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Abstract— In this paper, we compare convex hull pricing to an 

alternative pricing scheme minimizing make-whole payments, in 

contrast to minimizing lost opportunity costs. We show how to 

compute prices that minimize make-whole payments using the so-

called primal approach proposed for convex hull pricing. 

Building further on this analogy, a pricing framework is 

proposed. The framework is general enough to describe virtually 

all pricing rules proposed so far in the literature or used in 

industry, including current European market rules, and is meant 

to ease comparisons. Minimum make-whole payment pricing and 

convex hull pricing are compared in terms of deviation from a 

uniform pricing scheme, revenue adequacy for market operators, 

and computational hardness. Finally, we briefly recall why both 

pricing methods may encounter challenges in sending adequate 

price signals in case of congestion or scarcity of supply or 

demand. 

Index Terms—Convex hull pricing, make-whole payments, 

revenue adequacy, day-ahead electricity markets. 

I. INTRODUCTION 

It is well known that landmark microeconomic theory on 
the existence of market equilibria relies on key convexity 
hypotheses, see e.g. [1] or [2], Chapter 3. On the other hand, the 
liberalization of electricity markets since the 1980s has fostered 
research on partial near-equilibria in the presence of non-
convexities [3,4], which was a requirement in such markets in 
order to model either technical constraints or cost structures. 

Debates around pricing in day-ahead electricity markets 
regain interest both in the US and in Europe. In Europe, “non-
uniform pricing”, which is departing from the current European 
design, has recently been contemplated from an R&D 
standpoint as a possible future design evolution. This is pointed 
out in the 2020 CACM Annual Report released in July 2021 [5] 
and in the Market Coupling Consultative Group meeting of 
June 2022 [21]. Convex hull pricing and LMP (also named IP 
Pricing) are among the main pricing schemes that are 
considered as being in scope when it comes to real-world 
market design, and the authors have engaged actively in these 
policy debates.  

The context considered in this paper is the following: a 
Market Operator (MO) is in charge of collecting supply (or 
offer) and demand bids from market participants. It must then 
compute a market outcome and decide which quantities will be 
exchanged, what the electricity market prices are, and what the 
settlements are, i.e., the money transfers between market 
parties. Besides impacting the magnitude of side payments 
required to ensure non-confiscatory or equilibrium outcomes, 
market prices have their own importance as underlying prices 
of reference for contingent claims of derivative products such 
as Financial Transmission Rights or futures. 

In this paper, we compare convex hull pricing to an 
alternative that seeks to minimize make-whole payments, in 
contrast to minimizing lost opportunity costs. We show how to 
compute prices that minimize make-whole payments (MMW 
Pricing, denoted below MMWP) via the primal approach 
initially proposed for computing Convex Hull Prices (CHP) [6, 
7, 8]. The idea relies on a standard MIP Lagrangian duality 
result [9, 10], and appropriately modifying the feasible sets of 
market participants at the pricing stage. This primal approach 
for MMWP admits a clear economic interpretation in terms of 
convexification corresponding to allowing non-increasing 
returns to scale (see Debreu’s Theory of Value [2] p.40) in the 
pricing problem. The pricing scheme has associated economic 
interpretations: a unit earns profits solely thanks to market 
prices (i.e. without side-payments) if its production capacity is 
scarce for the system in this convexified context. The topic is 
further discussed in Section II. Building further on analogies 
between MMWP and CHP, a pricing and settlement framework 
is proposed. The framework is general enough to describe 
virtually all pricing rules proposed so far in the literature or used 
in industry and is meant to ease comparisons. 

MMW Pricing and CHP are compared in terms of deviation 
from a uniform pricing scheme, revenue adequacy for market 
operators, and computational hardness. Revenue adequacy 
means that side payments can always be financed with market 
payments based on market prices that are charged to market 
participants, without incurring losses. This prevents any 
missing money for Market Operators, which is considered an 
institutionally important requirement in European day-ahead 
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markets where power exchange operations are separated from 
system operation. With MMW Pricing, side payments 
correspond to non-confiscatory make-whole transfers between 
market players, minimized by construction. For this reason, 
MMW Pricing achieves smaller side payments than convex hull 
pricing. On the other hand, the outcome may be further away 
from a market equilibrium compared to convex hull pricing. 

MMW Pricing is also revenue adequate, while an example 
illustrates why convex hull pricing is not revenue adequate, 
though the conditions that drive this example are not likely to 
occur in practice. 

From a computational standpoint, MMW Pricing is shown 
to be tractable, even when detailed technical and cost 
characteristics of generation units are simultaneously 
considered (minimum up and down times, ramp constraints, 
startup and no-load costs, etc.). 

Finally, we discuss why both MMWP and CHP may 
encounter challenges in sending adequate price signals in case 
of congestion or scarcity of supply. 

The paper is structured as follows. We first introduce 
MMWP in Section II, highlighting differences with CHP, and 
showing how prices can be efficiently computed via the primal 
approach initially proposed for CHP. Corresponding economic 
interpretations evoked above are also presented in this section. 
Section III introduces a pricing and settlement framework 
aimed at allowing a general comparison of pricing rules in non-
convex markets (both economic and computational). In this 
section we also formally discuss revenue adequacy for market 
operators. We argue that the main pricing rules proposed in the 
literature can be cast in this framework. Section IV specifically 
compares MWWP and CHP from a revenue adequacy and 
computational hardness perspective, and discusses the question 
of price signals. Finally, Section V concludes the paper. 

II. MINIMIZING MAKE-WHOLE PAYMENTS 

A.  Make-whole payments versus uplifts 

 
We consider a welfare maximization program (denoted 

SWP) described as: 
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For generators, the quantities �
,� are negative, 	
 < 0 are 

the cost functions, and !
 encodes minimum up/down times, 
ramp constraints and possibly other generator technical 
characteristics such as time-dependent start-up costs [11]. For 
demand bids, �
,� > 0, 	
 > 0 are the utility functions, and  !
 

can be chosen so as to model a standard stepwise demand curve, 
or an inelastic demand. 

Before discussing Minimum Make-whole Payments 

Pricing and an appropriate choice for the modification of the 

feasible sets of market participants, we first underline the 

difference between make-whole payments and uplifts. Convex 

hull pricing finds prices � minimizing the sum of the so-called 

uplifts, defined for each unit or market order " as a function of 

the market prices �. Uplifts amount to the difference between 

the best profit that the market participant could have achieved 

by choosing its own commitment and dispatch decisions given 

the market prices, and the profit made given the decisions of 

the market operator. It is computed as: 
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It is shown in [12] that Convex Hull Prices can be obtained 
by solving the Lagrangian Dual of (1)-(3) where the balance 
constraints (2) are dualized. In turn, leveraging a well-known 
MIP Lagrangian Duality result [9, 10], the references [6, 7, 8] 
show that Convex Hull Prices can be calculated alternatively by 
solving the primal problem (1)-(3) but where in (3), the sets !
 
are replaced by their convex hull, see (5)-(7). We assume here 
that the sets  !
 are non-empty, compact, mixed integer linear 
sets and that the functions 	
 are linear. Concretely, we compute 
convex hull prices by solving the following problem: 
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Contrary to uplifts in the case of convex hull pricing, make-
whole payments consist in side payments covering only 
negative profits (i.e. actual losses): ;<=>?ℎ7)>��,∗ ,�,∗,�,∗���� 
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Compensating for these losses ensure a non-confiscatory 

market outcome. The amount of side payments depends on the 

market prices �. We show in Section IV that whatever these 

market prices are, compensating only negative profits can 

always be financed using payments of market players, i.e., the 

pricing and settlement scheme is revenue adequate for Market 

Operators. This hence applies to convex hull pricing in case 

only the negative profit parts of the uplifts are compensated. 



 

B. Minimum Make-whole payments 

The following result leads to an interpretation relating 
prices minimizing make-whole payments to average pricing 
and the virtual possibility for the Market Operator to uniformly 
scale down the accepted production of a unit " over all periods 
by the same factor =
 ∈ �0,1�. Minimizing make-whole 
payments is obtained by considering, for an order ", the total 
quantities �
,�

,�∗  accepted by the Market Operator solving (1)-

(3) as the quantities initially offered at a limit price equal to the 
total costs of production. 
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The basic idea is to rely on (5)-(7) with modified feasible 

sets for each market participant: !I
 : = {�0,0,0�} ∪{��
∗, �
∗, 

∗�}. The solution ��
∗, �
∗, 

∗� is still a welfare 

maximizing solution for (1)-(3) if the !
 are replaced by !I
. 
Moreover, assuming that 	
�0,0,0� = 0 (i.e., that profits/losses 
of the market player " are null if ��
 , �
 , 

� = �0,0,0�), the 
uplifts defined in (4) correspond in that case to the make-whole 
payments defined in (8), because of the definition of the new 

set !I
. The fact that prices � obtained as optimal dual variables 
of (10) provide prices minimizing make-whole payments then 
follows from the primal approach discussed above and the fact 

that "789�!I
� = {�=
�
∗, =
�
∗, =


∗� | 0 ≤ =
 ≤ 1}. 

The convexification of the initial welfare maximization 
problem consists in allowing the matched quantity of each bid 
to be arbitrarily scaled down, a property called non-increasing 
returns to scale in [2], p.40, in case of production. 

Let us now consider the dual of (9)-(12): 

minN,O � G
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The dual and complementarity conditions lead to interesting 
economic interpretations about the pricing properties of this 
scheme. 

Suppose 0 < =
 < 1, then 
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This means that plants the production of which would be 
uniformly scaled down with production costs scaled down 
accordingly (if this were allowed) are those making zero profits 
or losses in the computed market outcome. Only plants that 
would fully keep their production level for that convexification 
(i.e., those with =
 = 1) are making profits at the market prices. 
Moreover, those plants receiving make-whole payments are 
among those that would not produce anything (=
 = 0). 

III. GENERAL PRICING AND SETTLEMENT FRAMEWORK 

The pricing and settlement framework introduced below 
generalizes both convex hull pricing and the bilevel marginal 
pricing models considered in [13, 14, 15]. It has been developed 
independently from the unified approach to pricing with non-
convexities proposed in [16]. Both share common 
characteristics which emerge naturally when pricing in non-
convex markets is considered, such as convexifications of the 
initial allocation problem. The latter reference also informally 
evokes the idea to modify feasible sets of units at the pricing 
stage, which can be traced back already to [17]. Compared to 
the framework presented here, the unified approach in [16] 
considers constraints defining uplifts that can later be 
considered in a scalarized multi-objective optimization 
problem. On the other hand, the framework in [16] is not 
sufficiently general to consider the current European pricing 
paradigm or the bilevel marginal pricing models in [13, 14, 15]. 

Virtually all pricing rules proposed over the last two 
decades in the literature rely in one way or another on a 
convexification of the welfare maximization problem (resp. 
cost minimization problem to meet a specified load). This is 
considered here by noting that constraint (20) below in the 
proposed pricing framework (17)-(21) is, if the !
 are compact 
linear feasible sets, equivalent to asking that prices be obtained 
as marginal prices of a convexified welfare maximization 
problem (see [6,7,8] describing the so-called "primal approach" 
or [9,10] for the original underlying theorems). In (20), the 
feasible set !
 of each market participant is replaced by a 

modified version !
S��, �, 
� that can depend on the values of 
the primal variables ��, �, 
� in the upper optimization problem 
(see (17)-(21)). 
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Here, � is the objective function of the Market Operator, 
which can correspond for example to welfare maximization or 
price minimization, while ^ is used to model price-based 
constraints linking upper-level primal variables �, �, 
 to dual 
variables �.  



 

Convex hull pricing can be described by setting ^ : = 0, !
S��, �, 
� : = !
 and choosing � as the welfare maximizing 
objective. In that case, as ^ = 0, the lower-level pricing 
problem is independent from the upper-level optimization 
problem and can be solved in a second “price stage”. MMWP 

corresponds to !
S��, �, 
� : = {��, �, 
�, �0,0,0�}. 

IP Pricing (or Locational Marginal Pricing) is obtained by 

setting ^ : = 0, !
S��, �, 
� : = {��
Z, �
[ , 

[ � ∈  !
  | �
Z = u`}, 
i.e., the convexification consists in modifying feasible sets by 
fixing binary variables �
Z to their value u` in the upper level 
(hence in the optimal primal solution), and choosing � as the 
welfare maximizing objective. Again, as ^ = 0, the pricing 
stage can be decoupled from the calculations that are required 
for obtaining the optimal allocations. 

Current European market rules applicable to block orders 
(which cannot be “paradoxically accepted”, i.e., lead to 
negative profits), are special cases of price-based constraints 
and are typical of current EU markets. These rules are 
considered for example in [15]. In this case, the optimal 
allocation as well as the market prices are constrained by ^ ≠0, and price calculations cannot be fully decoupled from the calculations that are required for obtaining the optimal primal allocation �bid matchings�. 

Beyond pricing, the market operator calculates settlements 
resulting from the pricing. These settlements depend on the 
market prices but also on side payments '
  that can compensate 
market players, and which are funded by contributions ;
 made 
by market participants themselves. A settlement rule defines the 
actual payments made (resp. received) by buyers (resp. sellers) 
to/from the Market Operator, and are decomposed as follows in 
payments depending on the market price(s) �� and side 
payments '
�	
 , !
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�	
 , !
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with '
 , ;
 ≥ 0. Let us also recall the sign convention 

according to which �
,� > 0 for buy bids and �
,� < 0 for sell 

bids. 

A settlement rule is non-confiscatory (i.e., ensures cost 
recovery for market participants) if: 
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A settlement rule ��, ', ;� is revenue adequate if it is non-
confiscatory - see above - and: 
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. 
This means that one can guarantee a non-confiscatory 

settlement by relying only on transfers between market parties 
taking place besides the transfers directly depending on market 
prices, i.e., without relying on out-of-market payments. 

Revenue adequacy is hence guaranteed both for market parties 
and the market operator. We show below with an example that 
settlements associated with CHP cannot always be revenue 
adequate in the above sense, while a revenue adequate 
settlement rule can always be defined if only non-negative 
profits shall be compensated, whatever is the underlying pricing 
rule used to compute the market prices of reference. 

IV. REVENUE ADEQUACY, COMPUTATIONAL HARDNESS 

AND PRICE SIGNALS 

In this Section, CHP and MWWP are compared from the 
point of view of revenue adequacy and computational hardness. 

A. Revenue Adequacy 

Example 1 below recalls that CHP is not revenue adequate in 

the sense described above, and is adapted from [17] to consider 

a more realistic case where welfare resulting from the primal 

allocation is strictly positive. Note that the Modified Convex 

Hull approach proposed in [17] is also not revenue adequate. 

On the other hand, any price and settlement system that only 

compensates for negative profits will be revenue adequate, 

under the assumption that the welfare resulting from the primal 

allocation is non-negative. 

The example is composed of four bids for a single location, 

in a single-period market. It shows that the sum of the uplifts as 

defined for classical CHP cannot be financed by payments 

made by market participants without incurring losses to some 

of them. Hence, no non-confiscatory settlement rule exists 

which allows to finance the corresponding side-payments with 

payments from market participants. 
Table 1: Input data of example 1 

 

Figure 1.  Input data of example 1 

The welfare maximizing solution is to fully accept bids z 
and {. Note that it is impossible to accept bid # as at least 40 ;?ℎ should then be accepted, while the total offer is 35 ;?ℎ. Using the primal approach [6, 7, 8], one can easily 
show that the Convex Hull price is obtained by considering the 
continuous relaxation of the welfare maximization problem, 

Bids Quantity (MW) 
Limit price 

(€/MWh) 

Min. Acc. 

Ratio 

A - Buy bid 10 60 - 

B - Sell bid 10 10 - 

C - Buy bid 50 50 4/5 

D - Sell bid 25 20 - 

 



 

and is set by the marginal bid. Here, bid # sets the price at 50€/;?ℎ. The market outcome is given in Table 2. 

Table 2: Results of example 1, showing that CHP is not revenue 
adequate 

 

Here, bid ' requires an uplift '~ of 750 €. However, to 
ensure a non-confiscatory outcome (no loss incurred to z and  {, see definition above), the contribution to side payments ;� 
from participant z could be at most 100 €, and the contribution 
from market participant {, ;�, at most 400 €. Hence, it is not 
possible to define payments and side payments such that the 
definition of a revenue adequate settlement rule is satisfied. 

On the other hand, one can easily show that any settlement 
rule that compensates only for negative profits will be revenue 
adequate for market operators. We formalize below this fact. 

Consider the following side-payments, which essentially 
amount to reverting back to a pay-as-bid scheme (recall that '
  
corresponds to a side-payment received by the market 
participant, while ;
 corresponds to a contribution to their 
financing). 
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One can directly check that, assuming that the total welfare ∑
	
 ��
, �
 , 

� is positive or null,  ∑ '

 ≤ ∑ ;

 . In practice, to 
be as close as possible to a pay-as-clear (i.e., uniform price) 
scheme, an objective is to minimize the '
  and ;
. 

B. Computational hardness 

We consider in this note 5 medium-size instances with 90 
units and a two-node network. The units feature minimum up 
and down times, as well as ramp constraints. The models and 
algorithms have been implemented in Julia (version 0.6.2) 
using the packages JuMP.jl (version 0.18.0) and CPLEX.jl 
(version 0.2.8), on a computer with an i7-8550u CPU (4 cores 
@ max 4 GHz) and 16 GB of RAM running on Windows 10, 
using CPLEX 12.7.1 as the underlying MIP solver. Convex 
Hull Prices are computed using the compact extended 
formulation described in [18]. The problem to solve is a large-
scale linear program, solved here directly, though efficient 
decompositions methods can be shown to scale well when 
applied to this formulation, see [19]. The level method has also 
been shown to perform well for computing convex hull prices 
in such a setup [20]. As minimizing make-whole payments 
requires to solve a small-scale linear program with one variable 
per unit, balance constraints and bounds on variables, solving 
the price problem is extremely fast. Runtimes are respectively 
reported in columns ‘Run CHP’ and ‘Run MMWP’.  

Columns ‘Uplifts CHP’ and ‘MW Payments’ respectively 
report the total uplifts in the convex hull pricing case, and the 
total of make-whole payments when these are specifically 
minimized. Note that, although make-whole payments 
(compensating only negative profits) are always smaller than 
uplifts (which compensate all lost opportunity costs including 
“missed profits”), they can also define prices leading to larger 
total lost opportunity costs, i.e., to a more significant deviation 
from a competitive equilibrium. 

Table 3: Orders, prices and settlements in simulations of section IV-B 

# 
inst 

# units 
# steps 
in bid 
curves 

Welfare 
Run 

UC 

Run 

CHP 

(sec.) 

Run 
MMWP 

(sec.) 

Uplifts 
CHP 

(€) 

MW 

Paym. 

(€) 

1 90 14309 115630168 
12.0

1 
28.26 0.101 26.35 0.00 

2 91 13986 107736913 8.04 32.41 0.005 46.31 0.00 

3 91 14329 114397755 9.81 222.72 0.004 201.45 0.00 

4 92 14594 110146166 9.66 189.24 0.005 1935.97 360 

5 89 14370 107351341 7.85 26.80 0.005 1786.78 0.00 

 

C. Price signals 

In terms of price signals, both CHP and MMWP can lead to 
situations of locational price differences even in the absence of 
congestion, as already observed in [7]. From an economic 
standpoint, this implies that transmission resources receive a 
strictly positive value (given by locational price differences) 
even if they are not scarce, leaving arbitrage opportunities. In 
Europe, interpretability of zonal price differences is an 
institutionally important topic, especially as zones mostly 
correspond until today to countries, and price differentiation 
between countries in the absence of congestion according to the 
zonal network approximation may not be acceptable. Also, both 
CHP and MMWP can lead to situations where e.g., demand is 
curtailed but where the market price doesn’t reach the price cap 
(equal to the limit price of the “price-taking demand” which is 
curtailed). In these situations, the market price does not 
necessarily signal the scarcity of supply. 

V. CONCLUSIONS 

This note has shown how to adapt the primal approach 
initially proposed for computing convex hull prices, to compute 
market prices minimizing make-whole payments and discussed 
related economic interpretations. It has also compared convex 
hull pricing and the pricing rule minimizing make-whole 
payments in terms of revenue adequacy and computational 
hardness. The authors are actively engaged in stakeholder 
debates on introducing pricing schemes that respect important 
institutional requirements for EU day-ahead market clearing. 
These requirements include computational tractability, as well 
as a variety of business rules that relate to congestion and non-
convexities. The consideration of non-uniform pricing in EU 
market design can result in various computational benefits, and 
raises numerous novel questions related to pricing and 
settlement that are currently under investigation, see [5,21]. 

 

 

Bids 
Accepted  

Quantity (MW) 
Uplifts Surplus 

A - Buy bid 10 0 100 

B - Sell bid 10 0 400 

C - Buy bid 0 0 0 

D - Sell bid 0 750 0 
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