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Application of the Level Method for Computing
Locational Convex Hull Prices

Nicolas Stevens , Graduate Student Member, IEEE, and Anthony Papavasiliou , Senior Member, IEEE

Abstract—Convex hull pricing is a well-documented method for
coping with the non-existence of uniform clearing prices in elec-
tricity markets with non-convex costs and constraints. We revisit
primal and dual methods for computing convex hull prices, and
discuss the positioning of existing approximation methods in this
taxonomy. We propose a dual decomposition algorithm known as
the Level Method and we adapt the basic algorithm to the specifici-
ties of convex hull pricing. We benchmark its performance against
a column generation algorithm that has recently been proposed in
the literature. We provide empirical evidence about the favorable
performance of our algorithm on large test instances based on PJM
and Central Europe.

Index Terms—Bundle methods, convex hull pricing, level
method, non-uniform pricing.

I. INTRODUCTION

A. Pricing Non-Convexities

THE classical analysis of an economic dispatch problem,
together with its dual, provides a fundamental argument for

uniform pricing in electricity markets [1] — an optimal dispatch
can be supported by a set of competitive equilibrium prices.
In other words, even if a central authority cannot effectively
control the dispatch of the assets itself, it can provide prices
that align the behaviour of selfish profit maximizing agents with
social welfare maximization. However, as the argument assumes
convexity of the dispatch problem, a fundamental challenge for
market efficiency is non-convexity, as the latter implies that it is
not guaranteed that a competitive market equilibrium exists.

Non-convexities are at the heart of power system opera-
tions [2], in terms of both the network model as well as in the
market orders: (i) they are present in the alternating current (AC)
power flow equations which characterize the physics of the grid
and (ii) in the mixed integer programming (MIP) constraints that
describe the market offers. As the day-ahead (DA) markets in
Europe and in the US rely on a linear direct current (DC) power
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flow model of the grid, point (i) is not encountered in these
markets.1 On the other hand, point (ii) is a reality in both US
markets that rely on solving a unit commitment (UC) problem, as
well as in the EU market which includes integer market orders —
the so-called “block orders”. Throughout this paper, we neglect
(i) and rather focus on (ii).

The inexistence of equilibrium prices in electricity auctions
has triggered a long-lasting debate on the choice of an ap-
propriate pricing scheme in the presence of non-convexities.
Convex hull pricing (CHP) has arisen as one promising alter-
native: while being so far mainly debated in the US, it has also
recently emerged as a possible option for the EU market [4].
A practical concern of CHP is that its computation can be
challenging (e.g. see Issue 7 in [5]). Our paper aims at addressing
these computational challenges by putting forward a workable
algorithm (the Level Method) for realistic instances subject to
network constraints. In the remainder of this section, we sketch
the main concepts related to CHP and we discuss the context
of non-uniform pricing discussions in the EU. Insofar as the
EU market is concerned, we discuss institutional aspects as
well as computational issues, which motivate our choice of test
instances.

B. Non-Uniform Pricing Schemes

The most widely debated “non-uniform pricing schemes” in
the literature include integer programming (IP) pricing proposed
by O’Neill [6], convex hull pricing proposed by Gribik and
Hogan [7], [8], and “extended LMP” pricing which has been
applied early on in the PJM market [9], [10]. They all amount
to a convex relaxation of the market clearing problem. These
strategies consist of combining a uniform electricity price with
discriminatory payments, called uplift payments, which aim at
restoring the incentives of market participants for following the
market matches. In this framework, the overall market clear-
ing procedure can be described in three steps, which are also
followed by our simulations:

1) Solve the primal problem, in order to establish the dispatch
and commitment instructions;

2) Solve a pricing problem in order to compute uniform
electricity prices;

1Note, nevertheless, that the debate on TSO/ISO-DSO integration has recently
motivated the consideration of more advanced models for the representation of
network constraints in market-clearing platforms [3].
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3) Solve the independent profit maximization problems of all
market agents (generators and the network operator) in
order to establish uplift payments.

Regarding step 3, it is worth noting that uplift payments are
often categorized as follows in the literature:

1) Potential Congestion Revenue Shortfall are uplifts associ-
ated with the network congestion revenue [3].

2) Generator side-payments are defined as the difference
between the maximum profit achieved by self-scheduling
given the market prices and the as-cleared profit.

The pricing strategy proposed by O’Neill is a common choice
in non-convex settings. We also use it as a benchmark for our
simulations. However, it does not attempt to minimize uplift
payments, and can therefore possibly lead to high side payments.
Uplifts are undesirable, as they can distort the incentives of
bidders or create revenue adequacy problems for the market
operator that needs to finance them [11].

These concerns motivate Convex Hull Pricing (CHP), the
main property of which is to minimize uplifts. Because it is
computationally challenging, PJM (and other US ISOs) has
recently implemented a new pricing scheme, referred to as
“extended LMP” which is more tractable computationally than
CHP. For certain forms of simple market orders, it can also be
shown to be a reasonable approximation of CHP [9]. We expand
on how it relates to the computation of CHP in Section II.

C. Uniform Pricing in the EU

The EU market landscape presents a number of major in-
stitutional differences compared to US markets [12]. One such
notable difference is that day-ahead energy auctions are operated
by for-profit Nominated Electricity Market Operators (NEMOs)
while, in the US, it is the (typically non-profit) ISO that op-
erates both the market and the network. One implication of
this difference relates to the ability of the market operator to
socialize uplift payments. This difference may, in part, justify the
currently employed “uniform” pricing scheme that is adopted in
Europe, as implemented in Euphemia, the algorithm that clears
the pan-European day-ahead auction [13].

In Euphemia parlance, the aforementioned generator side pay-
ments can be related to: (i) paradoxically accepted blocks (PAB)
— cleared bids actually facing losses, i.e. requiring make-whole
payments (as defined in [5]) — and (ii) paradoxically rejected
blocks (PRB) — a rejected bid that would have been profitable,
i.e. facing a lost opportunity cost. The EU day-ahead market
“avoids” uplift payments by (i) constraining the problem by
not allowing the acceptance of PABs while (ii) allowing PRBs,
but not paying their lost opportunity costs. Ultimately, it does
not effectively reduce the uplifts to zero, but it guarantees zero
make-whole payments, while increasing the total lost opportu-
nity cost and not paying it. Consequently, this pricing scheme
only outputs uniform prices while it does not provide the market
participants with any discriminatory payments. This justifies
why, in EU NEMO parlance, it is referred to as uniform, in con-
trast to the three non-uniform pricing schemes that are discussed
previously.

This uniform pricing scheme involves “primal-dual” con-
straints that implicate dispatch and price decisions in a single
market clearing model. The solution implemented in Euphemia
amounts to an iterative algorithm that matches market orders
while aiming to find a feasible price (without PAB). If this is
not possible, the algorithm generates a cut in the primal model
and repeats the process. In contrast to the non-uniform pricing
schemes that work in three steps (dispatch, price, uplifts), the
EU uniform pricing scheme works as a single — but iterative —
step, and couples dispatch and price problems together.

This makes the problem that Euphemia is called to solve
(a mixed integer quadratic program subject to complemen-
tarity constraints) computationally challenging. Moreover, the
approach deteriorates market welfare, since welfare-enhancing
orders can be discarded if no market clearing price can be
found to support the aforementioned clearing rule. For these
reasons, non-uniform pricing schemes, and in particular convex
hull pricing, have recently received consideration by the Euro-
pean NEMOs as a possible option for the European DA energy
auction [4]. Considering the aforementioned institutional EU
structure, as well as the algorithm implemented in Euphemia,
this would constitute a disruptive market design evolution.

Computationally speaking, implementing CHP in Europe
comes with three paramount requirements [4], [13]:

1) Euphemia is afforded 12 minutes of run time.
2) The market model includes a network of ∼ 40 bidding

zones, and its geographic footprint is expected to be further
enlarged.

3) The market model is expected to move towards 15-minute
granularity in the near future (a horizon of 96 periods).

Forty bidding zones for ninety-six periods implies a 3,840-
dimensional price space. These requirements motivate the con-
sidered use cases in Section IV.

D. Contributions and Structure of the Paper

The contribution of the paper is twofold:
1) We propose the Level Method [14] for computing CHP

and adapting it to the specificities of our problem. We
specifically adapt the algorithm in order to exploit the
convexity of the network model. We further introduce
a “multi-cut” variant of the Level Method in order to
leverage the separability of the sub-problems. Note that
two types of approaches have been envisioned in the
literature for solving CHP: dual approaches and the primal
approaches (we define these in Section II). The Level
Method belongs to the former. Primal approaches, and
their drawbacks which motivate our choice for a dual
approach, are presented in Section II. The review of al-
ternative (tested) dual approaches comes in Section III
and motivates our choice of the Level Method.

2) We efficiently solve CHP, using the Level Method, for
large instances including a network and a horizon of
96 periods, which anticipates the evolution of the EU
market. We conduct a critical comparison of our approach
against both primal and dual decomposition approaches.
In particular, we compare it to a notable recent publication
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by [15], which proposes a Dantzig-Wolfe (D-W) algo-
rithm for computing CHP. The D-W algorithm exhibits
favorable performance on a test case without a network
and with 24 time periods, as considered in [15]. Given
our preoccupation with a market clearing model at the
scale of the EU market, the question becomes how the
method scales when moving from a 24-dimensional to
a 3,840-dimensional price space. When increasing the
dimension, the Level Method is empirically shown to
attain favorable performance relative to [15].

Our paper is inspired by an older unpublished work [16],
and is further motivated by [15]. We describe the mathematical
formulation of CHP in Section II. We then introduce the Level
Method in Section III. In Section IV, we test the algorithm
on multiple large instances and compare the results with D-W.
Section V concludes and discusses areas of further research.

II. MATHEMATICAL FORMULATION

A. Convex Hull Pricing Program

We define the dispatch problem subject to network constraints
as follows:

min
c,p,u,f

∑
g∈G

cg (1a)

(πit)
∑
g∈Gi

pg,t −Di
t =

∑
l∈

from(i)

fl,t −
∑
l∈
to(i)

fl,t ∀i, t (1b)

(cg, pg,t, ug,t) ∈ Xg ∀g ∈ G (1c)

f ∈ F (1d)

Here, Gi denotes the set of generators (or market offers) at node
i. Each offer is modelled with a total cost cg , a power output pg,t
at time t and a set of non-convex constraints Xg. The generic
variables ug stand for all the binary variables encountered in
the generator model. The demand at time t and node i, Di

t,
appears in the market clearing (MC) constraints (1b). Regarding
the network, fl,t stands for the flow on line l, while from(i)
is the set of lines originating from i and to(i) the ones directed
towards i. No assumption is made on the network constraints F ,
except that it is a convex set.

Each generator g is assumed to be a selfish agent that maxi-
mizes profit, i.e. solves the following program:

max
c,p,u

∑
t

pg,tπ
i(g)
t − cg (2a)

(cg, pg,t, ug,t) ∈ Xg (2b)

Here, i(g) stands for the node of generator g, while π
i(g)
t

represents the market price of node i(g) at time t.
A fundamental result [7], [8] on CHP establishes that mini-

mizing uplifts amounts to solving the following problem:

πCHP = argmax
π

L(π) (3)

Here, L(π) denotes the Lagrangian dual function, obtained by
relaxing constraints (1b) of problem (1):

L(π) =
∑
i,t

πitD
i
t (4a)

−
∑
g∈G

max
(c,p,u)g∈Xg

{∑
t

pg,tπ
i(g)
t − cg

}
(4b)

+min
f∈F

⎧⎪⎪⎨
⎪⎪⎩
∑
i,t

πit

⎛
⎜⎜⎝ ∑

l∈
from(i)

fl,t −
∑
l∈to(i)

fl,t

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ (4c)

We recognize in (4b) the profit maximization problems (2) of
the generators. As established in [8], using the optimal primal
dispatch solution of (1) and injecting it into (4) clarifies why the
previous Lagrangian problem does indeed minimize the uplifts.
As also pointed out in the literature, the definition (3) of CHP
also indicates that the uplifts can be interpreted as the duality
gap between (1) and (4).

B. US Versus EU Models

In addition to institutional differences between US and EU
markets, another major difference relates to the definition of
market products. The US markets follow a unit-bidding model,
where each unit is represented explicitly in the market, along
with its technical characteristics. On the other hand, the EU
day-ahead market follows a portfolio-bidding model (which
cannot be subsumed in the unit commitment formulation), where
each agent submits multiple generic market orders that rep-
resent the portfolio of its assets in an aggregated way. These
market orders [13] include convex hourly orders — stepwise
and interpolated curves — as well as non-convex orders2 —
mainly the family of block orders. The latter is a financial
order spanning over multiple periods and involving a binary
acceptance variable.

Model (1) remains general regarding the bid (generator) con-
straints (1c), which are simply represented as the non-convex
set Xg . This implies that the approach outlined in this paper can
accommodate all the flavours of unit commitment models as
well as the EU-like auctions. This exceeds what a “primal CHP
approach” can model.

Finally, model (1) considers a general (but convex) set of
network constraints F . Our approach can in fact accommodate
any convex representation of the network. In both the US and
EU market, F would amount to a set of linear constraints, the
main difference being that certain US markets are nodal (larger
number of nodes) while the EU market is zonal (roughly one
zone per country). We remark in Section III on the specific
treatment of the network in our proposed Level Method.

2Note that other non-convex (and less standard) products in Euphemia such as
the Italian unique national price (PUN) or complex orders [13], are not directly
compatible with CHP, because they implicate primal and dual variables in their
definition.
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Fig. 1. Landscape of problems for computing / estimating convex hull prices.

C. Primal and Dual Approaches for Computing CHP

In this section, (i) we locate the Level Method in the per-
spective of the landscape of all the alternative of approaches for
solving CHP and (ii) we motivate the choice of a dual approach
in the light of the limitations of the primal approaches.

As noted in Section I, there are two main approaches envi-
sioned for computing convex hull prices — i.e. solving problem
(3): (i) the Lagrangian dual approaches, which directly attempt
to maximize function L(π) using an iterative algorithm, and
(ii) the primal approaches, understood as methods that seek
to describe the CH of the non-relaxed constraints (1c)-(1d) by
developing tight formulations. Fig. 1 outlines the landscape of
approaches for computing convex hull prices. The top problem
(A) corresponds to the dispatch problem (1). Below, on the
left, we find primal relaxations of (A) while, on the right, we
find Lagrangian relaxations of (A) — Lagrangians are indeed
a widely employed method for deriving convex relaxations of
non-convex programs [17]. The problem (Γ) corresponds to the
CHP definition (3), which can be solved by dual decomposition
approaches such as the Level Method. Problem (Γ) maps to
its primal equivalent in (C). The underlying idea of the primal
formulation is that computing the CHP as the Lagrangian mul-
tipliers of (3) is equivalent to computing the dual variable π
associated to the market clearing constraint (1b) in the primal
problem (1), if the latter is expressed on the convex hull of its
domain — i.e. conv(Xg)∀g ∈ G (see [18], [17] for the general
result in Lagrangian relaxation theory or [19] for the specific
result related to CHP).

Although (C) is the tightest primal relaxation of (A), there
exist looser relaxations, such as (D), which amounts to relaxing
the integrality constraints ug,t ∈ {0, 1} to ug,t ∈ [0, 1]. This
corresponds to PJM pricing, discussed in the introduction. PJM
pricing can be interpreted as a computationally efficient approx-
imation of CHP [9]. In certain cases, relaxing the integrality con-
straints in Xg may provide conv(Xg). In this case, problems (C)
and (D) are equivalent and PJM pricing effectively corresponds
to convex hull pricing. The fact that relaxation (D) is looser than
(C) implies that the duality gap between (A)–(D) will be greater
than or equal to the one between (A)–(C).

Interestingly (and to the best of our knowledge, unnoticed in
the literature), one can also relate the primal relaxed problem (D)
to its Lagrangian dual counterpart (Δ). While CHP is solving the
partial Lagrangian dual relaxation (Γ), PJM pricing corresponds
to solving the full (looser) Lagrangian dual relaxation (Δ), where
all the constraints — and not only the market clearing constraints
— are dualized.3

Regarding the primal CHP problem (C), a way to approach
it is to develop a tight — but custom — formulation, specific
to the targeted problem (A). Recent researches have embraced
this idea: [19] proposes an explicit formulation for the primal
model of CHP for classical UC constraints. Madani [24] analyses
primal CHP formulations for the constraints of the European
day-ahead market clearing model.4 More recent research further
elaborates on the idea, developing tight (custom) formulations
for MISO [25] or proposing a network flow model of unit
commitment, in order to compute CHP for a broader set of
constraints [26]. One value of the primal CHP approaches is
to establish the link between CHP theory and the literature ded-
icated to tight formulations of UC polytopes such as [27]–[35]
(see chapter 2 in [16]). Similarly, when including a non-convex
network model, the primal CHP approach [3] also establishes
the connection between CHP theory and SDP/SOCP relaxations
of AC power flow [2].

Nevertheless, as also voiced in [15], there are certain con-
straints for which the convex hull is not tractable in the sense
that it may not be possible to characterize the convex hull with
a scalable number of constraints. This already holds for simple
ramp constraints [19]. This is also acknowledged by [26], where
the authors do not account for them in their network flow model.
Instead, [25] needs to combine the proposed tight formulation
with an iterative algorithm in order to account for the ramp
constraints in a scalable way. It goes without saying that these
modelling limitations also hold for more advanced constraints
such as multimode CCGT units, detailed battery models, and so
on. Thus, since the pricing mechanism becomes dependent on
the quality of the primal formulation, the primal approach can be
ruined by adding a new constraint — which is particularly con-
cerning, since electricity market models are constantly subject to
changes (e.g. triggered by regulatory requirements such as arti-
cle 40 of EGBL guidelines). These modelling limitations imply
that, if the representation of the convex hull is not tractable, the
primal approaches are irremediably left with an approximation
of convex hull prices, such as the PJM pricing model (D). This is
illustrated in our numerical results of Section IV, where a primal
method benchmark [19] is included. This motivates our choice
for a dual approach.

3Taylor [2], which inspired Fig. 1, proposes an interesting interpretation of
CHP by relating it to the semi-definite programming (SDP) relaxation of problem
(1). The proposition is motivated by the well-known SDP relaxation of a non-
convex quadratically constrained program (QCP) [20]–[22] and the fact that
a MIP can be expressed as a QCP. However, the above taxonomy reveals an
innacuracy in the reasonning: it mixes (Δ) and (Γ), as it omits the fact that
CHP relies on a partial (and not complete) Lagrangian relaxation, where only
the market clearing constraints are relaxed (i.e. dualizing fewer constraints can
only improve the duality gap [23]).

4Note however that [24] focuses on a subset of the market constraints, ignoring
e.g. linked blocks and exclusive groups [13].
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III. THE LEVEL METHOD

A. Review of Existing Algorithms

The appropriate algorithmic scheme for solving (3) is related
to the type of function L(π).

Property 1 (Concave): Function L(π) is concave in π.
Property 2 (Non-smooth): Function L(π) is a non-smooth

(piecewise linear) function, i.e. each facet can be seen as corre-
sponding to a set of binary (commitment) decisions ug .

Property 3 (First-order oracle): A first-order oracle is avail-
able, i.e. given a price π, both the function value L(π) as well
as its supergradient s ∈ ∂̂L(π) can be evaluated.

Property 4 (Supergradient): Let (c∗, p∗, u∗, f ∗) be the opti-
mal reactions to π (solving respectively (4b) and (4c)). Then

s = Di
t −

∑
g∈G

p∗g,t +
∑

l∈from(i)

f ∗l,t −
∑
l∈to(i)

f ∗l,t

is a supergradient of L in π; i.e. s ∈ ∂̂L(π).
Each call to the oracle implies solving MIP profit maximiza-

tion programs (2) for each generator as well as for the network
program (4c) — these are thus slave problems. We propose later
a special treatment of the network and leverage the separability
of the profit maximization problems in order to substantially
improve the formulation. Any algorithm tackling this problem
would work in three steps:

1) Given a price πk, evaluate L(πk) and ∂̂L(πk);
2) Given this information, generate a new price πk+1;
3) If the stopping criterion is met, stop. Else, go to step 1.
The main difference between dual decomposition algorithms

is in the way that they construct the sequence of iterates{πk}∞k=0:
(i) some algorithms simply update the prices based on the latest
supergradient information — they are memoryless —; (ii) while
other algorithms will keep memory of the sequence of iterates.
We briefly summarize three approaches, which were tested (and
compared to the Level Method) by the authors in previous
work [16].

A well-known scheme belonging to category (i) is the sub-
gradient scheme. Perhaps surprisingly, it is proven to be optimal
for general convex non-smooth optimization with arbitrarily
high dimension [14]. However, when dealing with problems of
“moderate” dimension such as the one presented in our context,
there exists more optimistic alternatives.

Indeed, the subgradient scheme for piecewise-linear func-
tions, such as our problem (3), tends to oscillate between the
facets of the Lagrangian dual function, around an edge. There-
fore, one idea is to “catch the edge” and follow it until the
optimum, instead of oscillating from one facet to another, as
the subgradient method does. This intuitive reasoning leads to
the Extreme-Point Subdifferential (EPSD) algorithm, which is
specifically applied in [36], [37] to the CHP problem. However,
our experiments in [16] reveal that each iterate of the algorithm
is costly, as it requires not only to solve the problems (2) for
each generator to optimality, but to enumerate all the optimal
solutions.

Unlike these two memoryless schemes, the Analytic Center
Cutting Plane Method (ACCPM, see [14], [38] for the theory

and [37], [39] for its application to CHPs) is based on the
principle of iteratively reducing the search domain: the price
domain is initially limited to a box and, at each iterate, the
supergradient is used for generating a cut, which shrinks the
search domain. The next testing point is chosen as the analytical
center of the updated domain.

Our original investigation of these alternative dual ap-
proaches (subgradient, EPSD and ACCPM) in [16] concluded
that none of them were competitive with the Level Method for
computing CHPs.

B. Kelley’s Approach

The Kelley algorithm [14] forms the basis for the proposed
Level Method. It is based on the idea of iteratively constructing a
model (upper approximation) of the Lagrangian function L(π),
using its supergradients.

Definition 1 (model function): Let Q be the initial domain
of our problem (i.e. a box limiting the prices, which can be
economically interpreted as price caps) and let {πk}∞k=0 be a
sequence in Q. Let sk be the supergradient at iterate πk. Then

L̂(π, k) = min
j=0..k

{〈sj , π − πj〉+ L(πj)} (5)

is a model for the Lagrangian functionL(π), such that L̂(π, k) ≥
L(π).

In order words, the piecewise linear function L(π) is upper-
approximated at each iterate by a model function L̂(π, k) con-
sisting of supporting hyperplanes. At iteration 0, this is a single
hyperplane. Then, as the iterate count k is increasing, the model
function L̂(π, k) is becoming increasingly accurate.

Definition 2 (master program): The maximization of the
model function yields the master program at iterate k:

max
π∈Q,θ

θ

s.t. θ ≤ 〈sj , π〉+ bj ∀j = 0..k
(6)

Here, sj are the “cut coefficients” (as defined in Property 4)
and bj = L(πj)− 〈sj , πj〉 are the “cut constants”. This is a
computationally tractable linear program.

Having the upper-approximation function L̂(π, k) at hand,
one needs to decide the rule for building the sequence of iterates
{πk}∞k=0. The more intuitive way to pick the next iterate is:

πk+1 = argmax
π

L̂(π, k). (7)

i.e. the solution of the master program (6). This defines Kelley’s
cutting plane method. One of its benefits is that it explicitly
provides an upper bound as well as a lower bound at each iterate
k: a lower bound is defined as LBk = maxj=0..k L(πj), while
an upper bound isUBk = maxπ L̂(π, k). Note that the sequence
of upper bounds {UBj}kj=0 is decreasing, as the definition of the

model function implies that L̂(π, k + 1) ≤ L̂(π, k). The upper
and lower bounds can be combined to define the relative gap,
which is used as a stopping criterion for the Kelley (and Level)
Method:

UBk − LBk
|UBk| ≤ ε (8)
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Fig. 2. Illustration of projection on the level set.

C. Level Stabilization

Kelley’s algorithm is finite, because each iterate adds a new
hyperplane and the number of hyperplanes supporting the func-
tion is finite. Nevertheless, despite its simplicity and its good
behaviour in low dimension, it tends to be unstable in higher
dimension. This is due to the unstable nature of piecewise linear
functions: adding a new supporting hyperplane can move the
optimum far from the previous point (i.e. to a corner of the
box Q). This well-known drawback [40] justifies why multiple
stabilization approaches have been proposed in the literature,
including the Level Method [14], [40].

The underlying idea of the Level Method is to update prices
more smoothly: instead of using the optimum of the model
function as the next iterate, the algorithm chooses πk+1 such
that it is “better” than πk (as evaluated by the model function
L̂(πk+1, k)) without being optimal at all costs. We observe in
Section IV that this stabilization has a major influence on the
practical performance of the algorithm.

A graphical illustration in 1-D is presented in Fig. 2. The
cuts, the LB and the UB are obtained as in Kelley’s method,
by solving the master program (6). However, unlike in Kelley’s
method, the next price candidate is selected by solving a projec-
tion program.

Definition 3 (projection program): The iterateπk+1 is chosen
as the projection of πk on the “level set” L̂(π, k) ≥ αUBk +
(1− α)LBk, which amounts to solving:

min
π∈Q

||π − πk||22
s.t. 〈sj , π〉+ bj ≥ αUBk + (1− α)LBk ∀j = 0..k

(9)

Here, α ∈ [0, 1] is the projection parameter. This is a computa-
tionally tractable quadratic program.

Regarding the calibration ofα,α = 1 corresponds to the clas-
sic Kelley method, while α = 0 implies that the iterate simply
does not move. We note that a theoretically optimalα exists [14]
for general convex non-smooth functions, but that a calibration
to the specific problem can still be meaningful. Our empirical
tests on the CHP problem reveal that, for the high-dimensional
instances that we are interested in, the approach is largely
insensitive to the choice of α. This is shown later in Table III,
where any value of α between 0.2 and 0.7 exhibits similar

performances. Following [16], the value α = 0.2 is chosen for
all of our experiments in the present work.

Regarding the choice of the box Q, experimental evidences
show that the Level Method is not too sensitive to its exact
value, despite it impacts the quality of theUB estimate. In all of
our experiments, Q is initially set to ±300$/MWh and is then
progressively shrunk after 10, 20 and 30 iterates to±25$/MWh
around the latest price candidate. This is justified by an analysis
of the volatility of the price iterates, which rapidly reach a price
close to the CHP.

D. Refinements of the Level Method in the Context of CHP

We now propose adjustments to the basic algorithm which
exploit the structure of our problem. We specifically leverage
the fact that: (i) the network model is convex and (ii) the profit
maximization programs of the generators are separable.

In our development so far, we have been treating the convex
network term (4c) identically to the non-convex generators, i.e.
by solving the network profit maximization given a price π,
and generating a supergradient. We illustrate below the treat-
ment of the convex parts of the primal program by focusing
our discussion on the network. The idea applies identically to
convex generators (e.g. the convex orders in Euphemia, which
are numerous), a convex pumped-storage model, etc. (see section
3.6 and appendix A in [16] for a treatment of these cases).

For the sake of illustration, let us assume that the network
constraints F correspond to the DC (voltage angle) power flow.
Term (4c) then reads as follows:

min
f,ψ

∑
i,t

πit

⎛
⎝ ∑
l∈from(i)

fl,t −
∑
l∈to(i)

fl,t

⎞
⎠ (10a)

(μl,t) fl,t ≤ F l ∀l, t (10b)

(νl,t) fl,t ≥ F l ∀l, t (10c)

(λl,t) fl,t = Bl(ψor(l),t − ψdest(l),t) ∀l, t (10d)

Here, Bl stands for the susceptance of line l, and F l and F l are
its max and min capacity, while or(l) and dest(l) denote the
origin and destination nodes of line l. The dual of (10) can be
expressed as:

max
μ≥0,ν≥0,λ

∑
l,t

νl,tF l − μl,tF l (11a)

π
or(l)
t − π

dest(l)
t + μl,t − νl,t + λl,t = 0 ∀l, t (11b)∑

l∈to(i)
λl,tBl −

∑
l∈from(i)

λl,tBl = 0 ∀i, t (11c)

Problem (11) can now be injected into (4) as a substitute for
(4c), meaning that the network dual variables (μ, ν, λ) would
explicitly be variables of the master (and projection) program.

Secondly, the classical Kelley and Level Methods add a single
cut at each iterate, namely one single cut for all the generators.
Nevertheless, the dual function is separable with respect to
the generators. We therefore propose a multi-cut Level Method,
whereby we compute one cut (one lower approximation) for each
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Fig. 3. Our implementation of the Level Method for the computation of CHP.

generator profit maximization subproblem. Our experiments
reveal that this adaptation can deliver substantial computational
benefits. Generating more cuts makes the model function more
accurate, which enables the algorithm to converge faster. Note
that multi-cut versions of other approaches have been applied
successfully in different contexts, such as for two-stages stochas-
tic programs [41], [42].

To summarise, after the inclusion of both the network dual
and the multi-cut approach, the master program (6) at iterate k
becomes:

max
μ≥0,ν≥0,
λ,π∈Q,θ

∑
i,t

πitD
i
t +

∑
l,t

(
νl,tF l − μl,tF l

)−∑
g∈G

θg (12a)

θg ≥ 〈pjg,·, πi(g)〉 − cjg ∀g, j = 0..k (12b)

π
or(l)
t − π

dest(l)
t + μl,t − νl,t + λl,t = 0 ∀l, t (12c)∑

l∈to(i)
λl,tBl −

∑
l∈from(i)

λl,tBl = 0 ∀i, t (12d)

Here, {pjg}kj=0, corresponds to the sequence of generator g
power output for iterates j = 0..k. These parameters are also
cut coefficients for generator g. On the other hand, {cjg}kj=0,
which corresponds to the sequence of generator g cost for iterates
j = 0..k, are the cut constants. The translation of the projection
program (9) is applied as discussed previously.

In the classical Kelley/Level Methods, estimating the lower
bound (evaluating (4) at a given π) follows directly from the res-
olution of the slave subproblems. The inclusion of the network
into the master program, as described above, complicates the
process. Indeed, the network contribution in the dual function
(4c) is not solved explicitly anymore, but now comes in the
master objective (12a), together with constraints (12c) and (12d)
that should not be violated. Therefore, estimating the value of
L(π) after having retrieved the cuts from the slaves (for the
same π) amounts to solving the master (linear) program (12)
with the variables π fixed. The overall procedure is described
schematically in Fig. 3. Note that the resolution of the two master
programs (with π fixed and variable) can be parallelized.

IV. SIMULATION RESULTS

This section presents the numerical results of the (multi-cut)
Level Method on instances of realistic scale. The Level Method

has been benchmarked against other dual approaches in earlier
work by the authors [16]. It is chosen as the most promising
method for computing CHPs among all tested alternatives. In
the present section, we therefore focus on its comparison with
a recent work [15] which employs a D-W column generation
algorithm [43] (i.e. the dual of Kelley) for iteratively building
the convex hull of the dispatch problem, i.e. D-W gradually
discovers the corners of the primal formulation. As in the case
of the Level Method, it can be applied to any UC formulation.
We use it as a performance benchmark in our analysis, due to
its favourable empirical performance. We also include O’Neill
pricing, discussed in the introduction, as another benchmark in
our analysis, as well as PJM pricing (discussed in Section II-C)
as a primal method benchmark.

Unlike other computational researches on CHP [15], [37]
which are mainly concerned about the number of generators in
the problem, we rather focus our investigations on the sensitivity
of the algorithms with respect to the dimension of the price space.
Indeed, although the number of generators is surely relevant,
since the ultimate goal is to compute prices by optimizing
L(π), the price-space dimension is expected to have a significant
impact on the performance of any tested method. Therefore, we
first present results without a network, with a horizon of 24
periods, and then introduce network constraints and extend the
time horizon to 96 periods.

For all our test cases, the comprehensive market procedure
for computing the prices and measuring uplifts follows the steps
that are described in Section I. Concretely, there are three steps:
dispatch, price, and uplift computation. The Level Method and
D-W differ with respect to the second step. Both approaches
have been implemented in Julia (JuMP) and all the tests are run
on a personal computer (Intel Core i5, 2.6 GHz with 8 GB of
RAM) using Gurobi 9.1.1.

A. FERC (US) Test Cases

The first test cases in our analysis are based on FERC
datasets [34], [44]. The test sets are publicly available, together
with the associated UC model, and are also used by [15]. These
test cases consist of a detailed UC model. The only adaptations
in our work are the removal of reserve and the netting out of
renewable supply from the load. The UC model includes, among
others, min up and down time constraints, ramp constraints
(including start-up and shut-down ramp rates), variable start-up
costs which depend on how long a unit has been off, no-load
costs, and piecewise linear production costs. The model has no
network, but gathers > 930 generators. This corresponds to an
instance of realistic size, barring for the absence of the network.
As in [15], we conduct our analysis on a 24-period horizon with
hourly time step.

Table I presents the average results over 11 FERC instances,
while Fig. 4 illustrates the convergence behaviour of both ap-
proaches on one of the instances. The 11 instances essentially
correspond to 11 different load profiles, with slight changes in
the production fleet, which varies from 934 to 978 generators.
The stopping criterion of the Level Method (8) is set to 0.01%.
The number of iterates reported in Table I for D-W corresponds
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TABLE I
RESULTS OF THE LEVEL METHOD AND THE DANTZIG-WOLFE ALGORITHM ON

FERC DATASETS (AVERAGE OVER 11 INSTANCES)

a(·) denotes the average time per iterate for solving the “master programs” (i.e. master
plus projection in the case of the Level Method).

Fig. 4. Convergence of the Level Method and D-W algorithm, measured
by the uplifts (O’Neill pricing and the primal method are used as benchmark
thresholds), on the “FERC 2015-07-01 high wind” instance. Both axes are in
logarithmic scale.

to the iterations that are required for reaching the same amount
of uplifts as the Level Method. Both algorithms are initialized
at a uniform price of 20$/MWh.

The results already show the attractive performance of the
Level Method, both (i) in terms of iteration count and (ii) in
terms of robustness. Indeed, there is an average improvement of
34% compared to D-W in terms of number of iterates (Table I).
It should be noted that this number of iterates is a reasonable
measure for comparing the performance of both approaches.
Concretely, both methods have to solve the same subproblems
and mainly differ in the other computations that they are required
to perform. Whereas the Level Method has to solve both a linear
master and a quadratic projection, D-W is only required to solve
the linear (master) extended formulation. On the other hand, the
extended formulation solved by D-W is larger than the Level
master program, as illustrated in Fig. 5. Overall, this results
in a similar run time per iterate, as reported in Table I which
shows both the average run time per iterate as well as, between
parentheses, the average run time spent in the master programs
(master plus projection programs for the Level Method). This
implies that the number of iterations (the analytical complexity:
the number of calls of the oracle to reach a reliability target) is a
reasonable measure for comparing performance. It also has the
benefit of being less dependent on the specific machine or on
the implementation details. Note that, for both approaches, the
slave subproblems can be parallelized.

Furthermore, there is a gain in robustness: the Level Method
exhibits a more stable performance, as observed in Fig. 4. Indeed,
Fig. 4 suggests that it does not seem possible to stop the D-W

Fig. 5. Size of the Level Method and D-W master programs on the “FERC
2015-07-01 high wind” instance. The Level Method adds cuts, which implies
that the number of constraints is growing. On the other hand, D-W adds columns,
which implies that the number of variables is growing. The robustness of the
Level Method translates in a master program that grows less rapidly than D-W.

algorithm long before its termination, since uplifts remain high
for a large number of iterations (we also refer the reader to Fig. 7
of the next use case, which shows how the convergence of uplift
over iterates translates to the distance of prices from CHPs).
Instead, the Level Method reaches near-optimal prices in fewer
iterations. This is an inherent advantage of the Level Method,
which is by design a stabilization approach.

Finally, we comment on the primal method benchmark.
The FERC model exceeds what a primal CHP approach such
as [19] can model, since it includes ramp constraints and
time-dependent startup costs. The integer relaxation is therefore
expected to lead to an approximation of CHP. The quality
of the primal method largely depends on the tightness of the
formulation. In this respect, the FERC model is derived from a
careful review of the literature dedicated to tight formulations of
the unit commitment model [27], [35]. The quality of the model
is discussed in [34], where it is accompanied by computational
experiments of its tightness. As observed in Table I, the primal
method turns out to provide a close approximation of CHP on
these FERC instances. Nonetheless, this is not always guaran-
teed, as we observe in the next test case (Table IV), where the
primal method leads to an average uplift which is ∼60, 000€
higher than CHP, for a market of comparable dispatch cost.

The test cases analysed so far suggest a promising perfor-
mance for the Level Method. Nevertheless, even if these FERC
instances are of realistic scale insofar as the number of power
plants are concerned, we are interested in computing prices. This
suggests that it is the dimension of the price space that matters
the most. There are essentially two ways5 to increase the price
dimension: (i) augmenting the time horizon — the horizon of
future EU markets will be 96 periods of 15 minutes — and (ii)
adding a network — which is unavoidable in both the EU and
the US markets. This motivates the next test cases.

5A third way would be the introduction of reserve. The current EU DA market
does not co-optimize energy and reserve, which is why it is not considered in
our analysis. Nevertheless, art. 40 of EGBL guidelines indicates that this could
constitute a future evolution of the EU market.
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TABLE II
DESCRIPTION OF THE SIZE OF THE EU INSTANCES

TABLE III
SENSITIVITY OF THE LEVEL METHOD WITH RESPECT TO PARAMETER α ON

THE BE 96-PERIOD CASE (AVERAGE OVER 6 INSTANCES)

TABLE IV
RESULTS OF THE LEVEL METHOD AND THE DANTZIG-WOLFE ALGORITHM ON

THE BE TEST CASE (AVERAGE OVER 6 INSTANCES)

a(·) denotes the average time per iterate for solving the “master programs” (i.e. master
plus projection in the case of the Level Method).

B. EU Test Cases

We now extend our analysis to use cases with a network. The
EU dataset that we utilize is the one used in [45]. The network
data is based on [46], and is constructed among others from
an ENTSO-E database. The market suppliers are modelled as
a slightly simpler version of the UC model than the FERC test
case, essentially simplifying the cost structure: there is a single
start-up cost, instead of the variable start-up costs of FERC,
and the marginal production cost is constant. All the cases are
simulated over 6 different load profiles. As we are interested in
studying the scalability of the Level Method and D-W algorithm
with respect to the network and the time horizon, the data has
been aggregated into two test cases: BE and BE-NL, which are
described in Table II. As detailed in Section I, Euphemia, the EU
market clearing algorithm, currently computes prices for ∼40
bidding zones, and is expected to move to 15-minute granularity
(96 time periods) in the near future. This makes our two tests
cases with 96 periods very relevant proxies of the evolving EU
context with respect to price dimensionality.

The final results are obtained with the stopping criterion set to
0.01%, as for the FERC cases. Table III shows the sensitivity of
the Level Method towards parameter α, previously discussed in
Section III-C. Table IV presents results for the BE test case with
multiple time horizons. Figs. 6 and 7 illustrate the convergence of
the BE test case with 96 periods. Table V presents a comparison
for different network sizes. It is worth noting that, in all the test
cases (except the 12-period BE test case, which is however less

TABLE V
RESULTS OF LEVEL METHOD AND THE DANTZIG-WOLFE ALGORITHM FOR

DIFFERENT NETWORK SIZES (AVERAGE OVER 6 INSTANCES)

a(·) denotes the average time per iterate for solving the “master programs” (i.e.
master plus projection in the case of the Level Method).

Fig. 6. Convergence of the Level and D-W approaches, measured by the uplifts
(O’Neill pricing and the primal method are used as benchmark thresholds), on
the BE summer weekday 96-periods instance. Both axes are in logarithmic scale.

Fig. 7. Convergence of the Level and D-W approaches, measured by the price
relative distance to CHP, on the BE summer weekday 96-periods instance.

relevant for practical applications), the Level Method turns out
to be superior to D-W in terms of iteration count. Furthermore,
we observe that the benefits of the Level Method are magnified
when increasing the dimension of the price space.

More specifically, insofar as sensitivity with respect to the
time horizon is concerned, Table IV demonstrates that the Level
Method scales well with respect to the horizon of the problem
as it increases from 19 to 44 iterates as the horizon grows
from 12 to 96 periods. On the other hand, the performance
of D-W is seriously harmed by the increase of the horizon:
the number of iterates increases from 19 to 236. The stable
behavior of the Level Method is corroborated by Fig. 6. We
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observe that, within 6 iterates, it already reaches a price that
achieves lower uplifts than those of O’Neill pricing. Fig. 7 also
presents the convergence of both algorithms on the same instance
in terms of price distance to the optimum. Being capable to reach
quickly decent price candidates is an attractive feature for EU
implementation of CHP, recalling from Section I that Euphemia
is currently granted 12 minutes for computing the EU day-ahead
market matchings and prices.

As far as the network size is concerned, Table V presents the
sensitivity with respect to the two use cases. Perhaps surpris-
ingly, neither of the methods is strongly affected by the size of
the network, rather the contrary. On the instance with 24 periods,
the benefits of the Level Method are similar as in the FERC cases.
On the 96-period instances, the Level Method moves from five to
four times faster than D-W on the BE and BE-NL cases, in terms
of iteration count. Overall, D-W seems much more affected by
the increase in the time horizon rather than the presence of a
network, to which the test cases suggest D-W is rather robust.
This is possibly due to the fact that D-W is required to explore
in the space of promising power plant schedules — and these
schedules become more and more numerous when increasing the
horizon — while the network size does not affect immediately
the number of schedules.

It should be stressed that the aforementioned computational
gains can make a difference for the practical implementation of
CHP, keeping in mind the 12-minute run time limit of Euphemia.
From Table IV, we observe that the Level Method requires less
than 5 minutes on average for solving a 96-period instance. The
D-W algorithm requires 27 minutes.

The computational times reported in our results may of course
not be representative of the implementation of the EU NEMOs,
as solving the slaves in parallel and increasing the computational
power would reduce the run time. Assuming an idealized paral-
lelization of the slaves — which is very optimistic considering
the NEMOs currently run Euphemia on 8 threads [47] —, the run
time per iterate would be lower-bounded by the time for solving
the master programs (master plus projection programs for the
Level Method, as reported between brackets in the tables). As
an example, the “most difficult” BE-instance was solved in 266
iterates by D-W, with 2.3 sec/iter for solving the master program.
This implies a lower bound of more than 10 minutes for obtaining
the CHP. On the same instance, the Level Method required
37 iterates, with 1.4 sec/iter for solving the masters, which
amounts to a total of less than 1 minute. Furthermore, whereas
the price dimension of our test cases has been selected so as
to be comparable to the EU market, the number of generators
(or market bids) is well below the value that occurs in practice.
As an order of magnitude, Euphemia currently solves instances
with around 160,000 hourly orders (convex) and 4,000 block
orders (non-convex) [4]. This suggests that the time for solving
the master programs would likely be higher on the real instances
of Euphemia.

V. CONCLUSION

Our paper proposes a (known) bundle stabilization approach
for efficiently solving convex hull pricing. We demonstrate that

the Level Method is able to converge within few iterations to
a certain target gap, while exhibiting a stable behaviour, on
large instances which, in terms of price space dimension, are
comparable to the size of the EU day-ahead auction.

It is likely that the choice of the best algorithm for solv-
ing CHP will depend on the specific use-case: the dimension
of the network, the time horizon, the complexity of the unit
commitment/market orders, the run time that is afforded to the
algorithm, etc. Although no method can conceivably provide an
ultimate solution for computing CHP in an arbitrarily complex
setting, the Level Method indicates the promising behaviour of
a family of “bundle approaches”. This suggests areas of future
research on alternative bundle approaches, such as the Proximal
Stabilization method, the Doubly-Stabilized Bundle Method [40]
or the Boxstep method [48], which appear to be well suited for
solving the CHP Lagrangian relaxation.

Another question for future research relates to how the pro-
posed approach can be adapted in case one of the following
assumptions is relaxed: the convexity of the grid model and the
separability of the generators profit maximization problems.

Having scalable algorithms capable to compute CHP on large
instances also enables more extensive quantitative analysis of
its economical behaviour. As far as the EU market is concerned,
we are interested in (i) expanding tests on realistic instances of
Euphemia — our preliminary tests show that the Level Method
can solve the 4MMC run of Euphemia [13] in ∼1 minute —,
(ii) examining the effects of non-uniform pricing on enhancing
welfare in the EU day-ahead market, and (iii) understanding
distributional effects of non-uniform pricing as well as gaming
effects.
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