future work, it is possible to extend the model with
different approximations of power flow constraints. A DC
(Direct Current) approximation can be an option. From the
perspective of better calculation, we can apply more recent IP
techniques for solving the minimal projection formulation.
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APPENDIX A
PROOF OF CLAIM 2.1.1

In this appendix, we use V instead of Z as the vertex set
in the set Fp and Fr.

Lemma A.1: For a graph G(V,E),

I(S1 \ S2|E′) +O(S2 \ S1|E′) ≤ I(S1|E′) +O(S2|E′),

∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. For the sake of compactness, without loss of gener-
ality, we leave out the conditions (v, w) ∈ E′ or (w, v) ∈ E′

under the summation sign. We can divide I(S1 \ S2|E′) into
two terms:

I(S1 \ S2|E′) = Σ
v∈S1\S2,w∈Sc

1

(T−
(v,w) + T+

(w,v))

+ Σ
v∈S1\S2,w∈S1∩S2

(T−
(v,w) + T+

(w,v)). (A.1)

Observe that since S1 \ S2 ⊆ Sc
2, the second term

Σ
v∈S1\S2,w∈S1∩S2

(T−
(v,w) + T+

(w,v)) ≤

Σ
v∈Sc

2 ,w∈S1∩S2

(T−
(v,w) + T+

(w,v)). (A.2)

By changing v and w, we can obtain

Σ
v∈Sc

2 ,w∈S1∩S2

(T−
(v,w) + T+

(w,v)) =

Σ
v∈S1∩S2,w∈Sc

2

(T+
(v,w) + T−

(w,v)). (A.3)

In a similar way, O(S2\S1|E′) can be divided into two terms:

O(S2 \ S1|E′) = Σ
v∈S2\S1,w∈Sc

2

(T+
(v,w) + T−

(w,v))

+ Σ
v∈S2\S1,w∈S1∩S2

(T+
(v,w) + T−

(w,v)). (A.4)

Since S2 \ S1 ⊆ Sc
1, the second term

Σ
v∈S2\S1,w∈S1∩S2

(T+
(v,w) + T−

(w,v)) ≤

Σ
v∈Sc

1 ,w∈S1∩S2

(T+
(v,w) + T−

(w,v)). (A.5)

By changing v and w, we can obtain

Σ
v∈Sc

1 ,w∈S1∩S2

(T+
(v,w) + T−

(w,v)) =

Σ
v∈S1∩S2,w∈Sc

1

(T−
(v,w) + T+

(w,v)). (A.6)

Now observe that the sum of the first term of (A.1) and the
right-hand-side of (A.6) is equal to I(S1|E′). Likewise, the
sum of the first term of (A.4) and the right-hand-side of (A.3)
is equal to O(S2|E′). Thus, I(S1 \S2|E′)+O(S2 \S1|E′) ≤
I(S1|E′) +O(S2|E′). Q.E.D.

Claim 2.1.1 Proj(r+,r−)(Fp) = Fr.
Proof. First, we show that Proj(r+,r−)(Fp) ⊆ Fr. From

(11),
− Σ

v∈S
r−v ≤ Σ

v∈S
pv ≤ Σ

v∈S
r+v . (A.10)

Now it is easy to see that Eqs. (A.10) and (10) imply Eqs.
(12) and (13).

Second, we show that Fr ⊆ Proj(r+,r−)(Fp). It suffices to
show that, for all (r̂+, r̂−) ∈ Fr, there exists p̂ such that
(r̂+, r̂−, p̂) ∈ Fp. We show that we can find such p̂ from
Algorithm 2 and that it always exists. If it exists, it is easy to
show that p̂ satisfies Eq. (11) from Eq. (A.7). Also, observe
that p̂ satisfies Eq. (10) because for all S ∈ W(G), over the
course of the while statement, there exists v,R such that
S ̸⊆ R,S ⊆ R ∪ v. Then Eqs. (A.8) and (A.9) for S with
such v,R become Eq. (10).

Now, we show the existence of such p̂ in Algorithm 2.
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Algorithm 2 Finding feasible p̂ to Fp from (r̂+, r̂−) ∈ Fr

Input: G = (V,E), (r̂+, r̂−) ∈ Fr

Output: p̂
Start with an empty set R← ∅
while R ̸= V do

Choose v ∈ V \R such that R ∪ v ⊆ W(G)
Fix p̂v satisfying (A.7) - (A.9)

−r̂−v ≤ p̂v ≤ r̂+v (A.7)

p̂v ≥ − Σ
w∈R∩S

p̂w − Σ
w∈S\{R∪v}

r̂+w − Σ
w∈S

δw − I(S|E),

S ∈ W(G) : v ∈ S (A.8)

p̂v ≤ − Σ
w∈R∩S

p̂w+ Σ
w∈S\{R∪v}

r̂−w − Σ
w∈S

δw+O(S|E),

S ∈ W(G) : v ∈ S (A.9)

R← R ∪ v
end while

We use mathematical induction. Denote Ri and vi as the node
sets and the nodes we get from Algorithm 2 as it iterates over
the while statement. For the first step of the induction we
consider the case where R1 = ∅. The lower bound of (A.8)
≤ the upper bound of (A.7) is implied by Eq. (13) and the
upper bound of (A.9) ≥ the lower bound of (A.7) is implied
by Eq. (12). For showing why the lower bound of (A.8) ≤ the
upper bound of (A.9), pick S1, S2 ∈ {S ∈ W(G) : v1 ∈ S}.
From (12) for S2 \ S1 and (13) for S1 \ S2

7 using Lemma
A.1,

Σ
w∈S1\S2

r+w + Σ
w∈S2\S1

r−w ≥

− Σ
w∈S1\S2

δw + Σ
w∈S2\S1

δw − I(S1 \ S2|E)−O(S2 \ S1|E)

≥ − Σ
w∈S1\S2

δw + Σ
w∈S2\S1

δw − I(S1|E)−O(S2|E).

(A.11)

Since Σ
w∈(S1∩S2)\v1

(r+w + r−w ) ≥ 0, (A.11) implies

Σ
w∈S1\v1

r+w + Σ
w∈S2\v1

r−w ≥

− Σ
w∈S1

δw + Σ
w∈S2

δw − I(S1|E)−O(S2|E), (A.12)

which is equivalent to the lower bound of (A.8) for S1 ≤ the
upper bound of (A.9) for S2. Thus, p̂v1 satisfying Eqs. (A.7)
- (A.9) exists for the case where R1 = ∅.

For the next step of mathematical induction, assume
that, for i ≥ 1, there exists p̂vk for 1 ≤ k ≤ i satisfying
(A.7) - (A.9). For Ri+1 = Ri ∪ vi and vi+1 ∈ V \ Ri+1,
our goal is to show that all the possible combinations of the

7It is possible that S1 \ S2 ̸∈ W(G) or S2 \ S1 ̸∈ W(G), but in this
case there exist disjoint SA, SB ∈ W(G) such that SA ∪ SB = S1 \ S2

or SA ∪ SB = S2 \ S1, and we can get the same results as Eq. (A.11) by
summing up (12) or (13) for SA and the same for SB .

upper bounds and the lower bounds from Eqs. (A.7) - (A.9)
can be implied by other inequalities so that we can show
that p̂vi+1

exists. First, we show it for the combinations of
upper bounds and lower bounds between (A.7) and (A.8) -
(A.9). Here, we show one out of the two cases: the lower
bound of (A.8) ≤ the upper bound of (A.7). The other
case can be shown in a similar fashion. The set W(G)
can be divided into two cases : i) Ri+1 ∩ S = ∅ and ii)
Ri+1 ∩ S ̸= ∅. For the case i), Σ

w∈Ri+1∩S
p̂w = 0 and

Σ
w∈S\{Ri+1∪vi+1}

r̂+w = Σ
w∈S\vi+1

r̂+w , so (13) implies the lower

bound of (A.8) ≤ the upper bound of (A.7). For the case
ii), from the set {v : v ∈ Ri+1 ∩ S}, pick the node with the
largest index l. Observe that Σ

w∈Ri+1∩S
p̂w = Σ

w∈Rl∩S
p̂w + p̂vl

and Σ
w∈S\Ri+1

r̂+w = Σ
w∈S\{Rl∪vl}

r̂+w . This can be proven by

contradiction. Assume that it is not true. Then ∃vm such that
m ̸= l, vm ∈ Ri+1, vm ̸∈ Rl, and vm ∈ S. This contradicts
the fact that l is the largest index. Thus, (A.8) with Rl and
vl implies the lower bound of (A.8) ≤ the upper bound of
(A.7).

For showing why the lower bound of (A.8) ≤ the upper bound
of (A.9), pick S1, S2 ∈ {S ∈ W(G) : v ∈ S}. We have four
different cases to show : i) Ri+1 ∩ S1 = ∅, Ri+1 ∩ S2 = ∅,
ii) Ri+1 ∩ S1 ̸= ∅, Ri+1 ∩ S2 = ∅, iii) Ri+1 ∩ S1 = ∅,
Ri+1 ∩ S2 ̸= ∅, iv) Ri+1 ∩ S1 ̸= ∅, Ri+1 ∩ S2 ̸= ∅. Since it
is similar in the other cases, here we only show the argument
for the case ii) where Ri+1 ∩ S1 ̸= ∅, Ri+1 ∩ S2 = ∅. From
the set {v : v ∈ Ri+1 ∩ (S1 \ S2)}, pick the node with
the largest index l. Similar to what we have shown above,
observe that Σ

w∈Ri+1∩(S1\S2)
p̂w = Σ

w∈Rl∩(S1\S2)
p̂w + p̂vl and

Σ
w∈(S1\S2)\Ri+1

r̂+w = Σ
w∈(S1\S2)\{Rl∪vl}

r̂+w . From (A.8) for

S1 \ S2 with Rl, vl and (12) for S2 \ S1 using Lemma A.1,
following a similar process as in (A.11) and (A.12) we get
the inequality,

Σ
w∈Ri+1∩S1

p̂w + Σ
w∈S1\Ri+1

r+w + Σ
w∈S2

r−w ≥

− Σ
w∈S1

δw + Σ
w∈S2

δw − I(S1|E)−O(S2|E), (A.13)

which is equivalent to the lower bound of (A.8) for S1 ≤ the
upper bound of (A.9) for S2.

Thus, p̂vi+1
satisfying (A.7) - (A.9) exists and it proves

the existence of p̂. Q.E.D.

APPENDIX B
PROOF OF CLAIM 2.1.2

Lemma B.1: For a graph G(V,E) for all S1, S2 ⊆ V,E′ ⊆
E,

O(S1 ∪ S2|E′) +O(S1 ∩ S2|E′) =

O(S1|E′) +O(S2|E′)− Φ(S1, S2|E′)

I(S1 ∪ S2|E′) + I(S1 ∩ S2|E′) =

I(S1|E′) + I(S2|E′)− Φ(S1, S2|E′)
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where

Φ(S1, S2|E′) = Σ
v,w∈(S1\S2)∪(S2\S1):(v,w)∈E′

(T+
(v,w)+T−

(v,w)).

Proof. Since it follows an almost identical reasoning, we
only show the case of Maximum Output Flow. For the sake
of compactness, without loss of generality, we leave out the
conditions (v, w) ∈ E′ or (w, v) ∈ E′ under the summation
sign. Notice that O(S|E′) consists of the terms related to
T+
(v,w) and those of T−

(v,w). In this proof, the patterns for
T+
(v,w) and T−

(v,w) are exactly same and what is important is
the relationship of summations, so we omit T+

(v,w) and T−
(v,w)

over the course of the equations. Notice that the right-hand-
side can be written as follows:

O(S1|E′) +O(S2|E′)− Φ(S1, S2|E′) =

Σ
v∈S1,w∈Sc

1

+ Σ
v∈S2,w∈Sc

2

− Σ
v∈S1\S2,w∈S2\S1

− Σ
v∈S2\S1,w∈S1\S2

(B.1)

Since

Σ
v∈S1,w∈Sc

1

= Σ
v∈S1\S2,w∈S2\S1

+ Σ
v∈S1\S2,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈S2\S1

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

(B.2)

Σ
v∈S2,w∈Sc

2

= Σ
v∈S2\S1,w∈S1\S2

+ Σ
v∈S2\S1,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈S1\S2

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

(B.3)

the first terms of (B.2) and (B.3) are crossed out with the
third and the fourth term of (B.1). From the rest of the terms,
observe that

Σ
v∈S1\S2,w∈(S1∪S2)c

+ Σ
v∈S2\S1,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

= Σ
v∈(S1∪S2),w∈(S1∪S2)c

(B.4)

Σ
v∈S1∩S2,w∈S2\S1

+ Σ
v∈S1∩S2,w∈S1\S2

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

= Σ
v∈(S1∩S2),w∈(S1∩S2)c

. (B.5)

The right-hand-side of (B.4) is O(S1 ∪ S2|E′) and the right-
hand-side of (B.5) is O(S1 ∩ S2|E′). Thus, O(S1 ∪ S2|E′) +
O(S1 ∩ S2|E′) = O(S1|E′) + O(S2|E′) − Φ(S1, S2|E′).
Q.E.D.

Definition B.1 (Net Output Flow): For a directed graph
G(V,E) where ∀e ∈ E, f̂(e) denotes the flow in e, for all
S ⊆ V,E′ ⊆ E, the Net Output Flow on E′, Γ(S|E′) is
defined as follows:

Γ(S|E′) = Σ
(v,w)∈E′:v∈S

f̂(v,w) − Σ
(v,w)∈E′:w∈S

f̂(v,w). (B.6)

Lemma B.2: For a graph G(V,E),

Γ(S1|E′)− Γ(S2|E′) = Γ(S1 \ S2|E′)− Γ(S2 \ S1|E′),

∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. For the sake of compactness, without loss of gen-
erality, we leave out the conditions (v, w) ∈ E′ under the
summation sign.

Γ(S1|E′) = Σ
v∈S1\S2

f̂(v,w) + Σ
v∈S1∩S2

f̂(v,w)

− Σ
w∈S1\S2

f̂(v,w) − Σ
w∈S1∩S2

f̂(v,w) (B.7)

Γ(S2|E′) = Σ
v∈S2\S1

f̂(v,w) + Σ
v∈S1∩S2

f̂(v,w)

− Σ
w∈S2\S1

f̂(v,w) − Σ
w∈S1∩S2

f̂(v,w) (B.8)

Observe that

Γ(S1|E′)− Γ(S2|E′) = ( Σ
v∈S1\S2

f̂(v,w) − Σ
w∈S1\S2

f̂(v,w))

− ( Σ
v∈S2\S1

f̂(v,w) − Σ
w∈S2\S1

f̂(v,w))

= Γ(S1 \ S2|E′)− Γ(S2 \ S1|E′).
(B.9)

Q.E.D.
Lemma B.3: For a graph G(V,E),

Γ(S1 ∪ S2|E′) + Γ(S1 ∩ S2|E′) = Γ(S1|E′) + Γ(S2|E′),

∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. It can be easily shown by the fact that Σ
v∈(S1∪S2)

+

Σ
v∈(S1∩S2)

= Σ
v∈S1

+ Σ
v∈S2

. Q.E.D.

Algorithm 3 Finding feasible f̂ to F from (r̂+, r̂−, p̂) ∈ Fp

Input: G = (V,E), (r̂+, r̂−, p̂) ∈ Fp

Output: f̂
Start with an empty set Q← ∅
while Q ̸= E do

1. Choose (v, w) ∈ E \Q
2. Fix f̂(v,w) satisfying (B.10) - (B.14)

−T−
(v,w) ≤ f̂(v,w) ≤ T+

(v,w) (B.10)

For all S ∈ W(G) : v ∈ S,w ̸∈ S

f̂(v,w) ≥ Σ
u∈S

(p̂u+δu)−Γ(S|Q)−O(S|E)+O(S|Q∪(v, w))
(B.11)

f̂(v,w) ≤ Σ
u∈S

(p̂u+δu)−Γ(S|Q)+I(S|E)−I(S|Q∪(v, w))
(B.12)

For all S ∈ W(G) : v ̸∈ S,w ∈ S

f̂(v,w) ≥ − Σ
u∈S

(p̂u+δu)+Γ(S|Q)−I(S|E)+I(S|Q∪(v, w))
(B.13)

f̂(v,w) ≤ − Σ
u∈S

(p̂u+δu)+Γ(S|Q)+O(S|E)−O(S|Q∪(v, w))
(B.14)

3. Q← Q ∪ (v, w)
end while

Claim 2.1.2 Proj(r+,r−,p)(F ) = Fp.
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Proof. First, we show that Proj(r+,r−,p)(F ) ⊆ Fp. Notice
that (8) and (11) are identical. So, it suffices to show that Eqs.
(7) and (9) imply Eq. (10). From Eq. (7),

Σ
v∈S

(pv+δv) = Σ
v∈S,w∈Sc

f(v,w)− Σ
v∈S,w∈Sc

f(w,v), S ∈ W(G).
(B.15)

Now, it is easy to see that Eqs. (B.15) and (9) imply Eq. (10).
Second, we show that Fp ⊆ Proj(r+,r−,p)(F ). It suffices
to show that for all (r̂+, r̂−, p̂) ∈ Fp, there exists f̂ such
that (r̂+, r̂−, p̂, f̂) ∈ F. We show that we can find such
f̂ from Algorithm 3 and that it always exists. If it exists,
it is easy to show that f̂ satisfies (9) from (B.10). Also,
observe that f̂ satisfies (7) from Eqs. (B.11) - (B.14). For all
v ∈ V , let E(v) = {e ∈ E : e = (v, ·) ∪ e = (·, v)}. During
the course of Algorithm 3, when we pick (v, w) such that
E(v) ⊂ Q ∪ (v, w), with such Q and S = {v}, Eqs. (B.11)
and (B.12) become Eq. (7). Likewise, when we pick (w, v)
such that E(v) ⊂ Q∪ (w, v), with such Q and S = {v}, Eqs.
(B.13) and (B.14) become Eq. (7).

Now, we show the existence of such f̂ in Algorithm 3.
We use mathematical induction. For the first step we
consider the case where Q1 = ∅. Then, Γ(S|Q1) = 0 for
all S ∈ W(G). We want to show that (10) implies all the
possible combinations of upper bounds and lower bounds
among Eqs. (B.10) - (B.14). This can be done through Lemma
A.1 and B.1. For the next step of mathematical induction,
assume that for i ≥ 1, there exists f̂(vk,wk) for 1 ≤ k ≤ i
satisfying Eqs. (B.10) - (B.14). For Qi+1 = Qi ∪ (vi, wi)
and (vi+1, wi+1) ∈ E \ Qi+1, our goal is to show that all
the possible combinations of the upper bounds and the lower
bounds from Eqs. (B.10) - (B.14) can be implied by other
inequalities so that we can show that f̂(vi+1,wi+1) exists.
First we show this for the combinations of upper bounds and
lower bounds between Eqs. (B.10) and (B.11) - (B.14). This
can be done through Lemma A.1 and B.2. Lastly, we need
to show that the lower bound of (B.11) ≤ the upper bound
of (B.14) and the upper bound of (B.12) ≥ the lower bound
of (B.13). This can be done through Lemma B.1 and B.2.
Thus, f̂(vi+1,wi+1) satisfying Eqs. (B.10) - (B.14) exists and
it proves the existence of f̂ . Q.E.D.
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