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The present document is a supplement to the paper “Market Design Con-
siderations for Scarcity Pricing: A Stochastic Equilibrium Framework” by
Papavasiliou, Smeers, and de Maere d’Aertrycke. The supplement is orga-
nized as follows. In section [I| we present the models that are employed in the
paper. In section |2| we discuss coherent risk measures. Section [3| describes
the details of the case study that has been used for analyzing the Belgian
electricity market. We analyze the implications of scarcity pricing on con-
sumers in section [4l Section [5] presents additional simulation results beyond
the main results that are presented in the paper.

1. Complementarity Formulation of Market Models

In this section we present the market equilibrium models for the two ends
of the spectrum of market designs that we analyze in the paper, namely the
US and EU design. We commence by presenting the notation that is used
in the models, and proceed by presenting the models both from the point
of view of an equilibrium (profit maximizing agents augmented by market
clearing conditions) as well as in complementarity form.

1.1. Notation

Sets

G set of generators

L: set of loads

RL*: set of bids for operating fast reserve demand curve
RL?: set of bids for operating slow reserve demand curve

: set of scenarios in the second stage of the two-stage models
Qy: set of second-stage scenarios in the three-stage models



Q3: set of third-stage scenarios in the three-stage models

C3(w) C Qg: children of scenario w € €25 in the three-stage models
Parameters

P+ maximum real-time production capacity of generator g in scenario w
P~ minimum real-time production capacity of generator g in scenario w
e;r: marginal penalty to generators for excess real-time production relative
to day-ahead production

€, marginal penalty to generators for shortage in real-time production rel-
ative to day-ahead production

PgI)A’+: day-ahead production capacity of generator g

Cy: marginal cost of generator g

RT . ) )
D, "+ real-time demand of load [ in scenario w

DZDA’+: day-ahead demand of load [

V}: valuation of load [

P,,: probability of scenario w in two-stage model

P[(t+1,w")|(t,w)]: transition probability from node (¢,w) to node (t+ 1,w")
in the three-stage models

K, activation cost of generator g

R5 . fast reserve capacity limit of generator or load g

Rf : slow reserve capacity limit of generator or load g

ay: risk-aversion parameter of generator or load g

VZR’F: valuation of fast reserve capacity in segment [ of ORDC

VZP”S: valuation of slow reserve capacity in segment [ of ORDC

DZR ¥, quantity of fast reserve demand for segment | of ORDC

DZR’S . quantity of slow reserve demand for segment [ of ORDC

Primal variables

p}f: real-time production of generator ¢ in scenario w

sgfg’*: excess of real-time production of generator g in scenario w relative to
day-ahead production

siﬂ‘: excess of day-ahead production of generator g in scenario w relative
to real-time production

dfT: real-time demand of consumer [ in scenario w

7’5 BT fast reserve capacity supply of generator or load ¢ in the real-time
market under scenario w

'rifT: slow reserve capacity supply of generator or load ¢ in the real-time
market under scenario w



dfo’JF’RT: fast reserve capacity demand of system operator for segment [ of
ORDC in the real-time market under scenario w

dﬁ’JS’RT: slow reserve capacity demand of system operator for segment [ of
ORDOC in the real-time market under scenario w

pP4: production of generator ¢ in the day-ahead market

T?’DAZ fast reserve capacity supply of generator or load ¢ in the day-ahead
market

r;g’DA: slow reserve capacity supply of generator or load ¢ in the day-ahead
market

dP4: demand of load [ in the day-ahead market

CVaRy: conditional value at risk of agent g for the two-stage model
CVaR2,,: conditional value at risk of agent ¢ in scenario w of the second
stage for the three-stage model

CVaRl1,: conditional value at risk of agent g in the first stage for the three-
stage model

VaR,: value at risk of agent g for the two-stage model

VaR2,,: value at risk of agent g in scenario w of the second stage for the
three-stage model

VaR1,: value at risk of agent g in the first stage for the three-stage model
Uy auxiliary variable recording risk-adjusted payoft of agent g under sce-
nario w for the two-stage model

u2,,,: auxiliary variable recording risk-adjusted payoff of agent g under sce-
nario w of the second stage for the three-stage model

U3gwew: auxiliary variable recording risk-adjusted payoff of agent g under
scenario w’ of the third stage with ancestor scenario w for the three-stage
model

Dual variables

AT real-time energy price under scenario w

MBERT: peal-time fast reserve capacity price under scenario w

MEBSET: real-time slow reserve capacity price under scenario w

a@ T+ GRT= RGRT ~GRT+ AGRT.=. dual multipliers of real-time con-
straints of generator g under scenario w
oLRT GLERT LSRT LRT §LERT §LSRT,
straints of load [ under scenario w

aﬁF’RT, ZIZS’RT: dual multipliers of real-time constraints of system operator
for segment [ of the ORDC under scenario w

ggw: Trisk-adjusted probability of scenario w for agent g for the two-stage

model

dual multipliers of real-time con-



q24.: risk-adjusted probability of second-stage scenario w for agent g for the
three-stage model

¢34 risk-adjusted probability of third-stage scenario w’ with ancestor
scenario w for agent g for the three-stage model

APA: day-ahead energy price

MLEDA day-ahead fast reserve capacity price

AES5DA: day-ahead slow reserve capacity price

dg, af’DA, ﬁf’F DA 55’57["4: dual multipliers of day-ahead constraints of gen-
erator g

ole’F’DA, ole’S’DA: dual multipliers of day-ahead constraints of system opera-
tor for segment [ of the ORDC

1.2. The US Model

This section presents the US model that is analyzed presented in the
paper. The salient attributes of this design are the following: (i) there exists
a real-time market for reserve capacity, (ii) energy and reserve capacity are
cleared simultaneously in the day ahead, and (iii) virtual trading in energy
is allowed.

1.2.1. Real Time

The generators are maximizing their profit in the real-time market. Thus,
for every generator g € GG and scenario w € €2, we have the following real-time
profit maximization:

RT _ RT BT
Hg,w (yg) - RT g}]%?( S,RT<>\w CQ) pg,w +
g,wv’rng 7r9vw
\R,F,RT F.RT R,S,RT S,RT
A, Tew T Ay Ty
G,RT,+ RT F.RT S,RT RT,+ |
(ang ) pgw + TQW + TQM S Pguw yg
G,RT,— . RT RT7_ .
(ag,w ) : _pg,w < _Pg,w Yg
(BEE) e ol < B
(B): T <R
RT F,RT S,RT
Pgw = U0 rge 20,07 20

Note that the real-time profit II7 is a concave function of y,, and its
supergradient can be derived with elementary convex analysis arguments.
Furthermore, note that we employ the notation \NB5ET = N\RBERT 4 \RSRT
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The KKT conditions of the generators are:
O<pRTJ_C )\fT—l—ag;JRT’Jr QG- >0, g GweQ

gw
OS’f‘ngJ_ag&jRT’++ gZUF’RT_)\gFRT_/\gS’RTZO,QGG,WEQ
OST;fTJ—OégLJRT’++ ngZJS’RT_)\R’S’RT >O QEG,WGQ

0 < ag™t L Pt oy, —pyfl, =1yl =i 20,9 € GweQ
0<ad ™ Lpll — P .y, >0,ge GweQ
0<BEPRT LRE =l >0,g€ Gwe

O</BGSRTLRS SRT>Og€Gw€Q

Similarly, for every load [ € L and scenario w € €2, we have the following
real-time profit maximization:

Hﬁg = max
leg’rwaT waRT(Wi)\ET).dl]?gLF
\R,F,RT ,.F,RT R,S,RT  .S,RT
Ay Tyl Ay ("
L,RT RT,
() ity <Dy
L,F,RT F RT
( lw ) : le < Rl
L,S,RT\ . S,RT s
( lw ) : le < Rl
L,RT\ . S,RT F RT
(%M T w T d <0

it >0, rFRT>0rSRT>0
The KKT conditions of the loads are:

0<dfl LM — Vit T =T >01eLweq
O<7"FRT _)\(IE,F,RT )\RSRT‘i‘ﬂLFRT—"'Yl RT>OZ€LW€Q
O<rSRTJ_ _)\f,S,RT_i_ﬁll;‘LS,RT_i_,ylLWRT >0,leL,we
O<aLRTLDﬁf’+—dRT>0,lEL,wEQ

O<6LFRTJ_RZ _TIFRT>0,16L,wEQ

0< BT L RS i > 00 € L e

0 <™ L —r" =" 20,1 eLwen



The system operator is procuring reserve in real time for every scenario
w € €1, according to a real-time operating reserve demand curve for fast and
slow reserve:

z : F F,RT
HgO,RT — max (%R, - Aﬁ,F,RT) dR R +
R,F,RT ,R,S,RT
dl,w ’dl,w lERLF
RS R,S,RT R,S,RT
§ (V} - )‘w ) : dl,w
lERLS
F,RT F,RT F

(alRU’J R ): dR’ AT < DR’

R,S,RT R S,RT R,S
(a ™) & <D

dRFRT >0, dRSRT >0
The KKT conditions of the system operator are:

0 < db L=V g NERRT 4 o PP > 0.1 € RLY w € Q
0 < dE>f L VS 4 NESET L qBSET > 01 € RLS,w e Q
0< aRFRT L D —at it > 0,1€ RLY ,w e Q
0< afj“ L D —dt> M > 0,1 € RL% | w € Q

The market clearing conditions are:

Zpi ZdluM

geG leL

FRT E : dR FRT c0
geGUL leRLY
geGUL IERLS

1.2.2. Day Ahead

In the day ahead, each generator g € G solves the following profit maxi-
mization, where we use conditional value at risk as the risk measure employed
by producers.



F,DA S%lx?x o 9 ' yg +
p?Aarg, g’ 7ygvcvangug,w

DA DA \R,F,DA F.DA DA DA
A . pg —+ >\R’ ’ . Tg’ + )\st7 . ,rjy +

1
VaR, — — > P, - g,
(6]

9 weq
(af’F’DA) Tj’DA S R;
JS,DAY . ,DA
(agGSD ): TfD SR;
(59) Yyg < 1
(¢g.0) Ugw 2> VaRg — (Hfi(yg) -\ 'pfA -

\R,FRT _ F.DA _ \RS,RT _ _S,DA
-\, T = A Ty )

F,DA S,DA
Ty > O,rg > 0,ug, >0

Note that we employ the notation AREDA — \RFDA 4 \RSDA Tp order
to derive the KK'T conditions for the day-ahead profit maximization problem
of the generator, we need the expression for the subgradient of the real-time
profit II/0(y,) with respect to y, that we have derived above, as well as the
chain rule for risk measures that we provide in equation (11) of the main
paper.



The KKT conditions for the collection of generators are:

P,
OSUQMJ_a——qg,wZO,gEG,wEQ
g

qu,w-)\fT —A\PA=0,9ecq
we
0< T;«“,DA | \REDA | \RSDA BgG,F,DA

=3 g - ABBET L \BSET) 5 0 g € G

weN
0 S Tf’DA L )\R,S,DA + ﬁgG,S,DA

_ZQg,w : ALIj’S’RT Z 079 S G

weN
qu,w = 179 eG
we
0<y, Ld,— qu,w - PR agLJRT

weN
+Ky>0,geG
0<é,1L1-y,>0,9eCG

0<aftP4 LR — 1P >0

0<al®PA LR —r2PA >0

0<qguw L ugw—VaR,+ Hfig
_)\E,T .pgDA _ (/\U}J%,F,RT 4 )\E,S,RT) ) 7f,DA

NBSET pSDA > 0 g € Gow e Q)

The day-ahead profit maximization of the loads is described as follows.



max —\PA . gPA
l
dPA [P PA 5 PA OV aR,

Y F,DA S,DA
)\R,F,DA -7y \ + )\R,S,DA o) ) +

1
VaR, — — P, -u,
ariy alz uy,

wen
(O{L’F7DA) : rlF,DA S RZF

L,S,DA S,DA
(041 ) : T < st
. RT RT DA
() :  we > VaR — (I, + A" - d)
{R,F,RT _.F,DA R,S,RT .S,DA
_>\w T - )\w T )

F,DA S,DA

The KKT conditions for the collection of loads are:
P,
0<wu,l——-—quw>0lelwe
Qg

@Yy APA = g AT =01€L
we

F,.DA L,F,DA
0 S 7“1 s 1 )\R,F,DA 4 )\R,S,DA + al F

=" o - \BPRT L \RSETY > ] ¢ L

weN

S,DA S, DA L,S,DA S,
0 < P4 L ARSPA L =Y e AP > 0,1€ L
weN

(VCLR[) : ZQZ,w =1,l€elL

weN

0<atP4 LR — PP >0

0<a %P LR —rPPA >0
0<quLuy,—VaR + Hﬁg

+)\§T ] dlDA . ()\UIE,F,RT + )\01;275,137’) _TZF,DA

—\ESRT Tf’DA >0,le Lywe)

The system operator day-ahead profit maximization reads as follows:



F F,DA
max E (Vo5 — \REDAY gl BDA |
R FDA JR,S,DA
l % IERLF
R,S R,S,DA
37 (S - RSP g
I€RLS

> (1200 +

wef

§ R,F,RT R, F\DA 2: R,S,RT 3R,S,DA
)\UJ 'dl + >\UJ dl )

IERLF lIERLS

(Oél e ) : dl 7 < Dl ’
( lR,S, : lR,S, < D[FE,S

le,F,DA >0, le,S,DA >0
The KKT conditions for the system operator are:
0< le,F,DA 1 _VlR,F | \RFDA 4 (RFEDA

l
> P AP >0,1€ RLT
weN
0 S CllR,S,DA 1L _‘/ZR,S+AR,S,DA+QR,S,DA_

l
> P, AT >0,1€ RLS
weN
0<attPA L DIF — gt P4 > 01 e RLF
0<ay®P L DS —af5P4 > 0,1 € RLS

The market clearing conditions are:

> -3

geG leL
R,F.DA
}: rj,DA: Z d!
geGUL lERLF
F.DA S, DAY __ R,S,DA
D (rgPrardPh = S d;
geGUL leERLS

1.3. The EU Model

This section presents the EU model that is considered in the paper. The
salient characteristics of this model are the following: (i) there exists no
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real-time market for reserve capacity, (ii) there is a sequential auctioning of
reserve capacity and energy in the day ahead, and (iii) there is no virtual

trading.

1.8.1. Stage 3: Real Time

The generator profit maximization reads as follows for a generator g € G
in third-stage scenario w’ € 3, where w € )y corresponds to the parent of

Ws:

WP = max (N =G -
91“’” g?wiwl’ giwiwl
e; . sfg’j —€, s];g:;,
(Oég;fg}—i_) pgw — PRT+ Yg,w
O L T
g Ve = 553+ng —ppd <0
(Vi) s —si — i b <0

pgw,>0 T (N

) 2 g,w,w’ ) 2 g,w,w’

The KKT conditions of the generators are:

0<pil, LCy— NI+

G,RT+ G,RT,—
+,ngw’ _’ygww’

O<SRT+ J_E G,RT,

g,w,w’ Pygww
G,RT,—
O<Sgww’J‘6 _’ygww’

O<aGRT+J_PRT+ Yy

g,w,w’

g,w,w’

G,RT+ RT +
O<f)/gww J‘Sgww

G,RT,— RT,—
0 S ,yg,w,w’ 1 Sgww

oGRTA+ _ (G.RT~
g w7w/ g7w7w/

>0,9€ Gwe D uw e 3w
T>0,9€Gwe W e l(w)
>0,9 € G,we D, uw e C3(w)
—pﬁg, >0,9g€ G we D elw)
0 < oS i J_pRT —PRT,’_ Ygw > 0,9 € Gw € Dy, € C3(w)
pgw/+pg‘4>0 g€ G we N e C3w)

pgw -I—pgw, >0,9€ Gwe D uw e lC3w)

For every load | € L and scenario w’ € 23, we have the following real-time

profit maximization:
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eL — maTx(v NS -l
’ d

(aL,RT> .

/
lw

RT,+
dl,w’ S Dl,w’
di >0

The KKT conditions of the loads are:

0<d LA —Vi+ o >0,1€ Lw €Oy
0<a/ )" LDF—dfl >0,leLw e

The market clearing conditions are:

D Pyl =D il €

geG leL

1.3.2. Stage 2: Day-Ahead Energy

In the second stage, a generator decides on the amount of energy supply,
on the basis of uncertain demand for power (which implies an uncertain real-
time price for energy), and on the basis of past decisions that have been made
on the amount of committed reserve capacity. We assume that the actual
physical decision of committing a unit is made by generators in the day-ahead
energy market. Concretely, every generator g € GG solves the following profit
maximization problem for every outcome w € €)5:

r

HDA( 5‘,DA’ 5,DA) —

DA DA
max Ao Py T
Yg,w PP 8 VaR2g,u,u3 ,

VaR2ye — — 3 PI3,6)](2,w)] - g
9 weCs(w)
—K, Yy
(@3gww) :  UBgww > VaR2,, — (HRT (ygw,pgw)
—\AT DA) W' e Cz(w)
(5g,w) : ygw <1

(ag(,HDA,—i-) . pg 4 + TFDA + TS DA < PDA + Yy
G,DA,— DA DA,—
( g, ) : _pg, < P *Ygw

Ygow >Ou39ww/>0pgA>0w € C3(w)
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The KKT conditions for the collection of generators are:

P[(3,0)|(2,w
0 S U?)g,w,w’ L [( Oé)|( )] - qgg,w,w’ Z 0,9 S G,w € Qg,w, (- Cg((x))
g
0<pPAL N 3w AR +aGDA 4 af0A-
wGCg( )
A4 >09eGwe,
O<yg J—K +aGDA PDA’ _ oGDAT PDA+
w g

+ Y Boww (P ag T = P o) > 0,0 € Gow € Oy

UJECg(w)

Z qgg,w,w’ = 17g S G,W € QQ
w'eCs(w)

0 < q3guww L udguw — VaR2y, + 11157,
—\ET pgA>OQEGw€QQ,w € C3(w)
0<6dp0L1—-ysu>0,9g€G we
G,DA, DA, DA
0<ay T LPAY gy —pao

—rf’DA —rf’DA >0,9€ G,we

OSQS’:;?A”J_—P;DA’ ygw+pgA>OgEGw€Qz

Compared to the two-stage model of section the value at risk of the
second stage, denoted by VAR2, are now indexed by w, i.e. the node of the
second stage which we find ourselves in. Similarly, 43, and ¢3 are now indexed
by w and «’, i.e. the specific path from the second to the third stage. The dual
variable ¢34, . is the risk-adjusted conditional probability of transitioning
to node w’ of stage 3 from node w of stage 2. The constraints corresponding
to the dual multipliers a;?4* and a;”4~ enforce physical constraints on
trading. In order for a resource to offer reserve and energy in the day-ahead
market, it must be committed in the first place. If the resource is committed
in the day ahead, then it must trade at least its technical minimum.

Note that the day-ahead reserve capacities wPAand 2P, are param-
eters for this problem. The profit IV (rFP4, r®P4) 'is a concave function
of rFPA and rf DA Tts slope (supergradlent) Wlth respect to r

DA g equal
to — jDA. Slmﬂarly, its supergradient with respect to r¥P4 is equal to
G,D
—as A,

g,w
We write the second-stage profit maximization problem of every load
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[ € L at every outcome w € €2y as follows:

F.DA _S,DA
H ( ) = max —)\U?A . dlDuj4 +
AP VaR2y g u3;,

1
VaR2,, —— Y P[3,0)|(2,w)] - u3)u.
l
w'eC3(w)
(q3l,w,w/) : U3l,w,w’ > VCLRZZM — (Hl o' +
AT dPh), W' e Ca(w)

(a2 dlt < DPA*
(’YZLMDA) : FDA + rlS DA dl DA < 0

u3,w,>0 dlA>0w € O3(w)

The KKT conditions for the collection of loads are:

P[(3,u)](2
0 < Ul L B,NI2w] (Blow = 0,1 € Liw € Uy, € Cy(w)
87
0 S dﬁf J_ — Z q3l,w,w’ . )\(IE/T + AEA
w'eCz(w)

oyt =P >0l e Lwe Qy

(VGR2l7w) : Z q3l,w,w’ =1

w'eN3
0 < q3rww L udiww — VaR2y, + 11T

NI dP) > 0,1 € Liw € Oy, w' € Cs(w)
0<akPA 1L DPAY" —dPr >0,le Lwe,
0<7ZLDAJ_dll?f—7°f’DA—rlS’DAZO,ZGL,wEQQ

Similarly to the generator case, this is a convex optimization problem.

The objective function value, TIP4(rF:PA r5PA) Hig concave with respect to

'rlF DA and T’S DA Tts supergradient with respect to rlF DA g —fylL wDA. Its
S,DA | L,DA
supergradient with respect to 7, Y -

The market clearing condltlon is:

Zpg Zdlw,weQQ

geG leL
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1.83.3. Stage 1: Day-Ahead Reserve

We complete the description of the three-stage model by describing the
first-stage equilibrium. To describe the first stage, we nest the result of the
second-stage decisions into a first-stage optimization of agents’ risk.

In particular, every generator g € G solves the following maximization
problem:

YR,F,DA _ F,DA R,S,DA _ S,DA
riDA TS’DIEIE%/}ZRI u2 A Tg + A Tg +
g g ) g» g,w
1
VaRl, — — Y P[(2,w)|(1,1)] - u2,
9 we
(02,0) © U2y, > VaRl, — Hgf(rF’DA, PN e Qy
(BGJULS, TEDA'<ARF
g : g =Y
G,S,DAY . S,DA S
(/Bg ) ° rg S Rg

rg Pt 20,73 > 0,u2y0 > 0,0 € O

Here, VaR1, corresponds to the value at risk at stage 1. The dual variable
q24. 1s the risk-adjusted probability of outcome w € 2y based on the risk
preferences of generator g. Note that since H?f is a concave function of
rf DA and rf’DA, the constraint implicating Hfﬁf in the problem above is a
convex constraint.

The equivalent complementarity system for generators is:

| Pl.w)l(1,1)

F,DA G,DA,+
0<r, "1 g g0yl
we

_’_BQG,F,DA _ ARFEDA _ \RSDA 5 0,geC
0< rf’DA 1 Z G290 - G DA+

g7w

0<u2

— g,w

_q2g,w 20796 G,WG QQ

wEN9
_’_69G,S,DA . )\R,S,DA 2 079 c@

Y q2u=19€G

weNo

0 < 20 L u2g — VaRl, + 1100 > 0,9 € G,w € Oy
0<BHPA LR —rbPA>0,ge@

0<poSPA L RY —rPPA>0,9e G
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The first-stage problem for loads reads identically to that of generators.
The equivalent complementarity system for loads is:

Pl(2 1,1
0<wu2, L (22|03, )]_q2[’w20,l€L,WEQQ
8%
0 < 7’lF’DA 4 Z q2l,w ' ( Z q3l,w,w’ ' 555/77RT + ”YII’Z)DA)
w2 w'eCz(w)

+5lL,F,DA _ \RFDA _ \RS,DA >0,lel

0< P LY 2 (Y Brww 60"+
wEN w'€Cs(w)

+BPIPA—NRSPA > 0 1 € L

Y 2pu=11€L

we

0<q21 Lu2, — VaRL + 112} > 0,1 € Lw €
0< PP LR —#PA>01eL

0<poP4 L RS —¢PPA>0,1e L

The day-ahead optimization problem for the system operator follows the
same reasoning as section [1.2] The complementarity conditions for the sys-
tem operator problem read as follows:

F.DA F F.DA
0 S le7 ; J_ _‘/‘lRy _|_ AR7F7DA + OCZR, ’ _

S° PIR@I D] DD PG W2 w)] - AST > 0,1€ RLE

DA DA
0 S dﬁ,s, J_ _‘/}R,S + AR,S7DA + al]?7s, .

S PIR@I D] ST PG wW)I2w)] AS 20,1 € RLS

weg w'eNg
0<aPh L DI —abtPA > 0.1 e RLF
0<a5P4 | DS — P4 > 0.1 e RL®

The market clearing conditions are:

§ : 2 : R,F,DA
T;,DA: dlyz

geGUL leRLF

F.DA S,DAY __ R,S,DA
DY = Y 4,
geGUL IERLS
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Table 1: The real-time price scenarios and associated results for the illustrative CVaR
example.

Scenario  Prob. RT price \fT BT+ Qo Profit IET  Profit TIHT
(y=05) (y=05 (y=05  (y=056)
S1 0.25 50 0 0.417 0 0
S2 0.25 100 25 0.417 250 300
S3 0.25 150 75 0.167 750 900
S4 0.25 200 125 0 1250 1500

1.4. Remarks on the equilibrium models

Note that the resulting equilibrium models that are presented in section
and section [1.3| are not generalized Nash equilibrium problems, since
competitors’ decisions only affect the objective function of the players, not
their constraints.

Note that the equilibrium models presented in this section correspond to
an incomplete market, where we are limited to a forward market for reserve
and energy. Therefore, the resulting equilibria will, in general, deviate from
the equilibrium of a complete market, which can be expressed equivalently
as the risk-averse optimization of system welfare (Ralph and Smeers, 2015)).

2. Coherent Risk Measures

This section provides a more extensive discussion on coherent risk mea-
sures by illustrating the relations presented in section 3.2 of the main paper
on a concrete example.

Consider a generator participating in a real-time market, where real-time
prices are distributed uniformly between 50 and 200 €/MWh. The generator
has a marginal cost of C;, = 75 €/MWh, and a capacity of P> = 20 MW.
We can easily compute its real-time profit as the solution to the following
linear program:

RT _ RT BT
Hw (y) _p%lﬁgo()\w Cg) pw

CHD R - A

The resulting profits for y = 0.5 (i.e. when half of the full capacity is
committed) are presented in table . The dual multipliers corresponding to
the different scenarios are also listed in the table.

17



Let us consider the CVaRyg risk measure. The intuitive definition of
this risk measure is the following: “find the expected profits, conditional on
60% of the worst possible outcomes occurring”. The way to think about
this statement is by plotting the distribution of profits, and then creating a
new distribution which is biased towards accumulating 60% of the original
mass, while collecting the worst possible outcomes. To illustrate this concept,
suppose that we were to discretize the above table into 20 outcomes:

(0,0,0,0,0,
250, 250, 250, 250, 250,
750, 750, 750, 750, 750
1250, 1250, 1250, 1250, 1250, 1250)
Suppose, now, that we were forced to select 12 of these outcomes (60%

of the mass), but in a way that biases our selection to the worst possible
realizations. We would then select the following outcomes:

(0,0,0,0,0,250, 250,250, 250, 250, 750, 750)

The C'VaRyg risk measure computes the expected payoff of this distri-
bution (assuming each of these pessimistic outcomes is equally likely). Con-
cretely:

CVCLRO,G =

1
E-(0+O—l—0+0—|—0+250+25O+25O—|—250+250+75O—|—75O):

229.167

We now re-derive the same result by expressing C'VaR in its equivalent
linear programming form (equation (9) of the main draft), based on risk sets.
The risk set M for the C'VaR, risk measure is generally described as

B,
— w>0: w:17w§_
M= {q, > qu = —}

The linear programming formulation of coherent risk measures aims at a
worst-case expectation of the uncertain payoffs within the risk set. Applying
this formulation to our simple example, we express CVaR ¢ as follows.
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This recovers the conditional
calculated above.

As a concrete illustration of equation (10) of the main draft of the paper,
note that if we change the profit of the first scenario from 0 to 1 €, then the
above linear program evaluates to 229.583 (when rounded to the third digit).
The marginal change, 0.417, is equal to the risk-adjusted probability of the
first scenario.

Let us now move to equation (11) of the main draft of the paper, and
attempt to compute the subgradient of the CVaR with respect to the decision
y, i.e. the decision about how much capacity to commit in the first stage.
Numerically, we can estimate this subgradient by slightly perturbing y = 0.5
to y = 0.6, re-computing the resulting real-time profits, and then computing
the implied change in CVaR. The real-time profits for y = 0.6 are presented
in table[I] The resulting CVaR amounts to 275. Thus, the marginal change
with respect to y amounts to W = 458.33.

The subgradient of the real-time profit with respect to y corresponds
to the dual multiplier vector (aff+ . PETA () € Q). Equation (11) of the
main draft states that the marginal change derived above for the CVaR with
respect to the commitment variable y can be expressed alternatively as the
expectation of o't . PRI+ with respect to the risk-neutral measure g,

namely:

D

alue at risk, CVaRgyg = 229.167, that was

<

Z RT+ pRTA+ _
qw . aw . Pw -

we

20 - (0.416 - 0 + 0.416 - 25 + 0.166 - 75 + 0 - 125) = 458.33

3. Case Study Setup

Loads. We assume that the day-ahead demand is equal to the historically
observed net demand, after removing imports. We assume an inelastic load
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and we ignore transmission constraints. We will assume a value of lost load
that is equal to 8300 €/MWHh, based on an estimate of the Belgian Federal
Planning Bureau [Devogelaer| (2014)).

Generators. We consider the same mix of technologies as in previous re-
search (Papavasiliou and Smeers| [2017; [Papavasiliou et al., 2018): pumped
storage, blast furnace, renewableﬂ, gas-oil, LVN| coal (3 units) and combined
cycle gas turbines (11 units, of which 3 are placed in strategic reserve). The
marginal cost consists of the fuel cost and the CO2 emissions cost. We
use the CO2 prices, emissions rates, and fuel price data from previous re-
search (Papavasiliou et all |2018). The production of nuclear, wind, waste,
and water are assumed to be price-inelastic, based on previous analyses (Pa-
pavasiliou and Smeers, 2017} |Papavasiliou et al., 2018), and their production
is subtracted directly from the system demand.

The fixed cost consists of startup cost and startup fuel, which we assume
is incurred once per day (in the sense that for every hour that a unit is on,
it must incur a cost which is 1/24 of the startup cost, so that if a unit is on
for an entire day, it incurs a cost equal to its full startup cost). Additionally,
we account for the minimum load fuel consumption of a generator.

Planned outages are accounted for in the data. The production capacity
is scaled according to a capacity scaling factor which captures these forced
outages. We ignore unplanned generator outages (assuming that they are
captured implicitly in the imbalance scenarios), and simply set the real-time
power generation capacity equal to the day-ahead capacity.

We set the ramp rate of all units except for CCGT units and pumped
hydro units equal to zero. We assume that the fast ramp capacity is equal
to half of the slow ramp capacity, which is equal to the 15-minute ramp
rate of units. This is due to the fact that we associate fast capacity to
secondary reserve, which is assumed to have a response time of 7.5 minutes.
We associate slow capacity to tertiary reserve, which is assumed to have a
response time of 15 minutes.

Pumped hydro. We account for pumped hydro resources by adding the
six generators and four pumps that are located at the Coo pumped hydro
facility in Belgium. In production mode, there exist three pairs of 144/215

!The fact that we are considering the renewable resources as price-responsive implies
that the supply from these resources is not accepted as must-take in the system, but is
rather inserted in the merit order curve of the system and only dispatched if it is economical
to do so.
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MW generators, and three pairs of 145/200 MW pumps. We then use the
total water storage capacity of Coo (8450000 m?), and the head height (245
m for each of the two pumped hydro reservoirs) to compute the total energy
storage capacity.

We employ a separate model for pumped hydro resources, which we do
not develop here in order to avoid overburdening the notation, and since
it is not required for describing the equilibrium formulation. For the sake
of simplicity, we assume that pumped hydro resources do not offer reserve,
otherwise it would be necessary to employ a multi-stage stochastic program
in order to properly account for the random activation of reserve during the
day. This random activation could result in binding operational constraints,
and would also use up water which has value that depends on market prices.
In order to focus the paper on the formation of reserve prices under scarcity
pricing, we do not attempt to model this level of complexity since it would
distract from the main purpose of the paper. The assumption that pumped
hydro resources are not contributing to reserve is of minor significance, since
pumped hydro resources are still allowed to increase their production in real
time up to the level of the maximum production capacity under tight system
conditions. We note that our assumption that hydro resources do not commit
capacity in reserve auctions is not far from empirical data. We have access to
historical data from 2017, and note that pumped hydro resources contribute
during some days to secondary reserve capacity, but only to a limited extent.

System operator. In order to design the ORDC, we need to account for the
fact that fast and slow reserve can substitute for each other. As explained by
Hogan| (2013)), the valuation of the system operator for fast and slow reserve
capacity can be derived as follows:

MBRF(rF;r5%) = (VOLL - MCO(3 p,))-
g

(0.5- LOLP; 5(r") + 0.5 - LOLP5(r%° + ')
MBRS(r%;r"%) = (VOLL — MC(Zpg)) -0.5- LOLPys(rS 4 770
9

where r is the amount of fast reserve capacity, r° is the amount of slow re-
serve capacity, 70 and %9 are reference values for these capacitie&ﬂ, VOLL
is the value of lost load, MC(}_, p,) is a proxy of the marginal cost of the

2These are reference values of system capacity around which we linearize the marginal
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Table 2: Mean and standard deviation of 15-minute imbalance data used for the estimation
of LOLP15

Seasons Hours Mean St dev | Season Hours Mean St dev
Winter  1,2,23,24 29.5 165.4 | Summer 1, 2, 23, 24 20.1 133.1
3-6 23.6 147.8 3-6 42.5 111.5
7-10 16.6 181.3 7-10 25.8 132.1
11-14 -20.9 224.1 11-14 34.8 154.4
15-18 8.1 162.4 15-18 47.1 140.3
19-22 9.8 147.2 19-22 13.5 108.8
Spring  1,2,23,24 28.4 147.9 | Fall 1,2,23,24 29.2 138.7
3-6 42.3 131.3 3-6 28.9 105.9
7-10 27.8 151.3 7-10 -11.2 142.8
11-14 68.4 174.9 11-14 18.5 164.9
15-18 69.0 161.5 15-18 0.2 142.8
19-22 9.0 134.3 19-22 -10.8 147.2

marginal unitEL and LOLP; is the loss of load probability given the uncer-
tainty that the system is facing in the following ¢ minutes.

We consider an operating reserve demand curve which is identical in the
day ahead and real time. In computing LOLP; 5, we assume perfectly corre-
lated increments of uncertainty, following the statistical analysis of Papavasil-
iou et al.| (2018). We use the parameters of the imbalance distribution shown
in table [2|in order to calibrate loss of load probabilities for every season and
every four-hour block of every season.

In the case of the ICH tertiary reserve product, which is the Belgian ter-
tiary reserve made available through demand response, it is straightforward
to introduce it to the models. Namely, we augment the demand function
for slow reserve, and we place a limit on the amount of reserve that demand
response can offer which corresponds to the amount of ICH capacity. Since
demand response reserve capacity is typically available at zero opportunity
cost (according to the model developed in this paper, if a load is consuming,
it can offer its consumption as demand response capacity), any extra reserve
demand that is requested by the system will always be served first by demand

benefit to the system of additional capacity. A reasonable choice for the case of Belgium
is to use the same requirements as in the previous studies, namely 350 MW of the RS
production tertiary reserve product and 140 MW of secondary reserve.

3We use 25 €/MWh for this study, although this can be refined to more closely ap-
proximate the real-time system lambda.
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response. Thus, the effect of adding extra reserve demand and at the same
time increasing the amount of reserve that can be satisfied by demand are
two effects that cancel each other out.

Uncertainty. The overall 15-minute uncertainty in the system is charac-
terized by the parameters of table 2] These parameters are based on the
imbalance data of 2017. In order to derive real-time demand scenarios, we
use this data in conjunction with the data of figure 8 of De-Vos et al. (2019).
In that figure, we observe the distribution of dynamic sizing requirements.
We will assume that these requirements correspond to a factor that inflates
real-time system imbalance. We have eight possible scenarios of “inflation”,
where the inflation factor corresponds to first-stage uncertainty. In order to
define scenarios for the second stage, we multiply this inflation factor by a
discretized normal distribution of imbalances, which is calibrated using the
data of table 2] The inflation factors and their corresponding probabilities
can be observed directly in figure 8 of De-Vos et al.| (2019)).

The transition probabilities from the second to the third stage are chosen
so that we capture outliers (2 scenarios with probability 0.1% each) and we
discretize the remaining mass of the distribution in evenly spaced ‘buckets’
of mass.

Strategic reserve. We assume that strategic reserve capacity can con-
tribute in real time at a very high cost, which is still below VOLL but
above the marginal cost of the most expensive unit. We specifically assign a
marginal cost of activation equal to 500 €/MWh for strategic reserve. This
corresponds to a total capacity of 375 MW (Esche) + 485 MW (Seraing) +
385 MW (Vilvoorde), equal to 1245 MW in total. Our justification is that
the commitment of strategic reserve capacity is the last resort before load
sheddinﬂ.

Other. We assume that reserve capacity is cleared daily, despite the fact
that in the period of the case study the reserve auctions were weekly. The
rationale for this choice is that, in practice, generators can trade their reserve
obligations even after the week-ahead auction.

4 http://www.elia.be/~/media/files/Elia/Products-and-services/Strategic-
Reserve/SFR-2017-18_fr_final.pdf
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Table 3: Load profits under the different designs.

Load profit A Profit / A Reserve Break-even
decrease (€/MW-month) (€/MW-month) reserve capacity (MW)
EU - - -

EU-inel. 5676 52819 926.4
RTReserve?2 5227 57154 680.6
RTReserve 5111 66010 576.2

VT 5109 66126 575.0
Us 5120 65877 578.4

4. Load Profits

Scarcity pricing implies a short-run increase in energy prices, but also
an increase in the value of reserve capacity. Resources that are unable to
respond to the real-time needs of the system and are a burden to the system
in periods of scarcity will only experience the former effect. Resources that
can respond to the real-time needs of the system will reap the benefit of this
flexibility, and offset the resulting increase in energy prices. This is especially
relevant for demand response, which is one of the most suitable options for
offering fast-responding capacity to the system.

We summarize our results regarding the implications of scarcity pricing
for the profitability of loads in table [8] The table reads as follows: (i) The
second column presents the decrease in the profits of loads, relative to the
EU design, under the assumption that loads do not offer any reserve to the
market. Note that this is the total increase in the consumer bill from the
introduction of scarcity pricing, divided by the total average demand during
the study, which amounts to 7442 MW. (ii) The third column is the monthly
increment in profit that loads enjoy by offering an additional MW of ramp
capacity into the system. This increment is the result of their ability to offer
additional capacity for secondary and/or tertiary reserve. (iii) The fourth
column is the amount of reserve capacity that the loads would need to offer
to the reserve market in order to offset their losses from the increase in energy
prices which results from scarcity pricing. Any amount of capacity above this
level would result in the market design in question creating a net benefit for
loads, relative to the design with the lowest electricity price (EU).

As expected, the introduction of scarcity pricing reduces the profits of
loads under the assumption that loads cannot offer reserves and monetize
their flexibility in the reserve market. This can be seen by observing, in

24



the second column, that the EU design, which is the design with the lowest
energy prices and one of the two proxies of the current Belgian market design,
results in the highest profits for loads. On the other extreme, the EU-inelastic
design entails the greatest energy prices and the least profit for loads. The
introduction of scarcity pricing in the RTReserve and RTReserve2 models
lifts the prices of both energy and reserve. If loads cannot offer reserve to the
market, this clearly entails a net loss. On the other hand, the introduction of
the real-time reserve market under the RTReserve and RTReserve2 designs
also revives the reserve price, and the third column of the table indicates the
amount of reserve that loads would need to offer to the market in order to
be able to offset the losses that they incur from the increase of energy price
that results from scarcity pricing.

The ratio of the second and third column of table [3| indicate that, for
every MW of load in the system, the additional expense that results from the
introduction of scarcity pricing can be recuperated by making approximately
7.8% (for RTReserve, RTReserve2, VT, and US) to 10.7% (for EU-inelastic)
of that capacity available in the reserve market. Any additional load capacity
that can be made available in the reserve market stands to gain from the
introduction of scarcity pricing.

5. Additional Simulation Results

In this section we provide additional simulation results, regarding the
amount of reserved capacities, the capability of dealing with uncertainties,
risk measures, and expected social welfare.

We quantify these metrics as follows: (i) Regarding the amount of re-
served capacities, we report the average day-ahead reserved fast and slow
reserve demand traded in the day-ahead market. (ii) Regarding the capa-
bility of dealing with uncertainties, we report the average real-time reserved
fast and slow reserve demand traded in the real-time market, which corre-
sponds to the remainder reserve capacity after activating generators in order
to deal with imbalances. This measure is similar to the Available Reserve
Capacity (ARC) measured by the Belgian system operator for quantifying
instantaneous reserve capacity in the system. (iii) Regarding risk measures,
we report the standard deviation of daily profits. (iv) Regarding expected
social welfare, we report the total welfare and its split between generators,
loads, system operator, hydro resources, and strategic reserve.
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Table 4: Reserve capacity after (columns 2, 3) and before (columns 4, 5) activation for
each market design.

RT fast RT total DA fast DA total

reserve (MW)  (slow + fast) reserve (MW)  (slow + fast)

reserve (MW) reserve (MW)
US 301.4 427.0 360.0 626.6
VT 301.6 427.2 357.6 627.7
RTReserve 301.8 427.4 358.2 621.5
RTReserve2 304.7 432.4 339.9 516.4
EU 73.8 224.9 328.0 770.2
EU-inel. 288.8 335.8 288.8 624.6

Table 4] demonstrates the depletion that takes place from the activation
of reserves in real time. The table corroborates the general observation that
the designs which include a real-time market for reserve capacity perform
similarly to each other.

The average daily profit of each market participant is presented in table
bl We have included one line at the end of the table, which is the difference
between the market welfare and the system operator welfare. This essen-
tially corresponds to the difference between consumer benefit and producer
cost, although for the RTReserve2, EU, and EU-inelastic policy these profit
metrics incorporate the term which penalizes deviations from day-ahead po-
sitions. Among the three policies that do not penalize deviations between
day-ahead and real-time positions, the US deign produces the highest market
welfare (net of system operator profit), followed closely by the VT design.
As a general remark, the inefficiencies arising from the separation of energy
and reserve clearing in the day-ahead commitment stage relate to possibly
over-committing reserve due to increased uncertainty at the reserve commit-
ment stage Dominguez et al.| (2019). The penalization of deviations between
day-ahead and real-time positions also introduces inefficiency, since it dis-
torts the marginal cost of resources at the real-time market clearing stage.
The market welfare is dominated by consumer profits.

The average daily standard deviation of each market participant is pre-
sented in table [} Loads exhibit a high variance in profits due to the fact
that their daily demand is fluctuating. In terms of variance in CCGT profits,
all designs that introduce a real-time market for reserve capacity attain com-
parable performance. By contrast, the EU design is generating more stable
(but consistently lower) profit for CCGT resources, whereas the EU inelastic
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design is generating more volatile (but consistently higher) profit for CCGT
resources.
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Table 5: Average daily profit (in €/day) for each market participant under every design.

UsS VT RTReserve  RTReserve2 EU EU-inel.
Blast
furnace 50997 50997 50997 50867 14246 54588
Coall 74638 74638 74638 74854 42603 78100
Coal2 74966 74966 74966 75158 42914 78517
Coal3 56029 56029 56029 56072 29442 59334
CCGT1 77299 77299 77299 77616 27146 81219
CCGT2 228328 228267 228349 229343 166043 234347
CCGT3 79269 79269 79269 79524 25986 83502
CCGT4 91044 91044 91044 91311 29035 95979
CCGT5 176984 176931 177027 177805 129307 181618
CCGT6 69739 69739 69739 69915 22260 73655
CCGT7 216177 216169 216202 217183 159391 221649
CCGTS8 185190 185179 185201 186050 134338 189924
Non-wind
renewable 14894 14890 14890 14491 7481 19269
Gas-oil 542 542 542 535 116 585
Nuclear 3108099 3106013 3097453 3108012 2563722 3162347
Turbojet 161 161 161 138 4 123
Water 75969 75932 75750 75962 63559 77170
Waste 223931 223822 223284 223914 188111 227392
Wind 695443 695109 693452 695424 584514 705807
Pumped
hydro 63208 63276 63273 63463 30413 65942
Strategic
reserve 0 0 0 0 0 0
Load 1475750301 1475753050 1475752321 1475726783 1477020435 1475612401
System
operator 12731283 12731006 12730901 12729474 6403930 6294196
Total market | 1494044489 1494044327 1494032785 1494023893 1487684999 1487597664
Total market
except S.O. | 1481313206 1481313321 1481301884 1481294420 1481281068 1481303468
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Table 6: Average daily standard deviation (in €/day) for each market participant under

every design.

US VT RTReserve RTReserve2 EU EU-inel.
Blast
furnace 141365 141365 141365 141067 47112 143246
Coall 138299 138299 138299 138245 56326 139352
Coal2 138253 138253 138253 138205 56297 139277
Coal3 113590 113590 113590 113568 45224 114437
CCGT1 180398 180398 180398 180312 67220 182623
CCGT2 262005 262065 261990 261628 126164 263335
CCGT3 206166 206166 206166 206095 74318 207953
CCGT4 238827 238827 238827 238735 85501 240821
CCGT5 200059 200109 200030 199781 96166 201120
CCGT6 175485 175485 175485 174662 63764 175855
CCGT7 240930 240944 240911 240573 116206 242261
CCGTS8 217195 217208 217188 216881 106290 218483
Non-wind
renewable 34426 34428 34428 34233 12395 35202
Gas-oil 1616 1616 1616 1600 424 1659
Nuclear 2130890 2133231 2132410 2127327 1046470 2163394
Turbojet 761 761 761 672 24 604
Water 53506 53547 53534 53430 26273 53801
Waste 155403 155524 155490 155191 76751 156018
Wind 489457 489827 489706 488850 242919 489113
Pumped
hydro 136331 136332 136323 136962 53151 140349
Strategic
reserve 0 0 0 0 0 0
Load 145859633 145856248 145856414 370594900 147547913 145765420
System
operator 108875 108758 108786 109486 8272 122444
Total market | 149282843 149283116 149282829 149280532 149320038 149271494
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