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Recent research has demonstrated that real-time auctions can generate the need for side payments, even if the

market clearing models are convex, due to the rolling nature of real-time market clearing. This observation

has inspired proposals for modifying the real-time market clearing model in order to account for binding

past decisions. We extend this analysis in order to account for uncertainty by proposing a real-time market

clearing model with look-ahead and an endogenous representation of uncertainty. We define two different

types of expected lost opportunity cost as performance metrics. Our market clearing model provides the

price signal minimizing one of these metrics using the Stochastic Gradient Descent algorithm. We present

results from a case study of the ISO New England system under a scenario of significant renewable energy

penetration while accounting for ramp rates, storage, and transmission constraints.
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1. Introduction

1.1. Motivation

In a regime of large-scale renewable resource integration, the multi-period and uncertainty effects

of renewable resources are becoming increasingly important. Flexibility, in the sense of the ability

of resources to respond rapidly to real-time conditions (Schiro (2017)), is becoming a valuable

resource for system operators. Two important challenges that system operators face in real time

are to arrive to efficient dispatch decisions, but also prices that provide an incentive to flexibility

providers to offer their resources voluntarily to the market. Concretely, the real-time market is

operated at a time step of 5-15 minutes in US and EU markets, and determines the dispatch
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of resources such as storage, pumped hydro plants, combined cycle units and demand response,

that can respond rapidly to the significant and often unpredictable variations of renewable supply.

Look-ahead matters in this respect, because these resources have inter-temporal constraints such as

ramp limits, state of charge limits, startup/shutdown costs, and so on. An increasingly important

challenge in real-time market operations is to account for these inter-temporal effects since ramp

episodes induced by renewable resources are placing increasing stress on the system. And prices

need to match the increasingly complex schedules, otherwise system operators are facing the threat

that flexibility owners may “take matters in their own hands” by self-committing or self-scheduling

their resources at a time when these flexibility resources are needed most. It is therefore imperative

that the price signal that accompanies the central dispatch decision match the profit-maximizing

objectives of flexible resource owners. This challenge has placed multi-period pricing in real-time

markets at the spotlight of stakeholders and academics in recent years.

1.2. Market Clearing Proposals in the Literature

In what follows we revisit the existing literature on multi-period pricing. Although this literature

has been cast in the context of price consistency, our approach is rather to connect the literature to

a related but different notion, that of equilibrium. An equilibrium is a pair of prices and quantities

such that the market clears and the prices support the dispatch for profit-maximizing agents.

We comment along the way on its relation to price consistency and other metrics that are often

monitored and deemed important in market operations.

1.2.1. Single-Period Market Clearing. For each agent k ∈K, an abstract formulation of

single-period market clearing models can be written as follows:

min
x

Σ
k∈K

fk(xk)

s.t. Σ
k∈K

xk = y : p

hk(x
#
k , xk)≤ 0, k ∈K

xk ∈Xk, k ∈K

(1)
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- where xk denotes the amount of power generation, fk denotes the cost function, hk denotes

inter-temporal constraints such as ramp constraints with x#
k being a given initial condition (the

amount of power generation in the previous time step), Xk denotes constraints for each k that

do not depend on time such as generation output limits, and p denotes the dual multiplier of the

power balance constraint. Observe the generality of this formulation. For example, if an agent k is

a network owner and y is a vector representing net demand for each node in the network, then the

transmission network can be incorporated in this formulation with xk being the vector of the power

flows of each line and Xk containing optimal power flow constraints and transmission capacity

constraints. In the remainder of our paper, we assume that the functions fk, hk are convex.

Basic convex optimization arguments establish that the solution of the fully coordinated problem

provides the optimal price and quantity. The optimal price and quantity pair (p∗, x∗) forms an

equilibrium since p∗ supports x∗
k for profit-maximizing agents. In other words, for each agent k ∈K,

x∗
k is an optimal profit-maximizing solution under the price p∗. This is the approach adopted in

real-time market clearing in ISO-NE, MISO, PJM, SPP (Schiro (2017)) and future integrated EU

balancing platforms (EC (2017)).

1.2.2. Multi-Period Deterministic Market Clearing. In a multi-period deterministic set-

ting, the notion of an equilibrium can be extended if the quantities clear for every period, and if

the dispatch is profit-maximizing over the full horizon. Consider an economic dispatch problem

over the time interval [ts, te]. Let us define the following optimization problem as LAD(ts, te), an

abbreviation of Look Ahead Dispatch Model (LAD). This term is used in Hua et al. (2019).

LAD(ts, te) : min
x

Σ
k∈K

Σ
t∈[ts,te]

fk,t(xk,t)

s.t. Σ
k∈K

xk,t = yt, t∈ [ts, te] : pt

hk(x
#
k,ts−1, xk,ts)≤ 0, k ∈K

hk(xk,t−1, xk,t)≤ 0, k ∈K,t∈ [ts +1, te]

xk,t ∈Xk, k ∈K,t∈ [ts, te]

(2)
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(a)

(b)

Figure 1 Rolling multi-period implementations with (a) a fixed horizon and (b) a moving horizon. The grey bars

represent the time steps that a look-ahead market clearing model covers.

- where the inter-temporal constraints are divided into two parts in order to clearly show the

treatment of initial conditions (x#
k,ts−1). For the brevity of the paper, the initial condition is implied

and the set of constraints will be written as hk(xk,t−1, xk,t)≤ 0, k ∈K,t ∈ [ts, te] in the remainder

of the paper.

In practice, multi-period deterministic models can be categorized as either static, rolling with a

fixed horizon, or rolling with a moving horizon. In a one-shot multi-period market clearing model

we run the dispatch and pricing model once and clear prices and quantities for the entire horizon

at the beginning of the horizon. The same convex optimization arguments as in the static case

guarantee that a centralized optimization problem yields the equilibrium result (Baldick (2006)).

The static setting is easy to study but unrealistic. The most realistic assumption is a rolling multi-

period market clearing model with a moving horizon as in Figure 1(b), where the look-ahead

length is fixed and we run the model multiple times for clearing (Hogan (2020), Mickey (2015)).

As time moves forward, we fix the decisions for the current time step (e.g. ts) and at the next time

step we solve another optimization problem including new information for the future demand (e.g.

LAD(ts + 1, te + 1)). This is the approach currently adopted in CAISO, NYISO (Schiro (2017))



5

and under consideration in Texas (Mickey (2015)). However, this setting is very difficult to study.

Thus, most, if not all, previous research has focused on the case of rolling with fixed horizon (Hogan

(2016), Hua et al. (2019), Zhao et al. (2019), Guo et al. (2019a), Guo et al. (2019b), Biggar and

Hesamzadeh (2020), Hogan (2020)). In this setting, we still run market clearing models multiple

times but we know when the end of the horizon is and even from the beginning we can access to

the demand information of the end of the horizon. Notice that in Figure 1(a), which corresponds to

a multi-period model with a fixed horizon, all the bars (representing the time coverage of a market

clearing model) have the same ending at tT .

Metrics for Deterministic Multi-Period Market Clearing. Two metrics that are often employed

in practice for assessing the quality of market clearing solutions are lost opportunity cost (LOC)

and make-whole payments (MWP). Given a pair of price-quantity time series, lost opportunity cost

(LOC) refers to the difference between the maximum profit that could have been ensured by an

agent that is reacting freely to prices and the profit of an agent that follows the dispatch schedule

of the system operator. Zero LOC is equivalent to an equilibrium. For price-quantity pairs that do

not constitute an equilibrium, make-whole payments (MWP) are non-zero whenever the cost of a

deployed resource exceeds the revenue that is obtained by following the dispatch instructions of

the system operator.

Rolling Multi-Period with a Fixed Horizon. For a rolling multi-period planning with a fixed

horizon, it would be tempting to argue that one should solve the dispatch problem at every time

stage (as in model predictive control), and keep current-period dispatch decisions and prices as

the market clearing quantities and prices. The resulting sequence of prices and quantities actually

turns out not to carry guarantees of being an equilibrium price-quantity pair. This is due to dual

degeneracy (Biggar and Hesamzadeh (2020)).

One way to relieve this issue is to utilize the dual multipliers from the past dispatch problems.

Hogan (2016) use power balance constraints and Hua et al. (2019) uses inter-temporal constraints

for the dual multipliers. In this work, we introduce the method of Hogan (2016) that uses power
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balance constraints, and we generalize it in the next section to the case of uncertainty. Consider

a time interval [ts, te]. Assume that the current time step is tc, where ts < tc < te, and the past

decisions x#
0 = {x#

ts , . . . , x
#
tc−1
}, p#0 = {p#ts , . . . , p

#
tc−1
} are available. Let us define PMP(ts, tc, te), an

abbreviation of Price-preserving Multi-interval Pricing Model (PMP), as follows:

PMP(ts, tc, te) : min
x

Σ
k∈K

Σ
t∈[ts,te]

fk,t(xk,t)+ Σ
t∈[ts,tc−1]

p#t (− Σ
k∈K

xk,t + yt)

s.t. Σ
k∈K

xk,t = yt, t∈ [tc, te] : pt

hk(xk,t−1, xk,t)≤ 0, k ∈K,t∈ [ts, te]

xk,t ∈Xk t∈ [ts, te], k ∈K

(3)

This pricing model (PMP) is first introduced by Hogan (2016) and formalized by Hua et al.

(2019).

Hua et al. (2019) show that for every time step tc if PMP(t0, tc, tT ) is used instead of LAD(tc, tT )

for pricing models with rolling implementation, the resulting prices coincide with the prices from

the one-shot multi-period optimization problem LAD(t0, tT ). This is closely related to the concept

of “price consistency,” defined in slide 35 of Hogan (2020) as the property, “given perfect foresight,

where actual conditions equal the forecast conditions, the methodology produces the same set of

prices.”

Rolling Multi-Period with a Moving Horizon. In a more practical setting, we can no longer

assume that a horizon is fixed. For a rolling multi-period model with a moving horizon, even in the

case of strongly convex market clearing models, the application of the PMP approach can produce

a price-quantity pair that does not satisfy an equilibrium for an entire horizon, i.e. in the sense

of perfect hindsight, and with a horizon which spans {1, . . . , T}. This is shown in section VI-B of

Hua et al. (2019). This deviation of equilibrium is different from the dual degeneracy pointed out

by Biggar and Hesamzadeh (2020).

Nevertheless, empirically PMP achieves better performance than LAD with respect to LOC

and MWP in this setting. In this paper, we provide an explanation by introducing an additional
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characteristic of PMP. PMP not only guarantees the price consistency for a rolling multi-period

planning with a fixed horizon, but also minimizes LOC for an entire horizon including past time

steps given past prices. PMP balances the past decisions and future decisions in a way that LOC

is minimized; hence the better performance. This is further discussed in section 2.3. We focus on

this property of PMP and extend it to the setting under uncertainty in section 3.3.

1.2.3. Multi-Period Market Clearing under Uncertainty. Our interest in this work is

an extension of the analysis on multi-period pricing in the context of uncertainty. When extending

the basic setting to incorporate uncertainty, the standard definition of an equilibrium is a pair of

price-quantity stochastic processes, such that the market clears at every stage for every possible

sample path of uncertainty, and the dispatch instructions of agents are maximizing risked profit

given the prevailing price process. Risked profit is commonly quantified using risk measures (Ralph

and Smeers (2015), Philpott et al. (2016), Philpott and Ferris (2021)), and is an ex-ante (i.e.

without the benefit of hindsight) measure of how well an agent can do given the attitude of the

agent towards risk and given the underlying price process.

The computation of the underlying equilibrium relies on posing the problem in question (the

look-ahead economic dispatch, in the case of our application) as a multi-stage stochastic program.

We will concentrate our discussion to the risk-neutral setting, therefore time consistency (Shapiro

(2012)) is automatically satisfied in our setting. An equilibrium can be computed in this setting as

the generalization of the multi-period deterministic case, i.e. by retrieving the dispatch decisions

of the stochastic program and the dual multipliers of the market clearing constraints for every

stage and every sample path. As a natural extension for LOC in the multi-period deterministic

setting, it is possible to define a metric of performance, ex-ante expected LOC, i.e. the difference

between the maximum expected profit and the expected profit of an agent following the dispatch

decision by the system operator (a formal mathematical definition is provided in the main body

of the paper). A stochastic equilibrium is equivalent to this metric being equal to zero. However,

this definition stumbles upon a number of implementation challenges in a practical setting. These
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challenges include (i) the definition of the scenarios that constitute the stochastic program that

needs to be solved, (ii) an underlying assumption that all agents in the market share the same views

about the distribution of uncertainty (i.e. the same set of scenarios, and the same probability for

all scenarios), (iii) an assumption that the system operator can correctly identify the risk attitude

of the least risk-averse agent in the market, and (iv) the need to solve a large-scale stochastic

program under the tight run times that are imposed by real-time operations. Consequently, this

pricing method has not directly seen its way into practical implementation.

In the present work, and inspired by the spirit of the discussion in the literature on multi-period

pricing, we rather pose the question of finding a price that (i) is non-anticipative (i.e. can be

computed at a given time stage given the information that is available up to that moment in

time), and (ii) delivers a stochastic process of real-time prices that minimize the expected lost

opportunity cost defined in an ex-post sense, i.e. with lost opportunity cost being defined in a

hindsight fashion when all uncertainty in the market (renewable forecast errors, etc.) has been

revealed. An important property of the price that is obtained is that this price minimizes ex-post

expected LOC not only for the optimal system dispatch, but for any dispatch that satisfies the

aggregate uncertain demand in the market. This is further discussed in the main body of the paper.

Our motivation for the first requirement (non-anticipativity) is that real-time market clearing is

intrinsically a process that resembles model predictive control, in the sense that it is executed in

a rolling fashion. Concretely, we contrast this to a situation (not applied in practice) where prices

are computed after the fact, i.e. at the end of the horizon in question, and with the benefit of

hindsight when we can observe the realized uncertainty for the full horizon.

Our motivation for the second requirement is to propose a computationally viable proxy of the

ideal stochastic equilibrium benchmark, but one that can be computed in the realistic time frames

of real-time market operations with minimal assumptions related to stochastic models / scenario

selection. Note that both definitions of expected LOC coincide with the one in the multi-period

deterministic setting. Note also, as a consequence, that price consistency is satisfied automatically

for prices that minimize ex-post expected LOC in the multi-period deterministic setting.
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The paper outlines a computational procedure that can be applied for computing the prices

with the requisite properties. The procedure amounts to executing a separate pricing procedure

as in Hua et al. (2019) and Hogan (2016). In contrast to the case of computing a stochastic

equilibrium, this minimization is essentially minimizing an expectation (as opposed to a multi-

stage stochastic program in Philpott et al. (2016) and Philpott and Ferris (2021)) which can

be implemented with a straightforward algorithmic procedure. Moreover, the procedure can be

applied to continuous uncertainty model without requiring scenario selection in order to restore

computational tractability.

It is important to point out that the line of work pursued here is distinct from the litera-

ture on stochastic market clearing such as Bouffard et al. (2005), Pritchard et al. (2010), Zavala

et al. (2017), and Morales et al. (2014). Whereas the latter is concentrated on day-ahead auctions

without considerations of consistency in a rolling market clearing (since day-ahead auctions are

non-overlapping), the interest in our work is on real-time market clearing in a rolling fashion. The

discussion is also distinct from that of flexible ramp products (Wang and Hobbs (2015)) and their

associated implementation challenges (Schiro (2017)). Flexible ramp products amount to an ancil-

lary service that is priced in addition to energy. Instead, our focus here is on the pricing of energy

in real time.

2. Multi-Period Deterministic Setting

In this section, we formally define what lost opportunity cost (LOC) is in the multi-period sense.

This definition is extended to the case of uncertainty in the next section. In a simple fixed horizon

setting, we show that the pair of the optimal dispatch solution and the dual price from the economic

dispatch problem minimizes LOC, indeed makes it zero. In a more practical setting, i.e. the rolling

multi-period optimization with a moving horizon, this is no longer possible. The simple look-ahead

model cannot be guaranteed to achieve either a zero LOC or even a low LOC. We show that the

PMP procedure proposed by Hogan (2016) relieves this issue by minimizing LOC for the horizon

including the past time steps given the prices for the past time periods.
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2.1. Lost Opportunity Cost in a Deterministic Setting

First, let us define an individual profit maximization problem for each agent k ∈K. Let t ∈ T =

{t0, . . . , tT} be a time step in the entire horizon T . From now on, tilde is used (e.g. p̃, x̃) to indicate

that these variables represent decisions made by system operators. On the other hand, the notations

without accents or superscripts (e.g. p,x) correspond to the variables that each agent uses for

optimizing their individual profit maximization problem. Given price signals p̃= {p̃t : ∀t∈ T }, the

maximized profit in the time interval [t0, tT ] is defined as follows:

v
[t0,tT ]
k (p̃) = max

x
Σ
t∈T

p̃txk,t− fk,t(xk,t)

s.t. hk(xk,t−1, xk,t)≤ 0, t∈ [t0, tT ]

xk,t ∈Xk, t∈ T

(4)

The lost opportunity cost (LOC) for each agent k in the period [t0, tT ] is defined as the difference

between the maximized profit and the profit of an agent following the dispatch decision by the

system operator (x̃k).

LOC
[t0,tT ]
k (p̃, x̃k) = v

[t0,tT ]
k (p̃)− Σ

t∈T
(p̃tx̃k,t− fk,t(x̃k,t)) (5)

By definition, LOC is a nonnegative value. The vector x̃k is a feasible solution for the optimization

problem (4) and since it is a maximization problem the first term for (5) is greater than equal to

the second term.

Another frequently used performance measure is make-whole payments (MWP), which is the

amount of costs exceeding revenue for each agent k. Formally, we define it as follows:

MWP
[t0,tT ]
k (p̃, x̃k) =max{0,− Σ

t∈T
(p̃tx̃k,t− fk,t(x̃k,t))} (6)

The concepts of LOC and MWP are suggested in Schiro et al. (2016) and Hua et al. (2019).

Schiro et al. (2016) refers to them as deviation incentives mostly in the context of dealing with

non-convexity. However, Hua et al. (2019) extends the usage of the metrics to the case with the

convexity assumption in the rolling multi-period optimization with a moving horizon where we can

no longer guarantee to be able to have a zero LOC.
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In this paper, the focus of our analysis is on LOC. Note that LOC is an upper bound of MWP

if vk is nonnegative. Even though vk can be negative in certain cases, we can expect it to be

nonnegative in most of the cases where the length of the interval [t0, tT ] is large enough. Practically,

there will be no agents who would continue their business if their maximum profit is below zero.

Consequently, by minimizing LOC, a low level of MWP can be obtained as a by-product. The

opposite argument is not valid: the most straightforward way of guaranteeing zero MWP is clearing

the market with high prices p̃, which would however result in a high LOC.

For the rest of the paper, we use the notation for the aggregation of LOC or MWP as

LOC [t0,tT ](p̃, x̃) = Σ
k∈K

LOC
[t0,tT ]
k (p̃, x̃k) or MWP [t0,tT ](p̃, x̃) = Σ

k∈K
MWP

[t0,tT ]
k (p̃, x̃k).

2.2. Simple Look-Ahead Model

When the pricing horizon is fixed as T , and if we assume that all the future demand information

is available, it is possible to obtain an equilibrium price-quantity pair by solving a one-shot multi-

period optimization problem. It can be easily shown by inspection of the KKT conditions that the

primal and dual optimal solutions pair for LAD(t0, tT ), (p
∗, x∗) = {(p∗t , x∗

t ) : t ∈ T }, results in a

zero LOC, which is equivalent to an equilibrium. In other words, the price-quantity pair (p∗, x∗)

minimizes LOC [t0,tT ](p̃, x̃).

Nonetheless, in reality, the entire horizon is not fixed. A common practical setting is one with

a moving horizon. With a fixed look-ahead time length, it is natural to solve LAD at every time

stage (e.g. solve LAD(ts, te) at ts, solve LAD(ts+1, te+1) at ts+1, etc), and to keep the current

period dispatch decisions and prices. The resulting (p∗t , x
∗
t ) pair sequence is no longer an equilibrium

for a longer period. One of the main issues is that the look-ahead model ignores the decisions

from the previous stages as the look-ahead horizon moves forward. The existence of inter-temporal

constraints often results in certain agents suffering losses in certain time steps that are expected

to be made up for in the next stages. When the look-ahead horizon moves forward, this loss is

regarded as sunk costs by the look-ahead model. Mathematically, the solutions from the LAD(t1, t2)

minimizing LOC [t1,t2] do not guarantee to be a part of a solution minimizing LOC [t0,tT ], when
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t0 < t1 and t2 < tT . A simple illustrative three-stage example where the look-ahead length is two

time steps is provided by Hua et al. (2019).

2.3. Binding Past Prices

Theorem 1. A primal optimal solution x∗ = {x∗
t : t ∈ [tc, te]} of LAD(tc, te) and an optimal dual

multiplier p∗ = {p∗t : t∈ [tc, te]} of PMP(ts, tc, te) are minimizers of LOC [ts,te](p̃, x̃|p#0 , x
#
0 ).

Proof. Redistribute the terms of LOC [ts,te](p̃, x̃|p#0 , x
#
0 ):

min
p̃,x̃

LOC [ts,te](p̃, x̃|p#0 , x
#
0 ) = Σ

k∈K
Σ

t∈[ts,tc−1]
fk,t(x

#
k,t)+min

x̃
Σ

k∈K
Σ

t∈[tc,te]
fk,t(x̃k,t)−Z, (7)

where Z = max
p̃

min
x

Σ
k∈K

Σ
t∈[ts,te]

fk,t(xk,t)+ Σ
t∈[ts,tc−1]

p#t (− Σ
k∈K

xkt + yt)+ Σ
t∈[tc,te]

p̃t(− Σ
k∈K

xk,t + yt)

s.t. hk(xk,t−1, xk,t)≤ 0, k ∈K,t∈ [ts, te]

xk,t ∈Xk t∈ [ts, te], k ∈K
(8)

Notice that the first term is a constant, x∗ is the minimizer of the second term, and p∗ is the

maximizer of the third term (Z), since Z is the dual problem of PMP(ts, tc, te). Q.E.D.

Corollary 1. If x#
0 , p

#
0 are a part of the primal and dual optimal solutions of LAD(ts, te), then

with x∗ of LAD(tc, te) and p∗ of PMP(ts, tc, te), (x
#
0 , x

∗), (p#0 , p
∗) become a primal and dual optimal

solution of LAD(ts, te).

Theorem 1 implies that the price from PMP(ts, tc, te) minimizes LOC [ts,te] incorporating not

only future but also past time periods given the past decisions x#
0 , p

#
0 . Intuitively, as the look-ahead

horizon moves forward, PMP takes into account past decisions and balances in a way that LOC is

minimized. This new property of PMP explains the empirically better performance measured by

LOC or MWP than simple look-ahead models such as LAD. What Corollary 1 guarantees is the

notion of price consistency as defined in Hogan (2020).

Another point worth commenting is that Theorem 1 suggests to separate the pricing model

(PMP) from the dispatch model (LAD). In equation (7), observe that LOC is divided into the
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dispatch related term and the price related term. In order to minimize LOC, each of the terms is

minimized from the solution of different models. We focus on these properties of PMP and extend

it to the setting under uncertainty.

3. Multi-Period Market Clearing Under Uncertainty

In this section, we extend the previous theory for deterministic case to the setting under uncertainty.

We use a scenario tree to visualize the uncertainty as in Figure 2. A scenario tree in the setting

under uncertainty is analogous to a time interval in the deterministic setting. As we define the

performance metrics with respect to time intervals in the previous chapter, here, we use scenarios

trees to define measures. The notation regarding scenario trees for the rest of the paper is as follows:

for a scenario tree G, let n∈N denote a node of the scenario tree, where N is the entire set of the

nodes of G. We call n0 the root node of a scenario tree, n− denotes the parent node of n, and σ(n)

denotes the probability that the scenario of node n occurs from the perspective of the root node

n0. A sample path is denoted as P, and the set of nodes in the sample path P as NP.

First, we provide the definitions of expected lost opportunity cost from two different aspects,

i.e. ex-ante (AEL) and ex-post (PEL), and we compare their characteristics. Then, we discuss

two different methods for minimizing each of the definitions of expected lost opportunity cost

respectively, when a scenario tree (time horizon) is fixed. Finally, we extend one of the methods

to an algorithm analogous to PMP, which can deal with the more realistic setting of a moving

horizon.

3.1. Two Definitions of Expected Lost Opportunity Cost Under Uncertainty

Care must be taken, when we extend the definition of lost opportunity cost to the setting under

uncertainty. Depending on the perspective of the individual profit maximization problem, the

expected lost opportunity cost can be defined in two different ways.

One perspective is that each agent would solve an optimization problem in order to maximize

their expected profits. We assume that the future price and dispatch distribution for all the scenarios
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Figure 2 An example of a scenario tree with the root node n0. One sample path P is shown with the set of nodes

NP in the sample path P.

is available and all agents share the same information. We define ex-ante expected lost opportunity

cost (AEL) as the difference between the maximized expected profit and the expected profit that

an agent can obtain if it follows the dispatch decisions by system operators. Formally, AEL for

each agent k under the scenario tree G is defined as follows:

AELG
k (p̃, x̃k) =W G

k (p̃)− Σ
n∈N

σ(n)(p̃(n)x̃k(n)− fk(x̃k(n)), (9)

where W G
k (p̃) = max

x
Σ

n∈N
σ(n)[p̃(n)x(n)− fk(x(n))]

s.t. h(x(n−), x(n))≤ 0, n∈N

x(n)∈X(n) n∈N ,

(10)

- where the notation for variables (p̃, x̃k) is slightly abused under scenario trees, e.g. p̃= {p̃(n) :

∀n∈N}.

Another perspective is that each agent solves a deterministic optimization problem maximizing

its profit in the ex-post fashion once all the uncertainty is revealed (i.e. under a chosen sample

path). We define ex-post expected lost opportunity cost as the expectation of the difference between

the maximized profit that an agent could have earned if it had known the uncertain information
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Figure 3 A two-stage example for comparing the calculation of AEL and PEL. Two possible scenarios for the

second stage (5 minutes from the first one) and the prices and the dispatch decisions from the system

operator are given.

and the actual profit that the agent obtains following the dispatch decisions by system operators.

Mathematically, PEL for each agent k under the scenario tree G is defined as follows:

PELG
k (p̃, x̃k) =EP[w

P
k(p̃)− Σ

n∈NP
(p̃(n)x̃k(n)− fk(x̃k(n))], (11)

where wP
k(p̃) =max

x
Σ

n∈NP
p̃(n)x(n)− fk(x(n))

s.t. h(x(n−), x(n))≤ 0, n∈NP

x(n)∈X(n) n∈NP.

(12)

The interpretation of wP
k(p̃) is the profit that the agent k can achieve with perfect foresight of

path P given prices p̃. In the remainder of the paper, we define AELG(p̃, x̃) = Σ
k∈K

AELG
k (p̃, x̃k) and

PELG(p̃, x̃) = Σ
k∈K

PELG
k (p̃, x̃k).

The ex-ante expected lost opportunity cost (AEL) is closely related to stochastic equilibrium

as zero AEL is equivalent to a stochastic equilibrium. As a special case, zero LOC is equivalent

to an equilibrium in the deterministic setting. However, using AEL directly in practice seems to

be unrealistic as it relies on strong assumptions and requires solving a large-scale multi-period

stochastic program (this is discussed further in section 1.2.3.).

Example 1. Here, we provide a simple two-stage example for the comparison between AEL and

PEL in Figure 3, where there are two scenarios with equal probability. The parameters for this
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agent are given in the left side of the figure, and the prices and dispatch decisions from the system

operator (p̃, x̃) are also given for each possible scenario (node). Even though in order to compute

the precise profit we should re-scale the price or cost according to the size of a time step, for this

example we present the results without re-scaling to avoid fractional numbers.

For the calculation of AEL, let us start from calculating W G
k (p̃), the individual expected profit

maximization problem. Since the expected gain for the second stage (32.5−30 = 2.5) is higher than

the loss at the first stage (30− 28 = 2), generating the maximum possible output at the first stage

would make the best expected profit, thus x∗(1) = 60. Next, at node 2, since the gain is positive

(35−30 = 5), the agent should generate the maximum possible output given x∗(1), thus x∗(2) = 80.

For node 3, since the marginal cost is equal to the price any feasible solution would produce the

same result, here let us pick x∗(3) = 60. Then, we can calculate that W G
k (p̃) becomes 80, and since

the actual expected profit that this agent can achieve by following (p̃, x̃) is 70, AELG
k (p̃, x̃k) = 10.

On the other hand, for the calculation of PEL, for each sample path P, the deterministic indi-

vidual profit maximization problem for P, wP
k(p̃) should be obtained. In this example, there are

two possible sample paths: node 1 to 2, and node 1 to 3. For the sample path that shifts from node

1 to 2, since the gain for the second stage (35− 30 = 5) is higher than the loss at the first stage

(30− 28 = 2), the unit should generate the maximum possible output for both the first and the

second stage, thus x∗(1) = 60, x∗(2) = 80, which makes w
(1,2)
k (p̃) equal to 280. The sample path that

transitions from node 1 to 3 corresponds to the opposite. The unit should generate the minimum

possible output for the first stage and then for the second stage the marginal cost is equal to the

price so any feasible solution would be optimal. Thus, let us pick x∗(1) = 20, x∗(3) = 20, which

makes w
(1,3)
k (p̃) equal to −40. Considering that the actual profit for sample path (1,2) is 220 and

that for sample path (1,3) is −80, we can see that PELG
k (p̃, x̃k) = 50.

Theorem 2. For any G,AELG
k (p̃, x̃k)≤ PELG

k (p̃, x̃k).

Proof. First, we show that W G
k (p̃)≤ EP[w

P
k(p̃)]. There is another equivalent formulation for a

multi-period stochastic program other than (10). This scenario based formulation is introduced
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in Rockafellar and Wets (1991). The formulation uses separate variables xP for each sample path

P∈P. Let Pr(P) denotes the probability for a sample path P. The formulation with our notation

is as follows:

W G
k (p̃) =max

x,x̂
Σ

P∈P
Pr(P) Σ

n∈NP
[p̃(n)xP(n)− fk(x

P(n))]

s.t. h(xP(n−), xP(n))≤ 0, n∈NP,P∈P

xP(n)∈X(n), n∈NP,P∈P

xP(n)− x̂(n) = 0, n∈NP,P∈P.

(13)

The last set of constraints is called the set of non-anticipativity constraints. These constraints

impose that variables in the same node n have the same value. Notice that if we relax these

non-anticipativity constraints, formulation (13) becomes EP[w
P
k(p̃)]; hence W G

k (p̃)≤EP[w
P
k(p̃)].

Second, we show that Σ
n∈N

σ(n)(p̃(n)x̃k(n) − fk(x̃k(n)) = EP[ Σ
n∈NP

(p̃(n)x̃k(n) − fk(x̃k(n))]. This

comes from the fact that in a scenario tree, σ(n) = Σ
P∈P:n∈NP

Pr(P),∀n∈N . Q.E.D.

As a metric of economic behavior, the ex-post expected lost opportunity cost (PEL), on the other

hand, has some practical advantages relative to AEL. It is easier to calculate, and it is possible

to estimate PEL when the underlying uncertainty model is continuous. By Theorem 2, PEL is

an upper bound of AEL. In a similar fashion as in the deterministic case, PEL is also an upper

bound of the expected MWP under a mild condition (EP[w
P
k(p̃)] is nonnegative). Note that the

definition of MWP is independent from the two different perspectives of solving individual profit

maximization problem mentioned above in the description of AEL and PEL, hence the expected

MWP is identical under both of the perspectives unlike LOC. Thus, by minimizing PEL, we can

regulate AEL and the expected MWP to a low level.

It is true that the economical implication of PEL diverges from conventional stochastic equilib-

rium theory. Even though AEL and PEL coincide (both become LOC) in the deterministic case,

zero PEL is not equivalent to a stochastic equilibrium anymore, as is the case with AEL. It is

even impossible to have zero PEL unless the setting is deterministic. PEL becomes zero only when

an agent enjoys perfect foresight and acts optimally under this perfect foresight, i.e. applies the
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solution of LAD over the entire horizon. Instead, PEL can be interpreted as a metric that measures

how far the decisions of system operators are compared to the optimal case under the perfect

foresight assumption. When PEL is minimized in the case under uncertainty (e.g. under a scenario

tree), the minimum value, which is strictly positive now, represents the inevitable LOC (calculated

ex-post) caused by the underlying uncertainty.

3.2. Look-Ahead Models Under Uncertainty

3.2.1. AEL Minimizing Look-Ahead Model. Consider a stochastic economic dispatch

problem under a scenario tree G. Let us refer to the following optimization problem as SLAD(G),

an abbreviation for Stochastic Look Ahead Dispatch Model (SLAD).

SLAD(G) : min
x

Σ
n∈N

σ(n) Σ
k∈K

fk(xk(n))

s.t. Σ
k∈K

xk(n) = y(n), n∈N : λ(n)

h(xk(n−), xk(n))≤ 0, k ∈K,n∈N

x(n)∈X(n) k ∈K,n∈N .

(14)

Let p∗(n) = λ∗(n)/σ(n),∀n ∈N , where λ∗(n) are the nodal balance optimal dual multipliers of

SLAD(G). Similar to the deterministic case in section 1.2.2, it can be shown using KKT conditions

that (p∗, x∗) = {(p∗(n), x∗(n)) : n ∈ N} minimizes AELG(p̃, x̃k) to zero. This implies that (p∗, x∗)

forms the (risk neutral) stochastic equilibrium, defined as “a stochastic process of prices and a

corresponding collection of actions for each agent with the property that the actions are individual

expected profit maximizing solutions for each agent,” see e.g. Philpott et al. (2016), Philpott and

Ferris (2021) for further information.
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3.2.2. PEL Minimizing Look-Ahead Model. For the pricing model minimizing PEL, we

use the notation for the scenario based formulation introduced in the proof of Theorem 2 as follows:

min
x

Σ
P∈P

Pr(P) Σ
n∈NP

Σ
k∈K

fk(x
P
k(n))

s.t. Σ
P∈P:n∈NP

Pr(P) Σ
k∈K

xP
k(n) = Σ

P∈P:n∈NP
Pr(P)y(n), n∈N : p(n)

h(xP
k(n−), xP

k(n))≤ 0, n∈NP,P∈P

xP(n)∈X(n), n∈NP,P∈P.

(15)

The equivalent way of writing the first set of constraints of (15) is EP
P∈P:n∈NP

[ Σ
k∈K

xP
k(n)] = σ(n)y(n).

As an example, when n= n0, the constraint can be written succinctly as EP[ Σ
k∈K

xP
k(n0)] = y(n0).

Theorem 3. For a scenario tree G, a primal optimal solution x∗ = {x∗(n) : n ∈N} of SLAD(G)

and a dual optimal multiplier p∗ = {p∗(n) : n ∈N} of formulation (15) under G are minimizers of

PELG(p̃, x̃).

Proof. Redistribute the terms of PELG(p̃, x̃):

min
p̃,x̃

PELG(p̃, x̃) =min
x̃

EP[ Σ
n∈NP

Σ
k∈K

fk(x̃k(n))]−ZG, (16)

where ZG =max
p̃

EP[min
x

Σ
n∈NP

Σ
k∈K

fk(xk(n))+ p̃(n)(− Σ
k∈K

xk(n)+ y(n))]

s.t. h(xk(n−), xk(n))≤ 0, n∈NP

x(n)∈X(n), n∈NP.

(17)

Since

min
x̃

EP[ Σ
n∈NP

Σ
k∈K

fk(x̃k(n))] =min
x̃

Σ
n∈N

σ(n) Σ
k∈K

fk(x̃k(n)), (18)

x∗ = {x∗(n) : n ∈ N} of SLAD(G) minimizes the first term. From (16), ZG can be expressed as

follows:

ZG =max
p̃

min
x

Σ
P∈P

Pr(P) Σ
n∈NP

Σ
k∈K

fk(x
P
k(n))+ Σ

P∈P
Pr(P)p̃(n)(− Σ

k∈K
xP
k(n)+ y(n))

s.t. h(xP
k(n−), xP

k(n))≤ 0, n∈NP,P∈P

xP(n)∈X(n), n∈NP,P∈P.

(19)

Notice that (19) is the dual problem of the formulation (15); hence p∗ maximizes the second term

(ZG). Q.E.D.
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Theorem 3 shows that we can minimize PEL with the dispatch decision from SLAD(G) and the

price signal from formulation (15). Notice that even when the dispatch decision is not optimal, the

price obtained from formulation (15) is still optimal since PEL is divided into a dispatch related

term and a price related term (see equation (16)). This allows us to treat dispatch and price model

independently. In practice, it is not realistic to assume that we would always be able to find optimal

dispatch decisions in the sense of solving SLAD. Let x# be sub-optimal dispatch decisions that

we would encounter in practice, then we can still guarantee that p∗ from the formulation (15)

minimizes PELG(p̃, x#).

Notwithstanding, we note that formulation (15) is not practical for being used in real-time pricing

because it requires too many variables and the first set of constraints prevents the formulation

from being separable. Here, we show a slightly modified version of (15) in order to make it more

workable. The key is in the way to approach (17). Now, instead of changing (17) to (19), we

redualize the dualized power balance constraints back to the constraints except for the one for the

root node as follows:

ZG =max
p̃(n0)

EP[min
x∈XP

Σ
n∈NP

Σ
k∈K

fk(xk(n))+ p̃(n0)(− Σ
k∈K

xk(n0)+ y(n0))]

s.t. Σ
k∈K

xk(n) = y(n), n∈NP \n0,

(20)

where we express the set of inter-temporal constraints and the set of independent constraints as

XP. Let FP(p̃(n0)) be the inner optimization problem of (20). Then we can write ZG more concisely

as follows:

ZG =max
p̃(n0)

EP[FP(p̃(n0))]. (21)

Notice that we can compute the gradient of FP(p̃(n0)) by Danskin’s Theorem (Danskin (1967)):

∇FP(p̃(n0)) =− Σ
k∈K

x̄k(n0)+ y(n0), (22)

where x̄k(n0) is the optimal solution for the inner optimization problem of (20).

Observe that it is possible to utilize the Stochastic Gradient Descent algorithm in order to find

the maximizer p∗(n0) for (21). This modification allows us to deal with continuous uncertainty
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models by incorporating the principle of stochastic approximation methods in Robbins and Monro

(1951). All we need is a model which samples sample paths. Instead of knowing the whole set

of scenarios for the future, if we can somehow sample future sample paths, we can apply our

approach to find p∗(n0). Practically, we can either directly use historical data as sample paths, or

build an uncertainty model such as an auto-regressive model in order to predict the distribution of

future information. Although this does not guarantee having an exhaustive uncertainty set which

represents reality perfectly, at least this approach liberates us from discretization for building a

scenario tree.

This modification can be further developed by binding cleared past prices as PMP does for the

deterministic setting in section 2.3. In the next section, we introduce a PMP-style version of the

PEL minimizing look-ahead model.

3.3. Binding Past Prices

Before we propose a formulation for coping with binding past prices under uncertainty, we define

some additional notation. Referring to Figure 4, it is necessary to extend a scenario tree with its

past path in order to link a scenario tree G starting from the current time step n0 to the past. The

extension is indeed a sub-tree of a larger scenario tree H whose root node is m0. We denote the

past path we have followed right before the current time step as Q, and the node set of the path

as NQ. Naturally, we denote the extension of G as G ∪Q. For a future sample path including the

current time step, we use P as in the previous sections. To avoid ambiguity, let the node set of G

be N G, and that of H be NH.

Let the cleared past prices be p#0 = {p#(m) : ∀m ∈ NQ}, and the past dispatch decisions be

x#
0 = {x#(m) : ∀m ∈NQ}. Let us denote the following optimization problem as SPMP(H,G), an
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Figure 4 An example of a sub-tree of a scenario tree with the root node m0 which incorporates another scenario

tree with the root node n0. Here, n0 denotes the current time step. Q is the past path that starts from

m0 until right before the current time step, and NQ is the set of nodes in the past path Q. One future

sample path P including the current time step is shown with the set of nodes NP in the sample path P.

abbreviation of Stochastic Price-preserved Multi-interval Pricing Model (SPMP):

SPMP(H,G) : min
x

Σ
P∈P

Pr(P) Σ
n∈NQ∪NP

Σ
k∈K

fk(x
P
k(n))+ Σ

m∈NQ
p#(m)(− Σ

k∈K
xP
k(m)+ y(m))

s.t. Σ
P∈P:n∈NP

Pr(P) Σ
k∈K

xP
k(n) = Σ

P∈P:n∈NP
Pr(P)y(n), n∈N G : p(n)

h(xP
k(n−), xP

k(n))≤ 0, n∈NQ ∪NP,P∈P

xP(n)∈X(n), n∈NQ ∪NP,P∈P.

(23)

Theorem 4. (p∗, x∗) is a part of the minimizer for PELH(p̃, x̃|p#0 , x
#
0 ), where x∗ is an optimal

solution for SLAD(G) and p∗ is an optimal dual multiplier for SPMP(H,G).

Proof. The proof is a combination of the proofs of Theorem 1 and Theorem 3. Q.E.D.

Corollary 2. If (p#0 , x
#
0 ) is part of a minimizer for PELH(p̃, x̃), then (p∗, x∗) in Theorem 4 is

also part of a minimizer for PELH(p̃, x̃).

Theorem 4 and Corollary 2 are analogous to Theorem 1 and Corollary 1 respectively in the

deterministic case. The price from SPMP minimizes PEL incorporating not only future but also

past time periods given past decisions. It no longer treats past losses as sunk costs. However,
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notice the subtle difference between the two cases (deterministic / under uncertainty). In the

set NH \ N G, there are nodes that are not in NQ. Since the support for (p∗, x∗) is N G, it is

only a part of the minimizer for PELH(p̃, x̃|p#0 , x
#
0 ) in Theorem 4, unlike in the deterministic

case where it is a minimizer for LOC [ts,te](p̃, x̃|p#0 , x
#
0 ) in Theorem 1. Notice that the nodes in

NH \ (N G ∪ NQ) are meaningless given the current time step when the uncertainty of the past

has been revealed. Mathematically speaking, when (p#0 , x
#
0 ) is given for NQ, the terms related to

N G∪NQ in PELH(p̃, x̃|p#0 , x
#
0 ) become completely separable from the others; hence, it can be shown

that (p∗, x∗) is a part of the minimizer for PELH(p̃, x̃|p#0 , x
#
0 ) without knowing the information for

NH \ (N G ∪NQ). The same argument can be applied to Corollary 2.

Now, we are in a position to propose a pricing method for rolling market clearing under uncer-

tainty given past prices. Let us modify (23) as we have seen in the previous section (from (15) to

(20) via (17)), so that we can apply the Stochastic Gradient Descent Algorithm for SPMP(H,G)

as follows:

max
p̃(n0)

EP[ min
x∈XQ∪P

Σ
n∈NQ∪NP

Σ
k∈K

fk(xk(n))+ Σ
m∈NQ

p#(m)(− Σ
k∈K

xk(m)+ y(m))

+ p̃(n0)(− Σ
k∈K

xk(n0)+ y(n0))]

s.t. Σ
k∈K

xk(n) = y(n), n∈NP \n0,

(24)

where we express the inter-temporal constraints set and the independent constraints set for an

extended sample path Q∪P as XQ∪P.

Let FQ∪P(p̃(n0)) be the inner optimization problem of (24). Then (24) can be expressed as follows:

max
p̃(n0)

EP[FQ∪P(p̃(n0))]. (25)

Notice that we can compute the gradient of FQ∪P(p̃(n0)) by Danskin’s Theorem (Danskin (1967)):

∇FQ∪P(p̃(n0)) =− Σ
k∈K

x̄k(n0)+ y(n0), (26)

where x̄k(n0) is the optimal solution for the inner optimization problem of (24).

Now SGD can be applied to find the maximizer p∗(n0) for (25). Note that (24) is very similar

to (20). The main differences are twofold. First, x is defined under an extended sample path Q∪P
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instead of P. Second, the inner optimization is equivalent to solving PMP(tm0
, tn0

, te) instead of

solving LAD(tn0
, te), where tm0

, tn0
denote the time steps of the nodes m0, n0 respectively, and te

the time step of the leaf nodes in the scenario tree H.

Thanks to Corollary 2, this sequential implementation (clear only the current time step sequen-

tially as time passes) of SPMP(H,G) using (24)-(26) results in the same solution as solving

(15) under H for clearing prices for all possible scenarios at once. This property enables us to

use SPMP(H,G) in a more practical setting. In the next section, we briefly formalize the SGD

algorithm for (24)-(26), and analyze practical details related to initialization and step size rules.

3.4. Stochastic Gradient Descent Algorithm for SPMP

We propose the following algorithm for computing prices in a rolling market clearing under uncer-

tainty with binding past prices.

Algorithm 1: SGD for SPMP

Result: pI(n0)

i← 0; Initialize p0(n0);

while i < I do

Sample a sample path P;

Obtain xi(n0) by solving the inner optimization problem of (23);

∇F i
Q∪P(p

i(n0))← (− Σ
k∈K

xi
k(n0)+ y(n0));

pi+1(n0)← pi(n0)+ γi∇F i
Q∪P(p

i(n0));

i← i+1;

end

For initializing p0(n0), we use the dual multiplier of PMP with future expected demand as input

data. In practice, using a deterministic model with expected demand data is a commonly used way

to clear market. We use it as an initial value and update it in our algorithm.

For the step sizes {γi : i∈ {0, . . . , I}}, there can be many variations. For updating step sizes, we

consult mainly Bottou (2012). Note that there is another variation of SGD often referred to as
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Figure 5 A scenario tree with demand for each scenario and transition probabilities between nodes.

Table 1 Unit Parameters

Unit
Energy Min,Max Output Ramping
$/MWh MW MW/min

1 28 0,100 3
2 30 0,100 4
3 40 0,100 5

Averaged SGD based on Polyak and Juditsky (1992). Detailed rules are introduced in section 5.3

of Bottou (2012). While there exist many variations for selecting the initial step size, it is common

to use the ratio of the upper bounds of the norm of the argument over the norm of the gradient as a

fixed learning rate or dynamic learning rate with some diminishing rules (Nemirovski et al. (2009)).

In our experiment, we use the maximum cost over the current net load. The argument p(n0) cannot

be greater than the maximum cost, and the upper bound of the gradient is bounded by y(n0). We

have experimented with variations of step size rules according to changes in parameters regarding

the initial step size and the rate of diminishing step size. The reader is referred to the details in

Appendix A.

4. Computational Results

4.1. An Illustrative Example

Let us first examine an illustrative three-stage example where two scenarios are possible for each

node with equal probability as in Figure 5. We have three different units for generating power
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Table 2 Market Clearing Solutions from Different Models

Stochastic Model Deterministic Model
SLAD SLAD SPMP LAD LAD PMP

Node x∗
1(n) x∗

2(n) x∗
3(n) p∗(n) p∗(n) x∗

1(n) x∗
2(n) x∗

3(n) p∗(n) p∗(n)
(n) MW MW MW $/MWh $/MWh MW MW MW $/MWh $/MWh
1 90 40 0 28 28 100 30 0 30 30
2 100 60 0 30 32 100 50 10 40 30
3 85 55 0 25 28 90 50 0 28 28
4 100 80 20 40 40 100 70 30 40 40
5 90 40 0 28 30 100 30 0 28 30
6 100 75 5 40 34 100 70 10 40 32
7 100 70 0 30 34 100 70 0 40 32

Table 3 Comparison of Metrics with Dispatch Solutions from SLAD

Unit
SLAD SPMP

AEL PEL MWP AEL PEL MWP
1 0 5 3.4375 5 5 0
2 0 161.25 32.1875 47.5 47.5 0
3 0 0 0 7.5 7.5 1.875

SUM 0 166.25 43.125 60 60 1.875

Table 4 Comparison of Metrics with Dispatch Solutions from LAD

Unit
LAD PMP SPMP

AEL PEL MWP AEL PEL MWP AEL PEL MWP
1 0 0 0 0 0 0 0 0 0
2 275 275 0 62.5 62.5 0 62.5 62.5 0
3 0 0 0 70 70 17.5 55 55 13.75

SUM 275 275 0 132.5 132.5 17.5 117.5 117.5 13.75

with ramp constraints as in Table 1. Each time step corresponds to 5 minutes. This example is an

extension of Example 1 in Hua et al. (2019) for the case under uncertainty. We show the results

of different market clearing models in Table 2. For the stochastic model, the dispatch solution is

solved by SLAD, and the two price distributions are obtained from SLAD and SPMP. For the

deterministic model, the dispatch solution is obtained from LAD and the prices are obtained from

LAD and PMP. Notice that future expected demand is used for the deterministic models, and as

time moves forward (with new demand information updated) truncated problems are solved in

a rolling fashion, whereas for the stochastic models the result is obtained from one optimization

problem.

Performance metrics are compared in Tables 3 and 4 with the solutions that are presented in

Table 2. We note that different dispatch solutions are used for Table 3 and Table 4, SLAD and LAD
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respectively; therefore, the values for SPMP are different in the two tables. In Table 3, observe that

(i) for SLAD, AEL is 0 as the results of section 3.2.1, (ii) for SPMP, AEL ≤ PEL as foreseen by

Theorem 2, also expected MWP ≤ PEL, (iii) most importantly, SPMP achieves smaller PEL and

expected MWP than SLAD because SPMP produces prices that minimize PEL. In Table 4, we

compare SPMP with deterministic pricing models (LAD and PMP). Observe that PMP achieves

better performance than LAD since it accounts for binding past prices, and that SPMP attains

better results than PMP since it accounts for the underlying uncertainty distribution. With the

optimal dispatch solutions obtained from SLAD, the results can be further reduced to the values

shown in Table 3. The reason why LAD has zero MWP in this example (it happens coincidentally,

it is not a property of LAD) is because the price from this model is very high compared to other

models in Table 2. This example shows that we can achieve zero MWP by clearing prices at high

values but then LOC (AEL or PEL under uncertainty) increases significantly as shown in Table 4.

It is further worth noting that a stochastic equilibrium can perform poorly in terms of certain

metrics. In Table 3, SLAD indeed achieves zero AEL, which is equivalent to a stochastic equilibrium;

however, it exhibits rather high levels of PEL (the value that each agent would perceive when they

calculate LOC in an ex-post fashion) and expected MWP (simply losses). SPMP, on the other hand,

by minimizing PEL directly, can regulate the level of AEL and expected MWP as by-products,

but it does not constitute a stochastic equilibrium. In the next section, we present an experiment

with realistic data.

4.2. Simulation with Realistic Data

In this section, we illustrate our proposal for pricing under uncertainty in a case study of the ISO

New England (ISO-NE) system.

4.2.1. Case Study Description. We consult Krishnamurthy et al. (2016) for the grid, gen-

erator and load data based on ISO New England. The model includes 8 zones with 76 generators.

The original source of data is hourly. In our case study, we are interested in five-minute time res-

olution, since certain binding operating constraints that are driven by the random variations of
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renewable supply are only observable at this shorter time frame. We assume linear cost functions

in our analysis, hence we use only the first-order cost terms from Krishnamurthy et al. (2016). The

linear cost terms and the ramp rates of the generators are re-scaled in order to account for the

five-minute resolution of our model. Since there is no congestion due to sufficient transmission line

capacity for the network in the original data, we adjusted the capacity (to 1500 MW for each line)

to induce congestion resulting in the difference in prices for different zones, while making sure that

there is no load-shedding because of the lack of capacity.

Minimum generation levels for the units are not specified in the original data. Instead, we assume

that nuclear units have a technical minimum which is equal to 80% of their nominal output, 60%

for coal-fired units, and 0% for the remaining technologies. We add pumped-hydro reservoirs to

the model, in order to introduce an interesting interplay between storage and renewable supply.

The pumped-hydro storage data is sourced from Papavasiliou and Smeers (2017).

In order to introduce uncertainty to the model, we consider a scenario of large-scale wind power

penetration. In terms of modeling wind power production, we follow the approach that is introduced

by Papavasiliou and Oren (2013). Concretely, we model wind speed using a time series model, and

use a power curve in order to transform random fluctuations in wind speed to a resulting wind

power stochastic process.

We use wind speed data with one-minute resolution from January 2018 to October 2019 from the

Royal Meteorological Institute of Belgium (RMI). We source data with five-minute resolution and

we use a cumulative empirical distribution for transforming the data. We remove monthly seasonal

effects, and use an auto-regressive model with a 10-order lag (AR(10) model). For our experiments,

we assume a single-area wind production model. Although there are different zones for the grid

data, we do not account for transmission constraints in our model. We control the amount of

uncertainty in the wind power production model with a tuning parameter, WindRate. When its

value is one, the level of wind penetration corresponds to average wind production equal to 17% of

annual ISO-NE energy demand and the highest possible penetration rate that we consider in our

model amounts to 40% of annual ISO-NE energy demand.
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4.2.2. Comparison of Metrics with Different Pricing Models. The full horizon of our

simulation consist of 312 intervals (26 hours), where an interval length is equal to five minutes. We

ignore the first and last 12 intervals (one hour each) in our analysis in order to mitigate boundary

effects. Two types of inter-temporal constraints exist in our model: ramping constraints and the

constraints that represent the dynamics of pumped hydro storage.

Since we use a continuous stochastic uncertainty model (AR model), we can no longer compute

AEL. Here, the focus is on comparing deterministic pricing models (LAD and PMP) with our

method (SPMP). For the deterministic models, we use expected future demand. We use the solution

from the LAD model as the dispatch decision for all the models, and our goal is to compare the

effect of the different pricing models. We add one more model as a benchmark named PMP PF

(PMP with Perfect Foresight assumption), where we provide the actual sample path for future

demand. For each model, we implement a moving horizon with a look-ahead length of 12 intervals

(one hour). For the models which account for binding past prices (PMP, PMP PF and SPMP),

we add the information of past prices over 12 most recent intervals (one hour). Notice that even

the benchmark model PMP PF can have positive value of PEL, because the look-ahead length

is limited (12 intervals), whereas the full horizon length for calculating LOC is much longer (288

intervals). PMP PF has the information of the actual demand for the future, however it does not

solve one-shot optimization with a full horizon length but instead a rolling implementation, as other

models do. The goal of this comparison is to quantify how much the perfect foresight assumption

can change the result ceteris paribus (including the look-ahead length).

Figure 6 shows the results of PEL and the expected make-whole-payments (MWP) for different

models with increasing levels of uncertainty controlled by WindRate. The bars correspond to the

average result of 500 experiments, and the middle lines show the sample standard deviation of the

experiments. For our method, the iteration count for the SGD algorithm I is one hundred for SPMP.

First, we can observe that the binding past prices version (PMP) performs better than the simple

look-ahead model (LAD). By exploiting the information of the distribution of the uncertain future,
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(a) (b)

Figure 6 Ex-post expected lost opportunity cost for different models as the degree of wind penetration increases.

our method (SPMP) achieves significantly lower PEL and variance of the LOC than those models

that use the expectation of future demand. Furthermore, SPMP achieves similar performance to

the case with perfect foresight (PMP PF). In Figure 6 (b), we can observe the same pattern as

(a), but with even more noticeable differences. SPMP achieves lower expected value and variance

for MWP than other models. Additionally, it also achieves a comparable result to the case with

perfect foresight. The readers who are interested in the difference of prices resulting from different

models are referred to Appendix B.

4.2.3. Computation Time. For the computing time of our method, 500 iterations of SGD

require approximately 30 seconds in the experiment on a personal computer with 2.5-GHz dual-core

CPU and 8GB of RAM. The results and discussion about the convergence of the SGD algorithm

are available in Appendix A.

5. Conclusion

In this paper, we introduce two different definitions of expected lost opportunity cost, and we

propose and analyze a pricing method for multi-interval real-time markets that operates under

uncertainty. The proposed method minimizes one type of expected lost opportunity cost (PEL).

We perform experimental results that demonstrate that our pricing approach results in lower

PEL and expected make-whole payments with smaller variance, than alternative pricing methods
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that have been proposed in the recent literature. We further observe that the gap between our

method and other methods that do not exploit distribution information increases as the level

of uncertainty increases. This indicates that our pricing proposal is especially suitable for future

renewable integration scenarios, where the role of uncertainty is expected to become increasingly

important, and where the accuracy of price signals will be a crucial element in preventing asset

owners from “taking matters in their own hands” through self-commitment or self-dispatching.

Our experimental results suggest that near-optimal prices can be obtained with a modest number

of iterations of the Stochastic Gradient algorithm. This observation provides encouraging support

to the claim that the method proposed in our paper can be implemented within operationally

acceptable time frames for real-time market clearing.
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