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A B S T R A C T

Electric power systems and the companies and customers that interact with them are experiencing increasing
levels of uncertainty due to factors such as renewable energy generation, market liberalization, and climate
change. This raises the important question of how to make optimal decisions under uncertainty. This paper aims
to provide an overview of existing methods for modeling and optimization of problems affected by uncertainty,
targeted at researchers with a familiarity with power systems and optimization. We also review some important
applications of optimization under uncertainty in power systems and provide an outlook to future directions
of research.
1. Introduction

In electric power systems, optimization is used for a multitude
of tasks, ranging from real-time operation to long-term planning. To
make optimal decisions, system operators, generation companies, and
consumers rely on a variety of input data for determining parameters
in the formulation of a mathematical optimization model that supports
their decision-making. Examples of such parameters include forecasts of
load and renewable energy, knowledge about future electricity prices,
and long-term climate change trends. Unfortunately, many of these pa-
rameters are uncertain. For example, forecasting of load and renewable
energy generation is impacted by weather forecast uncertainty, and
electricity prices are affected by both variations in load and renewable
energy generation as well as by the actions of other participants in
the electricity market. Future climate change trends are hard to predict
because we lack knowledge of how emissions will evolve and how these
translate into impacts on the grid.

Although we do not yet know the exact values of these uncertain
parameters, we still have to make decisions now. For example, utilities
and system operators have to decide which generation units to commit
during day-ahead planning before the exact supply of renewable energy
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is known. Making optimal decisions in the presence of uncertainty is
referred to as optimization under uncertainty, and includes stochastic op-
timization, chance-constrained optimization, robust optimization, and
distributionally robust optimization.

In electric power systems, the interest in optimization under uncer-
tainty accelerated rapidly over the past two decades due to the advent
of large-scale renewable generation. The presence of renewable energy
has drastically increased uncertainty in power systems, with significant
impacts on power system operations, electricity markets, and long-term
planning. At the same time, methods for optimization under uncertainty
have also undergone rapid developments. Importantly, improvements
in modeling and solution algorithms have made optimization under
uncertainty easier to apply and better suited for scaling to realistic
system sizes.

This paper provides an introduction to modeling and optimization
under uncertainty for an electric power systems audience along with a
review of certain state-of-the-art examples of recent power systems ap-
plications. We also discuss remaining challenges and important future
directions to motivate research in these areas. One particular group we
hope may benefit from this paper is that of graduate students whose
vailable online 30 September 2022
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research focuses on either electric power systems or optimization and
who have some level of familiarity with both areas.

The goal of the paper is not to provide a tutorial or in-depth
explanation of any particular method. Instead, we discuss key charac-
teristics as well as advantages and disadvantages of a range of different
optimization methods and modeling techniques. Our aim is to introduce
our readers to different ways in which we can model and solve an
optimization problem under uncertainty, along with sufficient informa-
tion for judging which approach may be most suitable for their setting.
This exposition is supported by references for detailed information on
specific methods.

The remainder of the paper is organized in three parts. First, we
provide a brief overview of optimization under uncertainty, including
a generic problem setup and a discussion of uncertainty modeling in
Section 2, an overview of different ways to formulate optimization
problems under uncertainty in Section 3, and discussions regarding
tractable reformulations and solution algorithms in Section 4 as well
as methods for evaluating solution quality in Section 5. Second, we
review several important and emerging optimization problems under
uncertainty in power systems operation. Applications include security-
constrained optimal power flow in Section 6, chance-constrained opti-
mal power flow in Section 7, stochastic unit commitment in Section 9,
a discussion on power flow modeling in Section 11, stochastic dual
dynamic programming in Section 12, consumer energy procurement
in Section 13, and transmission expansion planning in Section 10.
Finally, we provide a discussion and outlook on existing challenges and
promising directions in Section 14.

Part I: Overview of Optimization under Uncertainty

2. Modeling considerations

2.1. Notation

In the following, we provide a general overview and some generic
examples of our notation (defined in more detail below). We use bold
fonts to denote vectors of decision variables 𝐱, 𝐲, parameters 𝒂, 𝝃, and
unctions 𝒈(⋅), 𝒉(⋅). We use normal fonts and subscripts 𝑥𝑖, ℎ𝑗 (⋅) to refer
o individual entries of these vectors. Scalar functions 𝑓 (⋅) and variables
are denoted with normal fonts.

The vector of uncertain parameters in our problem is denoted by
. This parameter may be described as a random variable, which is to
e distinguished from a decision variable. We will refer to a specific
ealization of the uncertain parameter 𝝃 as a scenario 𝑠 and a set of
any scenarios as a sample . The parameter values and decision

ariables associated with scenario 𝒔 are denoted by bold subscript 𝒔,
e.g., 𝝃𝒔 and 𝐲𝒔. We also use a number of common mathematical symbols
and operators, such as the expectation of random variables.

2.2. Problem set-up

To set up our subsequent discussions, we start from a general formu-
lation of a two-stage optimization problem with uncertain parameters
𝝃. Two-stage optimization problems can be used to represent many
problems that are relevant to power systems, with examples includ-
ing security-constrained optimal power flow (the first stage optimizes
operations prior to any contingency and the second stage represents
post-contingency operations) and reserve dimensioning (the first stage
decisions regard the amount of reserves to procure, while the second
stage determines how the reserves are activated to balance the system).
Such models can be formulated as follows:

min
𝐱,𝐲𝝃

𝑓F(𝐱) +cost
[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

(1a)

s.t. 𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎,

viol

[

𝒉S(𝐱, 𝐲𝝃 , 𝝃) = 𝟎
S

]

. (1b)
2

𝒈 (𝐱, 𝐲𝝃 , 𝝃) ≤ 𝟎
The challenge of this problem, whose parameters and constraints are
defined in more detail below, is that we do not know the value of the
uncertain parameters 𝝃. To obtain a well-defined problem, we introduce
risk operators cost[⋅] and viol[⋅] that quantify the risk associated with
different realizations of 𝝃. The risk operator cost[⋅], represents the risk
of excessive costs, while the risk operator viol[⋅] measures the risk of
constraint violations. More precise definitions of those risk operators
will be provided in Section 3.

In this problem, the first-stage decisions represented by decision
variables 𝐱, also referred to as here-and-now decisions, have to be
decided before the value of 𝝃 is known. The second-stage decision vari-
bles 𝐲𝝃 , also referred to as wait-and-see decisions, are taken in response
o the realization of the uncertain parameters 𝝃. We use subscript 𝐲𝝃 to

highlight the fact that these decisions are taken after the values of the
uncertain parameters 𝝃 are known. The first- and second-stage decisions
𝐱 and 𝐲𝝃 must be chosen such that they minimize the sum of the first-
stage cost 𝑓F(𝐱) and the second-stage cost cost

[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

and satisfy
both the first-stage constraints (1b) and the second-stage constraints
(1b). In the second-stage constraint functions 𝒉S, 𝒈S, we include the
uncertain parameters 𝝃 as an input argument to explicitly highlight
that the function values depend on the realization of 𝝃, as is common
in parts of the stochastic programming literature [1,2]. However, it is
worth emphasizing that 𝝃 is a parameter of the function, not a decision
variable.

To obtain well-defined, tractable formulations for (1), we have to
define and evaluate the risk operators cost[⋅] and viol[⋅], giving rise
to a range of different formulations including stochastic optimization,
distributionally robust optimization, robust optimization, and chance-
constrained optimization. The choice of formulation depends on what
knowledge is available about the uncertain parameters 𝝃 at the time
of decision-making and how we would model the impacts of uncer-
tain parameters 𝝃 on our problem. Specific problem formulations and
associated solution algorithms will be described in much more detail
below.

We note that the above formulation is only one example of a
problem with uncertain parameters, and there exist others. Another
important class of problems is multi-stage stochastic problems, where
uncertainty is revealed in multiple steps, such as throughout several
hours of the day or across several years. In this situation, we may
have the ability to update our wait-and-see decisions 𝐲𝝃 each time
new information about 𝝃 is revealed, while still accounting for the fact
that we do not know what future realizations will look like. Important
examples of multi-stage stochastic programming problems include unit
commitment (where the first-stage variables are the on/off statuses of
generators and the generation dispatch is adapted in several stages
throughout the day) or long-term planning problems (where decisions
on which transmission infrastructure to build need to account for a
longer time horizon where changes to the plans can be made at sev-
eral points in time). Multi-stage stochastic optimization problems pose
significant additional challenges relative to the two-stage formulation
(1). For the simplicity of discussion, the first part of this paper will
focus primarily on two-stage optimization, but will also provide some
discussion and references for further reading on multi-stage problems
where applicable.

2.3. Common uncertainty sources

There are many different sources of uncertainty in power system op-
timization problems that can be captured by the uncertain parameters
𝝃. Some examples include:

• Renewable energy generation, where 𝝃 can represent either the
amount of power provided by solar or wind generators, a devi-
ation from a forecasted value, or an uncertain upper bound on
the total generation available.
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• Component outages, i.e., whether or not a transmission line or a
generator is experiencing a failure, where 𝝃 can represent whether
or not a certain outage has occurred.

• Price of electricity, where 𝝃 can represent the price a consumer has
to pay or a producer receives for their electricity.

• Precipitation, where 𝝃 may represent the water inflow to a hy-
dropower reservoir.

• Ambient conditions, where 𝝃 represents, e.g., uncertainty regard-
ing the future temperature that may impact the total load or
generation capacities.

• Occurrence of extreme weather, where 𝝃 may represent the path of
a hurricane or the location of a wildfire ignition.

An important distinction between different uncertainty sources is
hether the uncertainty is continuous or discrete. Uncertain parameters

hat can take on any value in a range (e.g., renewable generation,
oad demands, and prices) are well represented as continuous random
ariables with a continuous probability distribution, typically centered
round a forecast value. These variables can take on an infinite number
f possible values, which is referred to as infinite support. For instance,
ormally distributed random variables belong to this group. We note
hat such continuous random variables can still have bounded support,
.e., they may be limited to a finite range. A uniformly distributed ran-
om variable has infinite, but bounded support. Uncertain parameters
hat represent discrete events (e.g., component outages and wildfire
gnitions) are represented as discrete random variables with an associated
iscrete probability distribution. If there is a finite number of possible
ealizations of those variables, we refer to them as having finite support.

Furthermore, it is worth noting that the probability distribution
nd the best way to represent a source of uncertainty can change
epending on the considered time scale. For example, short-term vari-
tions in renewable generation may be well represented by a Gaussian
istribution, while a long-term distribution for a renewable energy
lant typically follows a Weibull distribution. In long-term planning,
t may be necessary to focus more on extreme scenarios to assess
ystem adequacy rather than the full distribution. In addition to varying
ith the considered time scale, the characterization of uncertainty can
lso depend on who is the decision maker. For example, one genera-
ion company does not know the bids of other generation companies
nd perceive those as being uncertain, but all bids are known and
eterministic for the system operator.

.4. Uncertainty propagation

The impacts of variations in the uncertain parameters 𝝃 will propa-
ate through our model and impact the second-stage cost cost
𝑓S(𝐱, 𝐲𝝃 , 𝝃)

]

as well as constraints (1b). For example, generators that
articipate in balancing the system as the renewable generation fluc-
uates may need to produce more or less power, thus impacting the
ystem cost. Further, fluctuations in renewable generation will cause
ower flows and voltage magnitudes to change as well, leading to possi-
le constraint violations. Modeling these effects can be very challenging
s it requires the simultaneous consideration of multiple uncertainty
ources and how they combine.

It is thus helpful to make a distinction between input uncertainty,
.e., the uncertain parameters that are the source of variability rep-
esented by 𝝃 such as renewable energy generation, and the output
ncertainty, i.e., the quantities represented by 𝑓S(𝐱, 𝐲𝝃 , 𝝃), 𝒉S(𝐱, 𝐲𝝃 , 𝝃),
nd 𝒈S(𝐱, 𝐲𝝃 , 𝝃) such as power generation, power flows, etc. Often times,
t is comparatively simpler to quantify or forecast the input uncertainty
, e.g., through historical data or probabilistic forecasting methods.
owever, even if we have a perfect estimate of the uncertainty from
ach source, it can be challenging to determine how the uncertainty
rom many different sources combines and propagates. This is true even
or linear models, and uncertainty propagation is even more challeng-
ng for models that incorporate non-linear equality constraints, such
3

s the alternating current (AC) power flow equations. When choosing
n uncertainty representation, we need to consider methods that allow
s to accurately represent both the input uncertainty 𝝃 and the output
ncertainty 𝑓S(𝐱, 𝐲𝝃 , 𝝃), 𝒈S(𝐱, 𝐲𝝃 , 𝝃), and 𝒉S(𝐱, 𝐲𝝃𝝃).

.5. Uncertainty representation

The choice of uncertainty representation is often constrained by
ractical limitations on access to uncertainty data. When determining
hat kind of representation to use, we need to determine (1) what we
now about the probability distribution of the uncertain parameters 𝝃,
2) who has (or can get) access to uncertainty data, and (3) how much
ata we can expect to access (e.g., will there be limited or unlimited
ccess to scenarios?). Depending on the answers to these questions
as well as questions related to the model formulation and solution
ethod which will be discussed in Sections 3 and 4), there are dif-

erent ways in which we can represent the uncertain parameters in an
ptimization problem. Fig. 1 illustrates a two-dimensional uncertainty
istribution and some common uncertainty representations, which are
urther discussed below.
Certainty Equivalent: While it may seem trivial, a common ap-

roach to dealing with uncertainty is to simply replace the uncertain
arameters 𝝃 by a single best guess. This gives rise to the so-called
ertainty equivalent problem. A common choice is to replace the un-
ertain parameters by their expected values (also referred to as the
ean) 𝝁 = E𝑃 [𝝃], where E𝑃 [⋅] is the expectation operator with re-

pect to the probability distribution 𝑃 of the uncertain parameters 𝝃.
lternatively, it is possible to consider the mode of the distribution
, which represents the most likely realization (note that 𝒎 ≠ 𝝁 for
eneral distributions). The expected value and mode of the distribution
s shown in red and orange in Fig. 1(a).

In many practical applications, solving the certainty equivalent
roblem may yield good results and is often significantly easier than
ormulating and solving an optimization problem under uncertainty.
his case can therefore provide an important benchmark to deter-
ine whether using a more complex representation is worthwhile.

urthermore, recent research have suggested that the performance
f a certainty equivalent model can be improved by designing the
oint forecast with the decision making problem in mind, essentially
ntegrating the forecasting and optimization step [3–5].
Perfect Information Model: Another option is to solve a perfect

nformation model, which assumes that we are able to perfectly forecast
. This model replaces the uncertain parameters 𝝃 by their actual
ealizations, thus providing the best possible solution we can get. In
eneral, this is not a realistic model (in particular, if we were able
o perfectly forecast 𝝃, we would no longer need to consider (1)
o be an optimization problem under uncertainty). Nevertheless, the
erfect information model can still provide a helpful benchmark for our
roblem, as it represents the best possible solution for our problem.
Probability Distribution: In certain special cases, it is possible

o work directly with the probability distribution of 𝝃. For example,
ssume that 𝝃 follows a multivariate normal distribution and appears
inearly in our problem. In this case, all other quantities can be inter-
reted as a weighted linear combinations of 𝝃, and will also follow a
ormal distribution. Another example is if 𝝃 has finite support (i.e., a
iscrete distribution with a finite number of possible outcomes) and the
robability associated with each outcome is known, in which case we
an investigate each realization separately.
Distributionally Robust Representation: We frequently may not

ave access to the true probability distribution 𝑃 of our uncertain
arameters 𝝃. This may be because the distribution is unknown, or
ecause it is numerically intractable to work directly with the dis-
ribution. Instead, we may identify a family of distributions that the
ncertain parameters 𝝃 may belong to, with the size of the family
epresenting the underlying ambiguity of the uncertain parameters. We
ypically refer to this family of distributions as the ambiguity set .
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Fig. 1. Examples of uncertainty representations for a two-dimensional vector 𝝃 =
{𝜉1 , 𝜉2} of uncertain parameters. (a) Original uncertainty distribution, with the mean
𝝁 = {𝜇1 , 𝜇2}, mode 𝒎 = {𝑚1 , 𝑚2}, and level sets marked. (b) Illustration of distributional
robustness for the scalar random variable 𝜉1, including (partial) knowledge of the
first and second moments (top) and metrics that limit the distance from a known
distribution (bottom). (c) Example of randomly drawn, i.i.d. samples where each sample
has probability 1∕𝑁 . (d) Example probability distribution represented through samples
on a grid, each with an assigned probability 𝝅𝒔. (e) Example of an elliptical robust
uncertainty set. (f) Example of a polyhedral uncertainty set.

A distributionally robust representation of the uncertain parameters
considers all distributions 𝑃 ∈  as possible distributions. There are
two main types of ambiguity sets that have been widely used in the
literature, namely moment-based and metric-based ambiguity sets, as
illustrated in Fig. 1(b). Both sets can be built upon empirical (historical)
data; thus, a distributionally robust representation of the uncertainty
might be seen as a data-driven model.

The moment-based approaches estimate the moment information,
e.g., mean (the first-order moment) and covariance (the second-order
moment), from the empirical data and build an ambiguity set contain-
ing all distributions with the same moments [6,7]. One can enlarge
the resulting ambiguity set (to be more ambiguity averse) by allowing
the values of moments to be inexact, i.e., by adding more distribu-
tions whose moments are close but not necessarily identical to those
estimated from the empirical data [8]. In contrast, one can shrink the
4

ambiguity set (to be less ambiguity averse) by limiting the distributions
that are included in the set, e.g., by adding unimodality constraints that
exclude all distributions with more than one spike [9–11].

The metric-based approaches exploit probabilistic distance metrics
(mainly Wasserstein distance [12], which measures the distance of
two given distributions) and include any distribution in the ambiguity
set whose distance to the empirical one is less than or equal to a
given positive value [13]. This value allows the user to adjust its
ambiguity aversion, such that assigning a higher value results in a
larger ambiguity set and therefore a more conservative solution, and
vice versa.

Independent Identically Distributed Samples: In many situa-
tions, we may have access to scenarios that represent possible realiza-
tions (arising from, e.g., historical data or probabilistic forecasts). If we
assume that these samples 𝝃𝒔 are independent and identically distributed
(i.i.d.), each scenario 𝝃𝒔 represents one realization of the uncertain
parameters, and all scenarios have the same probability of occurrence
1∕𝑁 . If there is a higher probability that the uncertain parameter 𝝃
takes on values in a certain range, this will be reflected via more
realizations 𝝃𝒔 in that range, as shown in Fig. 1(c). Thus, a benefit
of using i.i.d. samples is that we do not need to explicitly model the
distribution or make (possibly restrictive) choices in how to discretize
the distribution and assign values to individual realizations. The use
of i.i.d. samples is a purely data-driven method, though it requires the
access to a (possibly large) set of representative scenarios.

A drawback of using i.i.d. scenarios is that an accurate representa-
tion of the probability distribution may require consideration of a large
number of samples 𝑁 . Furthermore, i.i.d. data is obtained using random
sampling, and if we draw a new sample set , we may obtain a different
solution to our optimization problem. As a result, not only the input
data, but also the solution is random. Finally, it can be hard to obtain
samples that are truly i.i.d.. For example, historical data obtained from
a time series is typically not i.i.d. as the uncertainty realization in one
time step is often not independent of the uncertainty realization in the
next time step.

Discretized Probability Distribution: Another way to represent
a probability distribution is to discretize it into a set of samples 𝝃𝒔
with explicitly assigned probabilities 𝝅𝒔. Fig. 1(d) shows an example of
a distribution that has been discretized with values on an equidistant
grid.3 The key difference between a discretized distribution and using
i.i.d. samples is that the scenarios and associated probabilities in the
discretized case are designed to reflect the underlying distribution as
closely as possible. This can reduce the number of samples compared
with the i.i.d. case, but the number of required scenarios may still grow
quickly with the dimension of the vector 𝝃. Furthermore, the accuracy
of this approach depends on our ability to create a discretization with
scenarios and probabilities that accurately represents the underlying
distribution.

Robust Uncertainty Set: In certain situations, we may not have
access to sufficient data in order to estimate the distribution of 𝝃 or may
simply desire to ensure that our solutions are safe across a range of pos-
sible realizations. In this case, we define 𝝃 as any realization within a
given uncertainty set 𝛯. The uncertainty set 𝛯 can be represented using
a set of scenarios 𝝃𝒔, which may include all possible realizations if 𝝃 has
finite support or be a set of scenarios that approximates a continuous
distribution. Another option for representing the uncertainty set 𝛯 is
to allow continuous variations of 𝝃 but constrain these variations to
lie within a predetermined set. Common representations of uncertainty
sets include elliptical sets [14] (illustrated in Fig. 1(e)), box-constrained
sets, budgeted uncertainty sets [15], and more general polyhedral sets,
typically generated using data-driven methods [16]. In some cases, the

3 We note that the use of an equidistant grid is only for illustrative purposes,
as in reality it is common to use techniques such as clustering to design the
set of uncertainty scenarios.
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uncertainty set may be chosen to truly represent all possible realizations
of 𝝃, such as if the probability distribution has bounded support (i.e., 𝝃
can only vary within finite bounds). In other cases, the uncertainty set
may be defined to contain a certain probability mass or (in practical
settings) to simply contain all realizations of 𝝃 which we would like to
safeguard our solution against.

An important aspect of using a robust uncertainty representation is
that we disregard variations in the probability of occurrence for dif-
ferent realizations of 𝝃 within the uncertainty set. It is therefore worth
noting that a larger uncertainty set which contains more realizations of
𝝃 leads to a safer, but also more costly solution.

Although there are important distinctions between these different
ways of representing uncertainty, they are also closely related. For
example, if we know the probability distribution of the underlying
uncertainty, we may choose to generate i.i.d. scenarios from this distri-
bution instead of directly representing the distribution in our problem.
Alternatively, if we have access to many scenarios, we can estimate
the probability distribution from this data or use this data to define an
uncertainty set. Furthermore, distributionally robust methods leverage
combinations of probability distributions, scenarios, and uncertainty
sets. It is also worth noting that obtaining or generating realistic
scenarios for the uncertain parameters 𝝃 can be a significant challenge.
This is particularly true if the entries of 𝝃 are not independent ran-
dom variables, but have complicated dependencies that are not well
described using linear correlation (and may require, e.g., the use of
copulas [17]. For instance, if the uncertain random variables are time
series, multivariate time series models can be used to generate samples
that are correlated in time and space.

3. Optimization under uncertainty

As discussed above, the presence of uncertain parameters 𝝃 implies
that a given choice of first-stage decisions 𝐱 may give rise to a range
of different outcomes in the second stage. When optimizing under
uncertainty, we therefore have to decide how we both measure and
manage the risk associated with this range of second-stage outcomes,
i.e., how we define the risk operators cost[⋅] and viol[⋅] in (1). In
the following, we discuss some common formulations of optimization
problems under uncertainty and associated metrics of risk. We first
discuss formulations that explicitly consider the impact of uncertainty
on cost, specifically risk-neutral and risk-averse versions of two-stage
stochastic optimization problems, distributionally robust formulations,
and robust min–max formulations. We then discuss formulations that
focus on providing guarantees of constraint satisfaction despite dif-
ferent realizations of 𝝃, including chance constraints, distributionally
robust constraints, and robust constraints. An overview of the different
types of optimization problems under uncertainty is given in Fig. 2.

3.1. Risk-neutral two-stage stochastic optimization

A common formulation of two-stage optimization problems min-
imizes the total expected cost. The first-stage cost 𝑓F(𝒙) is known
(i.e., deterministic) and the second-stage cost is expressed as the
expected value of 𝑓S(𝐱, 𝐲𝝃 , 𝝃), giving rise to the following formulation:

min
𝐱,𝐲𝝃

𝑓F(𝐱) + E𝑃
[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

(2a)

s.t.

𝒉F(𝐱) = 0, 𝒈F(𝐱) ≤ 0, (2b)

𝒉S(𝐱, 𝐲𝝃 , 𝝃) = 0, (2c)

𝒈S(𝐱, 𝐲𝝃 , 𝝃) ≤ 0. (2d)

This formulation is called a risk-neutral formulation, as it treats costs
above and below the expected value equally. Note that the formulation
assumes that second-stage constraints (2c), (2d) are enforced for all
5

realizations 𝝃 for the chosen solution 𝐱, 𝐲𝝃 .
Fig. 2. An overview of formulations for power system optimization under uncertainty.

It is important to note that the risk-neutral formulation above is gen-
erally not the same as the certainty equivalent problem, which reduces
the stochastic optimization problem to a deterministic problem by re-
placing 𝝃 with its expected value E𝑃 [𝝃]. Specifically, E𝑃

[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

≠
𝑓S(𝐱, 𝐲𝝃 ,E𝐏[𝝃]).

3.2. Risk-averse two-stage stochastic optimization

The risk-neutral formulation of the two-stage stochastic optimiza-
tion problem which minimizes the expected cost may not always be
desirable, as certain unfavorable outcomes can have a disproportion-
ately large impact, e.g., a large loss could harm future prospects of
a company or a large blackout can cause unacceptably high societal
costs [18]. Problem formulations that specifically focus on limiting
negative impacts of uncertainty realizations are referred to as risk-averse
formulations. We briefly describe a few common risk metrics:
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• Standard Deviation: One classical way of limiting risk is to restrict
the variance of the cost (or profit). In this framework, originally
developed for financial portfolio selection [19], a larger variance
is considered to be more risky and thus undesirable. The goal
is to choose a solution that minimizes both the expected value
and the variance of the cost. This multi-objective problem can
be expressed as a trade-off in the objective function, or minimize
the expected cost subject to a variance constraint or vice versa
(i.e., minimize variance subject to a constraint on cost). A prob-
lem with this approach is that limiting the standard deviation also
limits the possibility of getting better-than-expected outcomes
(i.e., lower cost or higher profit).

• Value-at-Risk: Another common risk metric is Value-at-Risk with
probability level 𝜖 (VaR𝜖), which bounds the largest cost that will
occur with more than 𝜖 probability. This metric is mathematically
defined as the 1 − 𝜖-quantile of the cost function 𝑓S(𝐱, 𝐲𝝃 , 𝝃).
While VaR𝜖 is widely used as a risk metric in finance, a common
criticism of VaR𝜖 is that it does not provide any information
about the size of costs beyond the (1 − 𝜖) quantile, i.e., it counts
how many times the cost exceeds the threshold, not by how
much. Furthermore, VaR𝜖 is non-convex in general and does not
satisfy the properties of a coherent risk measure (i.e., it is not
sub-additive) [20].

• Conditional Value-at-Risk: The Conditional-Value-at-Risk
(CVaR1−𝜖), also referred to as the Expected Shortfall, is a convex
and coherent risk measure [20] which mitigates some of these
drawbacks of VaR. Specifically, CVaR1−𝜖 is defined as the ex-
pected value of all realizations of a random variable above the
1 − 𝜖 quantile and is more convenient for optimization due to
its convexity properties that enable numerically efficient refor-
mulations [21,22]. In general, CVaR𝜖 represents an upper bound
(which is frequently loose) on VaR𝜖 , i.e., CVaR𝜖 ≥ VaR𝜖 .

The above risk metrics can be used to formulate a risk-averse version
of the two-stage stochastic optimization problem where the expected
value in the objective function (2a) is either replaced by or combined
with the standard deviation, VaR1−𝜖 , or CVaR1−𝜖 . It is worth noting that
such risk-averse formulations focus on limiting cost in the tail of the
distribution, i.e., avoiding a large cost in a small number of scenarios,
at the expense of a higher expected cost.

3.3. Distributionally robust optimization

In an ambiguous environment where the probability distribution
is not known, distributionally robust optimization can be used to
minimize the expected cost associated with the worst-case distribution
within the ambiguity set. Since the worst-case expected cost depends
both on our solution 𝐱, 𝐲 and the probability distribution of 𝝃, it is
not possible to determine the worst-case solution a priori (i.e., before
we solve the optimization problem). Instead, distributionally robust
optimization methods endogenously identify the worst-case distribu-
tion within the ambiguity set and minimize the expected cost for this
worst-case distribution. This problem can be defined as

min
𝐱,𝐲𝝃

𝑓F(𝐱) + max
𝑃∈

E𝑃
[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

(3a)

s.t.

𝒉F(𝐱) = 0, 𝒈F(𝐱) ≤ 0, (3b)

𝒉S(𝐱, 𝐲𝝃 , 𝝃) = 0, (3c)

𝒈S(𝐱, 𝐲𝝃 , 𝝃) ≤ 0, (3d)

where the objective function (3a) determines the worst-case dis-
tribution 𝑃 among all pre-defined distributions within the ambiguity
set  and minimizes the expected cost against such a worst-case
distribution. For distributionally robust problems, we note that a larger
ambiguity set results in a more conservative dispatch, and vice versa.
6

3.4. Robust optimization

In some situations, we may not have access to sufficient data in or-
der to determine the distribution of 𝝃 or we may face a situation where
an undesirable outcome is truly catastrophic (e.g., a company goes
bankrupt or we experience a total system blackout). In this situation,
it might be desirable to limit the impact of the worst-case outcomes,
regardless of how (un)likely they are. Formulations that minimize the
worst-case cost across all possible realizations within the uncertainty
set give rise to robust optimization problems.

The min–max formulation of a robust optimization problem min-
imizes the combination of the first-stage and worst-case second-stage
costs, defined as the maximum cost over the uncertainty set 𝜉 ∈ 𝛯,
i.e.,

min
𝐱,𝐲𝝃

𝑓F(𝐱) + max
𝜉∈𝛯

[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

(4a)

.t.

𝒉F(𝐱) = 0, 𝒈F(𝐱) ≤ 0, (4b)

𝒉S(𝐱, 𝐲𝝃 , 𝝃) = 0, (4c)

𝒈S(𝐱, 𝐲𝝃 , 𝝃) ≤ 0. (4d)

It is worth noting that problems of the form (4) often assume
relatively complete recourse, i.e., that for any feasible choice of the first-
stage decision variables 𝐱 and uncertainty realization 𝝃 there exists
a choice of 𝐲 that satisfies the second-stage constraints (4c), (4d).
For example, relatively complete recourse for linearized direct current
(DC) power flow constraints can be ensured by allowing load shedding
and renewable energy curtailment while also setting generator lower
bounds to zero. Under these conditions, (4c), (4d) are often only
explicitly enforced for a small set of scenarios, including the worst-
case one. However, it is important to be aware that not all problems
satisfy relatively complete recourse. In particular, it can be challenging
to guarantee that there exists a feasible solution to a set of non-linear
equality constraints (such as the AC power flow constraints) across a
range of realizations for 𝝃.

.5. Limiting risk of constraint violations

Many optimization problems under uncertainty aim to identify first-
nd second-stage variables 𝐱 and 𝐲𝝃 that explicitly limit the risk of
onstraint violations, represented in (1) with the risk operator viol[⋅].
e discuss three common methods to limit risk of constraint viola-

ions, namely chance-constrained, distributionally robust, and robust
onstraint satisfaction.

.5.1. Chance-constrained optimization
Chance constraints, also commonly referred to as probabilistic con-

traints, require that the constraints are satisfied with a minimum
robability of 1 − 𝛼. We can distinguish between two main types of
hance-constrained problems. A problem with single chance constraints
nforces that the individual violation probability of each constraint 𝑖
hould not exceed 𝜖𝑖:

𝝃

(

ℎS𝑗 (𝐱, 𝐲𝝃 , 𝝃) = 0
)

≥ 1 − 𝜖𝑗 ∀ 𝑗 = 1,… , 𝑚 (5a)

𝝃
(

𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃) ≤ 0
)

≥ 1 − 𝜖𝑖 ∀ 𝑖 = 1,… , 𝑛. (5b)

A joint chance constraint requires that the joint violation probability,
.e., the probability that any of the constraints is violated, should not
xceed 𝜖:

𝜉

(

𝒉S(𝐱, 𝐲𝝃 , 𝝃) = 0
𝒈S(𝐱, 𝐲𝝃 , 𝝃) ≤ 0

)

≥ 1 − 𝜖. (6)

The use of single versus joint chance constraints is a modeling
choice, i.e., it is not necessarily that one choice is better or worse than

the other. While single chance constraints may allow a user to control
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the risk associated with individual constraints, a joint chance constraint
provides stronger security guarantees for the overall system.

It is worthwhile to note that we have included equality constraints
𝒉S𝑖 (𝐱, 𝐲𝝃 , 𝝃) = 0 among the chance constraints in (5) and (6). Enforcing
quality constraints is very important to the optimization of the electric
rid, where equality constraints are used to represent the physical
peration of the system. For example, it is necessary to ensure that
he power system always remains balanced (i.e., the sum of all power
njections minus the network losses exactly equals zero) despite pos-
ible variations in load demands and renewable generation. If such
asic physical conditions are not satisfied, the mathematical model
ay no longer be valid.4 As a result, it is common to use a very

ow violation probability for the equality constraints (or enforce the
quality constraints as robust constraints, as further described below).

One common criticism of chance constraints (which are closely re-
ated to the VaR𝜖 risk measure) is that they limit only the probability of
onstraint violation, not the size of the violation. Furthermore, chance
onstraints are generally non-convex and can be challenging to solve.
here exists several convex approximations of chance constraints in the

iterature, most notably the CVaR approximation [22–24]. This approx-
mation is a conservative approximation of the chance constraint, but
lso has the added feature of limiting the size of a violation. The chance
onstraint can be interpreted as the product between the probability
istribution of the constraint function 𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃) and a step-function

that goes from zero to one at the limit. This step function records the
probability of violation, but does not distinguish between small and
large violations. In contrast, a CVaR constraint can be interpreted as
the product between the probability distribution and a piecewise linear
function with slope one above the limit. This linear function measures
the size of the violation rather than the probability of violation. We note
that it is also possible to leverage more general risk functions, which
have been referred to as weighted chance constraints [25].

3.5.2. Distributionally robust chance constraints
If the probability distribution of 𝝃 is unknown, we may choose to

limit risk by enforcing distributionally robust chance constraints. The
distributionally robust form of a single chance constraint is given by

min
𝑃∈

P
(

𝒉S𝑖 (𝐱, 𝐲𝝃 , 𝝃) = 0
)

≥ 1 − 𝜖𝑖, (7a)

min
𝑃∈

P
(

𝒈S𝑗 (𝐱, 𝐲𝝃 , 𝝃) ≤ 0
)

≥ 1 − 𝜖𝑗 , (7b)

hereas the distributionally robust form of a joint chance constraint
an be stated as

in
𝑃∈

P𝜉

(

𝒉S(𝐱, 𝐲𝝃 , 𝝃) = 0
𝒈S(𝐱, 𝐲𝝃 , 𝝃) ≤ 0

)

≥ 1 − 𝜖. (8)

ere, the probability that each individual constraint 𝒉S(𝐱, 𝐲𝝃 , 𝝃) = 0 and
S(𝐱, 𝐲𝝃 , 𝝃) ≤ 0 hold under the worst-case distribution P ∈  should be
reater than or equal to 1−𝜖. Note that the worst-case distribution 𝑃 in
he distributionally robust chance constraint (7) (8) is not necessarily
dentical to the worst-case distribution in the objective function (3a),
nd that the worst-case distribution can also differ between constraints.

.5.3. Robust feasibility satisfaction
A third option to guarantee constraint satisfaction across a range

f possible uncertainty realizations 𝝃 is to enforce robust feasibility
onstraints, which explicitly guarantee feasibility of the constraints for
ll uncertainty realizations 𝝃 ∈ 𝛯, i.e.
S(𝐱, 𝐲𝝃 , 𝝃) = 0, ∀𝜉 ∈ 𝛯, (9a)

4 For example, if the AC power flow equations are not satisfied, it may
ndicate system instability and the steady-state model is no longer valid. In this
ase, the values of decision variables representing quantities such as voltage
ariables or power flows no longer have a physical meaning.
7

e

𝒈S(𝐱, 𝐲𝝃 , 𝝃) ≤ 0, ∀𝜉 ∈ 𝛯. (9b)

Many problems with robust constraints only include first-stage vari-
ables 𝐱, and the goal is to identify decisions that remain safe regardless
of the realization 𝝃. Robust optimization problems that include recourse
actions in response to the uncertainty realization 𝝃 are referred to as
adaptive robust optimization problems.

4. Tractable approximations and solution algorithms

Evaluating risk measures such as expected second-stage cost or
the probability of constraint violations as a function of the decision
variables 𝐱, 𝐲𝝃 is generally theoretically and numerically challenging.

s a result, most optimization problems under uncertainty are difficult
o solve. In this section, we discuss some common reformulations and
olution algorithms for solving these problems.

.1. Obtaining finite-dimensional problem formulations

In most stochastic programming problems, there tends to be a very
arge (or possibly infinite) number of decision variables and constraints.
or instance, a continuous distribution for 𝝃 implies that the problem

is infinite dimensional, i.e., we have an infinite number of possible
realizations of 𝝃, giving rise to an infinite number of second-stage
variables 𝐲𝝃 and second-stage constraints. Before attempting to solve
the problem, we therefore have to find a finite-dimensional represen-
tation. This is typically achieved either by representing the uncertain
parameters through samples (either i.i.d. samples or samples represent-
ing a discretized distribution) or by parameterizing the second-stage
responses as a function of the uncertainty, also referred to as a recourse
policy.

Replace 𝝃 with Samples: One of the most common ways to reduce
stochastic programming formulation to a finite-dimensional problem

s to replace the random variable 𝝃 by a finite set of sample realizations
𝒔, 𝐬 ∈ . This allows us to define second-stage variables 𝐲𝐬 and

corresponding second-stage constraints for each realization 𝐬, giving
rise to a finite-dimensional problem. This is usually a good modeling
choice for problems where the decision maker is allowed to optimize
their decision 𝐲𝝃 once 𝝃 is known (e.g., a unit commitment problem

here the generation dispatch is optimized to meet realized demand).
These sampled realizations 𝝃𝐬 are used to obtain estimates of the

bjective function and constraints that involve the uncertain param-
ters. Typically, using a larger number of samples allows for a more
ccurate problem representation, but also increases the complexity
f the problem as we introduce a new set of second-stage decision
ariables 𝐲𝐬 and second-stage constraints for each sample. One way
f coping with the large scale of the problem is to carefully select
cenarios so as to reduce problem size while concisely capturing the
iversity of uncertainty that the system faces. Scenario selection and
cenario reduction methods based on the transportation metric have
een proposed by [26] and extended by [27], and have found appli-
ations in power systems [28,29]. Although these methods originate
rom sound theoretical foundations, their generalization to cases of
ulti-dimensional uncertainty (e.g., multi-area wind production) or

omposite uncertainty (i.e., the Cartesian product of forecast errors and
ontingencies) which is inherent to power systems applications is not
traightforward. These drawbacks have motivated scenario selection
ethods inspired by importance sampling [30] as well as methods that

xplicitly consider the impact of scenarios on costs [29]. The trade-off
etween the number of scenarios that are input to a model and the
ccuracy of the solution that can be obtained has also been studied in
he literature [31].
Recourse Policies: Another common option is to approximate 𝐲𝝃 as

function of 𝝃, where the function parameters are first-stage decision
ariables. This kind of function is commonly referred to as a recourse
olicy, a control policy, or a decision rule. It is typically a good mod-
ling choice in problems where the decision maker has limited ability
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to optimize the recourse decisions 𝐲𝝃 , either because they have to react
very quickly (e.g., to balance the system during a power imbalance) or
cannot communicate decisions in real time (e.g., due to communication
bandwidth issues).

Affine Recourse Policy: An affine recourse policy (also referred to as
a linear decision rule) [32,33] expresses the second-stage response as
a linear function of the uncertainty realization, i.e.,

𝐲(𝜉) = 𝐲(𝟏)𝝃 + 𝐲(𝟎). (10)

The coefficients 𝐲(𝟏) and 𝐲(𝟎) are first-stage variables to be determined
before the realization of uncertainty.

More General Recourse Policies: While affine policies are by far
the most common (and usually most tractable) policies, they can be
generalized. For example, it is possible to consider non-linear de-
pendencies on the uncertain parameter 𝝃 by extending the vector of
uncertain parameters to contain additional parameters that represent
non-linear dependencies on 𝝃, e.g., sin(𝜉𝑖). It is also possible to consider
piece-wise linear policies [25,34] or more general policies including
polynomials [35] and truncated distributions [36].

With a recourse policy, we reduce the number of decision variables
to a finite number of first-stage decision variables. However, we also
need to obtain a tractable reformulation of the second-stage constraints.
One possibility is to leverage recourse policies in combination with
sampled realizations of 𝝃𝐬. Compared with a sample-based formulation
that introduces one decision variable 𝐲𝐬 for each scenario, the use of
an (affine) recourse policy may reduce computational complexity. In
some cases, the use of a parameterized recourse policy in combination
with samples may even be required by the solution method (e.g., the
scenario approach, further discussed below, requires a fixed number
of decision variables to determine the number of samples needed).
In addition to using samples, there are several other methods to re-
duce the number of second-stage constraints to a finite number. Such
methods will be further discussed below, particularly in the context of
chance-constrained, distributionally robust, and robust optimization.

4.2. Reformulations and solution algorithms for risk-neutral two-stage
stochastic programs

The main challenge in solving risk-neutral problems is to accu-
rately represent the expected second-stage cost. Although similar chal-
lenges arise in other problems that involve expectations, such as in
the evaluation of CVaR, we frame the discussion in this section around
risk-neutral problems only.

For risk-neutral two-stage stochastic problems in the form of (2), it
is common to leverage a sample average approximation to represent
the expected second-stage cost, i.e.,

E𝑃
[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

≈
∑

𝐬∈
𝜋𝐬𝑓

S(𝐱, 𝐲𝐬, 𝝃𝐬), (11)

where 𝝃𝐬 represents the realization of the uncertain parameters 𝝃 in
scenario 𝐬 and 𝜋𝐬 is the associated probability of occurrence. It is worth-
while to note that the accuracy of the sample average approximation
(11) depends on several factors, including the number of samples that
is used and the distribution of 𝝃. However, solution algorithms for
two-stage stochastic optimization problems, such as the ones described
below, generally assume that the approximation (11) is an accurate
representation of the expected cost. An assessment of the true expected
cost is often obtained through a posteriori evaluation, as described in
Section 5.

Although it is possible to solve (2) directly by replacing the second-
stage cost by the approximation (11) and introducing copies of the
second-stage variables and constraints for each sample 𝜉𝐬, risk-neutral
formulations typically require many samples to accurately estimate the
expected cost. As a result, the problem quickly escalates to a size that
becomes too large to solve directly, motivating a variety of alternative
solution techniques.
8

Fig. 3. Examples of subgradients of the function 𝑓 (𝐱). Where 𝑓 (𝐱) is non-differentiable,
there is more than one subgradient.

4.2.1. Decomposition strategies
We proceed to discuss the general concept of decomposition, as well

as two specific methods by which this concept is leveraged in stochastic
programs: Lagrange relaxation and cutting plane methods.

Decomposition: Even with a relatively modest number of scenarios,
the extensive form of the problem (which includes variables and con-
straints for each scenario) is challenging to solve directly. As a result,
solution methods for stochastic optimization problems typically rely on
decomposition algorithms which split the problem by scenario to for-
mulate smaller, easier-to-solve subproblems. Although the number of
subproblems may be large, solving them individually typically requires
significantly less effort than solving the combined problem, with the
added benefit that they can often be solved in parallel. By carefully
combining information from the smaller subproblems, these methods
iteratively approach the optimal solution to the original problem.

Lagrange relaxation: The idea of Lagrange relaxation is to relax
complicating constraints in a large-scale problem and tackle the dual
problem for which we have access to geometric information, such as
the subgradient of the dual function. A subgradient is a generalization
of a gradient for a non-differentiable function. For a function 𝑓 (𝐱), the
vector 𝒒 is a subgradient of 𝑓 (𝐱) at 𝐱𝟏 if the following holds true

𝑓 (𝐱) ≥ 𝑓 (𝐱𝟏) + 𝒒𝑇 (𝐱 − 𝐱𝟏) . (12)

An illustrative example of subgradients is provided in Fig. 3. Note that
if 𝑓 (𝐱) is differentiable at 𝐱, the subgradient is simply a gradient. If 𝑓 (𝐱)
is convex, the subgradient is a global underestimator of the function.

The subgradient method is similar to gradient descent in that it
seeks for the next best solution in the direction of the subgradient. How-
ever, it is not guaranteed that the solution is monotonously improving
across iterations, which makes it necessary to keep track of the best
known solution and can make it challenging to assess convergence.

Cutting planes: A cutting plane method is an approximation tech-
niques whereby a convex (or concave) function is outer approximated
by supporting hyperplanes, referred to as cutting planes, which ap-
proximate the function from below (or above, in the case of concave
functions). Supporting hyperplanes are closely related to the subgra-
dients of a function; in fact, (12) describes a supporting hyperplane of
𝑓 (𝐱). The benefit of using cutting planes to approximate a function 𝑓 (𝐱)
is that the approximation can be built iteratively. Cutting plane meth-
ods selectively add new cutting planes to improve the approximation
at each iteration until we reach the desired solution accuracy. Approx-
imations with cutting planes are an important part of many algorithms
for solving stochastic two-stage and multi-stage optimization problems.

4.2.2. Decomposition algorithms
We next review a few common solution methods which leverage

one or more of the above concepts. These include Benders decomposi-
tion, stochastic dual dynamic programming, dual decomposition, and
progressive hedging.

Benders Decomposition: Benders decomposition solves the first-
stage problem with an iteratively refined approximation of the expected
second-stage cost until an optimal first-stage solution is obtained. The
key observation that is leveraged by Benders decomposition is that
two-stage stochastic programming problems tend to have (or can be
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formulated to have) a complicating-variable structure [37]. In such prob-
lems, if some variables (the complicating ones) of the problem are fixed
to given values, the problem decomposes by scenario, making it easier
to solve. In the two-stage stochastic programming problem (13) below,
the complicating (coupling) variables are the first-stage variables 𝐱 that
prevent a decomposition by scenario:

min
𝐱, 𝐲𝐬 ∀𝐬∈

𝑓F(𝐱) +
∑

𝐬∈
𝜋𝐬𝑓

S(𝐱, 𝐲𝐬, 𝝃𝐬) (13a)

s. t. 𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (13b)

𝒉S(𝐱, 𝐲𝐬, 𝝃𝐬) = 𝟎, ∀ 𝐬 ∈  , (13c)

𝒈S(𝐱, 𝐲𝐬, 𝝃𝐬) ≤ 𝟎, ∀ 𝐬 ∈  . (13d)

We note that problem (13) is equivalent to

min
𝐱

𝑓F(𝐱) + 𝛼(𝐱) (14a)

s. t. 𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (14b)

where the function 𝛼(𝒙) represents the second-stage cost and is given
by

𝛼(𝐱) = min
𝐲𝐬 ∀𝐬∈

∑

𝐬∈
𝜋𝐬𝑓

S(𝐱, 𝐲𝑠, 𝝃𝐬) (14c)

s. t. 𝒉S(𝐱, 𝐲𝑠, 𝝃𝐬) = 𝟎, ∀ 𝐬 ∈  , (14d)

𝒈S(𝐱, 𝐲𝐬, 𝝃𝐬) ≤ 𝟎, ∀ 𝐬 ∈  . (14e)

he convexity properties of the function 𝛼(𝐱) are critical for the deriva-
ion and convergence of the Benders decomposition algorithm. Specif-
cally, if 𝛼(𝐱) is convex or if it has a convex hull, it can be outer
pproximated by cutting planes.5 In this case, Benders’ algorithm con-
erges to an optimal solution. Otherwise, it generally does not. Many
ractical two-stage stochastic programming problems that appear in
ower system applications give rise to convex functions 𝛼(𝐱).

Considering problem (14) and assuming that the function 𝛼(𝐱) has
he desired convexity properties, Benders decomposition works as fol-
ows. An initial feasible solution of first-stage variables, 𝐱(𝜈), is obtained
y solving the initial master problem:

min
𝐱,𝛼

𝑓F(𝐱) + 𝛼 (15a)

. t. 𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎 (15b)

𝛼 ≥ 𝛼down (15c)

here 𝛼down is a lower bound on the expected second-stage cost 𝛼 that
can be easily obtained in most applications. If the original two-stage
stochastic programing problem (13) is well-posed, the initial master
problem (15) is always feasible.

Given the initial feasible solution 𝐱(𝜈), the second-stage subproblem
is formulated as:

min
𝐲𝐬 ,∀𝐬∈

∑

𝐬∈
𝜋𝐬𝑓

S(𝐱, 𝐲𝐬, 𝝃𝐬) (16a)

s. t. 𝒉S(𝐱, 𝐲𝐬, 𝝃𝐬) = 𝟎, ∀𝐬 ∈  , (16b)

𝒈S(𝐱, 𝐲𝐬, 𝝃𝐬) ≤ 𝟎, ∀𝐬 ∈  , (16c)

𝐱 = 𝐱(𝜈) ∶ 𝝀(𝜈). (16d)

The solution of subproblem (16) provides 𝐲(𝜈)𝐬 ,∀𝐬 ∈  and sensi-
ivities 𝝀(𝜈). We note that subproblem (16) decomposes by scenario,
hich makes it drastically easier to solve. For the sake of simplicity, we
ssume that the subproblem (16) satisfies relatively complete recourse,
.e., is always feasible.

5 This holds true in general for problems where ℎ𝑆 (𝐱, 𝐲𝐬, 𝝃𝐬) = 𝐴𝐱+𝐵𝐲𝐬 and
𝑆 (𝐱, 𝐲 , 𝝃 ) = −𝑏(𝐱) + 𝑐(𝐲 ) where 𝑏(𝐱) is convex in 𝐱.
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𝐬 𝐬 𝐬
The solution of problem (16), and particularly the sensitivities 𝝀(𝜈),
allow formulating a refined master problem as follows:

min
𝐱,𝛼

𝑓F(𝐱) + 𝛼 (17a)

s. t. 𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (17b)

𝛼 ≥ 𝛼down, (17c)

𝛼 ≥
∑

𝐬∈
𝜋𝐬𝑓

S(𝐱(𝜈), 𝐲(𝜈)𝐬 , 𝝃𝐬) + (𝝀(𝜈))⊤(𝐱 − 𝐱(𝜈)). (17d)

Here, (17d) is referred to as a Benders cut, which approximates the
function 𝛼(𝐱) from below. Solving the refined problem (17) provides
new values for the first-stage variables, 𝐱(𝜈+1), and a new value for 𝛼,
i.e., 𝛼(𝜈+1). If the original two-stage stochastic programing problem (13)
is well-posed, the master problem (17) is always feasible. We note that
problem (17) is generally the computational bottleneck of the Benders
decomposition algorithm.

The Benders cuts of expression (17d) are referred to as optimality
cuts. If the problem does not satisfy relative complete recourse, it is
possible that the subproblems are not feasible. In this case, we need to
generate feasibility cuts by using the extreme rays of the subproblem,
which an optimization solver can provide as certificates of subproblem
infeasibility. Alternatively, we can reformulate the subproblems by
introducing slack variables that are penalized in the objective in order
to guarantee relatively complete recourse.

Benders decomposition provides an upper and lower bound on the
objective function at each iteration (𝜈), which can be used to assess
convergence.

Upper bound (UB): Since subproblem (16) is a further constrained
version of the original problem (13) (variables 𝐱 are fixed), we can use
the optimal objective value of the subproblem (16) to compute an upper
bound of the optimal objective value of the original problem (13), i.e.,

UB(𝜈) = 𝑓F(𝐱(𝜈)) +
∑

𝑠∈
𝜋𝑠𝑓

S(𝐱(𝜈), 𝐲(𝜈)𝑠 ). (18)

Lower bound (LB): The constraints (17d) approximate the true
second-stage cost 𝛼(𝐱) from below. Therefore, problem (17) is a re-
laxation of problem (13), which allows deriving a lower bound of the
optimal value of the objective function of problem (13), i.e.,

LB(𝜈) = 𝑓F(𝐱(𝜈+1)) + 𝛼(𝜈+1). (19)

hese upper and lower bounds can be used to devise a convergence and
ermination criterion, giving rise to the following algorithm:

(0) Set 𝜈 = 1, solve the initial master problem (15) and obtain 𝐱(𝜈).
(1) Given 𝐱(𝜈), solve subproblem (16) to obtain 𝐲(𝜈)𝐬 ,∀𝐬 ∈ , and

sensitivities 𝝀(𝜈). Compute upper bound (18), UB(𝜈) = 𝑓F(𝐱(𝜈)) +
∑

𝐬∈ 𝜋𝐬𝑓 S(𝐱(𝜈), 𝐲(𝜈)𝑠 , 𝝃𝐬).
(2) Given 𝐲(𝜈)𝐬 ,∀𝐬 ∈ , and sensitivities 𝝀(𝜈), solve master problem

(17) and compute 𝐱(𝜈+1) and 𝛼(𝜈+1). Compute the lower bound
(19), LB(𝜈) = 𝑓F(𝐱(𝜈+1)) + 𝛼(𝜈+1).

(3) If UB(𝜈+1)−LB(𝜈+1) ≤ 𝜖, where 𝜖 is a convergence tolerance, stop.
Otherwise set 𝜈 ← 𝜈 + 1 and continue in Step 1.

Benders decomposition is directly applicable, for example, to the
stochastic network-constrained unit commitment problem. If the com-
mitment (binary) variables of a stochastic network-constrained unit
commitment problem are fixed to given binary values, the problem
decomposes by scenario (note that only commitment variables couple
operation scenarios), and each scenario subproblem is continuous and
generally easy to solve.

Stochastic dual dynamic programming (SDDP): SDDP is a
method for solving multi-stage stochastic linear programs [38,39],
which can be generalized to address stochastic convex programs [40]. It
blends cutting plane techniques with Monte Carlo simulation in order
to tackle the multi-stage generalization of two-stage stochastic linear

programs.
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The typical structure of a problem that is amenable to resolution by
SDDP is as follows [2]: (i) decisions are made at a given time stage,
(ii) there exists a set of linear constraints that couple the decision
variables of the current time stage to the decisions of the previous
time stage, and (iii) the decisions of the current time stage obey linear
constraints that depend on uncertain input parameters (note that a
discretization of the uncertain parameters is needed). There are various
specific assumptions that enable the more structured resolution of the
problem, e.g., right-hand side uncertainty and the serial independence
of uncertain parameters [41], although more general uncertainty struc-
tures can be handled as well [42]. Generalizations of the method have
been proposed, e.g., to stochastic mixed-integer programming [43] as
well as risk-averse formulations [44].

The algorithm is typically iterating between forward passes and
ackward passes. The backward passes approximate the convex expected
ost-to-go functions (i.e., the expected cost of future problem stages)
ith an increasing degree of precision using cutting planes. The for-
ard passes try to identify the optimal policy by sampling uncertainty
ver the horizon of the problem. For more details on how to solve such
roblems, we refer the reader to [2].

The probabilistic nature of the algorithm poses non-trivial questions
f selecting convergence criteria appropriately [45]. Although the algo-
ithm is guaranteed finite convergence in the linear case [46], specific
nstances can pose serious challenges in terms of narrowing down opti-
ality gaps [44]. Methods for accelerating the basic algorithm include

egularization techniques [47] as well as cut selection techniques [48–
0]. The algorithm is highly amenable to parallel computing [39]. This
as inspired numerous parallelization schemes along both forward and
ackward passes [40,51–54] in order to further accelerate the basic
cheme. There exist various open-source packages that implement the
lgorithm, including in Matlab and Julia [40]. Despite these improve-
ents, the SDDP algorithm remains computationally complex and a

opic of active research.
Dual Decomposition: In Benders Decomposition and SDDP, we

erive an increasingly accurate description of future cost using cut-
ing planes. In contrast, dual decomposition splits the problem into
ubproblem by introducing scenario-dependent copies of the first-stage
ariables and relax the requirement that all copies have the same value.
his enables decomposition of the problem by scenario. The key idea
ehind the solution algorithm is to share information between the
ubproblems to obtain consensus regarding the optimal value of the
irst-stage variables.

In dual decomposition, we first create a scenario-dependent copies
𝐬 of the first-stage variable 𝐱 and introduce an explicit constraint
𝐬 − 𝐱 = 0 for every scenario. This constraint is referred to as a
on-anticipativity constraint, as it ensures that the scenario-dependent
ariables 𝐱𝐬 have to be chosen without knowledge (i.e., anticipation)
f the scenario-specific uncertainty realization 𝝃𝐬. Model (2) can then
e expressed equivalently as follows:

min
,𝐱𝐬 ,𝐲𝐬 ∀𝐬∈

𝑓F(𝐱) +
∑

𝐬∈
𝜋𝐬𝑓

S(𝐱, 𝐲𝐬, 𝝃𝐬) (20a)

.t.

𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (20b)

ℎS(𝐱𝐬, 𝐲𝐬, 𝝃𝐬) = 𝟎, ∀𝐬 ∈  , (20c)

𝑔S(𝐱𝐬, 𝐲𝐬, 𝝃𝐬) ≤ 𝟎, ∀𝐬 ∈  , (20d)

𝐱 − 𝐱𝐬 = 𝟎 ∶ 𝝀𝐬 ∀𝐬 ∈  . (20e)

In this problem, the variable vector 𝝀𝐬 represents the dual multipliers
ssociated with the constraints (20e) for scenario 𝐬. While the intro-
uction of the variables 𝐱𝐬 is redundant from a modeling perspective,
he benefit of the above formulation is that scenario-specific second-
tage constraints (20c) and (20d) have been isolated from the first-stage
onstraints (20b). Thus, (20e) is the only complicating (coupling) con-
traint that links the first and second stages. This allows us to apply
10

ual decomposition. s
Dual decomposition [55] is based on Lagrangian relaxation, a com-
on decomposition method which is applicable in a much broader

amily of problems than stochastic programming [56]. We define a La-
rangian relaxation of (20), where we remove the constraints (20e) and
nstead penalize the violation as 𝝀⊤𝐬 (𝐱 − 𝐱𝐬) in the objective function,
iving rise to the following problem:

min
,𝐱𝐬 ,𝐲𝐬 ∀𝐬∈

𝑓F(𝐱) +
∑

𝐬∈
𝜋𝐬𝑓

S(𝐱, 𝐲𝐬, 𝝃𝐬) + 𝝀⊤𝐬 (𝐱 − 𝐱𝐬) (21a)

.t.

𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (21b)

ℎS(𝐱𝐬, 𝐲𝐬, 𝝃𝐬) = 𝟎, ∀𝐬 ∈  , (21c)

𝑔S(𝐱𝐬, 𝐲𝐬, 𝝃𝐬) ≤ 𝟎, ∀𝐬 ∈  . (21d)

For this problem, we define the following dual function,

(𝝀) = 𝜙1(𝝀) +
∑

𝐬∈𝑆
𝜋𝐬𝜙𝐬(𝝀𝐬). (22)

here 𝝀 represents the collection of 𝝀𝐬 for all 𝐬 ∈ . The function 𝜙1(𝝀)
an be defined as follows,

1(𝝀) = min
𝐱

𝑓F(𝐱) +
∑

𝐬∈𝑆
𝜋𝐬𝝀⊤𝐬 𝐱 (23a)

s.t. 𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (23b)

while functions 𝜙𝐬(𝝀𝐬) for all 𝐬 ∈ 𝑆 are given by

𝑠(𝝀𝑠) = min
𝐱𝐬 ,𝐲𝐬

∑

𝐬∈𝑆
(𝑓S(𝐲𝐬) − 𝝀⊤𝐬 𝐱𝐬) (24a)

s.t.

ℎS(𝐱𝐬, 𝐲𝐬, 𝜉𝐬) = 𝟎, (24b)

𝑔S(𝐱𝐬, 𝐲𝐬, 𝜉𝐬) ≤ 𝟎. (24c)

For a given set of multipliers 𝝀, we can now decompose the problem
y stage and scenario, i.e., we can compute 𝜙(𝝀) by solving the problem
1(𝝀) and the |𝑆| subproblems 𝜙𝑠(𝝀𝐬) independently. We next focus
n obtaining a solution by solving the dual problem, which amounts
o maximizing the dual function 𝜙(𝝀) over 𝝀. The dual function is
oncave, giving rise to a convex, but non-differentiable maximization
roblem. There exist a variety of solution algorithms ranging from basic
ubgradient algorithms to cutting plane methods, trust region methods,
evel methods, and several other schemes [57,58].

Any feasible solution to the dual problem provides a lower bound
n the relaxed problem (21), and thus also a lower bound on the
riginal problem (20). As we approach the dual function optimum,
he duality gap of the problem, which quantifies the lack of consensus
egarding the values of the first-stage variables 𝐱𝐬, starts decreasing.
roblem-specific feasibility recovery heuristics can then be used to
ecover feasible solutions to the original problem (20) at every iteration
f the algorithm [59], providing upper bounds on the objective value.
sing the upper and lower bounds, we can measure the optimality gap
nd decide when to terminate. Vanilla subgradient algorithms, which
ay exhibit unstable behavior, can be further enhanced by replicating

cenario-specific constraints in the subproblem which computes 𝜙1(𝜆).
hese techniques have been used successfully for solving large-scale
tochastic unit commitment problems [30,31,59].
Progressive Hedging: An alternative approach for decomposing

he problem is to consider an augmented Lagrangian of the original
roblem [55], which amounts to adding a penalty term (𝜌∕2)‖𝐱 − 𝐱𝐬‖2
o the objective. With this term, the problem becomes non-separable,
.e., we cannot directly split it up by scenarios. There are however
nown algorithms, called proximal algorithms [60,61], which main-
ain separability while improving the stability of the decomposition.
he progressive hedging algorithm is essentially a proximal method
pplied to two-stage stochastic programs. The algorithm uses only

cenario-dependent first-stage variables, and decomposes the problem



Electric Power Systems Research 214 (2023) 108725L.A. Roald et al.

s

a

T
o
s

4

w
w
g
W
v
s
t
e
r
a

m
i
p
t
c
o
a
n
(

m
c
s
t

m

s

s

by scenario while using a quadratic term to penalize a lack of consensus
among scenarios. Concretely, the subproblem that is being solved at
every iteration for every scenario 𝐬 ∈  is:

min
𝐱𝐬 ,𝐲𝐬

𝜋𝑠𝑓
F(𝐱𝐬) + 𝜋𝐬𝑓

S(𝐲𝐬)

+ 𝝀⊤𝐬 (𝐱𝐬 − 𝐱̄) + 𝜌
2
‖𝐱𝐬 − 𝐱̄‖2 (25a)

.t.

𝒉F(𝐱𝐬) = 𝟎, 𝒈F(𝐱𝐬) ≤ 𝟎, (25b)

ℎS(𝐱𝐬, 𝐲𝐬, 𝝃𝐬) = 𝟎, ∀𝐬 ∈  , (25c)

𝑔S(𝐱𝐬, 𝐲𝐬, 𝝃𝐬) ≤ 𝟎, ∀𝐬 ∈  , (25d)

where 𝐱̄ =
∑

𝐬∈ 𝜋𝐬𝐱𝐬 is the average first-stage decision. The overall
lgorithm can be described as follows [62]:

(0) Define some non-anticipative 𝐱𝟎, some initial multiplier 𝝀0, a
penalty parameter 𝜌 > 0, and a tolerance 𝜅. Set 𝑘 = 0. Go to
step 1.

(1) Solve problem (25) for each scenario 𝐬 ∈  with 𝝀𝑘 to obtain a
solution (𝐱𝐬, 𝐲𝐬).

(2) Compute the average first-stage decision 𝐱̄(𝑘+1) and let 𝝀(𝑘+1)𝐬 =
𝜆(𝑘)𝐬 + 𝜌(𝐱𝐬 − 𝐱̄(𝑘+1)).

(3) If | ̄𝐱(𝑘+1) − 𝐱̄(𝑘)| ≤ 𝜅 and |𝝀(𝑘+1)𝐬 − 𝝀(𝑘)𝐬 | ≤ 𝜅, then stop. Otherwise,
let 𝑘 = 𝑘 + 1 and go to step 1.

he choice of the parameter 𝜌 is especially crucial for the performance
f the algorithm [55]. The method has been applied successfully to the
tochastic unit commitment problem [63].

.3. Solution methods for robust optimization problems

When solving robust optimization problems of the form (4) (or
ith robust constraints of the form (9)), the main challenge is that
e have to identify the realization of 𝝃 within the uncertainty set that
ives rise to the worst-case cost (or worst-case constraint violation).
hich realization is the worst does, however, depend on our decision

ariables 𝐱 and 𝐲𝝃 and thus cannot be determined a priori. Instead,
olution algorithms for robust optimization problems aim to identify
he worst-case realization as part of the solution process. We next
xplain one of the most common methods for addressing two-stage
obust problems, namely column-and-constraint generation (CCG). We
lso briefly discuss methods for robust constraint satisfaction.
Column-and-Constraint Generation: CCG is also known as a pri-

al cut algorithm and is similar to Benders Decomposition in that we
teratively update a master problem. However, while Benders Decom-
osition adds constraints that reflect the cost of all possible realizations,
he CCG iteratively adds new scenarios with corresponding sets of
onstraints and variables that represent the worst-case conditions. The
verall idea is that robust optimization problems (4) may require only
few scenarios to fully reconstruct the optimal solution. Thus, it is

ot necessary to include all scenarios contained in the uncertainty set
which could be potentially infinite for continuous uncertainty sets).

To identify the worst-case scenarios, the CCG algorithm exploits a
aster-adversarial problem framework. Specifically, the CCG problem

reates a tractable master problem in order to identify a candidate
olution of the first-stage variables 𝐱𝑘. This typically involves relaxing
he original problem (4) to only consider a small sample set 𝑆𝑘 ⊂ 𝑆,

in
𝐱,𝐲𝐬

𝑓F(𝐱) + 𝜂 (26a)

.t.

𝜂 ≥ 𝑓S(𝐱, 𝐲𝐬, 𝝃𝐬), ∀𝐬 ∈ 𝑆𝑘, (26b)

𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (26c)
S 𝑘
11

ℎ (𝐱, 𝐲𝐬, 𝝃𝐬) = 𝟎, ∀𝐬 ∈ 𝑆 , (26d)
𝑔S(𝐱, 𝐲𝐬, 𝝃𝐬) ≤ 𝟎, ∀𝐬 ∈ 𝑆𝑘. (26e)

An adversarial problem, also called oracle subproblem or just subprob-
lem, is designed to check if the candidate first-stage solution 𝐱(𝑘) is
inducing a new worst-case (adversarial) scenario of the subproblem.
If this is the case, the scenario set used in the master problem for the
next iteration 𝑆(𝑘+1) is updated to include the new worst-case scenario
𝝃𝑠 with corresponding second-stage variables 𝐲𝐬 and constraints.

Note that, for linear robust programs with relatively complete re-
course, the relaxed master problem (26) always provides a lower bound
for the original problem, while the worst-case cost of the subproblem
provides an upper bound. Thus, the CCG algorithm provides an opti-
mality gap along the iterative process, and eventually, it provides a
global solution with convergence guarantees [64].

Robust Constraint Satisfaction: For problems with robust con-
straints of the form (9), there exist several classes of problems which
can be efficiently represented and solved. In general, the key idea of
ensuring robust constraint satisfaction is to find a way to identify the
worst-case realizations of the uncertainty set and enforce constraints
for those realizations. For some classes of problems, such as linear
problems with elliptical or polyhedral uncertainty sets, it is possible
to directly enforce constraints that guarantee robust constraint satis-
faction. For other classes of problems, it may be necessary to consider
a constraint generation procedure (similar to the one above) where we
iterate between solving a master problem and identifying and adding
constraints for the worst-case realizations. We refer interested readers
to [65] for an introduction and overview.

4.4. Reformulations and solution approaches for chance constraints

The main challenge in solving chance-constrained (and distribution-
ally robust chance-constrained) problems is efficiently evaluating (or
upper bounding) the violation probabilities involved in single (5) and
joint (6) chance constraints. In this section, we focus on the differ-
ent ways in which chance-constrained problems can be reformulated
into tractable deterministic optimization problems. We focus less on
discussing the solution algorithms themselves since the reformulated
problems can often be solved using standard solvers. However, scalabil-
ity to large problems often requires the development of special purpose
algorithms or may leverage solution algorithms related to the ones
described above for risk neutral or robust optimization problems.

Approximating joint chance constraints with single chance
constraints: Single chance constraints consider the violation prob-
ability of each constraint in isolation and thus focus on the scalar
probability distribution of a single constraint function. Problems with
single chance constraints are typically more straightforward to solve
than problems with joint chance constraints, where the correlation and
trade-offs of violations across different constraints (with possibly com-
plicated joint probability distributions) become important. As a result,
some publications seek to enforce a joint chance-constraint through the
use of single chance constraints. A simple way to achieve this, known
in the literature as Bonferroni approximation, is to split the acceptable
joint violation probability 𝜖𝐽 equally across all 𝑛 constraints and enforce
ingle chance constraint with probability 𝜖𝑆 = 𝜖𝐽∕𝑛. However, this

method typically leads to very conservative results with lower-than-
required violation probabilities and a higher cost. This is primarily
due to the fact that (i) not all constraints will experience violations
and thus will not be ‘‘using’’ their allotted violation probability, and
(ii) this method double counts violations in situations where several
constraints are violated simultaneously. There exist several methods
in the literature that aim to mitigate these drawbacks, for example
through iterative risk allocation [66], estimating the joint violation
probability of different constraints [67], and using chance-constraint
tuning [68]. However, these methods often remain computationally
demanding and may yield sub-optimal results.

Sample Average Approximation: A common method to solve op-
timization problems with chance constraints is to use a sample average
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approximation [69], which enforces the desired violation probability
empirically based on a set of samples. The key idea is to replace 𝝃 by
a set of samples 𝐬 ∈ 𝑆 and allow for constraint violations in 𝜖 percent
f the samples (e.g., if we have 100 equiprobable samples and desire a
iolation probability 𝜖 ≤ 0.05, the sample average approximation would
llow violations for 5 samples). This formulation has the appealing
roperties that it (i) can solve joint chance constraints and (ii) allows a
ot of flexibility in the modeling of the second stage (e.g., it is possible
o introduce new decision variables 𝐲𝐬 for each considered realization).

However, the classic formulation of the problem [69] uses integer
variables to represent whether or not a particular sample is among
the violated ones, thus limiting the number of samples that can be
considered.

A variety of methods have been proposed to remedy this lack of
scalability, which is rooted in the non-convexity of the chance con-
straint. Methods for obtaining upper bounds on the problem include the
conservative CVaR approximation [70] or, more recently, the ALSO-
X algorithm [71,72] which has been shown to be a tighter convex
approximation than CVaR. Approximation methods based on non-linear
programming, which creates a smoothed, differentiable version of the
step function, include [73,74].

An important challenge of the sample average approximation is
that the number of considered samples may be too small to rigorously
guarantee that the chance constraint is satisfied. Specifically, the em-
pirically observed violation probability (i.e., the percentage of samples
that are violated) may be different from the true violation probability
since the chosen set of samples may not accurately represent the
underlying distribution. It is possible to introduce an a posteriori test to
assess whether a solution satisfies a desired violation probability [69];
however, it is challenging to know how to improve the solution if it
fails to pass the test [68].

Scenario Approach: The scenario approach [75] is another sample-
based method for solving joint chance constraints, which is primarily
applied to convex optimization problems. It does not make any assump-
tions about the underlying distribution, except for the availability of
𝑁 i.i.d. samples of 𝝃, where the value of 𝑁 depends on the number
of decision variables in the problem. The main difference between the
sample average approximation and the scenario approach is that the
scenario approach enforces the constraints for all the samples (i.e., it
is targeting a 0% empirical violation probability). Note that although
the number of samples needed can be very large for large problems,
it is typically easier to solve a problem with the scenario approach
than with sample average approximation. This is because enforcing all
constraints does not require consideration of binary variables. Another
benefit of the scenario approach is that it provides a priori probabilistic
guarantees on solution performance, i.e., this approach guarantees that
the true violation probability of the joint chance constraint is below 𝜖.

However, the scenario approach also tends to give conservative
results in power system problems [33,76]. Specifically, by requiring
constraint satisfaction for all samples, it tends to be very sensitive to the
worst-case samples 𝜉𝐬 within the sample set and typically finds solutions
that have a much lower violation probability than the acceptable
violation probability 𝜖. As a result, the scenario approach may fail to
find a feasible solution even for problems where one exists. It is also
interesting that the scenario approach has a curiously adversarial rela-
tionship to data. Where other approaches tend to find better solutions
when more data and thus information about the underlying distribution
becomes available, the solutions obtained with the scenario approach
can only become more conservative if more samples are added as each
sample adds another set of constraints that need to be satisfied.

Another drawback of the scenario approach is that it cannot handle
scenario-dependent second-stage variables 𝐲𝐬, but requires the use of a
recourse policy to represent second-stage decisions. This is because the
required number of scenarios 𝑁 depends on the number of decision
variables. As a result, introducing new variables for each scenario
12

would also require us to update the number of scenarios. Furthermore,
the original scenario approach only applies to convex problems. This
is partially remedied by [77], which uses the scenario approach to
define a robust uncertainty set, and by [78], which provides a posteriori
guarantees for non-convex problems.

Moment-based Reformulations: A common method for reformu-
lating single chance constraints into a tractable form is to use a
moment-based reformulation. This method typically relies on affine re-
course policies in order to express the reaction to uncertainty, and uses
the first and second moments (i.e., the mean and standard deviation)
of 𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃) to represent (5) as

𝜇S
𝑖 (𝐱, 𝐲𝝃 , 𝝃) + 𝜌(1 − 𝜖)𝜎S𝑖 (𝐱, 𝐲𝝃 , 𝝃) ≤ 𝟎, (27)

where 𝜇S
𝑖 (𝐱, 𝐲𝝃 , 𝝃) and 𝜎S𝑖 (𝐱, 𝐲𝝃 , 𝝃) indicate the mean and standard de-

viation of 𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃), respectively. In (27), the function 𝜌(1 − 𝜖) repre-
sents our knowledge and/or assumptions regarding the distribution of
𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃), which is related to, but not the same as, the distribution
of 𝝃. When evaluated for our chosen 𝜖, the function 𝜌(1 − 𝜖) is a
constant input parameter to our model. Generally, a smaller violation
probability 𝜖 will lead to a larger value of 𝜌(1 − 𝜖). Note that since
the standard deviation 𝜎S𝑖 (𝐱, 𝐲𝝃 , 𝝃) is always positive, a larger value of
𝜌(1 − 𝜖) indicates that the constraint becomes more conservative.

We next discuss several options for defining the function 𝜌(1 − 𝜖).
f 𝝃 follows a multivariate normal distribution and 𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃) is an
ffine function of 𝝃, then 𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃) will be normally distributed with
ean (29) and standard deviation (30), respectively. In this case, by

hoosing 𝜌(1 − 𝜖) as the inverse cumulative distribution function of
he standard normal distribution evaluated at 1 − 𝜖, the moment-based
eformulation (27) is exact (i.e., it allows the violation probability to
each, but not exceed 𝜖 and provides the least conservative value of
(1 − 𝜖)). However, the assumption of a normal distribution may be
verly restrictive in most practical applications. To address such cases,
t is possible to define 𝜌(1− 𝜖) to guarantee the satisfaction for a family
f possible distributions, giving rise to distributionally robust chance
onstraints. While still maintaining the same tractable form as in (27),
e can define 𝜌(1 − 𝜖) to guarantee security for all distributions which

hare the same moments [79] or add additional assumptions such as
ymmetry or unimodality [9]. Examples of several such reformulations
or an optimal power flow problem are given in [10]. Alternatively,
t is possible to use data to tune 𝜌(1 − 𝜖) to achieve the desired
erformance guarantees [68]. Other methods to handle more general
ases of distributionally robust chance constraints are discussed below.

The moment-based reformulation (27) holds for general distribu-
ions and constraint functions 𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃). In the general case, it can be
hallenging to evaluate the mean and standard deviation of the con-
traint functions, though methods such as polynomial chaos expansion
an be applied [80]. However, if 𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃) is an affine function of 𝝃,

i.e.,

𝑔S𝑖 (𝐱, 𝐲𝝃 , 𝝃) = 𝑎(𝐱, 𝐲)𝜉 + 𝑏(𝐱, 𝐲), (28)

we can express the mean and standard deviation as

𝜇S
𝑖 (𝐱, 𝐲𝝃 , 𝝃) = 𝑎(𝐱, 𝐲)𝝁𝝃 + 𝑏(𝐱, 𝐲), (29)
S
𝑖 (𝐱, 𝐲𝝃 , 𝝃) =

√

𝑎(𝐱, 𝐲)𝛴𝝃𝑎(𝐱, 𝐲)⊤, (30)

where 𝜇𝝃 and 𝛴𝝃 represent the mean vector and the covariance matrix
of 𝝃, respectively. We note that the above equations hold for any
distribution of 𝝃, as long as 𝝁𝝃 and 𝛴𝝃 are finite. Furthermore, if the
coefficients 𝑎(𝐱, 𝐲) are linear in the decision variables 𝐱 and 𝐲, then
mean (29) is a linear function and the standard deviation 𝜎S𝑖 (𝐱, 𝐲𝝃 , 𝝃)
is a second-order cone. In this case, the reformulated constraints (27)
are second-order cone constraints, which are convex and give rise to
scalable and efficiently solvable optimization problems [81].
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4.5. Reformulations of problems with distributionally robust objective or
constraints

A common approach for solving distributionally robust optimization
problems is to use affine recourse policies, as described above in Sec-
tion 4.1. Using these policies in the distributionally robust optimization
problem (3), the worst-case expected cost max𝑃∈ E𝑃

[

𝑓S(𝐱, 𝐲𝝃 , 𝝃)
]

in
the objective function is reformulated as max𝑃∈ E𝑃

[

𝑓S(𝐲(𝟏)𝝃 + 𝐲(𝟎))
]

,
where the parameters 𝐲(𝟏), 𝐲(𝟎) are first-stage variables shared among
all scenarios. If the ambiguity set  is represented using the moment-
based approach, where we assume that the values of the mean and
covariance are exactly known, the min–max objective function (3a)
can be straightforwardly reformulated as a standard objective function,
which minimizes a quadratic term excluding 𝝃 [82]. If the ambiguity set
 is represented using an approach based on the Wasserstein metric,
the objective function reformulation requires a more complicated math-
ematical procedure, as thoroughly explained in [83] (Theorem 4.2). For
more information on distributionally robust optimization, we refer the
reader to [84,85].

In the case of a distributionally robust chance constraint with affine
policies min𝑃∈ P

(

𝑔S(𝐱,𝐲(𝟏)𝝃 + 𝐲(𝟎), 𝝃) ≤ 𝟎
)

≥ 1−𝜖, a common approach
is to conservatively approximate it by a distributionally robust CVaR
constraint, i.e.,

max
𝑃∈

CVaR𝜖
𝑃
(

𝑔S(𝐱,𝐲(𝟏)𝝃 + 𝐲(𝟎), 𝝃)
)

≤ 𝟎, (31a)

where

CVaR𝜖
𝑃
(

𝑔S(𝐱,𝐲(𝟏)𝝃 + 𝐲(𝟎), 𝝃)
)

=

min
𝜃

{𝜃 + 1
𝜖
E𝑃 [𝑔S(𝐱,𝐲(𝟏)𝝃 + 𝐲(𝟎), 𝝃) − 𝜃]+}, (31b)

here [⋅]+ = max(0, ⋅). This is a conservative approximation since the
VaR accounts for the violation magnitude and may eventually enforce
he constraint with a higher probability than the one imposed in the
riginal distributionally robust chance constraint. Nonetheless, the dis-
ributionally robust CVaR constraint guarantees the satisfaction of the
riginal distributionally robust chance constraint. In the case where the
irst two moments (mean and standard deviation) are known exactly,
ut no other information is known, this reformulation is exact. We
efer the reader to [7] for further details on reformulating the resulting
ax–min problem obtained by substituting the CVaR definition (31b)

n (31a).

.6. Probabilistic and robust equality constraints

A particular challenge for problems that arise in many power sys-
ems settings (e.g., problems with power flow constraints) is to consider
robabilistic equality constraints, such as

𝜉

(

ℎS𝑗 (𝐱, 𝐲𝝃 , 𝝃) = 0
)

≥ 1 − 𝛼𝑗 . (32)

n power system optimization problems, the equality constraints
S
𝑗 (𝐱, 𝐲𝝃 , 𝝃) = 0 typically represent the physical laws that underpin
he operation of the electric power system, such as the power flow
quations. A violation of these constraints thus indicates that the phys-
cal laws which govern the entire model are violated and, as a result,
ll other values that are derived from those equations (e.g., power
lows, voltages, and load served) cannot be trusted. A possible way
o circumvent this problem is to enforce the equality constraints as
obust constraints, i.e., enforce (9a) instead of (5a). In the case of
inear constraints, the equality constraints can be used to substitute
tate variables (e.g., in DC power flow, we can use the nodal power
alance constraints to substitute the voltage angle variables [33]) and
nforce conditions on the system recourse (e.g., choose the parameters
f an affine recourse policy to ensure that the system remains balanced
t all times). In the case of non-linear equality constraints (such as the
C power flow constraints), the representation of equality constraints
13
s more involved. Existing approaches include the use of polynomial
haos expansion to represent the propagation of uncertainty through
he non-linear system of constraints [86] and the derivation of robust
nner approximations [87]. We discuss the challenges of formulating
ractable versions of these constraints for linear DC and non-linear AC
ower flow constraints in Section 11.

. Evaluation of solution quality

In many problems under uncertainty, solution quality may be lim-
ted due to assumptions and model approximations (e.g., assumptions
egarding the distribution of 𝝃, limited numbers of scenarios 𝐬 ∈ , and
he use of linear approximations for non-linear constraints). An ex-post
ut-of-sample simulation is the most common approach to evaluate the
uality of a solution, irrespective of the approach that has been used
or decision-making under uncertainty, e.g., stochastic programming,
obust optimization, chance-constrained optimization, distributionally
obust optimization, etc.

For given sources of uncertainty 𝝃, consider 𝑁 samples obtained
rom a probabilistic forecast or empirical observations, with each sam-
le representing a potential realization of 𝝃. Arbitrarily split these
amples into two separate sets of samples, each with 𝑀 and 𝐾 samples,
uch that 𝑀 +𝐾 = 𝑁 and 𝐾 > 𝑀 . We may use the former set with 𝑀
amples to provide scenarios in stochastic programming, build an un-
ertainty set in robust optimization, or construct a moment- or metric-
ased ambiguity set in distributionally robust chance-constrained opti-
ization. This set with 𝑀 samples is widely referred to as the seen or
raining set. Building on this set, in the so-called in-sample simulation,
e solve the underlying problem, e.g., the two-stage stochastic program

2), the distributionally robust problem (3), the robust problem (4), or
ny of the formulations with probabilistic or robust constraints, in order
o obtain the in-sample value for the objective function and a solution
or the decision variables. For example, this value in the case of the
wo-stage stochastic program (2) is 𝑓F(𝐱∗) + E𝑃

[

𝑓S(𝐱∗, 𝐲∗𝝃 , 𝝃)
]

, where
𝐱∗ and 𝐲∗𝝃 are the optimal values obtained for the first- and the second-
tage variables, according to the 𝑀 samples used in the training set.
enote this in-sample value of the objective function as 𝜅ins.

Now, we fix the value of the first-stage variables to that achieved in
he in-sample simulation, i.e., 𝐱∗, and deterministically solve the second-
tage problem 𝐾 times, each time using a sample that has not been
sed in the in-sample simulation. Hence, the set of 𝐾 samples is called
he unseen or testing set. To ensure a valid evaluation, it is typical
o use 𝐾 ≫ 𝑀 . For each unseen sample 𝝃𝑖, we solve the following
eterministic problem:

in
𝐲

𝑓S(𝐱∗, 𝐲, 𝝃𝑖) (33a)

.t.

ℎS(𝐱∗, 𝐲, 𝝃𝑖) = 𝟎, (33b)

𝑔S(𝐱∗, 𝐲, 𝝃𝑖) ≤ 𝟎. (33c)

We can now obtain the out-of-sample value of the objective func-
ion, denoted as 𝜅oos, by summing up the first-stage value 𝑓F(𝐱∗)

achieved from the in-sample simulation and the average second-stage
value, i.e., the average value of the objective function (33a) obtained
over the 𝐾 solutions to the deterministic problem (33).

The difference between 𝜅ins and 𝜅oos is a metric for the solution
quality. A comparatively large difference indicates a lower-quality
solution, implying that the training set with 𝑀 samples has not been
sufficient to properly represent the underlying uncertainty. Therefore,
the training set should be improved either by increasing the number of
samples and/or by selecting more representative samples.

One may also exploit the out-of-sample simulation to compare
the performance of different approaches discussed for decision-making
under uncertainty and to benchmark against deterministic models such

as the perfect information model or the certainty equivalent. The
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Table 1
Overview of applications and their main characteristics.

Application Problem type Main uncertainty Uncertainty Goal of the Optimization Reformulations/
(time scale) source(s) representation problem formulation solution methods

Security- Power system Contingencies Robust Guarantee Robust constraint Algorithms for
constrained operations (finite set of discrete uncertainty set post-contingency satisfaction robust optimization
optimal power (day-ahead events) with selected constraint satisfaction
flow to real-time) contingencies for all contingencies

Chance- Power system Renewable energy Probability Limit probability of Chance-constrained Various
constrained operations (continuous variations distribution, constraint violations optimization reformulations
optimal power (day-ahead in generation) moments, or
flow to real-time) scenarios

Distributionally Power system Renewable energy Family of Limit the worst-case Distributionally Moment-based or
robust optimal operations (continuous variations probability cost (or violation robust optimization metric-based
power flow (day-ahead in generation) distributions probability) among reformulations

to real-time) family of distributions

Multi-area Power system Total power Probability Limit probability Chance-constrained Analytic or
reserve operations imbalance distributions, of running out optimization scenario-based
dimensioning (months) quantiles of reserves

Stochastic unit Power system Renewable energy Scenarios Minimize expected Two-stage stochastic Algorithms for
commitment operations and contingencies cost of operations optimization two-stage stochastic

(day-ahead) optimization

Transmission Power system Long-term uncertainty Scenarios Minimize expected Two- or multi-stage Variety of
expansion long-term (e.g., climate change, capital cost (CAPEX) stochastic algorithms
planning planning technology trends) and and operational cost programming

(decades) short-term uncertainty (OPEX)
(renewable generation)

Choice of Any problem Renewable energy Focused on Model Chance-constrained, Convex restrictions,
power flow with power flow (continuous variations continuous propagation distributionally polynomial chaos
formulation constraints in generation) uncertainty of uncertainty robust, robust expansion, others

Planning for Generation Reservoir inflows, Scenarios Optimal generation Multi-stage Stochastic
hydro-thermal planning future energy prices schedule and stochastic dual dynamic
power systems (yearly) ‘‘value of water’’ programming programming

Energy Consumer Future energy prices Scenarios Minimize expected Two-stage stochastic Algorithms for
procurement perspective cost of energy across optimization two-stage stochastic

(months) multiple markets optimization
difference in solution quality between the stochastic model and the
perfect information model is typically referred to as the Expected Value
of Perfect Information (EVPI) since it measures the benefit of having
access to the true value of 𝝃. The difference in solution quality between
the stochastic model and the certainty equivalent models is referred to
as the Value of Stochastic Solution (VSS), and measures the benefit of
onsidering 𝝃 as uncertain parameters rather than a fixed forecast. For
ore information, we refer to the reader to Section 2.6 of [88].

In addition, since the out-of-sample evaluation involves a sequence
f simpler optimization problems (i.e., one for each scenario), we may
hoose to include more detailed constraints (such as an AC power
low approximation instead of a DC approximation). This can allow
s to assess whether the approximation of the constraints significantly
mpacts the solution quality.

art II: Existing and Emerging Applications of Power System Opti-
ization under Uncertainty

In the following, we present a selection of established and emerging
pplications of decision making under uncertainty in electric power
ystems. The list is not meant to be exhaustive, but was selected to
rovide examples different problem formulations and solution methods.
he applications primarily focus on power system operations and plan-
ing, taking the perspective of a transmission system operator. We have
lso included some applications that discuss the perspective of a hydro-
ower generation company (who need to decide on a bidding strategy
r generation schedule) or energy consumers (who need to identify
strategy for energy procurement). However, these examples are not

s comprehensive as the coverage of the system operator perspective,
nd we acknowledge that there is a large part of relevant literature on
lectricity markets, energy trading and load management that is not
overed in this paper.

The sections are loosely related to each other, and can be read
14

ither from beginning to end or as stand-alone sections that provide
an introduction to individual applications. To help guide the reader
in identifying the sections that are most relevant to them, we provide
a brief overview of the content in this second part of the paper. This
content is also summarized in Table 1.

Section 6 discusses security-constrained optimal power flow, which
focuses on securing the system against uncertainty arising from com-
ponent outages. This problem is traditionally formulated as a robust
optimization problem, where constraints are enforced for all compo-
nent outages in a predefined set (e.g., all 𝑁 − 1 situations). Section 7
discusses the question of securing the system against variability and
uncertainty arising from renewable energy generation, focusing on
chance-constrained optimal power flow. This also includes Section 7.2
on distributionally robust formulations. Section 8 discusses chance
constraints in the context of multi-area reserve scheduling. Section 9
extends the discussion of transmission system operations to day-ahead
unit commitment, which includes discrete variables to represent the
on/off status of generators and focuses on two-stage stochastic pro-
gramming formulations. Section 10 discusses the consideration of un-
certainty in the context of long-term transmission expansion planning.
The sources of uncertainty in long-term planning are different than
in short-term planning as the considered time horizon stretches across
multiple years or decades, requiring quantification of long-term uncer-
tainty such as load growth, fuel prices, or climate change projections.
Section 11 is dedicated to a more detailed discussion of common
choices and implications of different power flow formulations, which is
a common thread in the above applications. In Section 12, we discuss
planning for hydro-thermal power systems, where a main source of
uncertainty is the inflow of water to hydropower reservoirs. Finally,
Section 13 discusses the question of procuring energy for a large
consumer, discussing uncertainty associated with price and contract
options.
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6. Security-constrained optimal power flow

Contingencies due to transmission line, transformer, and generator
failures can result in large-scale blackouts. Shortly after the optimal
power flow problem was first formulated by Carpentier [89], a major
blackout in the Northeastern United States and Ontario, Canada in
1965 motivated system operators to explicitly consider contingencies in
operational planning. Uncertainty and risk arising from contingencies is
traditionally managed by enforcing constraints on the post-contingency
operating conditions, resulting in the so-called Security-Constrained Op-
timal Power Flow (SCOPF) problem. The SCOPF problem was first
proposed in [90] and continues to receive significant attention due to
remaining computational challenges [91–93] and the evolving ability
to assess the risk and mitigate the impact of contingencies [94–97].
Contingencies are discrete events with a certain probability of occurring
(individually or in combination). Due to the consideration of potential
future contingency events, SCOPF is, at heart, an optimization problem
under uncertainty.

The traditional form of the SCOPF problem seeks to identify an
operating point which ensures that the system can continue to operate
without significant disruption despite experiencing any contingency in-
cluded in the so-called contingency list [98]. Contingency lists typically
include the failure of any individual component as specified by the 𝑁−1
ecurity criterion, but are also frequently expanded to incorporate other
vents that are considered likely (i.e., have a sufficiently high prob-
bility of occurring). Likely contingencies may include, e.g., common
ode failures [99] or multiple simultaneous failures in situations where

xternal circumstances such as, e.g., severe weather or terrorist threats
ncrease the probability of such contingencies [100,101]. The question
f which contingencies to include can be understood as the problem of
efining an uncertainty set for a robust optimization problem.

While the traditional form of this problem assumes a preventive
pproach where system set-points are determined to keep the system
afe if any of the contingencies occurs [102], the SCOPF problem can
lso be formulated to allow for post-contingency control actions (often
eferred to as corrective or remedial actions) that are taken in response
o a specific contingency [103]. Thus, the security-constrained optimal
ower flow problem is equivalent to an (adaptive) robust optimization
roblem where the set of considered contingencies represent the uncer-
ainty set. The post-contingency control actions, if included, represent
he adaptive recourse actions. It is worth noting that this uncertainty
et has finite support, i.e., it consists of a finite number of possible re-
lizations, and the problem can thus be solved by enforcing constraints
or each contingency in the specified set. Although the SCOPF problem
s often not explicitly characterized as a robust optimization problem,
any of the methods that are used to solve the SCOPF, including

ontingency screening [104,105] and methods to iteratively build a
et of constraints representing worst-case post-contingency operating
onditions with load and generation uncertainty [106,107], are similar
o techniques used to solve other robust optimization problems.

Recently, there has been an increasing interest in rethinking whether
he traditional SCOPF model is the most appropriate way to mitigate
he risk of contingencies. In particular, the definition of a contingency
ist relies on a vaguely defined notion of ‘‘likely contingencies’’ and
he SCOPF problem ensures that no constraint violations will occur
ue to any contingency on this list. This, on the one hand, can
ead to significant resources being spent on mitigating the effects of
ontingencies that are not particularly dangerous, such as cascading
vents that do not lead to load loss and only impact a few transmission
lements. In such cases, ensuring 𝑁 − 1 security may not always

be socio-economically desirable. On the other hand, defining the list
of 𝑁 − 1 events based on the likelihood of occurrence may leave
out potentially important low-probability, high-impact events, such as
common-mode failures (i.e., multiple failures due to a single cause) that
could cause a large-scale blackout. A more comprehensive approach
15

for mitigating the risk of contingencies explicitly considers both the
probability and the impact of contingencies. One line of research devel-
ops risk functions that describe the risk of post-contingency component
overloads [94]. Extensions of this work on risk functions allow the
risk to be controlled by FACTS devices [108] and accounted for price
formation [109]. Other extensions generalize this work to consider
uncertainties in the cost and availability of remedial actions [96].
The inclusion of risk functions make the problem harder to solve,
motivating the need for solution algorithms based on relaxation and
decomposition [110]. Other researchers take a more ambitious view
and aim to simulate actual load shed following a contingency [111].
This is challenging because it might require simulating multiple cas-
cading steps, which has been addressed in [111] by only considering
events that significantly contribute to system risk. A related set of works
challenge the idea that preventive and corrective control are equally
secure by explicitly modeling the probability and impact of corrective
action failures [112–114].

Although risk-based approaches promise a more comprehensive
view of system security, there are several significant challenges that
remain. For example, risk-based approaches can cause the complexity
of the problem to explode, making the development of scalable solution
algorithms challenging. Furthermore, the additional input data to the
problem (i.e., the probability of contingencies and the impact of load
shed) is more challenging to obtain, and requires careful consideration
as it may significantly impact the results.

7. Chance-constrained optimal power flow

Chance-constrained optimal power flow problems consider the prob-
lem of how to dispatch generators in day-to-day operations while
ensuring that system constraints will be satisfied with a specified
probability despite uncertainty in load and renewable generation.
Choosing an acceptable violation probability is perceived as an intuitive
and transparent way of determining a probabilistic security level by
transmission operators [115], and this practice also aligns well with
established industry practice for reserve dimensioning [116,117] and
the definition of reliability margins in European market coupling [118].

The problem has been formulated both with or without considera-
tion of contingencies. The simultaneous consideration of chance con-
straints and (robust) security constraints to secure the system against
both renewable variability and contingencies is necessary to ensure
system security in practical operations. When security constraints are
included, the violation probability does not represent the probability
of an actual, physical system overload (such as the overload of a
transmission line), but rather the probability of violation of the 𝑁 − 1
security constraints. The physical overload would only be realized
if the chance-constraint violation happens simultaneously with the
contingency. However, many countries regulate transmission system
operation to always ensure 𝑁 − 1 security. As such, the chance con-
straint violation probability could be interpreted as the probability of
complying with such regulations without further control action.

The uncertainty from renewable energy impacts both generation
and transmission constraints. The generators must reserve some capac-
ity to be able to balance the system as renewable generation varies,
and transmission capacity has to be limited to accommodate changes in
power flow as power injections from both renewable and conventional
generators vary. The reduction in available generation and transmission
capacity can be understood as an uncertainty margin [119], i.e., a
security margin against uncertainty. While early papers on chance-
constrained optimal power flow tended to leave system balancing to
the slack bus [120], Vrakopoulou et al. [121] proposed modeling these
adjustments via an affine control policy which uses participation factors
to distribute the power imbalance across several generators in the
system. This model is very close to practical operation in the electric
grid as it mimics the use of automatic generation control and has
since been widely adopted. The participation factors can be treated

as known parameters, based, e.g., on the total generation capacity of
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individual generators [119] or they can be optimized as part of the
problem [81]. The affine control policy can be extended to consider
that generators may react differently to wind power plants in different
locations, thus providing better ability to manage congestion and trans-
mission constraints [122,123]. A significant benefit of the affine control
policy is that it is easy to implement the control policy in real-time
operations. Furthermore, the use of an affine control policy allows us to
reformulate the chance-constrained optimal power flow problem with
a single chance constraint on generators and transmission lines as a
second-order cone program using a moment-based reformulation [81],
which reduces to a linear program in the case of fixed participation
factors [124]. With the integration of unit commitment and 𝑁 − 1
constraints [125], the same problem becomes an mixed-integer second-
order cone problem that can be solved using a modified Benders
decomposition algorithm. Alternatively, using the scenario approach,
we can reformulate the chance-constrained OPF with affine control
policies and joint chance constraints as a linear program, though the
formulation becomes bi-linear if generator outages are considered as
part of the constraints [121]. Others have solved the joint chance
constrained optimal power flow using a sample average approach,
leveraging either non-linear programming [73] or a combination of
constraint screening and bound tightening based on tight valid inequal-
ities [126] to obtain a scalable formulation. Many successful solution
algorithms [81,125,127] take advantage of the fact that only a few
of the power flow constraints in the optimal power flow problem are
binding (i.e., there are only a few transmission lines that are congested).

7.1. More complex controls and recourse policies

Although the affine control policy is an accurate and appropriate
model for small power imbalances, it is not realistic if the imbalances
are large. In these cases, it is necessary to consider more general
generation control policies, which include saturation of reserve ca-
pacity (i.e., that generators will stop contributing reserves when they
reach maximum capacity [128]), integration of tertiary reserve ac-
tivation [25], and curtailment of wind power generation above a
certain threshold [36]. Furthermore, using generators for balancing
and congestion management is only one option. Several other options
for mitigating the impact of uncertainty on the system have been
proposed in the context of chance-constrained optimal power flow,
including demand-side management with thermostatically controlled
loads [129,130] and electric vehicle charging [131]. Other lines of
work have proposed changing the settings of phase-shifting transform-
ers or HVDC lines [127,132,133] to better control power flows and
implementing dynamic line rating [134]. Some methods also consider
chance-constrained optimal power flow as part of multi-energy system
models, such as natural gas [135] and water distribution systems [136].

7.2. Distributionally robust formulations

The papers on chance-constrained optimal power flow mentioned
above consider a range of different reformulation strategies. To high-
light the use of distributionally robust formulations, we provide a brief
review. Ref. [137] develops a distributionally robust optimal power
flow that is robust to ambiguity in the first and second moment and
proposes a solution approach based on cutting planes. Ref. [138] devel-
ops a distributionally robust optimal power flow problem with dynamic
line rating, exploring both moment-based and Wasserstein metric-based
approaches. The resulting model, after reformulations, is a convex
conic program. Ref. [139] develops a moment-based distributionally
robust optimal power flow problem, accounting for uncertain renew-
able power generation as well as uncertain reserve provided by flexible
loads. Under different schemes and reformulations, the resulting model
is either a semidefinite or a second-order cone program. A similar
model is developed in [140] for radial distribution systems, where
a distribution system operator optimizes grid operation taking into
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account uncertain power injections from distributed energy resources.
A Wasserstein distributionally robust optimal power flow model with
uncertain renewable power supply is proposed in [141]. Ref. [142]
proposes a similar model but considers joint chance constraints. In
addition, [143] proposes a similar model to [141] that accounts for
an approximate model of the AC power flow equations. Ref. [144] de-
velops a multi-stage Wasserstein distributionally robust optimal power
flow problem. Finally, [145] proposes a Wasserstein distributionally
robust optimal power flow problem with an exact reformulation. There
has also been recent work on reducing the size of the considered
ambiguity set by considering conditional covariate information [146].

8. Multi-area reserve dimensioning

To make up for situations where renewable generators provide
less power than expected, generators need to carry sufficient reserve
capacity. The dimensioning (also referred to as sizing) of reserve is the
problem of determining how much reserve capacity the system needs
while accounting for the size of uncertain disturbances (e.g., forecast
errors in renewable generation and load demands) as well as line and
generator contingencies, i.e., composite uncertainty [30,147].

Bottom-up reserve sizing models trade off the economic costs of
committing and operating reserves against the reliability that these
reserves afford. Recent European legislation, in particular article 157 of
the System Operation Guideline (SOGL) [148], as well as established in-
dustry practice [116,117] motivate reserve sizing methodologies on the
basis of probabilistic criteria. In the absence of network constraints, the
problem of reserve sizing amounts to estimating quantiles of capacity
shortfall [149–152].

In the presence of network constraints, the problem can be cast as
a chance-constrained optimization [121,153]. The first-stage decisions
amount to the allocation of reserve capacity in different areas and
to different generators. In the second stage, the power imbalance is
revealed and the reserves are activated with the goal of balancing the
system while respecting network constraints. The objective function
minimizes the total amount of reserve capacity that the system carries.
Probabilistic constraints can be represented using binary variables that
indicate whether a scenario corresponds to reliable operation or not, in
the spirit of [154]. The formulation bears similarities to formulations
for reserve deliverability in US market clearing models [155–159]
as well as reserve dimensioning in chance-constrained optimal power
flow [121,127,160].

9. Stochastic unit commitment

The stochastic unit commitment problem aims to determine the
optimal day-ahead commitment of generators in order to operate the
system at minimum expected cost. This problem considers both the
fixed cost of committing generators and the variable cost of dispatching
them based on realized uncertainty. The problem is typically for-
mulated as a two-stage stochastic program, with the earliest such
formulations proposed by [161,162] in the mid-1990s. The problem
recently experienced a significant resurgence in interest as a means
of quantifying the impact of renewable resource integration on power
system operating costs [163,164] and reserve requirements [165,166].
Apart from its use as a policy analysis tool, the model has also been
applied as an ideal benchmark for market products such as flexi-
ramp [167]. The ambition of using the model as an operational tool
in the context of security-constrained unit commitment [168] has been
tamed by the complex input and heavy computational requirements
and the fact that alternative formulations are better suited to the
conservative nature of system operations [169].

The stochastic unit commitment problem is typically formulated
as a two-stage decision making problem under uncertainty. In the
first stage, units are committed, and then uncertainty is revealed in
the form of realized forecast errors and equipment (generator and
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line) outages. In the second stage, the system is allowed to react
by dispatching generators in order to balance the system while re-
specting network constraints [30,170]. The model has also been used
for generating a policy in rolling simulations [163,164]. Alternatives
that account for uncertainty include robust unit commitment [169,
171], adaptive robust optimization [172] as well as hybrid [173] and
chance-constrained [125] formulations.

The stochastic programming formulation amounts to a large-scale
mixed-integer stochastic program. A typical approach for solving this
problem relaxes the non-anticipativity constraints and then applies
Lagrange relaxation combined with feasible recovery heuristics [30].
This process can be parallelized, in either synchronous [31] or asyn-
chronous [59] settings. Alternative dual-based methods have been
employed, including augmented Lagrangian methods [162] and pro-
gressive hedging [62,161,174], which is a specific instance of proxi-
mal methods [61]. Benders decomposition [175], and more generally
bundle methods [176], have also been employed. The application of
stochastic dual dynamic programming to a multi-stage version of the
problem has also been proposed [43].

10. Transmission expansion planning

The Transmission Expansion Planning (TEP) problem aims to de-
termine the best transmission lines and other equipment to add to a
high-voltage power grid in order to support its future operation. The
TEP problem accounts for the CAPEX (capital expenditure) of projects
related to new transmission lines, the updates of existing ones, and
other equipment upgrades, as well as the OPEX (operational expendi-
tures) related to the daily operation of the power grid for the lifetime of
these projects [177]. While the CAPEX is often relatively easy to com-
pute due to the proximity to the actual investments, the OPEX is subject
to many stochastic factors such as the price of fuels, the availability of
hydrological resources, the cost of storage technology, and investments
in new generation capacity. The stochastic nature of the TEP problem
is one of the main sources of modeling and computational complexity.

10.0.1. Problem structure
The canonical mathematical representation of the TEP problem

is usually defined as a centralized decision-making problem under
uncertainty [177]. The simplest and most common formulation is a
two-stage stochastic program, where the first stage represents the in-
vestment decisions, 𝐱, while the second stage represents the operational
ecisions, 𝐲𝝃 , for the final network configuration in a target year. The
ulti-stage stochastic version of the TEP problem, also known as the
ynamic TEP problem [178], has also been extensively addressed in
he TEP literature. In this framework, the decisions are optimized for a
orizon of 𝑁 stages, where uncertainty realizations are revealed along
ach stage.

Conceptually, the TEP problem can be represented as:

min
𝐱,𝐲𝝃

CAPEX(𝐱) + E
[

OPEX(𝐱, 𝐲𝝃 , 𝝃)
]

(34a)

s.t.: Investment restrictions (𝐱) (34b)

Network flow equations (𝐱, 𝐲𝝃 , 𝝃) (34c)

Network capacity limits (𝐱, 𝐲𝝃 , 𝝃) (34d)

Generator limits (𝐲𝝃 , 𝝃) (34e)

Here, the main TEP constraints consist of restrictions on investment
projects such as budget limitations or available projects and tech-
nologies for investment. Power flow equations are used to model the
physical operation for the final grid configuration. The most common
approach is using a DC approximation of the power flow equations
(see Section 11.0.2 below) to leverage the scalability of linear models.
Limits related to transmission lines and generation capacity are also
17

part of the usual TEP constraints.
The transmission grid is the backbone of the infrastructure for
delivering power from multiple generation sources, which forms an
important part of all modern societies. As a result, the TEP problem
reflects not only technical aspects of grid operation, but also energy
policy and broader priorities of the society around the grid. Thus,
drivers for optimal grid updates are not only economic efficiency,
i.e., minimal CAPEX and OPEX. The TEP problem typically captures, via
constraints or penalization terms in the objective function, issues such
as (i) renewable target commitments [179], (ii) operational reliability
such as 𝑁−1 security criteria [179], (iii) climate-aware planning [180],
(iv) new generation expansion capacity [181], and (v) incentives and
policies [182], among others.

These additional drivers become particularly important in grids
where zero or near-zero marginal cost generation takes a larger share of
the total demand such that the energy cost alone could be insufficient
for providing the right signals for the new network infrastructure
updates.

10.0.2. Uncertainty modeling
There are many uncertainty sources for the TEP problem. Con-

sidering these uncertainties is essential for obtaining consistent TEP
solutions. It is crucial to distinguish between two types of uncertainty
components [183,184].

First, the long-term component unfolds over many years, e.g., new
renewable capacity investments, demand growth, availability of hydro
resources, climate variability, etc. This uncertainty is realized only once
during the project lifetime (i.e., we will only observe one realization of
this uncertainty). The long-term component of uncertainty is a funda-
mental part of the standard analysis used in existing power systems
such WECC, ERCOT, CAISO, and the UK National Grid. It is part of the
what-if analysis (also known as scenario analysis) of long-term visions
of the future portrayed by stakeholders.

Second, the short-term component, e.g., wind production, yearly
demand, fuel price, etc., accounts for the variability of stochastic input
parameters and is expected to be observed as a large number of realiza-
tions that impact OPEX. In many situations, the short-term component
can be conditional on the long-term component, such as climate change
and renewable resource availability [184]. The short-term component
is more commonly considered in the academic environment to rep-
resent the infinite or large number of possible stochastic operational
states we may find in the future.

The larger the range of scenarios for representing uncertain param-
eters, the better the approximation of the estimated expected OPEX.
However, using a large number of scenarios for representing uncer-
tainty could compromise computational tractability.

10.0.3. State-of-the-art
During the last three decades, there have been significant contri-

butions to the modeling, uncertainty characterization, and solution
methodologies for TEP problems [185]. Early models based on a trans-
shipment formulation of power flow, i.e., neglecting Kirchhoff’s voltage
law and using forecast peak demand, were sufficient for conventional
power grids with a large mix of dispatchable generators. The decar-
bonization of the power grid has boosted an increase in renewable
generation, the introduction of new business models considering the
demand side, and new distributed generation resources, among others.
This new panorama makes uncertainty characterization and mathe-
matical frameworks important, but challenging for network planners.
We refer to the monographs [177,186], surveys [185,187], and other
literature [183] for further details on TEP modeling under uncertainty.

While advances in the TEP problem modeling and formulation has
brought a deeper understanding and new insights, this complexity has
increased the computational burden of TEP models. This increases the
complexity of already large- or very-large-scale optimization models
under uncertainty, making computational tractability one of the princi-

pal challenges for further improvements. This requires the development
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of advanced solution methodologies using ad hoc algorithms supported
by standard methods such as Benders decomposition, column-and-
constraint generation, progressive hedging, and stochastic dual dy-
namic programming, among others. Aggregation methods [188] are
used to reduce the size of TEP mathematical models by grouping similar
objects, like network nodes, generating units, or RES profiles, into a
single entity. While this leads to a loss of information and reduces
modeling accuracy, the computational benefits are significant enough
to compensate for the degradation in accuracy.

11. Choice of power flow formulation

When optimizing system operations in the presence of power injec-
tion uncertainty (e.g., stochastic load demands and renewable genera-
tion), one must characterize how this uncertainty propagates through
the power system to produce uncertainty regarding quantities such
as voltages and transmission line flows (which must be kept within
bounds). With this information, we can formulate optimization prob-
lems that limit the potentially negative impacts from uncertainties.

The propagation of uncertainties in power injections to uncertain-
ties in voltages and power flows is dictated by the power flow equa-
tions. The choice of power flow formulation (i.e., whether we use the
full non-linear AC power flow equations, a linearized version, a convex
relaxation, or a convex restriction) significantly impacts the complexity
of the problem. We review next some of the challenges and solution
approaches associated with using different power flow formulations in
the context of power injection uncertainty.

11.0.1. Non-linear AC power flow
The non-linear AC power flow equations relate the active and

reactive power injections to the voltages phasors for each bus 𝑖 ∈  ,
here  denotes the set of buses. There are many different ways of

epresenting the AC power flow equations [189]. If we choose polar
oordinates for the voltage phasors at bus 𝑖, 𝑉𝑖∠𝜃𝑖, the AC power flow
quations are

𝑃𝑖 = 𝑉𝑖
∑

𝑘∈
𝑉𝑘

(

𝐆𝑖𝑘 cos
(

𝜃𝑖 − 𝜃𝑘
)

+ 𝐁𝑖𝑘 sin
(

𝜃𝑖 − 𝜃𝑘
))

, (35a)

𝑄𝑖 = 𝑉𝑖
∑

𝑘∈
𝑉𝑘

(

𝐆𝑖𝑘 sin
(

𝜃𝑖 − 𝜃𝑘
)

− 𝐁𝑖𝑘 cos
(

𝜃𝑖 − 𝜃𝑘
))

, (35b)

where 𝐘 = 𝐆+ 𝑗𝐁 is the network admittance matrix and 𝑃𝑖 + 𝑗𝑄𝑖 is the
complex power injection at bus 𝑖 ∈  .

The non-linearity of the AC power flow equations gives rise to non-
convex and possibly disconnected feasible regions [190], resulting in
many optimization problems being NP-Hard [191,192] from a theoret-
ical perspective. Note, however, that despite lacking guarantees, recent
benchmarking of local solvers such as Ipopt [193] indicate that they
tend to often find solutions that are globally optimal [194]. Further-
more, the non-linearity of the power flow equations makes uncertainty
quantification difficult. Even if the probability distribution of the power
injections is known, the non-linearity of the AC power flow equations
makes it highly non-trivial to compute probability distributions of
voltage magnitudes and line flows. In particular, the non-linear rela-
tionships in the AC power flow equations do not preserve the form of
the probability distributions even for Gaussian distributions (e.g., Gaus-
sian distributions of power injections generally lead to non-Gaussian
distributions of line flows). Computing moments such as the mean and
standard deviation of a line flow, which is straightforward with linear
equations, is numerically challenging. Moreover, the implicit nature
of the AC power flow equations precludes an explicit representation
of voltage magnitudes, line flows, etc. in terms of uncertain power
injections, thus introducing non-linear equality constraints involving
uncertainties into the formulation.

Polynomial Chaos Expansion (PCE) methods provide a promising
approach for addressing these challenges. PCE methods propagate un-
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certainty distributions through non-linear equations by decomposing
onto a set of non-linear basis functions, resulting in a hierarchy of
increasingly accurate, but more computationally challenging problems.
PCE was first applied to power flow problems [86,195] and then to
chance-constrained optimal power flow problems [80], with model-
ing, computational, and other improvements subsequently developed
in [35,196–198]. Despite these improvements, PCE methods remain
computationally challenging.

Uncertainty propagation with the non-linear AC power flow equa-
tions is further complicated by the fact that these equations may have
no solutions [199,200] or have multiple solutions [201] for a given set
of power injections. The lack of an AC power flow solution implies that
there is no steady-state operating point for this set of power injections,
indicating an imminent threat of instability and voltage collapse [202,
203]. It is difficult to assess which (if any) uncertainty realizations
will result in power flow insolvability. Many approaches ignore this
issue and assume (implicitly or explicitly) that the AC power flow
equations will remain solvable for all uncertainty realizations as long
as they hold for a nominal operating point, e.g., [76,204–207]. Other
approaches seek to identify worst-case operating conditions (i.e., the
realizations that lead to the largest constraint violations) [106,208]
or bound the worst-case impacts of uncertainty [209,210], but do so
under the assumption that the AC power flow equations are solvable
for every uncertainty realization. Thus, these methods are unable to
identify (unstable) uncertainty realizations for which there exists no
AC power flow solution. It is also not known how PCE would perform
(i.e., how accurate the results would be) if applied to problems that are
close to voltage instability.

Researchers have made progress in addressing these challenges
for certain classes of robust optimal power flow problems, including
systems with generators or controllable loads at every bus [211] and,
using theory from [212], three-phase radial networks representing
distribution systems [213]. More recently, progress on this topic in [87]
considers general system models by leveraging so-called convex restric-
tions, i.e., convex inner approximations of the AC feasible region [214,
215]. By solving problems which guarantee that all uncertainty real-
izations are contained within a convex restriction, these approaches
guarantee power flow solvability and can also be formulated to incor-
porate operational constraints such as power flow limits and bounds
on voltage variables [87,216]. We also note that some sample-based
approaches provide a posteriori probabilistic guarantees for feasibility
with respect to the non-linear AC power flow equations [217,218].

Although there may be multiple solutions to the power flow equa-
tions, there is often a single ‘‘high-voltage’’ solution (i.e., there is
a single solution where voltage magnitudes at every bus are within
normal operating ranges). However, this is not always the case [219],
particularly in systems with high penetrations of distributed energy
resources [220]. Furthermore, many algorithms for optimization under
uncertainty, e.g., [76,204–206], allow for violations of voltage con-
straints for a small number of realizations, meaning that the solution
algorithms may find undesirable low-voltage solutions. The question of
how to handle the multiple solutions that may arise has not yet been
solved and is not even frequently considered.

11.0.2. Linearized power flow formulations
An alternative approach is to use a linearized version of the power

flow equations. For instance, the commonly used DC power flow ap-
proximation [221] employs assumptions typical of lightly loaded trans-
mission networks (small angle differences, near-nominal voltages, and
a lossless system) to simplify the AC power flow equations to a linear
formulation:

𝑃𝑖 =
∑

𝑘∈
𝐁𝑖𝑘

(

𝜃𝑖 − 𝜃𝑘
)

. (36)

Many stochastic optimization formulations use the DC power flow
approximation to provide rigorous solution methodologies with qual-

ity guarantees regarding the approximated problem, e.g., [68,81,121,



Electric Power Systems Research 214 (2023) 108725L.A. Roald et al.
124,222,223]. However, while suitable for many applications, the DC
power flow approximation can induce significant errors in the solutions
to certain problems [224–230]. Quality guarantees for an operating
point obtained via the DC power flow approximation do not ensure
feasibility or optimality with respect to problems using the AC power
flow equations.

To ameliorate these issues, researchers have developed many other
power flow linearizations (see [189] for a comprehensive review)
and applied them to optimal power flow under uncertainty. Examples
include the first-order Taylor approximation [205] around the solution
to a deterministic problem where the random variables are replaced
by their means [205] as well as linearizations tailored for distribution
systems [231]. The approach in [76] uses the full AC power flow
equations for the nominal operating point, but models the impact of
uncertainty using an iteratively updated first-order Taylor expansion
(implicitly assuming that the uncertainty is small).

11.0.3. Convex relaxations
A convex relaxation encloses a non-convex feasible region within a

larger convex region using carefully formulated constraints that are
less restrictive than the non-linear AC power flow equations. There
exist many different convex relaxations, usually based on semidefinite
programming (SDP) [232–234] and second-order cone programming
(SOCP) [235,236], with many variants [189]. Convex relaxations give
rigorous guarantees on solution quality (i.e., upper or lower bounds
on the objective value and infeasibility certificates) and, if the optimal
solution to the convex relaxation happens to be feasible for the original
problem, they also provide the globally optimal solution.

To bypass challenges associated with non-convexities from the AC
power flow equations, many researchers have leveraged convex relax-
ations in stochastic optimal power flow problems. Some approaches
directly replace the non-linear power flow equations with a relaxation
to obtain a convex formulation that is suitable for standard tech-
niques, e.g., methods for chance-constrained optimization using various
reformulations [237,238] and scenario-based methods [239]. Other
approaches repeatedly solve relaxations within iterative algorithms
for robust optimal power flow problems. Specifically, the approach
in [208] uses relaxations to compute candidates for worst-case op-
erating points. Additionally, the approach in [209] uses relaxations
to bound the worst-case impacts of uncertainty with respect to the
inequality constraints to provide guarantees with respect to inequality
constraint satisfaction.

Significant research efforts have focused on assessing when convex
relaxations yield globally optimal solutions to optimal power flow
problems [189,240]. However, it is worth noting that these results
rely on both the tightness of the relaxation itself (i.e., how closely the
relaxation approximates the true non-convex feasible space) and the
objective function (which determines in which part of the feasible space
we require tightness). In optimal power flow problems under uncer-
tainty, where we are interested in feasibility and optimality not for a
single operating point but a range of uncertain operating conditions,
it is less clear whether we can expect that the relaxations are tight
for all uncertainty realizations. Accordingly, the solution to a relaxed
stochastic or robust optimal power flow problem may not be feasible
with respect to the AC power flow equations. Likewise, the worst-
case uncertainty realizations computed via a convex relaxation may
not actually be the worst-case uncertainty realizations for the original
problem. Thus, similar to power flow linearizations, guarantees of so-
lution quality obtained using a relaxation may not apply to the original
(non-relaxed) problem and care must be taken in their interpretation.

12. Planning for hydro-thermal power systems

The key source of uncertainty in hydropower planning is the inflow
of water, which determines current and future ability to produce power.
Given that the inflow of water carries strong seasonal patterns that
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are correlated with snow melt and rainy seasons, it is important to
consider the use of water on a yearly horizon. Across this horizon,
the realized water inflows as well as decisions on how much power
to produce can be updated on a regular basis. This naturally gives rise
to multi-stage stochastic programming problems, with the most common
algorithm being stochastic dual dynamic programming (SDDP). Pio-
neered by Pereira in the late 1980s [38,39], SDDP has become the go-to
methodology for medium- and long-term planning in hydro-thermal
systems for numerous countries [52,241]. In these hydro-thermal plan-
ning models, the key question planners face is whether to ‘‘spend’’ the
water in the reservoir to generate power at the current point in time,
or whether to save it for later. The dual SDDP solutions provide very
useful information on the so-called ‘‘value of water’’ which describes
the future value of keeping the water in the reservoir. These dual
solutions are as useful (if not more) as the primal solutions, which
represent the target level of stored energy in hydro reservoirs. SDDP has
recently found applications in other areas, including day-ahead bidding
of pumped-hydro plants [50], natural gas storage valuation [242],
dairy farm operations [243], short-term operational planning in power
systems [244], as well as distribution grid restoration [245].

13. Energy procurement for a large consumer

We next consider a large industrial electric energy consumer whose
electricity bill amounts for a significant part of its total production
cost. Examples of such consumers include an aluminum production
company, an air liquefying corporation, and an electrical foundry. This
large consumer is concerned with both its electricity cost and the
variability of this cost. Seeking minimum expected electricity cost with
limited cost variability, the consumer obtains its electricity from three
sources, namely, by signing long-term contracts, buying in the spot
market, and self-producing.

The long-term contracts that can be signed by the consumer to
procure its electricity requirements include both forward contracts and
options. A forward contract allows the consumer to buy electricity at
a fixed price, thus eliminating price volatility. An option allows, for a
fee, the consumer to decide at a later time (with reduced uncertainty)
whether or not to use a forward contract to buy electricity. The spot
market (day-ahead and real-time markets) allows the consumer to
buy electricity, at the risk of facing potentially volatile prices. Self-
producing is possible when the consumer owns a generation facility
that can cover a portion of its electricity consumption. This facility may
also be used for trading, i.e., to sell its generation in the spot market
if the price is high enough (provided that the consumer’s demand is
satisfied).

We consider an electricity procurement problem which involves
three sources of uncertainty, (i) the electricity price in the spot market
(both day ahead and real time), (ii) the consumer demand, and (iii) the
fuel cost of the self-production facility. The spot price uncertainty is
typically significantly larger than the uncertainties pertaining to either
consumer demand or fuel cost. The problem faced by the consumer in
a specific period of time (for example, on an hourly basis for several
months into the future) consists of determining which forward contracts
or options to sign and the subsequent energy procurement strategy for
any possible realization of the uncertainty. The objective is to minimize
the expected cost of electricity throughout the procurement horizon
while controlling the variability of such cost using a risk metric.

Describing the uncertainty via scenarios 𝐬 ∈ , the procurement
problem can be formulated as the two-stage stochastic programming
problem below (note that multi-stage versions can also be easily for-
mulated):

min
𝐱;𝐲𝐬 ,𝐳𝐬 ,∀𝜔

𝑓F(𝐱) + 𝛽E𝑃
[

𝑓 S(𝐲, 𝐳, 𝝃)
]

+ (1 − 𝛽)𝑐𝑜𝑠𝑡
[

𝑓 S(𝐲, 𝐳, 𝝃)
]

(37a)

s.t. 𝒉F(𝐱) = 𝟎, 𝒈F(𝐱) ≤ 𝟎, (37b)
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𝒉S(𝐲𝐬, 𝐳𝐬, 𝝃𝐬) = 𝟎, ∀𝐬 ∈  , (37c)

𝒈S(𝐲𝐬, 𝐳𝐬, 𝝃𝐬) ≤ 𝟎, ∀𝐬 ∈  . (37d)

e note that the time (every hour of the procurement horizon span-
ing, e.g., the following three months) is implicitly represented in
he above formulation. The variable vector 𝐱 of first-stage variables
epresents contracting decisions spanning the procurement horizon,
hile variable vectors 𝐲𝐬 and 𝐳𝐬 are spot trading decisions and self-
roduction decisions, respectively, per scenario 𝝃𝐬 and throughout the
rocurement horizon. In this problem, the first-stage cost 𝑓F(𝐱) is the
ontracting cost (not affected by uncertainty), while the second-stage
ost 𝑓 S(𝐲𝐬, 𝐳𝐬) is the spot market and self-production cost (a random
ariable). The parameter 𝛽 is used to manage the tradeoff between
xpected cost and the risk of losses (0 ≤ 𝛽 ≤ 1). Eqs. (37b) are
ontracting constraints, while (37c), (37d) are demand–supply (and
isk-related) constraints. For a given 𝛽, weighting expected cost and
ost variability, the solution of the two-stage stochastic programming
roblem (37) provides the optimal contracting strategy, 𝐱∗, the optimal
pot market involvement, 𝐲∗𝐬 ,∀𝐬 ∈ , and the optimal self-production,
∗
𝐬 ,∀𝐬 ∈ .

For further reading, a seminal work on electricity procurement for
arge consumers with risk control is [246]. Among a significant number
f relevant contributions by different research communities, [247]
xplores similar models and analyses to those in [246], but using a
roader energy context and an analytical focus. Finally, [248] carries
ut a real-world insightful case study using a multi-stage stochastic
rogramming model.

art III: Summary, Conclusions, and Outlook

4. Summary and conclusions

In this paper, we have provided an overview of methods for model-
ng and solving optimization problems under uncertainty arising in the
ontext of electric power systems, with the goal of providing a summary
nd suggestions for further reading to researchers who are interested in
pplying optimization under uncertainty in their own work. The first
art of the paper describes some of the most commonly used modeling
echniques and algorithms. The second part of the paper reviews several
pplications. In this section, we offer overarching insights and an
utlook towards future research directions.

An important aspect of power system optimization under uncer-
ainty is that modeling and solution algorithms go hand in hand.
ow we choose to model and represent risk impacts which solution
lgorithm is going to be most successful at obtaining a solution with
easonable time and computational complexity. Conversely, our mod-
ling choices (in particular, the approximations we choose to apply)
re often impacted by the need to obtain a computationally tractable
roblem. As a result, when modeling and solving optimization problems
nder uncertainty, we often encounter inherent trade-offs between
olution quality (e.g., how optimal a solution is in terms of first-stage
nd expected second-stage cost?), providing probabilistic guarantees
e.g., how accurately are we able to model risk and probability of viola-
ions?) and computational tractability (e.g., how quickly can we solve
he problem? Do we need a supercomputer or is a laptop enough?).
ow we choose to manage the trade-offs among these different aspects
ill vary by application and will also depend on how we choose to
odel and solve the problem. Solution evaluation is vitally important

n these applications, as it can help us understand which modeling
ssumptions are reasonable (i.e., can be applied without deteriorating
he quality of the decisions made by the model) and where we should
nvest more time and effort to improve our results. As the saying goes:
‘All models are wrong, but some are useful’’.
20
5. Outlook and future directions

To conclude, we discuss several common observations and provide
n outlook to challenges that we believe constitute important directions
or future research.

5.0.1. Time scales of renewable energy uncertainty
Across all the applications, one of the primary drivers of uncertainty

s the availability and variability in power generation from renewable
nergy sources. Uncertainty from wind and solar power is frequently
onsidered at a shorter time-scale, whereas hydro-power uncertainty
ypically considers seasonal variability in precipitation. Given the rapid
doption of wind and solar power and the decline in other sources of
eneration capacity, it is becoming increasingly important to consider
he seasonal and yearly variations in wind and solar power availability
nd how they correlate with load. Considering larger time horizons
ncreases the complexity of solving the problems and also raises several
mportant modeling questions. For example, how do we represent the
isk and uncertainty associated with prolonged periods with lower wind
nd solar output such as the wind droughts in Europe in October 2021?
ow does wind and solar correlate with extreme weather to exaggerate
r mitigate the impacts of corresponding changes in load, such as
he correlation between very cold weather with low wind predicted
or both Europe and the United States? Do we need the same or
ifferent risk metrics in situations with oversupply of renewable energy
California in Spring) and potential scarcity (California in Summer)?

These questions affect models ranging from short-term operations,
hich deal with the current scarcity or oversupply of power, to long-

erm planning, which need to consider how these correlations may be
mpacted by climate change.

5.0.2. High-impact, low-probability events
There are several emerging drivers of uncertainty in electric power

ystems. There is significant uncertainty associated with the impacts
f climate change on the grid. Accordingly, there is increasing interest
n modeling and mitigating the impacts of extreme weather, such as
eatwaves, cold spells, hurricanes, and increased wildfire risk, both
n operations and long-term planning. At the same time, increasing
eliance on electricity for transportation, heating, and cooling also im-
lies that the impacts of power outages and thereby the risk associated
ith them is changing, motivating the development of models that

ntegrate technical aspects with the societal context around grid op-
ration. Emerging examples include models that integrate information
bout hurricane evacuation orders or data on wildfire risk into emer-
ency dispatching models. Accurately modeling the impacts of extreme
eather events also requires considering new source of common mode
utages (e.g., a cold wave that impacts both electricity and natural gas
ystems) and how to model (and weigh) the impacts of high-impact,
ow-probability events.

5.0.3. Interdependent systems
In some cases, risk can propagate between the electric grid and adja-

ent systems, including interactions with the natural gas system, water
upply systems, cyber–physical layers of system operations, large-scale
lectric vehicle charging, and large-scale computing infrastructure. The
eed to characterize this uncertainty and mitigate associated risks while
aintaining practically plausible models of reasonable complexity is a

ignificant challenge.
In some situations, optimization under uncertainty, which inher-

ntly accounts for the fact that some information is unknown, can
rovide important tools for managing coupled system operations with
imited exchange of information.

From a market design perspective, some assets might be able to
rovide services for improving the stability of the entire system against
he systemic risk and, in the extreme case, against potential cascading
ailures. It is of interest to explore whether the current market products,
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e.g., ancillary services, sufficiently remunerate those assets for their
services and, if not, whether new market products are necessary.

15.0.4. Scalability
Across all applications and methods, one of the principal challenges

is computational scalability. Scalability limits the fidelity of our models,
including how many scenarios we are able to include, how we choose
to represent our recourse actions, what type of power flow model we
choose (which impacts the detail in which we are able to represent the
system operating state), which emerging technologies we are able to
represent in the model, how many decision variables we can include,
and the length of time-horizons that we are able to resolve. Significant
ongoing advances in computer hardware and optimization algorithms
have offered many new possibilities. Although these general advances
continually increase the range of tractable problems, the structure
specific to power system problems (such as the sparsity of the power
flow equations or the fact that only a few transmission lines tend
to be congested) provides opportunities to develop special-purpose
algorithms that exploit this structure, often in combination with stan-
dard methods such as cutting plane algorithms, column-and-constraint
generation, and stochastic dual dynamic programming, among others.
Developing such algorithms is an important avenue for future research
that requires an interdisciplinary understanding of both power systems
and optimization.

15.0.5. Formulating and solving uncertain distributed optimization prob-
lems

The rapid growth of distributed energy resources motivates the
application of distributed optimization algorithms where multiple com-
puting agents representing different portions of the power system co-
operatively solve optimization problems. In distributed optimization,
agents iterate between solving local subproblems and exchanging infor-
mation regarding the values of shared variables at the agents’ intercon-
nections. With some limited exceptions such as [196], the existing liter-
ature on distributed optimization for power systems primarily focuses
on deterministic problems [249]. However, many practical applications
of distributed optimization algorithms will likely require consideration
of uncertainty. There are a number of related open questions, including
what information regarding the uncertainties should be shared with
neighboring agents (e.g., samples of uncertainty realizations, proba-
bility distributions, or uncertainty sets), how to efficiently use this
information within distributed optimization algorithms, and how to
design incentives so that the agents accurately report this information.

15.0.6. Pricing of risk and uncertainty
The consideration of risk and uncertainty in system operations

tend to increase the nominal cost of operation. Furthermore, adverse
realizations of the uncertain parameters may lead to very high oper-
ational cost. The question of how to share this increased cost among
market participants remains an important question in the design of
energy markets. Some methods for decision-making under uncertainty,
e.g., robust and distributionally robust optimization, may require com-
plicated formulations, leading to non-linear problems or the addition of
auxiliary integer variables. This may complicate deriving efficient and
equilibrium-supporting market-clearing prices using dual variables and
is an important avenue for further research.

This list of research directions for power systems under uncer-
tainty is intended to illustrate some potential future directions and is
inherently non-exhaustive. We nevertheless hope it will serve as an
inspiration for our readers and that they will use the material in this
paper on the modeling, formulation, and solution of optimization prob-
lems under uncertainty to identify their own problems and research
21

directions.
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