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Céline Gérard
UCLouvain
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Abstract

Residential demand response is poised to emerge as an increasingly important
aspect of power market operations due to the widespread deployment of dis-
tributed renewable supply in the form of rooftop solar panels and distributed
flexibility such as batteries. A major challenge in the proliferation of residen-
tial demand response relates to the development of scalable aggregator business
models that respect the requirement of consumers for privacy, simplicity, and
control. This has motivated quality differentiation in the form of priority ser-
vice and its generalized form, namely multilevel demand subscription. Whereas
priority service relies on the differentiation of electricity service according to re-
liability, multilevel demand subscription further differentiates electricity service
according to duration. This dissertation proposes several modeling approaches
that are aimed at quantifying the impact of these two service definitions on
system efficiency and costs incurred by households. The coordination achieved
by these services is compared against the ideal economic benchmark, real-time
pricing.

The contributions of the present dissertation are divided into four chapters.
First, Chapter 2 compares priority service to real-time pricing in terms of im-
pact on consumer comfort and billing, using a consumer-centric methodology.
The role of service charges in the construction of a priority service menu is an-
alyzed from a theoretical standpoint by extending the original theory that was
developed for priority service. From an empirical perspective, service charges
are shown to be crucial in alleviating the cost of priority service for households
compared to real-time pricing. This observation is based on two case stud-
ies that focus on a Belgian and a Texas household. Then, in Chapter 3, we
introduce a modeling approach for designing multilevel demand subscription
and priority service menus that are comparable. The menus are designed as
the equilibrium solution to a Stackelberg game, which is modeled as a bilevel
optimization problem involving a vertically integrated utility and consumers.
The problem is reformulated and solved as a mixed integer linear program.
The menus and resulting household subscriptions are compared in a realistic
model of the Belgian power market. Chapter 4 proposes a framework for evalu-
ating the performances of priority service, multilevel demand subscription and
real-time pricing in a system with utility-scale renewable supply, residential
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renewable supply, and residential storage. The implications of each option on
operational efficiency and consumer expenditures for electricity service are dis-
cussed using a realistic model of the Belgian power market. Finally, Chapter 5
describes a methodology for aggregating residential flexibility through priority
service while accounting for low-voltage network physics by means of residual
demand functions. Several formulations (including relaxations and approxima-
tions) of the power flow equations are used for representing the physics behind
the operation of distribution systems. An analysis is conducted on an illustra-
tive example.
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1 Introduction

1.1 Context

In our society, the use of renewable energy resources has increased remarkably
for various purposes during the past few years. In order to meet the challenges
of global warming, electric power systems are particularly affected by this rise
of renewable supply. Indeed, in a recent United Nations report, it is mentioned
that: “The largest increase in the use of renewables has come in the power sec-
tor, where their share of global electricity consumption reached 24.7% in 2017,
surpassing the share of renewables in the heating sector for the first time.” [90].
This rapid expansion is likely to continue in the coming years, particularly in
light of the European Union’s goal of becoming the first climate-neutral con-
tinent by 2050 [57]. Moreover, as envisaged in the 2030 Climate Target Plan
of the European Green Deal, the European Union plans to reduce its carbon
emissions by 55% by 2030 [57]. These European objectives have driven the
continuous increase of the share of renewable production in Belgium. Indeed,
around 800MW of wind production capacity along with about 1000MW of so-
lar were installed in 2020 in Belgium [4].

However, even if renewable resources support countries in their journey to
become increasingly sustainable, they are exerting pressure on the existing elec-
trical system by being the cause of technical concerns. In fact, renewables are
disruptive in the sense that they are currently injecting power whenever it be-
comes available without coordination with the remaining parts of the network.
This phenomenon creates technical problems such as voltage issues, reactive
power flows and an increased need for grid support services. This situation has
accordingly intensified the need for the incorporation of flexibility in worldwide
electricity systems so as to balance the variability of renewable supplies. Al-
though storage devices can act as a source of flexibility, their investment cost is
a limitation for providing a straightforward solution to this problem. Besides,
they are not sufficient to cover the entire need of the system for flexibility.
Furthermore, the variability of renewable resources could also be dealt with

1
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by means of fast-response generators but this suggestion would lead to a rise
in operational costs and carbon emissions. These alternatives unfortunately
weaken the economical and environmental benefits of renewable resources.

In this context, it is worth noting that the part of the electrical power sys-
tem operating in the most sophisticated fashion is the high-voltage portion of
the grid (which is composed of high voltage transmission lines, to which large
generators and industrial loads are connected). Consequently, a large amount
of unused flexible resources connected to the low-voltage system persists, orig-
inating from flexible residential and commercial demand. This residential flex-
ibility can be exploited efficiently in order to break the current barriers that
are bounding the growth of renewable energy integration. Residential demand
response has recently received increasing consideration in the scientific litera-
ture since it is viewed as a viable solution for mobilizing this unused residential
flexible consumption. This dissertation therefore focuses on the application of
a residential electricity tariff and its generalized form based on the premise that
electricity is now viewed as a service with different degree of quality. Compar-
isons between the proposed electricity tariffs are performed, with a focus on
quantifying the impact of these tariffs on system efficiency and costs incurred
by different types of households.

The following opening chapter aims at presenting the motivations and con-
tributions of the present work along with a general introduction on demand
response. This chapter is divided as follows. Section 1.2 describes demand
response programs from a broad perspective by presenting their benefits and
challenges along with an exposition of several existing schemes. The current
status of European countries regarding residential demand response is also de-
picted. In section 1.3, the electricity tariff proposed in this dissertation is
outlined. Finally, section 1.4 presents the organization of this thesis by high-
lighting the contributions of the author that are associated with each chapter.

1.2 Demand Response

Demand response represents intentional adjustments in electricity usage by
end-use consumers from their usual consumption profile in reaction to the time
variation of the price of electricity [3]. In this section, the benefits but also the
challenges linked with the integration of demand response in power systems
are highlighted. A description of known residential demand response programs
is also provided along with current practice in terms of demand response in
Europe.
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1.2.1 Benefits and Potential

Demand response can be highly beneficial for power system operations in dif-
ferent respects. Its different benefits along with its estimated potential, based
on numerous pilot programs, are exposed in the following paragraphs of the
present section.

Reduced Needs for Peak Capacity Generators

Over the past years, residential electricity prices have not revealed the intrinsic
variation in prices characterizing the electrical industry. Electricity has there-
fore been consumed by customers without regards to the current stress of power
systems at certain periods during the day, which has led to large consumption
during peak hours [66]. Since peak hours correspond to a small portion of the
year, some peaking and flexible plants are built only to be used for a few hours
annually. Demand response programs can help by moving peak consumption
to off-peak hours in order to reduce the capacity requirements of the system
and thus, in the meantime, the need for investing in peaking units such as open
cycle gas turbines (OCGT) [17, 128]. Since these units are generally charac-
terized by high marginal cost, this phenomenon can also enable a reduction in
electricity prices during peak periods due to a more efficient use of the existing
installed capacity [63].

Reduction in Network Investments

Reduction in new investments to support the network may also be envisioned
with demand side management. Indeed, such schemes can be employed at the
distribution level in order to efficiently operate power networks. Operations
such as frequency regulation, mitigation of voltage issues, and reduced con-
gestion can benefit from the direct adaptation of residential and commercial
electricity consumption. This can enable a reduced need for reinforcement and
upgrade of the existing electricity network [63,128,139,161].

Support for Large-Scale Renewable Energy Integration

As emphasized in the first part of this chapter, demand response is seen as
a simple solution for coping with the uncertainty and variability of renewable
generation. Indeed, demand side management can contribute towards meeting
the large amount of reserve capacity required for an extended penetration of
renewables [17,128,167]. For example, in the case of a wind generation increase,
it has been proven in [106] that demand side management can reduce the
increase in operation cost resulting from wind integration while also increasing
the amount renewable power capacity that can be installed.
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Demonstrations of Demand Response Potential in Pilot Programs

A large number of diverse pilot experiments and studies have already proven the
usefulness of demand response in the residential sector, such as [66,101,127,163].
For example, Faruqui et al. presents an analysis of 63 pilot programs in 9 dif-
ferent countries in [67] and provides an overview in [66] of 15 experiments that
quantify the benefits of demand response based on dynamic pricing. In [64],
it is demonstrated that the benefit of a large-scale adoption of dynamic tariffs
by consumers could amount to 67 billion euros in Europe. The authors also
show that a peak reduction of 20 to 30% can be achieved for certain rate de-
signs. In the US, Faruqui [65] estimates a reduction of 5% in demand peak,
which translates to an economic saving of 3 billion dollars per year. More-
over, another analysis realized in the United Kingdom estimates a reduction
in system costs that ranges between 7.1 and 8.1 billion pounds per year for a
deeply decarbonized system that can be achieved with the large-scale mobiliza-
tion of demand response. Even though these experiments and studies provide
different quantitative estimates, there is a general agreement on the fact that
demand response can largely decrease system cost, notwithstanding the fact
that consumer response depends on climate, seasons, countries and other char-
acteristics [63].

The literature on demand response further explores in detail the benefit of
applying these programs to a particular device in the house. Such devices in-
clude electric heating, air conditioners, water heaters, and others. For example,
the LINEAR project realized in Belgium [21, 34] quantifies the flexibility that
can be gained from wet appliances (washing machines, tumble dryers and dish-
washers). Electric vehicles and heat pumps are also an interesting option for
mobilizing flexibility, as demonstrated in an analysis of the UK system [135].
The potential of thermostatically controlled loads such as air conditioners and
fridges has also been studied carefully [18,19,100,109]. Finally, regarding elec-
tric heating, a Danish study concludes that a reduction of 6% of the Danish
peak load can be operated if 50% of the households in Denmark using electric
heating were to be placed under demand response programs [167].

This wide range of pilots and studies demonstrates the significant potential
gains that can be achieved by having demand response replacing flat residential
tariffs. They also highlight the substantial opportunity to harness the poten-
tial of a growing number of flexible appliances such as electric vehicles, air
conditioners, home batteries, ... that can provide useful support for power grid
operations and the integration of renewable resources [145].



1.2. Demand Response 5

1.2.2 Challenges

Whereas the engagement of demand side flexibility in the commercial and in-
dustrial sector has been increasing steadily, the mobilization of residential flex-
ibility lags behind. This is despite increasing evidence of substantial benefits
related to the use of residential flexibility in power grids as shown in the pre-
vious section. Moreover, Gils et al. also observes that the residential sector is
characterized by higher levels of flexibility than the commercial and industrial
sector [78] (also observed in [62]). This gap between the existing prolifera-
tion of industrial and residential flexibility can be explained by several barriers
and challenges that are limiting or slowing down the mobilization of residential
demand flexibility.

Consumer Requirements and Behaviour

First of all, certain barriers to the large-scale integration of residential demand
response are related to consumer requirements and behaviour regarding the
consumption of electricity. Indeed, a crucial feature of residential consumers
is their limited attention span. Customers are thus not willing to monitor
constantly electricity tariffs and adapt their consumption accordingly. In or-
der to account for this concern, the direct management of appliances has been
considered in the literature. However, this violates the general principles of
decentralizing power system operations through electricity markets and is ad-
ditionally viewed as being too intrusive by consumers [179].

Furthermore, according to realized pilot projects and experiments, it has
been proven that the education and awareness of consumers play an important
role on the benefits that can be achieved by residential demand response [179].
In order to maximize the gain of its introduction, the aggregator should focus
on the creation of accessible and simple tariffs for consumers [64]. Moreover,
informing consumers about their electricity consumption and the need for de-
mand response through media campaigns, more detailed electricity bills, and
other measures, is essential for consumers to understand the importance of en-
gaging in such programs [64,128].

Finally, the system operator is currently the only entity responsible for
maintaining the quality of electricity service in the form of reliable access to
power supply. However, if demand response is mobilized so as to support
power networks, this shifts the responsibility towards the end-user which may
be viewed as an excessive burden by the consumer [128].

In view of the previous arguments, it is therefore crucial for demand re-
sponse aggregators to formulate business models that are capable of mobilizing
residential flexibility while respecting the needs of consumers for control over
their equipment, privacy and simplicity in the pricing of electricity [86]. It is
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also essential to propose several demand response tariffs at the same time to
account for the variety of consumer profiles [30,125,154].

Challenges Related to Establishing a Business Case

A consensus emerges from the literature concerning the difficulty of establishing
a business case for demand response [128, 161]. Indeed, Strbac in [161] argues
that consumer response to changing electricity prices is heavily dependent on
price differences or provided incentives. Therefore, a small change may not
be enough for harnessing sufficient residential demand response to the extent
that can prove useful for system operators. Poor judgement in the pricing of
residential flexibility is best exemplified through a recent backlash against net
metering [133]. Net metering was introduced in a number of US States, in-
cluding Arizona, Hawaii and California in recent years. It has recently been
retracted due to adverse distributional effects [61, 75] and due to the inability
of the existing distribution infrastructure to support the roll-out of solar panels
that has been induced by net metering.

Furthermore, despite the fact that demand side management allows a more
efficient operation of power systems compared to traditional solutions, it results
in an increased complexity of operating power systems [161]. To deal with this
issue, the most common proposal in the literature for enabling its efficient use
is through an aggregator that will serve as an interface between the system and
a large number of residential consumers [128].

Uncertain Response of Demand Side Flexibility

Even though there is a large number of pilot projects that investigate the gain
provided by certain demand response programs, it is challenging to quantify
in advance their tangible benefits. The aggregate reaction of consumers to
such programs depends on a large number of heterogeneous households that
exhibit changing behaviours and different living conditions. It makes it complex
to arrive at a common estimate for the potential of demand response [161].
Moreover, pilot studies are conducted by considering that consumers are price-
taking, but do not analyze the impact that this price responsiveness can have
on the determination of the price itself. Therefore, it is difficult to assess
the real benefit of its massive introduction [128]. Finally, for the moment, only
demand response programs for which the aggregator directly controls consumer
appliances are seen by system operators as viable techniques for grid support
such as frequency regulation because the reduction in demand can only be
forecast precisely in that case [128].

Deployment of Enabling Technologies

As emphasized by Faruqui et al. in [64–66] and by Yan et al. in [179], the in-
stallation of enabling technologies for demand response - such as smart meters,
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communication infrastructures, smart thermostats, in-home displays and so on
- is essential for facilitating residential participation in power system operations.
Indeed, home energy management systems are expected to become central tech-
nologies in households that will help consumers account for price signals while
taking into consideration their requirements in terms of comfort [161]. However,
the deployment of such ICT infrastructure has been slow [161,167], although it
is advancing more rapidly recently owing to a number of research and industry
initiatives [54,56,61].

1.2.3 Residential Demand Response Programs

Various demand response paradigms have been proposed and analyzed exten-
sively in the scientific literature for mobilizing residential flexibility. These dif-
ferent designs can be clustered into two main groups: price-based and quantity-
based (or incentive-based) methods [94]. Price-based programs, including time-
of-use, real-time and critical peak pricing, are based on the premise that con-
sumers are considered as sophisticated agents that react to changes in electricity
prices. In this way, these schemes seek to decrease the pressure on power system
operations in times when the balance between supply and demand is precari-
ous by providing economic incentives to end-user consumers [17]. In contrast,
quantity-based methods, such as direct load control, assume that an aggrega-
tor can shed residential load and, even for some programs, override residential
consumers by directly controlling their appliances.

Price-Based Methods

As discussed previously, price-based programs include time-of-use, critical peak
and real-time pricing. Yan et al. [179] reviews and compares these three demand
response options through the results of pilot experiments. Time-of-use (TOU)
rates are the most common since they have already been employed for several
years to better take advantage of installed nuclear power plants [161]. This
scheme considers a fixed electricity price for pre-defined time periods within a
day. Its traditional version consists in a low electricity rate for power consumed
during the night between, e.g., 10pm and 6am while the daytime consumption
is subject to a higher price. Time-of-use pricing is already a significant progress
relative to flat tariffs because it drives flexible electricity consumption to low-
price time periods. However, this type of tariff only captures the expected
long-run conditions of the system and does not reflect the high variability of
renewable electricity supply [62]. As it is emphasizes in section 1.2.4, where
we review residential demand response tariffs in Europe, time-of-use pricing
is widely developed, especially for households with electric heating/cooling or
electric vehicles [17].

Compared to time-of-use pricing, critical peak pricing (CPP) aims at ac-
counting for the short-run conditions of the system as it is an event-based
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tariff with the aim of reducing residential consumption in events of peak de-
mand [128]. This program attempts to better depict system energy costs by
charging an expensive electricity price for a certain number of hours during
which the system is stressed. During other periods, the consumer is rewarded
by having access to a discount on its electricity price. In such a setting, flexi-
ble consumption will therefore be directed to less expensive hours in order to
lower consumer electricity bills [64]. This demand response paradigm better
corresponds to modern power systems in which the generation of electricity
is increasingly unpredictable due to renewable resources. Indeed, in the past,
traditional approaches such as time-of-use pricing were sufficient to provide the
flexibility required by the system [128]. A similar idea to critical peak pric-
ing inspires peak-time rebates (PTR), where consumers are offered a rebate
for delayed consumption based on a baseline usage during periods of critical
system operations [3]. The fundamental weakness of this technique is that it
requires the correct approximation of consumer baselines in order to estimate
the actual reduction in consumption, which is a central but challenging aspect
in the pricing of this paradigm [17,31,64].

The most “pure” form of dynamic pricing is achieved by real-time pricing
(RTP) [155]. This paradigm considers the consumer as a real-time participant
to the electricity market that reacts instantaneously to prices, for example, by
reducing consumption during period of peak demands. The prices are revealed
on a short-term (e.g. hourly) basis and change from day to day and hour to
hour. Although real-time pricing represents the economic golden standard of
demand response, the risk linked with the variability of electricity price may
discourage consumers from enlisting [17]. This risk is best exemplified through
the 2021 Texas electricity crisis during which wholesale market electricity prices
reached 9$ per kWh (roughly 300 times the typical electricity price). Two elec-
tricity providers (Griddy and Octopus Energy) using real-time pricing under-
stood the impact that the storm will have on electricity prices and urged their
consumers to switch to providers with fixed-rate plans to avoid incredibly high
electricity bill during the outage period. Indeed, even though this retailers en-
courage more consumers to see and feel the real-time price, they don’t include
a price hedge for protecting consumers during shortage events [33]. Moreover,
while sophisticated industrial consumers can participate directly to the whole-
sale market by virtue of size and significant economic opportunities, real-time
pricing may require an excessive amount of attention for small consumers [64].

Time-of-use, critical peak and real-time pricing techniques are focused on
the application of an energy charge. Indeed, consumer is charged a certain
price for the energy consumed during a certain period. These methods can be
combined with a demand charge. In this framework, the maximum amount of
simultaneous kilowatts withdrawn by a consumer during a certain time period
is charged even if the adequate supply of power in that particular time period
may not be at risk [17].
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Quantity-Based Methods

In this category, direct load control (DLC) appears as the most common tech-
nique. In this setting, consumer appliances are controlled by an aggregator [99].
This aggregator has the authority to switch consumer appliances anytime there
is a need to regulate the power demand in the system. This concept is more
appropriate for appliances that can be easily shut down or cycled for short
periods of time with minimal impact on consumer comfort, such as domes-
tic air-conditioners, water heaters and swimming pool pumps [161]. System
operators prefer these techniques to price-based methods for providing ancil-
lary services since the effect of such a scheme can be better predicted [128].
Nonetheless, this concept is considered as being too intrusive by consumers in
terms of privacy.

Another form of quantity-based scheme is based on capacity limits, i.e.
limits on the maximum power that can be withdrawn anytime from the grid by
a consumer. The consumer therefore retains control on its own appliances and
decides what consumption to delay, taking into account the applied capacity
limit [161].

1.2.4 Application of Demand Response in Europe

An overview of the application of demand response programs in Europe is pre-
sented in this section. As explained by Torriti et al. [167], Europe does not
have harmonised demand response programs. Indeed, even though the Euro-
pean Commission recognizes demand response to be a central point in future
power systems, the electricity markets of certain European countries are not yet
prepared for integrating demand response. In that respect, Bertoldi et al. [11]
presents the progress of European Member States towards opening their elec-
tricity markets for demand response as of the beginning of 2016.

Table 1.1 presents the different retail tariffs that are offered to residential
consumers for 30 countries in Europe. From this table, we can observe that
almost every European country is proposing some form of time-of-use pricing.
Most of the time, this consists of a two-part tariff with cheap electricity during
the night that may be useful for households with electrical heating. Sometimes,
this tariff takes the form of a three-part charge with a cheap price during the
night, a normal rate during the day, and an expensive price during peak con-
sumption hours from 5pm to 10pm. France is the only country in Europe to
propose a form of critical peak pricing. The Electricité de France (EDF) opera-
tor introduced the TEMPO tariff in 1993. In this scheme, the year is split into
three types of days: white, blue and red. Most of the days in a year are blue
(300). During blue days, consumers are charged with a cheap price. On the
white days (43 a year), the electricity is charged at a higher rate. Finally, on
red days (22 a year), the consumer is charged with the most expensive price in
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Table 1.1: Residential electricity tariff structures in European countries. Updated
and extended version of Table 1.1 in [117]. FT: flat tariff; TOU: time-of-use tariff;
FT-D: flat tariff with demand charge; TOU-D: time-of-use tariff with demand charge;
CPP: critical peak pricing; RTP: real-time pricing.

Countries
Tariffs

FT TOU FT-D TOU-D CPP RTP

Austria [59,172] X X
Belgium [45,49,110] X X X X X
Bulgaria [22] X X
Croatia [88] X X
Cyprus [39] X X
Czech [143] X X
Denmark [156] X X X
Estonia [37] X X
Finland [87,102] X X X
France [97,147] X X X
Germany [120] X X
Greece [148] X X
Hungary [42] X X
Ireland [48] X X
Italy [157] X X
Latvia [46] X X
Lithuania [53] X X
Luxembourg [50] X X
Malta [47] X
Netherlands [171] X X
Norway [80] X X
Poland [44] X X
Portugal [162] X X
Romania [38] X
Slovakia [159] X X
Slovenia [40] X X
Spain [43] X X X
Sweden [107] X X
Switzerland [174] X X
United Kingdom [129] X X X

order to face the incentive of moving a flexible part of consumption to cheaper
days [3]. The color of a day is only revealed the day before. Finally, we can
observe that only a small number of European countries offer the possibility to
their residential consumers to choose real-time pricing [56]. Note that certain
countries use some form of demand charge, which is a fixed monthly or yearly
charge based on the capacity of the meter installed in the household. In Bel-
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gium, this demand charge is only applied to prosumers. Moreover, note that,
in Belgium, hourly real-time pricing is only proposed in Flanders for consumers
with smart meters [32].

1.3 Priority Service

With the desire of respecting the requirements of residential consumers for con-
trol over their equipment, privacy and simplicity, this dissertation focuses on
an alternative approach for mobilizing residential demand response at a mas-
sive scale, referred to as priority service pricing (PSP) [26]. This design aims
at combining the strengths of price-based and quantity based methods. In this
paradigm, electricity is treated by residential consumers as a service with at-
tributes that can be differentiated, as opposed to a commodity that is traded
in real time. This point of view has inspired various levels of differentiation in
electricity delivery [15, 16, 28, 124, 126]. Service differentiation in the electrical
industry is inspired from the successful implementation of this idea in other
deregulated industries such as telecommunications.

Priority service pricing was first proposed by Chao and Wilson in [26] and
by Oren in [132]. The feature of service that differentiates quality in priority
service pricing is reliability. Concretely, an aggregator proposes a set of options
for procuring capacity strips by means of a priority service menu in the form
of price-reliability pairs. Each option is characterized by a different level of
reliability. More reliable options are more expensive to procure. As a demand
response paradigm, priority service recently received renewed attention in the
theoretical literature [20, 23, 24, 108, 117–119, 131], as well as in practical ap-
plications [5, 136, 182] with a recent ARPA-E grant being awarded to develop
priority service for use by US ISOs [7].

In the present study, we consider the specific implementation of priority
service pricing with three options of different reliability following the Color-
Power concept [136]. According to this method, an aggregator uses a color-
tagging system based on traffic lights that consumers can set for each of their
appliances: (i) Green: indicates cheap power that can be interrupted fre-
quently; (ii) Yellow : indicates power that can be interrupted under emer-
gency conditions; (iii) Red : indicates expensive power that cannot be inter-
rupted [5, 77, 117–119, 131, 136]. Based on the offered menu, the household
subscribes to a particular amount of capacity for each option, and enrolls in a
long-term (e.g. annual) contract for electricity service. Once a household sub-
scribed, the consumer allocates particular devices within the house to strips
of different colors by ensuring that the mean power within an interval under a
certain option does not exceed the subscribed amount of kilowatts for that par-
ticular color. In practice, this form of demand response can be implemented
in households by means of fuse limits and color tags for plugs, whereby the
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consumer can attribute a color to a specific appliance either manually or by
means of a home energy management system. The described setup is pre-
sented in Figure 1.1. Figure 1.2 depicts how the interruption of colors affects
the consumption pattern of a household along with the specific plug needed to
implement priority service.

Figure 1.1: Setup of a home energy management router for priority service.

Figure 1.2: Illustration of the practical implementation of priority service pricing.
The black line represents the total consumption of a household. The color blocks
represent the amount of power available for each reliability option contracted by the
consumer over a certain time period. Consumers can decide how to allocate major
appliances through outlets equipped with switches and select a particular level of
reliability. Source: [160].

In offering priority service contracts to residential consumers, the utility
commits to a certain level of reliability for each option. This level of reliability
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must be respected on average over an extended period of service (e.g. annu-
ally), even if certain periods of service may be characterized by fluctuations
around this average [119]. In a central dispatch setting, the utility interrupts
colors in order of decreasing reliability, since the menu is designed so that
higher-valuation consumers self-select higher levels of reliability. The selection
of one option from the menu by each consumer determines the service order
or priority of the consumer. The aggregator is then tasked with designing a
menu of services, such that consumers self-select reliability levels consistent
with the reliability that the inherently stochastic supply mix of the aggregator
can deliver. In doing so, the information asymmetry challenge is that the ag-
gregator is not aware of the valuation of each individual consumer for power, as
this is private information. The utility can only estimate aggregate statistical
information about the consumer population [26, 119] in the form of demand
functions. Note that, by subscribing to certain options of the menu, consumers
reveal information about their valuation for power. Therefore, the aggregator
belief of the system represented by the system level demand function can be
updated in order to reflect the new information. Therefore, the aggregator can
use this new belief about the system in order to design a new menu for the
next subscription cycle. This cycling process presents certain similarities with
the literature on incentive regulation [2, 95].

The pricing of priority service contracts is characterized by a menu of op-
tions M = {(p, s, r)}. For each option, p is the priority charge (payable in
advance), s is the service charge (payable as service is provided), and r is the
service reliability which is the probability of receiving the product or service.
Although priority service theory is developed extensively, the literature is rel-
atively terse in analyzing the role of service charges [131]. In our work, we
demonstrate that service charges can play an instrumental role in decreasing
the cost of priority service contracts to consumers, and thereby mitigate the
capacity-based nature of priority service pricing. Multilevel demand subscrip-
tion, a generalization of priority service that further differentiates electricity
service in the dimension of duration, is also examined in this dissertation as
an alternative to priority service with an energy component and is presented
in the next section. The trade-off of simplicity versus the price of the contract
and the efficiency of system operation are studied. The results of our analysis
highlight the need for a demand response tariff composed of an energy and
capacity charge for future power systems, as also advocated in [61].

1.3.1 Multilevel Demand Subscription

Multilevel demand subscription (MDSP) [25] generalizes priority service by al-
lowing the aggregator to differentiate service along reliability and duration.
From the point of view of consumers, kilowatts of different priority levels (i.e.
colors) are “topped up” with credits. More credits entitle customers to use
more hours of power of a certain quality, but cost more. The envisioned in-
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terface used by consumers for such a service is depicted in Figure 1.3. The
proposed contract is a forward contract. This implies that there is an inherent
“override” option (which is activated automatically when the customer exceeds
the capacity and duration limits of the contract), however in that case the cus-
tomer would need to procure any additional consumption at the prevailing
real-time price. Thus, the energy router within the home needs to respect not
only the power limit of each color, but also the total number of credits over
the service period (e.g. over the week or day). Clearly, this service offering
presents increased complexity from the point of view of the household. How-
ever, it also allows the utility to better discriminate among consumer types.
This contributes towards a more efficient allocation of power to flexible demand.

Figure 1.3: Envisioned interface for consumers to subscribe to multilevel demand
subscription. Users can sign up for different reliability levels while defining the desired
duration for each option. Source: [117].

Accordingly, the utility commits not only to honoring the reliability of each
service option as in priority service, but also to honoring the duration of that
option. The task of pricing the menu also becomes more challenging. Although
the utility can still rely on aggregate statistical information about the popula-
tion, it is now required to estimate a load duration curve for the population,
parametric on a retail price. Therefore, the challenge of information asym-
metry remains, with consumer types now characterized by a privately known
index corresponding to their position on the system load duration curve. The
aggregator uses this information in order to design a service offering that dif-
ferentiates prices as a function of both reliability and duration. Note that,
after subscribing to a service offering (for multilevel demand subscription or
for priority service), the consumer satisfaction can be surveyed by the utility.
This creates the possibility for the utility to improve the design of the menu
through iterative communication with consumers and adaption of the offered
menu.
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1.3.2 Comparison to Alternative Methods for Engaging
Consumers

Before advancing to the structure and contributions of the present dissertation,
we briefly comment on how priority service and multilevel demand subscription
compare to real-time pricing and direct load control. The latter are reasonable
candidates for comparison, respectively belonging to price-based and quantity-
based methods.

Although real-time pricing sets the efficient benchmark for engaging de-
mand response, it stumbles upon a major difficulty. Residential consumers
face fundamental challenges in assessing their real-time valuation for power.
Under real-time pricing, every device within the household would be facing
complex economic trade-offs at every balancing interval. By contrast, the goal
of priority service and multilevel demand subscription is to simplify these eco-
nomic trade-offs. The complexity of device scheduling is then transferred to a
home energy router, which can gradually learn the preferences of the house-
hold. Moreover, as aforementioned in section 1.2.2, since consumer response to
a change in price is uncertain and hard to predict with great precision [17], grid
operators tend to prefer interruptible demand response programs than price-
based methods for balancing supply and demand. This phenomenon is avoided
with priority service since the aggregator has full control over the interruption
of colors which are represented by a certain amount of kilowatts. The compari-
son between real-time pricing versus priority service is largely analogous to the
standard dilemma between quantity versus price control in economics. This
is a long-standing debate in the economics literature [175], and one argument
in favor of quantity control is that it provides better insurance. Note that, in
this work, the performance of real-time pricing may be over-estimated since
we consider an ideal scenario where consumers are rational agents that react
instantaneously to prices. This assumption may be too optimistic in practice,
which would result in a degradation of the performance of real-time pricing.

On the other hand, direct load control is perceived as being overly intru-
sive [123]. Consumers prefer to maintain control over their devices, instead of
handing that control over to a utility. In priority service and multilevel demand
subscription, this is achieved by the color tagging system: if the household
prefers to prioritize a certain device over another, it can swap the colors of the
devices. Another important weakness of direct load control relates to lack of
privacy. Privacy is a major concern in demand response, and has been a block-
ing point for the roll-out of demand response programs [134]. In the context of
priority service and multilevel demand subscription, the utility is only aware of
the aggregate kilowatts assigned to different service levels, as opposed to know-
ing which devices specifically constitute those kilowatts at any given balancing
interval. Moreover, the literature on non-intrusive load monitoring allows an
aggregator to infer the devices that are present in a household merely by ob-
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serving the total consumption of this household. However, in order for these
techniques to be effective, the power consumption of the household should be
observed at a high frequency, typically larger than 1Hz. In the analysis of this
thesis, the consumption of the household for each option will only be observed
every 15 minutes by the aggregator, which allows the household to safeguard
privacy with respect to electricity consumption.

Finally, it is worth commenting on how priority service may interact with
different types of market structures. Traditional retailers typically expose
themselves to risk in the wholesale electricity market, because they are required
to serve consumers by buying energy from that market. However, consumers
may require large amounts of power during periods with high prices, which can
force retailers to procure expensive power. With priority service, the retailer is
hedged since it can interrupt service to consumers during periods of high prices.

Demand response providers interact with capacity mechanisms as well as
the enhancement of capacity mechanisms with reliability options [13] in order
to extract another stream of revenue when launching demand response pro-
grams. Aggregators providing priority service contracts can specifically qualify
for capacity markets. It is common in capacity mechanisms to only consider a
portion of the bid capacity as qualifying for remuneration, since there is some
uncertainty regarding the amount of demand response capacity that can be
provided in real time. For example, if the aggregator is using a price-based de-
mand response paradigm, the response of the consumers to changes in price can
be highly uncertain. With priority service, the aggregator can always provide
the qualified capacity with a considerable level of certainty, since consumers
engage in capacity subscription. A remaining risk for the aggregator in this
context is to match the offered reliability to the one promised during the menu
design phase.

The literature in demand response has recently expanded in the field of
transactive energy markets. Transactive energy markets are defined by [1] as
‘the economic and control methodologies for managing the rate of consumption
and generation resources and the energy trading within a power distribution
network based on market mechanisms’. They aim at balancing supply and
demand in electricity power networks while simplifying the large-scale inte-
gration of distributed resources [27]. Indeed, different parties can engage in
transactions in these markets, in order to balance supply and demand. These
parties include network operators, suppliers, aggregators, end-users, ... with
each maximizing their individual profit. Different types of transactive mecha-
nisms have been studied throughout these years, among them we can highlight
peer-to-peer energy systems [114–116, 169] which are usually employed for en-
gaging end-users in microgrids or small neighbourhoods. In this setting, we
can envision a transactive energy market where aggregators providing priority
service pricing to consumers may bid to provide demand response in order to
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contribute towards balancing supply and demand at that particular level of the
power network by interrupting certain options when needed.

1.4 Structure and Contributions

The research presented in this dissertation aims at exploring the effects of retail
tariffs based on service quality differentiation for mobilizing residential flexi-
ble demand on power system operations and households electricity costs. This
analysis only accounts for priority service pricing and multilevel demand sub-
scription as candidates for demand response schemes. The conclusions of these
studies are presented through five chapters which are linked to the particular
contributions of the author to the existing literature.

• Chapter 2: Combining Energy-Based Service Charges with Pri-
ority Service
In this chapter, a realistic consumer-centric analysis of several priority
service pricing settings is provided along with a comparison against real-
time pricing in terms of consumer comfort and expenditures. This anal-
ysis also demonstrates that service charges are a crucial element for the
successful practical application of priority service in households. The
content of this chapter relies on the following works:

� C. Gérard and A. Papavasiliou, “A comparison of priority service
versus real-time pricing for enabling residential demand response”,
2019 IEEE Power & Energy Society General Meeting (PESGM),
IEEE, 2019.

� C. Gérard and A. Papavasiliou, “The role of service charges in
the application of priority service pricing”, Energy Systems, 2021.
https://doi.org/10.1007/s12667-021-00471-7

• Chapter 3: Designing Multilevel Demand Subscription Menus
This chapter investigates multilevel demand subscription as an alternative
to priority service at the macroscopic scale. We first inspire ourselves by
recent research on priority service [119] to cast the multilevel demand
subscription menu design problem of Chao [25] as a Stackelberg game,
which we express equivalently as a mixed integer linear program. Then,
this reformulation is used to compare the two paradigms on nine types
of households in a realistic model of the Belgian market. This study has
led to the following publication:

� Y. Mou, C. Gérard, A. Papavasiliou and P. Chevalier, “Designing
menus for multilevel demand subscription”, Proceedings of the 54th
Hawaii International Conference on System Sciences, 2021.

https://doi.org/10.1007/s12667-021-00471-7
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• Chapter 4: Comparison of Priority Service with Multilevel De-
mand Subscription
This chapter develops a simulation framework based on the results of the
previous chapter for comparing priority service, multilevel demand sub-
scription, and real-time pricing on a system-wide level during real-time
operations. The provided framework is used for developing the compari-
son on a model of the Belgian electricity system. The results described in
this part of the dissertation are the focus of the following journal paper:

� Submitted to IEEE Transactions on Smart Grid. C. Gérard, D.
Ávila, Y. Mou, A. Papavasiliou and P. Chevalier, “Comparison of
priority service with multilevel demand subscription”, IEEE Trans-
actions on Smart Grid, 2021.

• Chapter 5: Hierarchical Coordination of Medium and Low Volt-
age Distribution Grid in the Presence of Demand Response
This chapter describes preliminary research on how an aggregator that
is responsible for several households under priority service can interact
with the rest of the electricity network. The importance of integrating
the network constraints in the computation of an aggregate residual de-
mand function is illustrated on a simple example. The impact of different
network constraint formulations on the resulting demand function is also
highlighted using the same example.

• Chapter 6: Conclusion and Future Perspectives
This chapter highlights the main insights of this dissertation and con-
cludes the present document by outlining the future perspectives of the
performed analysis.



2 Combining Energy-Based Service
Charges with Priority Service

2.1 Introduction

As pointed out in section 1.3, priority service is a demand response aggregation
paradigm that intends to combine the strengths of both real-time pricing and
direct load control. In the original theory of priority service, it is proven that
priority service and real-time pricing are equivalent in terms of consumer ex-
penditures (Proposition III in [26]). However, we observe by means of a simple
illustrative example [77] that this result can be violated under very reasonable
relaxations of the assumptions employed by [26]. Intuitively, the reason why
this equivalence result can break down is that the consumer needs to procure
strips of service which need to be ‘filled in’ with jobs due to the capacity-based
nature of priority service. This creates “holes” in the use of the contract, and
effectively a non-concave incremental benefit function for households. This
observation implies an increased cost of priority service for households, and
motivates the addition of an energy component to the priority service scheme,
so as to moderate the cost of the the total contract. This energy component is
represented by the service charge of the priority service of the original theory.
Even though this service charge was meant to be used as an added capacity
component in order to decompose the settlement of consumers bills, our in-
terpretation of service charges as energy charges provides increasing flexibility.
Concretely, this component is required in realistic models of system operation
in order to mitigate the cost of priority service for households that follow peaky
consumption patterns.

What our analysis uncovers is that, although priority service theory is devel-
oped extensively, the literature on priority service is relatively terse in analyzing
the role of service charges [131]. A specific proposal for service charges which is
based on the marginal cost of supply is set forth by Chao [26]. In this chapter
we revisit the theorems and proofs described in [26] for any non-zero service
charge. The point of re-deriving these formulas is that they provide a useful
starting point for the creation of a reasonable menu offering, even if the ideal
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consumer who we assume is selecting menus in the original theory is much
simpler than the inter-temporally constrained household model considered in
this chapter. Consequently, we extend the theory by providing the following
theoretical contributions in the present chapter:

• We propose a generalized version of the price menu constructed in [26]
that accounts for any non-zero service charge function. We further prove
that this menu is optimal in the sense that it induces a socially efficient
choice of options from consumers.

• The equivalence proof regarding real-time pricing with priority service is
extended to the mentioned generalized version of the price menu.

• We clarify the findings of [26] regarding the impact of a cutoff valuation
on the equivalence proof between priority service and real-time pricing.

• We propose a way to compute service charges for a finite number of classes
since finite menus are only provided in [26] in the case of a zero service
charge.

After deriving generalized results for service charges in priority service con-
tracts, we use these findings in order to develop practically viable offerings
of priority service contracts with energy-based service charges that aim at not
overwhelming the residential consumer with subscription fees. Accordingly, our
work provides a realistic end-to-end analysis of several priority service pricing
settings with energy-based service charges. The analysis aims at matching
the level of rigor that has been devoted by the literature on real-time pricing.
Our approach, which is consumer-centric and focuses specifically on consumer
comfort and expenditures, is developed along the following four axes:

1. Designing priority service contracts with energy-based service charges.

2. Modeling the choice of an optimal contract by the household.

3. Simulating the dispatch of devices given a chosen contract.

4. Comparing several priority service schemes on a realistic case study.

We strive to integrate all of these axes in a single framework. By contrast,
past literature on priority service [20, 23, 26, 108, 131, 136] is often limited to
a subset of these dimensions, for example contract design [23, 26, 131], con-
tract choice [23, 26, 108], or device dispatch [108, 136]. Note that the device
dispatch model proposed in Margellos and Oren [108] is represented through a
convex model. In our realistic representation of households, we considered non-
convexities related to the power ratings of appliances. These non-convexities
are represented by binary variables. We use our simulation framework to con-
duct a detailed analysis about the practical potential of demand response. This
framework is also employed in order to provide insights on the interplay between
priority service contracts with energy-based service charges and the incentive
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to invest in home energy storage.

Concretely, in this chapter, we demonstrate that energy-based service charges
become a crucial element for the successful practical application of priority ser-
vice, especially for households that are characterized by peaky seasonal demand
(e.g., as related to air conditioning loads in summer months). This energy
component allows us to mitigate the capacity-based nature of priority service
pricing, while preserving its simplicity relative to more complex contract of-
ferings based on energy and capacity, such as multilevel demand subscription.
Multilevel demand subscription is studied in Chapters 3 and 4.

The chapter is divided as follows. Section 2.2 generalizes the theory that
characterizes priority service pricing in order to include non-zero service charges.
Subsequently, section 2.3 is dedicated to the formulation of mathematical pro-
grams for scheduling appliances in a household subject to priority service or
real-time pricing. In section 2.4 we present the data sources that we rely on
for our case study. We also explain the procedure that we use for generating
counterfactual real-time prices, and for designing a priority service menu with
energy-based service charges that is comparable to real-time pricing. In section
2.5 we present our results on a case study of a typical household in Texas and
compare them to a typical household in Belgium. Furthermore, we develop
the main policy messages that emerge from the analysis of these results. Sec-
tion 2.6 concludes the analysis of this chapter. Notation is summarized in the
appendix 2.A.

2.2 Priority Service Pricing Theory

As discussed in section 1.3, priority service refers to an array of contingent
forward contracts offered by an electricity supplier [26]. The selection of one
option from the menu by each consumer determines the service order or priority
of the consumer. Under each contingency, the seller rations supplies by serving
customers in the order of their selected priorities. In the basic priority service
model, v represents the valuation of a consumer for power. This valuation can
equivalently be interpreted as a ranking of consumers, in the sense that under
conditions of scarcity, consumers with higher valuation v should be entitled to
higher-priority access to power. The function D(v) corresponds to the demand
function of the system. Information asymmetry means that the menu designer
has access to aggregate system information (i.e., D(v)), but does not know
which individual consumer corresponds to which type v a priori (i.e. when the
contract is designed). This information is revealed ex post (i.e. after contracts
are selected), following the revelation principle of mechanism design.

The key element of priority service pricing is the priority service menu
M = {(p, s, r)}. The menu consists of (i) a priority charge p, which is payable
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regardless of the usage of electricity, (ii) a service charge s, which is payable
only when electricity is actually consumed, and (iii) a service reliability level
r, which corresponds to the probability of receiving the product or service [26].
It is important to point out that the priority and service charges that are
considered in the original theory as capacity-based. The role of the service
charge s in the original theory is to decouple the settlement into two parts.
In our work, we see the added value of using this service charge as an energy
charge, so as to reduce the cost of priority service for households in a multi-
temporal realistic case study. This is especially crucial for households with
peaky consumption profiles. Concretely, in our interpretation of the original
theory, if a consumer buys 2 kW and only consumes 1 kWh during hour 1, we
assume that the service charge payment is s, not 2s. Therefore, in this section,
we revisit the original priority service theory presented in [26] in order to include
service charges in a generalized form since the original theory proposes a specific
formulation of the service charges based on marginal generator costs. The
section is structured as follows. Section 2.2.1 restates Theorems I and II of
[26] which characterize how consumers choose priority classes. Afterwards,
section 2.2.2 presents an alternative to the priority service pricing menu in [26]
that includes a general functional expression for service charges. Subsequently,
in section 2.2.3, we show that the equivalence between priority service and
spot pricing is maintained for a generalized form of service charge. Then, in
section 2.2.4 we discuss the resulting effects in the priority service menu and
the equivalence with spot pricing of adding a cutoff valuation. Finally, section
2.2.5 proposes a formula for service charges in the case of a menu with a finite
number of classes. This final point is required for the practical implementation
of priority service contracts in the case study of section 2.4.

2.2.1 Choice of Priority Classes by Consumers

As detailed previously, a priority service menu is composed of a set of options.
The consumer chooses from the menu a priority option and assigns it to an
increment of consumption. Concretely, we consider a continuum of consumers,
with privately known types v. Each consumer engages in a forward agreement
with an aggregator, according to which it pays a reservation charge p, in order
to gain access to electricity service with reliability r. Additionally, the consumer
pays a service charge s whenever it actually consumes power. As in the case
of [26], without loss of generality, we characterize each consumer by a single
unit of demand with an associated marginal willingness-to-pay v (∈ [0, V ]).
Consequently, the objective of the consumer will be to choose from the menu
M a priority option that maximizes its expected surplus. Therefore, for each
v, the consumer solves the following problem:

Surplus(v) = max{ r · (v − s)− p | (p, s, r) ∈M}. (2.1)

Surplus(v) represents the surplus of a consumer with privately known type v
when that consumer optimizes over the set of options offered in menu M . We



2.2. Priority Service Pricing Theory 23

denote the optimal choice of a consumer of type v for the above problem as
{p(v), s(v), r(v)}. Based on this consumer objective, two theorems are stated
and proven in [26].

Theorem 2.1. The optimal consumer choices satisfy the following conditions:
(A) r(v) is nondecreasing in v; (B) p(v) + s(v) · r(v) is nondecreasing in v;
and (C) p(v) + r(v) · s(v) =

∫ v
0

[r(v)− r(u)]du, for every v.

Theorem 2.2. If p(·), s(·), and r(·) satisfy conditions (A) and (C) stated
in Theorem 2.1, and M = {(p(v), s(v), r(v)) | 0 ≤ v ≤ V }, then for each v,
(p(v), s(v), r(v)) is an optimal solution to Problem (2.1).

2.2.2 Priority Service Menu

In Chao [26], an optimal priority service menu with a specific formulation of
service charge based on marginal cost of supply is presented. However, since
this definition is restrictive, we present in this section a generalized version of
this priority service menu by accounting for any form of service charge function.
We further prove that this menu remains optimal according to the original the-
ory.

Throughout this section, the representation of uncertainty used in [26] will
be adopted. Therefore, all random variables are represented as a function of
ω ∈ Ω, an abstract sample space associated with a σ field, and a probability
measure. Following the standard theory [26], we denote by p̂(ω) the instanta-
neous equilibrium price (or spot price) for electricity associated with a given
random outcome ω. Then the service reliability of a type v consumer experi-
encing real-time pricing can be expressed as:

R(v) = Pr[p̂(ω) ≤ v]. (2.2)

Eq. (2.2) indicates that the consumer is served in the events for which the
spot price is less than its willingness to pay. Given this definition, we propose
the following price menu M∗, and then show that it is equivalent to real-time
pricing in section 2.2.3:

r∗(v) = R(v) (2.3)

s∗(v) = S(v) (2.4)

p∗(v) =

∫ v

0

[r∗(v)− r∗(u)]du− s∗(v)r∗(v) (2.5)

M∗ = {(p∗(v), s∗(v), r∗(v)) | 0 ≤ v ≤ V } (2.6)

In our proposed menu, S(v) can be any function of v and represents the map-
ping from consumer valuation to service charges. Note that this priority service
menu is different from the one presented in [26]. Indeed, it does not consider
any specific form of service charge and does not take a cutoff valuation into
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account, whereas [26] defines a menu by specifying a service charge linked with
the marginal cost of the supply side and a cutoff valuation.

Using Theorem 2.2, we can show that our priority service menu M∗ induces
optimal consumer choices.

Proof. In order to prove that M∗ will induce optimal consumer choices, from
Theorem 2.2, only conditions (A) and (C) must hold for M∗ to be optimal.

Condition (A): By definition of R(v), r∗(v) is nondecreasing in v.

Condition (C): By definition of p∗(v), it follows that:

p∗(v) + s∗(v) · r∗(v) =

[∫ v

0

[r∗(v)− r∗(u)]du− s∗(v) · r∗(v)

]
+ s∗(v) · r∗(v)

=

∫ v

0

[r∗(v)− r∗(u)]du

Since conditions (A) and (C) hold, the price menu M∗ induces optimal con-
sumer choices for Problem (2.1).

Note that this result implies that any form of service charge can be used
(positive, negative, increasing, constant, decreasing, ...) while preserving the
optimality of the menu. Under the ideal conditions presented in the original
theory, the service charge does not have an essential impact, since p(v) + s(v) ·
r(v) can be aggregated into a new priority charge π(v) with a 0 service charge.
However, in practical settings which consider a multi-period framework and re-
alistic assumptions for appliances leading to non-convexities, this service charge
function can be useful in order to decrease the cost of priority service for house-
holds. Note that interpreting service charges as an energy-based component
does not imply that information asymmetry is sacrificed.

2.2.3 Equivalence between Priority Service and Spot Pric-
ing

An important practical attribute of priority service is that it should not over-
burden consumers. The natural benchmark of comparison is the consumer bill
that would be incurred under real-time pricing. The practically relevant ques-
tion is whether consumers pay a premium for the added simplicity of priority
service pricing. Chao [26] proves that there is no such premium. Therefore,
having proposed a priority service menu M∗ with a general service charge and
having proven its optimality, we are interested in exploring next to what extent
the newly proposed menu retains the equivalence to real-time pricing proven
in [26]. In this section, we are therefore able to establish that any service charge
function can be used for designing a priority service menu that maintains the
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theoretical equivalence of priority service and real-time pricing.

As emphasized by [26], the key difference between real-time pricing and
priority service pricing is in the time frame. Indeed, any consumer experiencing
real-time pricing will be subject to a price that is revised instantaneously as
the status of supply and demand changes. Instead, under priority service,
the consumer subscribes to a forward contract over a longer period of time.
These two pricing schemes are closely related, and indeed spot pricing can be
viewed as a limiting case of priority service as the pricing period is reduced to
zero [26]. Proposition 2.3 in [26] establishes a close relation between the two
pricing schemes. We now show that the proof holds for the case of a more
general service charge function s∗(v) = S(v) (see Eq. (2.4) above).

Proposition 2.3. Under the assumption of risk neutrality, priority service
pricing and spot pricing are equivalent from the perspective of individual con-
sumers. The expected expenditures and the expected surplus of each consumer
under the two pricing schemes are identical. That is,

p∗(v) + s∗(v) · r∗(v) = E{p̂(ω) · I{p̂(ω)≤v}(ω)}

and
[v − s∗(v)] · r∗(v)− p∗(v) = E{[v − p̂(ω)] · I{p̂(ω)≤v}(ω)}

where I{p̂(ω)≤v}(ω) is an indicator function, which takes on value 1 or 0 de-
pending on whether ω belongs to the set {ω : p̂(ω) ≤ v}.

Proof. The expected expenditure of a consumer of type v under spot pricing
can be written as follows:

E{p̂(ω) · I{p̂(ω)≤v}(ω)}

=

∫ +∞

−∞
x · Pr[p̂(ω) · I{p̂(ω)≤v}(ω) = x] dx (by definition of operator E)

=

∫ v

0

x · Pr[p̂(ω) · I{p̂(ω)≤v}(ω) = x] dx (because 0 ≤ x ≤ v)

=
[
x · Pr[p̂(ω) · I{p̂(ω)≤v}(ω) ≤ x]

]v
0
−
∫ v

0

Pr[p̂(ω) · I{p̂(ω)≤v}(ω) ≤ x] dx

(integration by parts1)

= v −
∫ v

0

Pr[p̂(ω) · I{p̂(ω)≤v}(ω) ≤ x] dx

= v −
∫ v

0

[
1− Pr[p̂(ω) · I{p̂(ω)≤v}(ω) ≥ x]

]
dx

=

∫ v

0

Pr[p̂(ω) · I{p̂(ω)≤v}(ω) ≥ x] dx

=

∫ v

0

Pr[x ≤ p̂(ω) ≤ v] dx
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=

∫ v

0

[
Pr[p̂(ω) ≤ v]− Pr[p̂(ω) ≤ x]

]
dx

=

∫ v

0

[
R(v)−R(x)

]
dx (by definition of R(v))

= r∗(v) · v −
∫ v

0

r∗(x) dx (by definition of r∗(v))

=

∫ v

0

[r∗(v)− r∗(x)] dx

= p∗(v) + s∗(v) · r∗(v) (by Theorem 2.1)

The general intuition behind this equivalence proof lies in the fact that real-
time pricing implies a certain profile of consumption for the system. In a static
framework, the valuation of each consumer is fixed. This allows the aggregator
to rank the priority of service of different consumers based on their valuation.
Knowing the priority of service of each consumer, when a continuum of priority
service options is considered, allows the aggregator to compute the reliability
that a particular consumer (i.e. valuation) is entilted to. A crucial observation
in the above proof is that the argument does not depend on any particular
service charge. Thus, the general service charge that we propose in Eq. (2.4)
above is valid for this proof, and therefore the equivalence between real-time
pricing and priority service that is expressed in Proposition II of [26] still holds.
Note that the choice of the service charge is left to the menu designer. Con-
cretely, this result allows us to determine a procedure for computing an optimal
menu (as opposed to comparing real-time pricing to an arbitrary priority ser-
vice menu that allocates resources in the system suboptimally). Note that we
show in [77] that this proposition does not hold in practical settings with non-
concave demand functions that emerge due to inter-temporal dependencies and
non-convexities related to the operation of devices. The illustrative example
used in [77] is detailed in appendix 2.B.

2.2.4 Role of Cutoff Valuation

In this section we analyze the interplay of the non-zero service charge with
the cutoff valuation v0. We are specifically interested in analyzing whether
the equivalence between real-time pricing and priority service remains valid.
Indeed, it is not clear from the proof of Proposition II in [26] whether this
equivalence result still holds for a positive cutoff valuation. Therefore, we
propose the following priority service pricing menu, M∗∗, that uses a cutoff

1Integration by parts on x and Pr[p̂(ω)I{p̂(ω)≤v}(ω) = x] where the indefinite integral of
the second term is Pr[p̂(ω)I{p̂(ω)≤v}(ω) ≤ x] by definition of the cumulative distribution and
probability density function.
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valuation v0 and a general form of service charge:

r∗∗(v) =

{
R(v) if v ≥ v0

0 if v < v0
(2.7)

s∗∗(v) =

{
S(v) if v ≥ v0

0 if v < v0
(2.8)

p∗∗(v) =

∫ v

0

[r∗∗(v)− r∗∗(u)]du− s∗∗(v) · r∗∗(v) (2.9)

M∗∗ = {(p∗∗(v), s∗∗(v), r∗∗(v)) | 0 ≤ v ≤ V } (2.10)

Similarly to the menu presented in section 2.2.2, M∗∗ can be shown to induce
optimal consumer choices. Indeed, priority service menu M∗∗ verifies condi-
tions (A) and (C).

Having established the optimality of the priority service menu M∗∗, we dis-
cuss the influence of the presence of a cutoff valuation on the equivalence result
between real-time pricing and priority service. We show that the equivalence
holds only for v0 ∈ [0, V ] such that:∫ v0

0

R(x) dx = 0.

Since R(x) ≥ 0, this condition is equivalent to:

R(x) = 0 ∀x ∈ [0, v0].

Proof. For the priority menu M∗∗, we can keep the equivalence proof until the
step where the function R(x) is introduced in the equation. We have:

E{p̂(ω) · I{p̂(ω)≤v}(ω)} =

∫ v

0

[
R(v)−R(x)

]
dx

= R(v) · v −
∫ v

0

R(x) dx

= r∗∗(v) · v −

[∫ v0

0

R(x) dx+

∫ v

v0

r∗∗(x) dx

]

=

∫ v

0

[r∗∗(v)− r∗∗(x)] dx−
∫ v0

0

R(x) dx

= p∗∗(v) + s∗∗(v) · r∗∗(v)−
∫ v0

0

R(x) dx

Therefore, the equivalence is only verified when the integral part of the sum is
equal to 0.
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2.2.5 Priority Service Pricing for a Finite Number of Classes

In order to implement priority service in a practical setting, it is necessary to
consider a finite number of priority classes instead of a continuum of options.
Chao [26] only provides results for designing a menu with a finite set of options,
in which the service charge is zero. In this section, we relax this assumption.
First, we demonstrate that Proposition VI of [26] holds for a non-zero service
charge. Furthermore, we propose a way to compute service charges for a finite
number of classes. In doing so, we closely follow the original theory, but adapt
it to the needs of our analysis for performing a simulation on a realistic case
study. In this setting, consumers are divided into n priority classes based on
their willingness to pay, say [0, v1], [v1, v2], ..., [vn−1, V ], where 0 = v0 < v1 <
... < vn−1 < vn = V . Service is provided to consumers such that consumers in a
higher value class enjoy a higher priority (and pay more), however, within each
class, all consumers are treated equally and therefore are served in a random
order. Then, the probability that a consumer with valuation v between vi and
vi+1 will be served is:

r(v) = ri =

∫ vi+1

vi

[
D(v)−D(vi+1)

D(vi)−D(vi+1)

]
dR(v) +R(vi). (2.11)

We propose, in this section, a formula that can be used in order to create a
unique service charge per class:

s(v) = si =

∫ vi+1

vi

[
D(v)−D(vi+1)

D(vi)−D(vi+1)

]
dS(v) + S(vi) (2.12)

The total payment of a consumer in priority class i is computed as:

p(v) + r(v) · s(v) = pi + si · ri =

∫ v

0

[r(v)− r(u)]du

= v0 · r0 +

i∑
j=1

vj · (rj − rj−1) (2.13)

Given the proposed transformation of a continuum of priority classes to a
finite number, we can revisit the result presented in [26] regarding the surplus
obtained with a finite number of priority classes. Indeed, the authors in [26]
prove the following proposition, which considers a priority service menu with
no service charge and additional assumptions.

Proposition 2.4. The surplus that is unrealized due to a finite number n of
priority classes is of order 1

n2 . That is, Sn ≥ S∞ −O( 1
n2 ).

Our analysis allows us to conclude that this proposition can be extended to
the case where the service charge is represented by any function. Indeed, the
proof linked with this proposition does not depend on the form of the service
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charge. Therefore, this result can be used in order to demonstrate that, even
with a non-zero service charge, nearly 90% of the potential benefit of priority
service pricing can be captured by offering just three priority classes, as in the
ColorPower approach that we describe in section 1.3 and specifically analyze
in this dissertation.

2.3 Household Decision Model

In order to quantify the impact of real-time pricing and the influence of adding
energy-based service charges to priority service on consumers, we describe
mixed integer linear programming formulations for scheduling appliances ef-
ficiently in the house under each scheme. These scheduling problems proxy the
behavior of a home energy management system. Such a home energy man-
agement system places minimum decision-making requirements on residential
consumers, by automating electricity consumption in the house, so that this
consumption reacts to utility pricing signals. An extensive review of home en-
ergy management systems is provided in [181].

Most of the work in the field of home energy management systems is focused
on real-time pricing [8, 29, 35, 83, 89, 168, 173, 176]. Notably, a limited amount
of the recent literature analyzes the impact of alternatives to real-time pricing.
For example, Hayn [85] compares the impact of a flat tariff, a variable energy
tariff, a variable capacity tariff and a combination of energy with capacity tar-
iffs.

Whereas the majority of the home energy management system literature
is devoted to real-time pricing, the modeling approach that is used for solv-
ing the appliance scheduling problem is wide. Reinforcement learning has
been considered as a viable approach for adaptive real-time home energy sys-
tems [83, 130, 176]. Jin et al. [93] employs model predictive control. Math-
ematical programming formulations based on mixed integer linear programs
(MILP) are widespread in the literature [8,29,77,85,89,105,122]. Due to com-
putational considerations, certain papers adopt a relaxed formulation of MILP
programs [168]. For a broad review on modeling approaches applied to home
energy management systems, we refer the reader to Beaudin and Zareipour [9].
To a large extent, the aforementioned research assesses the impact of differ-
ent tariffs on the operation of the system [79, 85]. By contrast, the impact of
demand response schemes on consumer comfort and monthly electricity bills
often receives less consideration. Instead, this chapter is focused on the impact
of demand response on consumers, rather than the system.

The notable growth of the literature on home energy management systems
has in part been possible due to large demand response pilot programs that
have been deployed recently. Such demand response programs increase the
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amount of available data that is accessible to the research community, even at
the level of individual appliances. For instance, the LINEAR demand response
pilot provides insights about the flexibility of wet appliances in Belgium [34].
The availability of appliance-level consumption data and consumer features al-
lows the research community to generate synthetic load profiles for residential
consumers [150]. This is expected to proliferate further analysis for under-
standing the impact of demand response on consumers.

In this work, we consider a household that contains a battery, solar pan-
els, an electric vehicle, and several appliances that can be considered as being
flexible or inflexible loads. Flexible loads correspond to “jobs” with specific
execution deadlines and power consumption profiles, which are assumed to be
known in advance. These include wet appliances (dishwashers, washing ma-
chines and tumble dryers). Cycling appliances such as HVAC, fridges and
freezers are not considered as being flexible in this work due to computational
reasons. This direction may be interesting to consider in further developments
of this work. Finally, no uncertainty regarding arrival times, deadlines, con-
sumption profiles, etc. is considered in the present model.

Several assumptions are used in our analysis, following [77]:

(A1) An appliance can change color (i.e. move to a different reliability tier)
while in the middle of executing a power consumption profile in the pri-
ority service setting;

(A2) An appliance can be interrupted at any stage of its operation and be
started on again at the stage it was interrupted;

(A3) An appliance arrives with a deadline by which the task of the appliance
must be completed, in order for the consumer to avoid any frustration;

(A4) The power consumption footprint of each appliance is known.

(A5) Any unused solar power is wasted. No payment is made by the grid to
buy that extra solar power.

A footprint of an appliance is defined as the usual consumption pattern of the
appliance. The estimation of these consumption patterns is the focus of an
extensive body of literature on non-intrusive load monitoring [84].

We now proceed with the mathematical programming formulations of the
device scheduling problems. The formulation is inspired from [85], but mod-
ified in order to include features that are particular to priority service. Note
that binary variables are often used in the optimization demand response lit-
erature [94] which is the case here since both formulations are mixed integer
linear programs (MILP). Section 2.3.1 presents the real-time pricing setting.
In section 2.3.2 we describe the changes that are required in order to represent
priority service.
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2.3.1 Real-Time Pricing

In this section, we describe a mathematical program that schedules appliances
under real-time pricing in a household. In this setup, the consumer is facing
a real-time price for electricity and chooses which appliances to turn on or off
by reacting to electricity prices. In the following model, we assume perfect
foresight on the realization of real-time prices. We divide the description of the
mathematical program into different elements that are present in the household.

Solar Panels and Inflexible Load

Solar production at time step t is represented by St, and st corresponds to the
solar supply actually used. Inflexible load consumption in period t is denoted
by Bt, and corresponds to inflexible appliances. The consumer may decide to
serve only a portion bt of its inflexible load, and incurs a cost of φ per unit
of discarded energy. The following constraints are thus added to the overall
program:

0 ≤ st ≤ St ∀t ∈ T , (2.14)

0 ≤ bt ≤ Bt ∀t ∈ T . (2.15)

Electric vehicle

The state of charge of the home electric vehicle is denoted by socEVt and its
maximum capacity is EV max. The charge efficiency is denoted by ηEV . The
charge and discharge decisions are represented respectively by chEVt and disEVt ,
and are limited by the maximum rates, which are expressed respectively by
ChmaxEV and DismaxEV . Since the electric vehicle is either charging or discharging
at any given moment, we use a binary indicator variable uEVt in order to repre-
sent the charge/discharge state of the vehicle. Finally, charging or discharging
requires the vehicle to be plugged in. The parameters TA and TD represent,
respectively, the time of arrival and departure of the vehicle. The parameters
EVA and EVD express, respectively, the state of charge at arrival and depar-
ture. The operation of the electric vehicle can therefore be represented by the
following constraints, based on [52,73,76]:

0 ≤ chEVt ≤ ChmaxEV · uEVt ∀t ∈ T , (2.16)

0 ≤ disEVt ≤ DismaxEV · (1− uEVt ) ∀t ∈ T , (2.17)

0 ≤ socEVt ≤ EV max ∀t ∈ T , (2.18)

socEVt = socEVt−1 + ∆t ·
[
ηEV chEVt − disEVt

]
∀t ∈ [TA + 1;TD], (2.19)

chEVt = disEVt = 0 ∀t /∈]TA;TD[, (2.20)

socEVt = 0 ∀t /∈ [TA;TD], (2.21)

socEVTA = EVA, (2.22)
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socEVTD = EVD, (2.23)

socEV0 = EV max, (2.24)

uEVt ∈ {0, 1} ∀t ∈ T , (2.25)

Here, ∆t corresponds to the number of hours present in a time period, e.g. 0.25
in the case of 15-minute intervals.

Flexible Appliances

As explained previously, flexible appliances are modeled as power demand ar-
rivals with specific deadlines and interruptible power consumption profiles. A
consumption profile is divided into one power level/part per time period. The
binary variable xt,j,β,τ is 1 if part τ of appliance j that arrives at time β is
scheduled to run at time t. The flexible appliances are modeled by the following
set of constraints:

1 ≥
∑
τ∈Tj

xt,j,β,τ ∀t ∈ T , j ∈ J , β ∈ Bj , (2.26)

1 ≥
∑
t∈T

xt,j,β,τ ∀j ∈ J , β ∈ Bj , τ ∈ Tj , (2.27)∑
t<tON

xt,j,β,τ ≥ xtON ,j,β,τ+1 ∀tON ∈ T , j ∈ J , β ∈ Bj ,

τ ∈ Tj \ {τend}, (2.28)

1 =
∑
t<β+1

xt,j,β,τend ∀j ∈ J , β ∈ Bj , (2.29)

xt,j,β,τ ∈ {0, 1} ∀t ∈ T , j ∈ J , β ∈ Bj , τ ∈ Tj . (2.30)

Eq. (2.26) expresses the fact that only one part of the profile of an appliance j
can be served during a certain time period. The fact that a part of an appliance
can only be served once in the entire horizon is represented by Eq. (2.27).
Furthermore, the order of the parts of the consumption profile of each appliance
must be respected. For example, the first hour of the washing machine has to
be served before the second one. This is described in Eq. (2.28). Finally, an
appliance must finish before the next arrival of that appliance see Eq. (2.29).

Battery

The constraints representing the operation of the household battery are given
by Eqs. (2.31)-(2.36). The notation follows the exposition of the electric vehicle
model.

0 ≤ chBt ≤ ChmaxB · uBt ∀t ∈ T (2.31)

0 ≤ disBt ≤ DismaxB · (1− uBt ) ∀t ∈ T (2.32)
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0 ≤ socBt ≤ Bmax ∀t ∈ T (2.33)

socBt = socBt−1 + ∆t ·
[
ηBchBt − disBt

]
∀t ∈ T (2.34)

uBt ∈ {0, 1} ∀t ∈ T (2.35)

socB0 = 0 (2.36)

Power Balance and Objective Function

The goal of the household is to minimize the sum of the expenditures in the
real-time market and consumer discomfort:∑

t∈T
∆t ·

[
λt · yt + φ · (Bt − bt)

]
+

∑
j∈J ,β∈Bj ,
t>Dj+β

Fj · (t−Dj − β) · xt,j,β,τend (2.37)

The first term of the sum represents the payments to the real-time market.
Here, λt corresponds to the real-time price of electricity, and yt to the total
electricity consumption. The second term is linked with the extra cost due to
shedding of inflexible consumption. Finally, the last term represents the frus-
tration of the consumer for any delay in serving a flexible appliance beyond its
deadline Dj , where Fj is a measure for this frustration.

The total device scheduling model under real-time pricing can then be ex-
pressed as follows:

min
xt,j,β,τ ,yt,st,bt,u

B
t ,

chBt ,dis
B
t ,soc

B
t ,u

EV
t ,

chEVt ,disEVt ,socEVt

(2.37)

s.t. (2.14)− (2.36)

yt = bt − st + chEVt − disEVt + chBt − disBt
+
∑
j,β,τ

ρj,τ · xt,j,β,τ ∀t ∈ T (2.38)

yt ≥ 0 ∀t ∈ T (2.39)

The total consumption of the household is thus the sum of the consumption
of each flexible appliance along with inflexible load, battery charge/discharge,
and electric vehicle charge/discharge at every time period. The parameter ρj,τ
represents the consumption pattern of part τ of appliance j.

2.3.2 Priority Service Pricing

In this section, the mathematical program which schedules appliances by means
of priority service pricing combined with energy-based service charges is pre-
sented. As pointed out in section 1.3, we consider a priority service price menu
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that contains three options corresponding to colors [136]. Each color corre-
sponds to a different level of reliability for serving electricity and is represented
by an additional index i contained in set I. The priority service pricing scheme
is different from the real-time approach because the consumer subscribes for a
certain amount of capacity to each option of the menu at the beginning of the
horizon instead of facing variable prices at each time period. After subscribing,
the consumer is entitled to the requested capacity for each color and faces the
reliability of the corresponding option. The objective function in the case of
priority service pricing combined with energy-based service charges is therefore
given by Eq. (2.40).

∑
i∈I

∆t ·

[
|T | · λPi · Pmaxi +

∑
t∈T

λSi · yt,i

]
+
∑
t∈T

φ ·∆t ·

[
Bt −

∑
i∈I

bt,i

]
+

∑
i∈I,j∈J ,
β∈Bj ,
t>Dj+β

Fj · (t−Dj − β) · xt,j,β,τend,i (2.40)

The first term in the sum represents the expenditure of the consumer for
subscribing to an amount of power Pmaxi with a priority charge λPi for each
option i at the beginning of the horizon. The second term corresponds to the
cost due to the actual consumption of electricity. Here, λSi is the energy-based
service charge for option i. Finally, the two last terms are similar to the ones
presented for the real-time pricing model. Note that any inflexible load shed-
ding incurred by the household due to unreliable service is not planned, and
its cost is captured by Eq. (2.40).

The total consumption under each option i is bounded by the amount of
power procured in the beginning of the horizon. The additional constraints of
the priority service model are given by Eq. (2.41).

0 ≤ yt,i ≤ profilet,i · Pmaxi ∀t ∈ T , i ∈ I (2.41)

Here, profilet,i is a binary parameter that records if color i is interrupted
or not at time period t. The mathematical program that schedules appliances
based on priority service with energy-based service charges can be obtained
from the real-time pricing model, using the same procedure as in [77], by: (i)
adding a summation over the different colors to every equation of the model;
(ii) using the new objective function given in Eq. (2.40); (iii) adding Eq. (2.41)
to the model.

2.4 Case Study

We apply our model of priority service with energy-based service charges and
real-time pricing to realistic household models. We rely on three categories
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of data, which we now present. In section 2.4.1 we describe the data used for
populating the household models. Section 2.4.2 is devoted to the construction of
a series of real-time prices in a forward-looking scenario of widespread demand
response adoption. This is needed in order to create a priority service menu
on the basis of meaningful real-time prices for a system considering a large
penetration of demand response. It is also essential to realize a meaningful
comparison between the two demand response schemes. Finally, in section
2.4.3 we describe how we design a priority service menu which is consistent
with the real-time prices of the market.

2.4.1 Household Data

We use the Texas household with identity number 661 from the Pecan Street
data set [141]. The total electricity consumption of the household, along with
several appliance consumption profiles, is available at a 15-minute resolution.
The electricity production of the solar panel in the household for 2018 is also
part of the data set.

Solar and Inflexible Load

Figure 2.1: Inflexible load consumption (referred to as baseload in the graph) of the
considered Texas household for the year 2018. Source: Pecan Street Inc. Dataport.

We obtain the inflexible load of the household by subtracting the consump-
tion of flexible appliances from the total load. The appliances defined in this
work as being flexible are the washing machine, the dishwasher, and the tum-
ble dryer. The inflexible load and solar production of our chosen household
for the year 2018 are presented in Figure 2.1. The total energy corresponding
to inflexible demand amounts to 10777 kWh over the year. The total solar
energy produced throughout the year corresponds to approximately 70% of the
inflexible load (7762 kWh). However, the lack of synchronization between so-
lar production and inflexible consumption implies that solar power can only
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serve 30% of the inflexible demand. The annual energy consumption for the
electric vehicle and the flexible appliances is equal to 3284 kWh and 380 kWh,
respectively.

Flexible Appliances

The deadline is computed as the average flexibility window observed for each
wet appliance in [34]. Following [34], disutility values are assumed to be con-
stant over time. This assumption cannot capture the growing frustration of a
consumer that is subject to several consecutive delays, as this level of detail is
out of scope for the present work.

Figure 2.2: Washing machine, dishwasher and tumble dryer electricity consumption
profiles for the Texas household. Source: Pecan Street Inc. Dataport.

Electric Vehicle

We consider a Chevy Volt with a battery capacity of 16 kWh [52]. The maxi-
mum charging and discharging power amounts to 3.3 kW. We assume a charging
efficiency of 95%. The data concerning the use of the electric vehicle are based
on a German study [111]. The results of the study show that electric vehicles
are mostly used during weekdays, in order to drive to work, which is our as-
sumption for this case study. Based on [111], we assume a typical departure
and arrival time of 8am and 5:30pm respectively. Concerning the arrival and
departure state of charge, the electric vehicle is ensured to be fully charged
right before departure, and returns from work after traveling a distance of 60
km per day with an assumed consumption of 0.2 kW/km [111].

Battery

The battery specifications are based on the Tesla Powerwall 2 [166]. The total
capacity of the battery is equal to 13.5 kWh. The maximum charging and
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discharging power is considered to be 5 kW and the charging efficiency is 90%.
The annual battery investment cost is sourced from [117] and ranges from 85
to 496$/year. This cost range accounts for potential future improvements in
battery manufacturing costs (1110 to 3330$), varying lifespan of the battery
(15 to 20 years), and varying annual discount rates (3 to 10%).

2.4.2 Real-Time Prices

We consider households that are exposed to the wholesale market of the Elec-
tric Reliability Council of Texas (ERCOT) [51]. Note that the real-time prices
that have transpired in ERCOT in the past are based on a relatively inelastic
demand function. The goal of this section is to use these observed real-time
prices in order to estimate a new price series that accounts for the flexibil-
ity of residential consumers. This is needed in order to create input for Eqs.
(2.3)-(2.6), which are required for determining an optimal priority service menu
which allocates system resources efficiently to consumers.

The generation of this new time series of real-time prices uses as input the
historically realized real-time prices, the historically realized demand, and the
wind and solar production of each 15-minute period of 2018. The process of
obtaining counterfactual real-time prices is described as follows:

1. Form groups of 15-minute periods with similar solar and wind production,
by means of clustering.

2. For each group, create a piecewise linear supply function. Assume a zero
cost for wind and solar production, and use a linear regression over the
set of historically observed market clearing prices and quantities. We
assume that the system has a maximum production capacity of 110 GW.

3. For each 15-minute period, estimate an isoelastic demand function with
an elasticity of −0.5 based on the observed price-quantity data point. The
curve is shifted by the amount of industrial demand, which is assumed to
be inflexible.

4. For each 15-minute period, compute a new real-time price by using the
intersection of the estimated demand function and the respective supply
function of the group to which the period belongs.

Summary statistics of the new real-time prices, compared to the old ones, are
presented in Figure 2.3.

2.4.3 Priority Service Menu

As we note in Eqs. (2.3)-(2.6), the design of an optimal priority service menu
requires as input the time series of equilibrium real-time prices. In this chapter,
we have generalized the theory of [26] in order to account for optimal menus
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Figure 2.3: Summary statistics of historically observed real-time prices, versus coun-
terfactual prices based on a market with an elastic residential sector.

with service charges. This extension gives us a reasonable starting point for
creating a priority service menu with non-zero service charges based on real-
time prices. The procedure can be summarized as follows:

1. Create an optimal reliability curve R(v) using Eq. (2.2), which indicates
the proportion of time that a consumer with a certain valuation should
be served under efficient real-time dispatch.

2. Decide on a service charge function S(v). In this work, the service charge
is considered to be a constant function of consumer valuation. Four values
of service charge are analyzed: 0, 10, 20 and 25$/MWh, in order to assess
the impact of the service charge level on the electricity bill of households.
Thus, we create 4 priority service menus, one for each service charge.

3. Use Eqs. (2.11)-(2.12) to transform the continuum of options into only
3 options. Concretely, we use the reliability levels that are indicated
in Table 2.1 in order to compute the valuation breakpoints from Eqs.
(2.11)-(2.12).

4. Compute the priority charge of each option for each choice of service
charge, using Eq. (2.13).

The priority charge of each menu is presented in Table 2.1. Each column cor-
responds to a different service charge.

The interruption profile of each option is created as follows. For each option,
each 15-minute period belonging to the x% lowest real-time prices is considered
to be a period when that option has access to electricity service. Here, x
corresponds to the reliability of the option. For example, the 60% lowest real-
time prices are the periods when the green color will be ON.



2.5. Results and Discussions 39

Table 2.1: Priority service menus for different levels of energy-based service charges.

Colour
Reliability p0 p10 p20 p25

[%] [$/MWh] [$/MWh] [$/MWh] [$/MWh]
Green 60 15.08 9.08 3.06 0.06
Yellow 85 24.54 16.04 7.54 3.29

Red 99 30.8 20.9 10.98 6.03

2.5 Results and Discussions

Numerical experiments are performed using the JuMP package [36] in the
Julia programming language [12]. The optimization program presented in sec-
tion 2.3 is solved for every week of an entire year. Therefore, the analysis is
dynamic, as it accounts for inter-daily and inter-seasonal variations. Breaking
the device scheduling into weekly sub-problems lowers computation time and
permits efficient use of parallel computing. The mathematical programs are
solved using the Gurobi optimization solver [81]. We run our programs on the
high performance computing Lemaitre3 cluster hosted at UCLouvain and part
of the CECI facility. We present the results of these simulations in Table 2.2.

Two simulations are performed regarding priority service:

1. One simulation for which the consumer subscribes to a single contract for
the entire year.

2. One simulation where the consumer can change its subscription from one
week to the next. Allowing the consumer to update its choice on a weekly
basis reduces the amount of power that is procured without being used by
taking into account the impacts of a varying weekly consumption profile.

The first simulation is motivated by the premise that priority service combined
with energy-based service charges offers a simple alternative to real-time pric-
ing, by not requiring consumers to update their contracts too often. The results
for the first simulation are presented in the lines of Table 2.2 corresponding to
“yearly” for the subscription type. The results of the second simulation are
presented in the other lines of the table. Note that the best contract for the
first simulation is chosen among the set of best weekly contracts generated by
the second simulation.

From the results that are presented in Table 2.2, we can provide the follow-
ing observations, which are discussed in detail in the following sections:

• Adding energy-based service charges is essential in keeping costs manage-
able for priority service pricing.

• Priority service pricing is significantly more expensive for households than
real-time pricing.
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Table 2.2: Consumer costs [$/year] for real-time and priority service pricing for dif-
ferent energy-based service charge levels (0, 10, 20, and 25$/MWh).
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• Batteries, when used for real-time pricing, can slash the retail bill by
more than one fourth. However, procuring a battery is not a worthwhile
investment under real-time pricing.

• If consumers are constrained to choose among priority service contracts
with energy-based service charges, then a battery is a worthwhile invest-
ment.

• There is significant value added for households in updating subscriptions
relatively frequently.

In order to clarify if these observations can be generalized, we consider a
household that faces different weather and consumer behavior. We therefore
rerun our analysis against a Belgian household, which is populated based on
the LINEAR dataset [34]. We specifically assume that the Belgian household is
subject to the same priority service menu as the Texas household. The results
of these two simulations are presented in Table 2.2.

2.5.1 Significance of Service Charge

Table 2.2 highlights the fact that adding energy-based service charges to prior-
ity service pricing is essential for a viable implementation in a practical setting.
This is due to the fact that, under priority service pricing, consumers pay for
reserving capacity that may not be used entirely at any given time interval. We
present an example of this difference in Figure 2.4 for the Texas household. The
blue surface in the figure corresponds to the electric power that is consumed by
the household. By contrast, the red and yellow surfaces represent the amount
of power that is reserved by the consumer for week 21 of year 2018 when the
household does not include a battery and when the contract is updated on a
weekly basis. The energy which is booked but not actually used amounts to
325.2 kWh over the whole week. This corresponds to a significant cost when
the energy-based service charge is low compared to the priority charge in the
priority service menu.

Higher energy-based service charges allow a reduction in “wasted expen-
ditures” for booking capacity that is not actually used, and thus decrease the
cost of priority service pricing for residential consumers. When a consumer pro-
cures a priority service contract, it has to pay a priority charge for the reserved
capacity of each priority tier and a service charge for each unit of energy that
is actually consumed. We can observe from Table 2.1 that the priority charge
is decreasing when the service charge is increasing. Therefore, if we increase
the service charge, the bill is decreasing because we pay less for unused energy,
as indicated in Figure 2.4. However, this service charge cannot be increased
arbitrarily in a practical setting, since we require the priority charge to be non-
negative.
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Figure 2.4: Texas household power consumption profile for week 21. The energy that
is procured but not used amounts to 325.2kWh.

2.5.2 Priority Service versus Real-Time Pricing

Table 2.2 indicates that priority service pricing is substantially more expensive
for households than real-time pricing. This is due to the fact that, under real-
time pricing, consumers only pay for electricity that they actually use. Under
priority service pricing, consumers pay for reserving capacity that may not be
used entirely at any given time interval. This leads to wasted power, as shown
in the example of Figure 2.4 for the Texas household.

As we discuss in section 2.2.3, Chao [26] establishes an equivalence between
priority service and real-time pricing in terms of consumer expenditures. The
proof relies on the concavity of the marginal benefit function of the consumer,
as explained in [77]. This result is clearly violated in the present context. The
essential difference between our realistic setting and the more simplified setting
considered by Chao in [26] is that devices can only consume power if they have
access to a level of capacity which at least covers their power rating. This
results in total benefit functions (which map the fuse limit of the household
to a total benefit over the subscription horizon) which are non-concave, and
thus violate the necessary conditions for the equivalence result of [26] to hold.
In intuitive terms, the fact that a device needs a minimum amount of power
to operate creates “holes” of unused priority service capacity. This effect has
been explained in a stylized example in [77]. It is reaffirmed in the realistic
simulations in the present work, and motivates the need for employing energy-
based service charges effectively in order to keep consumer costs for priority
service contracts as low as possible.
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2.5.3 Interaction between Real-Time Pricing and Storage

The results of Table 2.2 indicate a reduction of the total electricity bill by 29.9%
under real-time pricing when a battery is considered for the Texas household,
while it accounts for 25.9% for the Belgian household. This indicates a substan-
tial benefit in home energy storage under real-time pricing. However, deploying
storage is still costly. Recall, from section 2.4, that the annual investment cost
of a battery ranges from 85 to 496$/year. This cost exceeds the yearly gain in
the electricity bill of the consumer. Therefore, when a consumer is exposed to
real-time pricing, the procurement of a battery is not a worthwhile investment.

2.5.4 Interaction of Priority Service Pricing with Storage

If residential consumers are limited to priority service contracts, then an invest-
ment in home energy storage becomes interesting for the Texas household. Ob-
serve that, for example, in the case of weekly subscription and a service charge
of 25$/MWh, the bill decreases by 69.58% (net decrease of 513.92$/year). In-
sofar as the Belgian household is concerned, the difference between the results
obtained with and without a battery is not sufficient for deducing that it can
cover its investment cost. Note, however, that the battery that we consider in
our analysis is large. As we can observe from the total cost in Table 2.2, the
Texas household consumes a significantly larger amount of energy compared to
the Belgian household. Therefore, this particular battery may not be the best
choice for the Belgian household.

2.5.5 Yearly versus Weekly Contract

Another notable observation that can be drawn from Table 2.2 is the significant
difference between consumer costs for weekly versus annual priority service con-
tracts. This can be explained by observing the large variations in the load in
Figure 2.1. Indeed, renewing subscription on a weekly basis allows consumers
to better adapt their contract to the weekly fluctuations of load. As we ob-
serve in Figure 2.4, when too much capacity is booked, the consumer incurs an
unnecessary cost for power that is not used. We can observe that this signifi-
cant difference is reduced for the Belgian household, but remains high. Indeed,
without a battery, the mean of this difference passes from 38% for the Texas
household to 33% for the Belgian household. With a battery, it reduces from
51% to 43%.

The reduction of the difference between costs linked with weekly and yearly
contracts for the Belgian household compared to the Texas one can be ex-
plained by observing Figure 2.5, where we present the inflexible load of the
Belgian household. Compared to the Texas household, the Belgian consumer
has a relatively flat inflexible load profile, with fewer seasonal variations. This
allows the Belgian household to choose a yearly subscription that better rep-
resents its needs during the entire year. Instead, the Texas household buys
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a higher yearly subscription, in order to satisfy its inflexible load during the
summer. This leads to a large amount of unused energy credits during the
winter. Note that considering HVAC as a flexible appliance may enable the
Texas household to reduce its annual subscription.

Figure 2.5: Inflexible load (referred to as baseload in the graph) of the Belgian house-
hold.

This observation is further validated by Figure 2.6. This figure presents a
boxplot of the weekly total cost incurred by each household when the consumers
are able to update subscriptions weekly, with no service charges considered. We
can detect larger fluctuations for the Texas household due to seasonal variations
in its inflexible load. As mentioned in section 2.2.3, real-time pricing is the limit
case of priority service pricing when a new contract is signed every 15 minutes.
Even though changing subscriptions relatively frequently can be advantageous
in terms of better tailoring the contract to consumption that can be adapted
by the growing use of sophisticated automatic energy management systems,
the simplicity of priority service is sacrificed by having to subscribe to a new
contract very frequently.

2.6 Conclusion

In this chapter, we develop a consumer-centric methodology for analyzing the
impact of quality differentiation for mobilizing residential demand response.
Our analysis focuses on quantifying the impact of demand response on con-
sumer comfort and bills. We apply the methodology to the simplest instance
of quality differentiation, namely priority service. We design a priority service
menu which is consistent with real-time prices and extend the existing priority
service theory to include a general form of service charges. Simulations are
conducted on households from Texas and Belgium.
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Figure 2.6: Boxplot of the weekly total cost incurred by the Texas and Belgium house-
hold when weekly subscriptions are allowed, and no service charges are considered.

Our case study quantifies the role played by adding energy-based service
charges to priority service in the performance of this scheme in terms of con-
sumer payments and comfort. Indeed, our work highlights the importance of
combining priority service with energy-based service charges in a practical im-
plementation of priority service, where “wasted payments” are minimized by
shifting charges from the capacity to the energy component of the service. Fur-
thermore, we also assess the performance wedge between real-time pricing and
priority service in terms of consumer payments and comfort. The conclusions
drawn for real-time pricing in this work are based on an idealized version of
reality, since consumers are considered as rational agents who react instanta-
neously to prices. This assumption may not be valid in practice, which would
imply a degradation on the performance of real-time pricing. We analyze the
dependency between the load profile and the benefit for households to invest
in batteries under priority service pricing combined with energy-based service
charges. In the real-time pricing setting, even though a battery allows a reduc-
tion in the electricity bill by 25%, the consumer fails to recover the cost of in-
vesting in home energy storage. Finally, we note that there is significant added
value for households to changing their priority service contract frequently, in
order to better target their weekly needs.
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2.A Notations

Notations used throughout this chapter are summarized in this section.

Sets and Indices

I, i Set of colors/priority service
options and its correspond-
ing index.

T , t Set of time periods and its
corresponding index.

J , j Set of flexible appliances
present in the household and
its corresponding index.

Bj , β Set of starting times of flex-
ible appliance j and its cor-
responding index.

Tj , τ Set of part of flexible appli-
ance j and its corresponding
index.

Parameters

M Priority service pricing
menu of options.

p, p(v),
pi

Priority charge of an option
in the priority service pric-
ing menu [$/MWh].

s, s(v),
si

Service charge of an option
in the priority service pric-
ing menu [$/MWh].

r, r(v),
ri

Reliability of an option in
the priority service pricing
menu.

v Consumer valuation for
power.

p̂(ω) Real-time price in the origi-
nal priority service theory.

∆t Number of time periods
present in an hour.

St Total solar production of the
household at time period t
[kW].

Bt Total inflexible load of the
household needed to be
served at time period t [kW].

ChmaxEV Maximum charging power
for the electric vehicle [kW].

DismaxEV Maximum discharging
power for the electric vehicle
[kW].

EV max Maximum capacity of the
electric vehicle [kWh].

ηEV Electric vehicle charging ef-
ficiency (∈ [0, 1]).

TA, EVA Arrival time period of the
electric vehicle and its re-
spective state of charge.

TD, EVD Departure time period of the
electric vehicle and its re-
spective state of charge.

ChmaxB Maximum charging power
for the battery [kW].

DismaxB Maximum discharging
power for the battery [kW].

Bmax Maximum capacity of the
battery [kWh].

ηB Battery charging efficiency
(∈ [0, 1]).

φ Unflexible load shedding
cost [$/kWh].

Fj Marginal frustration cost for
delaying the end of flexi-
ble appliance j of one time
period after its deadline
[$/time period].

Dj Deadline of flexible appli-
ance j.

ρj,τ Part τ of the Power con-
sumption footprint of flexi-
ble appliance j to be served
[kW].

λPi Priority charge of option i
in the priority service menu
[$/kWh].
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λSi Service charge of option i
in the priority service menu
[$/kWh].

profilet,i Binary indicator if option i
is available or not at time
period t.

Variables

st,i Used solar production at
time period t by option i
[kW].

bt,i Served inflexible load at
time period t by option i
[kW].

uEVt Binary variable indicating if
the household electric vehi-
cle is charging or not at time
period t.

chEVt,i Electric vehicle charging
power at time period t from
option i [kW].

disEVt,i Electric vehicle discharging
power at time period t into
option i [kW].

socEVt State of charge of the elec-
tric vehicle at time period t
[kWh].

uBt Binary variable indicating
if the household battery is
charging or not at time pe-
riod t.

chBt,i Power from color i used to
charge the battery at time
period t [kW].

disBt,i Power discharged from the
battery into option i at time
period t [kW].

socBt State of charge of the bat-
tery at time period t [kWh].

yt,i Total household power con-
sumption at time period t
for option i in the priority
service pricing setting [kW].

xt,j,β,τ,i Binary decision for part τ
of flexible appliance j ar-
rived at time period β to be
turned ON at time period t
with option i.

Pmaxi Amount of power subscribed
by consumer to option i
in the priority service menu
[kW].

Functions

Surplus(v) Surplus of a consumer with
privately known type v.

R(v) Function exploited to rep-
resent the reliability for a
consumer with valuation v.

S(v) Function used to represent
the service charge for a
consumer with valuation v.

D(v) System demand function
for a certain valuation v.

2.B Example Where Priority Service is Not Equiv-
alent to Real-Time Pricing

The equivalence result of Chao [26] which is extended in section 2.2.3 is estab-
lished under idealized conditions in a static framework. We find in [77] that this
result can be violated under very reasonable relaxations of these assumptions
that occur in practice. This is demonstrated by means of a simple example.
The example, along with the conclusions following its exposition, are repeated
in this section. For additional details, the reader is referred to [77]. The se-
lected example is constructed for a period of 10 hours, with a time step of one
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hour. During this 10-hour period, the real-time prices faced by the consumer
for each hour are presented in Table 2.3.

Table 2.3: Real-time prices faced by the consumer during the 10-hour period and the
interruption pattern of colors for the priority service pricing scheme.

Hour Real-time Price Green Orange Red
[/ekWh]

1 0.02 ON ON ON
2 0.05 OFF OFF ON
3 0.086 OFF OFF OFF
4 0.06 OFF OFF ON
5 0.04 OFF ON ON
6 0.09 OFF OFF OFF
7 0.032 OFF ON ON
8 0.055 OFF OFF ON
9 0.08 OFF OFF ON
10 0.01 ON ON ON

As explained in section 2.4.3, in order to design a priority service pricing
menu from this set of real-time prices, we fix the reliability levels of each option
as follows:

• Green: 20% reliability

• Orange: 40% reliability

• Red: 80% reliability

By using the procedure presented in section 2.4.3, the priority service menu is
obtained and presented in Table 2.4. The third, fourth and fifth columns of
Table 2.3 record if a certain color is interrupted or not during a certain time
period, given the levels of reliability.

Table 2.4: Price menu obtained for 3 options of priority service.

Option Color Price [/ekWh] Reliability [%] Range Valuation
Green 0.004 20 [0.02;0.0305[
Orange 0.01010 40 [0.0305;0.058[

Red 0.0333 80 [0.058; →

Finally, the two mathematical programs presented in section 2.3 are ap-
plied to a single household that contains only one appliance. This appliance
has a duration of 4 hours and the deadline imposed by the consumer for its
end is hour 5. The footprint of the appliance is presented in Table 2.5. If this
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appliance finishes on time, then the consumer achieves a reward equal to 1e.
On the other hand, for every hour that the appliance is delayed beyond its
deadline, the consumer incurs a cost of 0.5e. If the appliance job is not com-
plete before the end of the 10-hour horizon, then the consumer incurs a cost of
3e. These three values quantify the frustration or satisfaction of the consumer.

Table 2.5: Footprint representing the electrical consumption of the single appliance
of the household.

Part Footprint [h] 1 2 3 4
Footprint Consumption [kW] 1.1 3.05 2.5 0.43

Given the aforementioned setup, the two mathematical programs are solved
respectively presented in sections 2.3.1 and 2.3.2. The objective value obtained
for each scheme along with the best set of actions at a given time period are
presented in Table 2.6. It is important to note that the optimal policy for each
approach is identical. This is the case because, in time period 3, the red color
is off so the consumer cannot use it to serve his appliance and the real-time
pricing scheme chooses also not to use the appliance considering the high price
of that time period.

Table 2.6: Objective function value and optimal policy obtained by solving the math-
ematical program belonging to each approach.

Objective Value [e] Best Policy
Real-time 0.6583 Serve-Serve-Not-Serve-Serve

Priority Service -0.01565 Red-Red-Not-Red-Red

Before comparing the objective value of both approaches, we first note that
the consumer will subscribe to 3.05 kW of red power for 10 hours. To see why
this is the case, note that this amount of power corresponds to the highest
power consumption of the appliance (the second part). Therefore, if the sec-
ond part of the appliance footprint is not served at time period 2 or with red
color, this implies that the appliance cannot finish before at least time period
8, which is far beyond the deadline. Moreover, the loss incurred by finishing
the job after the deadline for the consumer is not balanced by a subscription
to a less reliable option.

Consumer net benefits can now be compared for the two different ap-
proaches. According to Table 2.6, we observe that the priority service pricing
scheme is causing a notable reduction in the net benefit of the consumer. This
is largely due to the fact that priority service implies that the consumer is
obliged to procure a capacity strip. This is how the service is defined: accord-
ing to priority service, consumers procure increments of capacity. As a result,
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the consumer subscribes for 10 hours of power and only uses its subscription
for 5 hours. This conclusion is consistent with the observations drawn made in
this chapter regarding more realistic households.



3 Designing Multilevel Demand
Subscription Menus

3.1 Introduction

As we discuss in section 1.3.1, multilevel demand subscription [25] is a gen-
eralization of priority service pricing which allows the aggregator to further
differentiate service by duration. This added component induces the idea of an
energy-based component added to priority service, which is developed in the
previous chapter by means of service charges. Since it is observed in that chap-
ter that service charges are essential for achieving a practical implementation
of priority service pricing, studying multilevel demand subscription in detail
allows us to explore further options for retail tariffs that combine an energy
component with a capacity component compared to purely capacity-based tar-
iffs.

Whereas the theory of quality differentiation [25, 26] is a valuable starting
point for investigating priority service and multilevel demand subscription, it
is limited to analytical models that rely on stringent assumptions (e.g. syn-
chronization of loads, idealized and abstract representations of households). In
order to analyze multilevel demand subscription and compare it with priority
service on a system-wide perspective, a modeling framework for designing mul-
tilevel demand subscription menus for realistic case studies is developed in this
chapter and detailed in section 3.2. Firstly, inspired by recent research on pri-
ority service [119], the multilevel demand subscription menu design problem of
Chao [25] is cast as a Stackelberg game which is then transformed into a mixed
integer linear program. For this purpose, a mapping from time sorted in a load
duration curve to real time is proposed. The entire process is developed in sec-
tion 3.4. In order to account for realistic household demand functions, section
3.3 presents a fuse limit model in the spirit of Margellos [108] for computing
demand functions for individual household types. These demand functions are
then aggregated into a concave system demand function. Then, an optimization
problem is described in section 3.5 which describes how a household optimizes
its subscription choice. Ultimately, the entire process is applied to two realistic

51
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models of the Belgian market, which are detailed in section 3.6. Section 3.7
presents and compares the results that are obtained for both demand response
programs. Finally, section 3.8 concludes the analysis. Appendix 3.A gathers
all notations used in the employed models of this chapter.

3.2 Process Overview and Models

In order to assess the performances of priority service and multilevel demand
subscription on a system-wide perspective, we propose a three-step menu design
framework which is presented in Figure 3.1. It is aimed at comparing the
two demand response schemes with an explicit consideration of the storage
capability and local supply uncertainty of prosumers. We briefly introduce
each block as follows:

1. Household Type Model: In order to be able to price and design these
demand response services for consumers, the aggregator needs an estima-
tion of either the demand function of the system in the case of priority
service pricing or the load duration curve for multilevel demand subscrip-
tion. We consider different types of households that are equipped with
rooftop PV panels, but differ in the size of batteries and consumption
profiles. The valuation of power increments is calculated and extrapo-
lated for each type of household by means of a stochastic optimization
program, in order to derive a system-level demand function. This demand
function is used as an ingredient for the design of a reliability-duration
menu.

2. Menu Design Model: When the system-level load duration curve is
available, the aggregator can design a menu of options for each demand
response scheme from which consumers can select a particular contract
with the most suitable reliability-price trade-off. This menu design is
realized by solving a bilevel optimization program that computes the
equilibrium solution of a Stackelberg game between the aggregator and
consumers which integrates day-ahead unit commitment constraints and
forecast scenarios of system-level renewable production.

3. Household Subscription Selection Model: Given the price menu
designed in the previous step, households decide on their subscription
based on a stochastic scheduling model. In this model, the interruption
of different options and the rooftop PV production are modeled as a
scenario tree. The management of the battery is optimized as well.

Each block is presented in detail in the following sections, respectively sections
3.3, 3.4 and 3.5.

During this process, two types of uncertainty related to renewable supply are
accounted for: long-term and short-term. Long-term uncertainty is represented
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Figure 3.1: General framework that is employed for comparing multilevel demand
subscription and priority service.

by a set of scenarios that correspond to seasonal variations. In the case study
of section 3.6, the set S consists of weekdays and weekends for each season
of the year. Each scenario s ∈ S occurs with a probability P s. For each
scenario, short-term uncertainty, which corresponds to the real-time production
of renewable energy, is modeled by a scenario tree with different outcomes of
renewable production for each time stage of the day.

3.3 Characterizing Household Types

In order to design the multilevel demand subscription menu that is offered to
consumers, the utility must quantify the valuation of an increment of power
for a certain duration. The idea of our proposed approach is to estimate the
marginal value of an increment in the fuse limit of a household in the same
spirit as [108]. To form the system load duration curve used by the utility to
design menus, the obtained marginal value curves of each household are com-
bined into one system load duration curve. However, due to the combination
of different household types which do not consume power in a synchronized
way due to their respective characteristics (storage and/or solar panels), there
is no guarantee that this obtained aggregated system marginal value is a con-
cave function of the duration of consumption. Therefore, in a second phase,
we compute the closest concave approximation of this estimate. We use this
function as input to the menu design problem of section 3.4.

In order to estimate the valuation of an increment of power for a certain
duration, we propose a stochastic optimization program for each type of house-
hold. This mathematical program allows us to represent battery and load shed-
ding decisions over a day, while enforcing a fuse limit on the household that is
equipped with solar panels and must serve a mix of flexible and inflexible load.
As mentioned earlier, two types of uncertainty are represented, long-term and
short-term. For each scenario, short-term uncertainty is denoted by ωS,s[t] ∈ ΩS,s[t]

which represents the sequence of solar panel production up to stage t, while
in scenario s. Moreover, P s

t,ωS,s
[t]

denotes the probability that is linked with

the realization of this solar production sequence up to time stage t. For each
household type h ∈ H, the household model employed for creating a system
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load duration curve is therefore given as follows:

(HVh) : min
ls,nd,

e,bc,bd

Vcut ·

(∑
s∈S

∑
t∈T

∑
ωS,s

[t]
∈ΩS,s

[t]

P s · P s
t,ωS,s

[t]

· lst,s,ωS,s
[t]

)
(3.1)

s.t. 0 ≤ bdt,s,ωS,s
[t]
≤ BDh, t ∈ T , s ∈ S, ωS,s[t] ∈ ΩS,s[t] (3.2)

0 ≤ bct,s,ωS,s
[t]
≤ BCh, t ∈ T , s ∈ S, ωS,s[t] ∈ ΩS,s[t] (3.3)

0 ≤ et,s,ωS,s
[t]
≤ Eh, t ∈ T , s ∈ S, ωS,s[t] ∈ ΩS,s[t] (3.4)

et,s,ωS,s
[t]

= et−1,s,ωS,s
[t]
−
bdt,s,ωS,s

[t]
·∆t

ηdh
+ bct,s,ωS,s

[t]
· ηch ·∆t,

t ∈ T , s ∈ S, ωS,s[t] ∈ ΩS,s[t] (3.5)

DPh,s,t − lst,s,ωS,s
[t]

+ bct,s,ωS,s
[t]
− PVh · ωS,st − bdt,s,ωS,s

[t]

= ndt,s,ωS,s
[t]
, t ∈ T , s ∈ S, ωS,s[t] ∈ ΩS,s[t] (3.6)(

λt,s,ωS,s
[t]

)
: ndt,s,ωS,s

[t]
≤ FL, t ∈ T , s ∈ S, ωS,s[t] ∈ ΩS,s[t] (3.7)

lst,s,ωS,s
[t]
≥ 0, t ∈ T , s ∈ S, ωS,s[t] ∈ ΩS,s[t] (3.8)

The goal of the household is to minimize its economic damage from not serv-
ing part of its load. The parameter Vcut represents the risk-adjusted cost of
consumers for accessing the spot market. Constraints (3.2), (3.3) and (3.4)
represent, respectively, the discharge power, charge power and storage capacity
limits of the household battery. Constraint (3.5) describes the dynamics of
the battery, with ηch and ηdh expressing respectively the charge and discharge
efficiency of the household battery. Note that household batteries are assumed
to be empty at the beginning of the day, i.e. e0 = 0. The power balance in the
household is represented by Constraint (3.6), where parameter DPh,s,t corre-
sponds to the inflexible load of household type h at time t for scenario s, while
PVh corresponds to the the rooftop solar capacity installed in the household.
The parameter PVh ·ωS,st indicates the rooftop solar supply sample production
for that time stage. Finally, Constraint (3.7) limits the power that can be
drawn from the grid by the household using parameter FL (i.e. the fuse limit
of the household).

The dual multiplier λt,s,ωS,s
[t]

of Constraint (3.7) is used for quantifying the

incremental value of the fuse limit. Concretely, the valuation for an additional
unit of power in period t of actual operations, given fuse limit FL, is computed
as follows ∑

s∈S

∑
ωS,s

[t]
∈ΩS,s

[t]

λt,s,ωS,s
[t]
, t ∈ T .
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This valuation is then derived for different levels of fuse limit. We use this
information in order to create a demand function for increments of power for
each household type at a given operating interval.

3.4 Multilevel Demand Subscription Menu De-
sign MILP Reformulation

The multilevel demand subscription pricing problem can now be cast as a
bilevel optimization program. The problem has been formulated and solved in
the literature as a Stackelberg equilibrium [25]. We depart from the classical
description of the problem that is developed in [25], in order to allow for a
more general representation of uncertainty and production constraints which
are typically encountered in production simulation models. In this respect,
we follow the approach described in [119], where the Stackelberg equilibrium
formulation of priority service pricing [26] is cast as a bilevel optimization pro-
gram. Bilevel formulations were already adopted in the literature for designing
other demand response contracts, e.g. in [74]. We reformulate the problem as
a mixed integer linear program by exploiting its structure. The exposition here
focuses on multilevel demand subscription pricing, with priority service pricing
being a special case.

3.4.1 Bilevel Mathematical Structure

Chao [25] casts the multilevel demand subscription pricing problem as a Stack-
elberg equilibrium. The leader of this Stackelberg game is the utility that
designs a multilevel demand subscription menu which is offered to consumers,
who are the followers. Due to information asymmetry (see section 1.3.1), the
leader integrates in the bilevel program the optimal reaction of the followers
to the menu design problem1. This gives rise to a mathematical program with
equilibrium constraints that also integrates menu design with unit commit-
ment. Note that, following the literature [25], we do not consider transmission
or distribution constraints in our model. This bilevel model can be represented
abstractly as follows, and is further illustrated in Figure 3.2.

max
m,n,o,p,r,π

SW (m,n,o,p,d, r) (3.9)

s.t. (m,n,o,p,d) ∈ X (3.10)

r = ψ(d,σ?) (3.11)

σ? ∈ arg max
σ
{CS(r,π) : σ ∈ Σ} (3.12)

1In the absence of information asymmetry, the surplus generated is collected by the ag-
gregator, since the aggregator can target the exact valuation of consumers for power.
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Figure 3.2: Interaction between the producer and consumers in the multilevel demand
subscription bilevel model.

In this model, the variables m,n,o,p correspond respectively to startup
and shutdown decisions, unit commitment and power generation. The sub-
scription quantity of each consumer to each option of the multilevel demand
subscription menu is indicated by σ, while the supply to each option is in-
dicated by d. The reliability, duration and price of the options in the menu
are denoted by r, T and π respectively. We assume that the duration is an
exogenous parameter, and is therefore not a variable in the model.

The objective of the utility in this mathematical program is to maximize
social welfare, as represented by function SW in Eq. (3.9). The technical
constraints of the producer are captured in Eq. (3.10). Constraint (3.11)
indicates that the designed price menu is required to deliver a promised level of
reliability during a certain duration, which is influenced by the way consumers
react to the offered menu. Finally, consumers decide on their subscription by
maximizing their individual surplus (represented by the function CS), as shown
in Eq. (3.12).

3.4.2 Representation of the Household by the Utility

From the point of view of the utility who is designing a service menu, the
population of households can be represented by a distribution over valuations.
This distribution is encoded in the parameters (Dl, Vl(t)). The function Vl(t)
is a non-decreasing function of t, since more hours of consumption increase the
benefit of the household. Note that the formulation of the consumer problem
below implicitly assumes that Vl(t) is further a concave function of t, otherwise
it would be needed to sum over time periods in the first term of the objec-
tive function. Section 3.3 describes how the utility can estimate this function
based on information about the distribution of installed equipment in residen-
tial households.

Given a set of consumer types L, each of them as a follower subscribes to
service options from a menu with |I| · |J | options. The set I expresses the
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offered reliability, while the set J includes the set of duration options. Each
consumer type l then solves the following problem for choosing an option from
the menu, given the reliability ri, duration Tj , and price πi,j of each option
from the upper-level problem:

(CPl) : max
σl,i,j

∑
i∈I,
j∈J

σl,i,j

(
ri · Vl(Tj)− πi,j

)
(3.13)

s.t. σl,i,j ≥ 0, i ∈ I, j ∈ J (3.14)

(γl) :
∑

i∈I,j∈J
σl,i,j ≤ Dl (3.15)

The goal of the consumer is to maximize its profit from procuring an option
(i, j). The first term in the objective function of Eq. (3.13) is the expected
benefit from procuring option (i, j). The constraint of Eq. (3.15) expresses the
fact that options are stacked up to the amount of kilowatts that the household
wishes to procure.

The optimality conditions of the consumer model are employed as con-
straints for the producer model to account for the optimal reaction of con-
sumers. By exploiting to the linearity of the consumer model, the optimality
conditions can be described as a compilation of primal and dual feasibility and
strong duality conditions [119]. The dual (CDl) of the menu selection problem
for the consumer is given as follows:

(CDl) : min
γl

γl ·Dl (3.16)

s.t. γl ≥ ri · Vl(Tj)− πi,j , i ∈ I, j ∈ J (3.17)

γl ≥ 0 (3.18)

Strong duality is expressed by Eq. (3.19):

γl ·Dl =
∑
i∈I,
j∈J

σl,i,j

(
ri · Vl(Tj)− πi,j

)
, l ∈ L (3.19)

By exploiting further the particular structure of the consumer problem, we
demonstrate in Proposition 3.1 that any consumer type l may as well limit
its choice to a unique option out of the menu offered by the utility. This
observation is an essential tool that allows the formulation of the Stackelberg
equilibrium as a mixed integer linear program.

Proposition 3.1. There exists (σ̃l,i,j , i ∈ I, j ∈ J ) with σ̃l,i,j ∈ {0, Dl} which
attains the optimal objective function value.

Proof. The proof of this proposition follows the approach of [119]. The KKT
conditions of (CPl) are given by (3.20) and (3.21):

0 ≤ σl,i,j ⊥ −ri · Vl(Tj) + πi,j + γl ≥ 0 (3.20)
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0 ≤ γl ⊥ Dl −
∑
i∈I,
j∈J

σl,i,j ≥ 0 (3.21)

Two cases are to be considered:

Case 1: If Dl −
∑
i,j σ

?
l,i,j > 0, then γl = 0. This implies that consumer l

derives zero net benefit at the optimal solution. Thus, σ̃l,i,j = 0 for
all i ∈ I, j ∈ J is optimal.

Case 2: If Dl −
∑
i,j σ

?
l,i,j = 0, then it suffices to show that if two options

are ‘active’ (in the sense that σ > 0) then they have an equal payoff,
and can therefore be equivalently replaced by a single option. Ap-
plying this argument for all options that are active gives the desired
conclusion. Consider any two options (i, j) and (i′, j′) for which
σ?l,i,j > 0 and σ?l,i′,j′ > 0. Then −ri · Vl(Tj) + πi,j + γl = 0 and
−ri′ · Vl(Tj′) + πi′,j′ + γl = 0, and substituting out γl, we have
ri · Vl(Tj)− πi,j = ri′ · Vl(Tj′)− πi′,j′ .

3.4.3 Utility

The utility acts as the leader in the Stackelberg game, and aims at pricing
the menu so as to maximize system welfare, while accounting for the optimal
response of the households to the offered menu. Thus, the utility solves a unit
commitment model by accounting for the individual choice of options σ?l,i,j by
each consumer type, which is the optimal solution to model (CPl) described in
section 3.4.2.

In addition, the utility owns a set of renewable assets. Their production
is characterized by a set of scenarios. The uncertainty taken into account in
the menu design program only corresponds to long-term uncertainty, such as
seasonal variations, and is represented by the scenario set S (see section 3.3).
Due to practical concerns related to the scalability of the model scalability, we
assume that the additional short-term uncertainty considered in section 3.3 is
not integrated in this model. This assumption is supported by the fact that
menu design is a long-term problem. This optimization program is treated as a
two-stage problem (menu design in the first stage, operation of the grid in the
second stage). The non-negative vector d corresponds to the amount of power
that is offered to different options under different time periods and scenarios.
The optimization is carried out over a horizon |T |. In the test case of section
3.6, this horizon corresponds to 24 hours.

The menu design problem of the utility can be summarized as follows:

(MD) : max
m,n,o,
d,p,π,r

−
∑

s∈S, g∈G,
t∈T

P s · hg(mg,t,s, ng,t,s, og,t,s, pg,t,s)
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+
∑

i∈I,l∈L,
j∈J

σ?l,i,j(r,π) · Vl(Tj) · ri (3.22)

s.t. fg(mg,t,s, ng,t,s, og,t,s, pg,t,s) ≤ 0, g ∈ G, s ∈ S (3.23)∑
i∈I,
j∈J

di,j,t,s =
∑
g∈G

pg,t,s +Rt,s, t ∈ T , s ∈ S (3.24)

di,j,t,s ≤ Nj,t
∑
l∈L

σ?l,i,j(r,π), i ∈ I, j ∈ J , t ∈ T , s ∈ S (3.25)

ri · Tj
∑
l∈L

σ?l,i,j(r,π) =
∑
s∈S,
t∈T

P s · di,j,t,s, i ∈ I, j ∈ J (3.26)

di,j,t,s ≥ 0, i ∈ I, j ∈ J , t ∈ T , s ∈ S (3.27)

pg,t,s ≥ 0, g ∈ G, t ∈ T , s ∈ S (3.28)

mg,t,s, ng,t,s, og,t,s ∈ {0, 1}, g ∈ G, t ∈ T , s ∈ S (3.29)

The goal of the utility, which is expressed in the objective function of Eq. (3.22),
is to maximize social welfare. The first term in the objective function corre-
sponds to the expected production cost of the utility and the second term to
the consumer benefit, as estimated from the utility based on the load duration
curve that is estimated in section 3.3. The function hg(mg,t,s, ng,t,s, og,t,s, pg,t,s)
expresses the production cost of a generator, while the vector of constraints in
Eq. (3.23) encodes linear production constraints that relate to unit commit-
ment and the dispatch of conventional units, such as ramp rates, minimum up
and down times, and so on. Power balance is expressed in Constraint (3.24),
where Rt,s indicates the amount of renewable (system-level solar and wind)
production in period t under scenario s. Constraint (3.25) expresses the fact
that a consumer type can only be served if that type is requesting power at a
given interval, and if that interval is served under option j ∈ J . The binary
parameter Nj,t determines whether a certain duration option j ∈ J is being
served in time period t of actual operations or not. Note that, given a duration
option j ∈ J and a mapping from the time indexing of a load duration curve to
the time indexing of actual operations, we can define this indicator. Moreover,
by definition,

∑
t∈T Nj,t = Tj . In other words, service option j corresponds to

Tj time periods of service. Finally, Constraint (3.26) ensures that an option
i ∈ I receives the requested reliability ri.

3.4.4 Bilevel Formulation of Multilevel Demand Subscrip-
tion Pricing

The Stackelberg game that is described in section 3.4.2 can be formulated equiv-
alently as a mixed integer linear program, following a similar approach to [119].
Firstly, note that Proposition 3.1 allows us to represent the continuous variable
σl,i,j which corresponds to the subscription choice of type l consumers as the
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following product, σl,i,j = Dl · µl,i,j , where µl,i,j ∈ {0, 1} are binary variables.

In order to reduce the bilevel program to a single-level problem, we append
the optimality conditions of the consumer model to the utility menu design
program. Here, we consider the reliability ri, price πi,j and subscription to
each option as variables. Moreover, we replace the subscription variables σl,i,j
by the previously mentioned product. These optimality conditions correspond
to primal feasibility (Eqs. (3.14) and (3.15)), dual feasibility (Eqs. (3.17) and
(3.18)) and strong duality (Eq. (3.19)).

We now tackle the non-convex constraints resulting from the products ri ·
µl,i,j and πi,j · µl,i,j . Using McCormick envelopes, we linearize these products.
In particular, note that reliability is naturally within the interval 0 ≤ ri ≤ 1,
and price is within the interval 0 ≤ πi,j ≤ Π+, where Π+ corresponds to a price
limit. This allows us to replace πi,j ·µl,i,j by a new variable yl,i,j , and ri ·µl,i,j
by another one wl,i,j . Therefore, the strong duality Constraint (3.19) for each
load type l ∈ L can be rewritten as follows:

γl =
∑

i∈I,j∈J
wl,i,j · Vl(Tj)−

∑
i∈I,j∈J

yl,i,j (3.30)

0 ≤ yl,i,j ≤ Π+ · µl,i,j , i ∈ I, j ∈ J (3.31)

yl,i,j ≤ πi,j , i ∈ I, j ∈ J (3.32)

yl,i,j ≥ Π+ · µl,i,j + πi,j −Π+, i ∈ I, j ∈ J (3.33)

0 ≤ wl,i,j ≤ µl,i,j , i ∈ I, j ∈ J (3.34)

wl,i,j ≤ ri, i ∈ I, j ∈ J (3.35)

wl,i,j ≥ µl,i,j + ri − 1, i ∈ I, j ∈ J (3.36)

0 ≤ ri ≤ 1, i ∈ I (3.37)

0 ≤ πi,j ≤ Π+, i ∈ I, j ∈ J (3.38)

µl,i,j ∈ {0, 1}, i ∈ I, j ∈ J (3.39)

The final mixed integer linear program is expressed as a single-level MILP:

(MILP ) : max
m,n,o,d,
p,π,r,

µ,γ,y,w

−
∑
s∈S,
g∈G

P s · hg(mg,t,s, ng,t,s, og,t,s, pg,t,s)

+
∑

i∈I,l∈L,
j∈J

Dl · Vl(Tj) · wl,i,j (3.40)

s.t. fg(mg,t,s, ng,t,s, og,t,s, pg,t,s) ≤ 0, g ∈ G, s ∈ S (3.41)∑
i∈I,j∈J

di,j,t,s =
∑
g∈G

pg,t,s +Rt,s, t ∈ T , s ∈ S (3.42)

di,j,t,s ≤
∑
l∈L

Dl ·Nj,t · µl,i,j , i ∈ I, j ∈ J , t ∈ T , s ∈ S (3.43)
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Tj
∑
l∈L

Dl · wl,i,j =
∑

s∈S, t∈T
P s · di,j,t,s, i ∈ I, j ∈ J (3.44)

di,j,t,s ≥ 0, i ∈ I, j ∈ J , t ∈ T , s ∈ S (3.45)

pg,t,s ≥ 0, g ∈ G, t ∈ T , s ∈ S (3.46)

mg,t,s, ng,t,s, og,t,s ∈ {0, 1}, g ∈ G, t ∈ T , s ∈ S (3.47)∑
i∈I,j∈J

µl,i,j ≤ 1, l ∈ L (3.48)

γl ≥ ri · Vl(Tj)− πi,j , i ∈ I, j ∈ J , l ∈ L (3.49)

γl ≥ 0, l ∈ L (3.50)

(3.30)− (3.39)

3.5 Household Subscription

Once the menu design program of section 3.4.4 is solved in order to obtain a
multilevel demand subscription menu, each household must determine which
specific option to procure. Thus, each household type h ∈ H solves a menu
subscription problem.

Following the model of section 3.3, we account for short and long-term un-
certainty. Long-term uncertainty corresponds to seasonal variations and is rep-
resented by the set of scenarios S. However, the household now faces short-term
uncertainty related to two different sources. These are the real-time production
of solar panels, and the availability of each multilevel demand subscription op-
tion. Short-term uncertainty is modeled as a scenario tree which now accounts
for these two sources of uncertainty. This is depicted in Figure 3.3 in the case
of only two solar power production possibilities per time period. The nodes of
the scenario tree are named according to the realization of renewable supply
(with ‘L’ indicating low solar supply, and ‘H’ indicating high solar supply) as
well as the service interruption (with ‘R’ indicating that only the red color
is served, ‘RY’ indicating that only the red and yellow colors are served, and
‘RYG’ indicating that all colors are served). We depict short-term uncertainty

by ωs[t] = (ωS,s[t] , ω
C
[t]) ∈ (ΩS,s[t] × ΩC[t]) = Ωs[t], where ωS,s[t] and ωC[t] correspond

respectively to a sequence of rooftop solar production and to a sequence of
ON/OFF states for each option in the multilevel demand subscription menu
up to stage t.

The level of subscription to each option is represented by variable σh,i,j .
This decision is not indexed by scenario, because this choice does not de-
pend on each scenario (i.e. it remains the same over all seasons and week-
days/weekends). Daily operational decisions, represented by the following vari-
ables (ls,nd,bd,bc, e), are indexed by s ∈ S and ωs[t] ∈ Ωs[t], because long-term
and short-term realizations of uncertainty influence household operational deci-
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HR

HRY

LRYG
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Figure 3.3: Illustration of a portion of the scenario tree for the household model
(HCh) of section 3.5 in the case of only two solar panel production possibilities per
time period.

sions. The entire optimization of the household is modeled using the following
stochastic program:

(HCh) : min
σ,ls,nd,
bd,bc,e

Vcut ·

(∑
s∈S

∑
t∈T

∑
ωs

[t]
∈Ωs

[t]

P s · P st,ωs
[t]
· lst,s,ωs

[t]

)
+
∑
i∈I

∑
j∈J

πi,j · σh,i,j (3.51)

s.t. 0 ≤ bdt,s,ωs
[t]
≤ BDh, t ∈ T , s ∈ S, ωs[t] ∈ Ωs[t] (3.52)

0 ≤ bct,s,ωs
[t]
≤ BCh, t ∈ T , s ∈ S, ωs[t] ∈ Ωs[t] (3.53)

0 ≤ et,s,ωs
[t]
≤ Eh, t ∈ T , s ∈ S, ωs[t] ∈ Ωs[t] (3.54)

et,s,ωs
[t]

= et−1,s,ωs
[t]
−
bdt,s,ωs

[t]
·∆t

ηdh
+ bct,s,ωs

[t]
· ηch ·∆t,

t ∈ T , s ∈ S, ωs[t] ∈ Ωs[t] (3.55)

DPh,s,t − lst,s,ωs
[t]

+ bct,s,ωs
[t]
− PVt,s,ωS,st − bdt,s,ωs[t]

=
∑
i∈I

ndi,t,s,ωs
[t]
, t ∈ T , s ∈ S, (ωS,s[t] , ω

C
[t]) ∈ Ωs[t] (3.56)

ndi,t,s,ωs
[t]
≤
∑
j∈J

σh,i,j · 1[i,t,ωCt ], i ∈ I, t ∈ T , s ∈ S,

(ωS,s[t] , ω
C
[t]) ∈ Ωs[t] (3.57)

ñdi,t,s,ωs
[t]
≤
∑
j∈J

σh,i,j · 1[i,t,ωCt ], i ∈ I, t ∈ T , s ∈ S,

(ωS,s[t] , ω
C
[t]) ∈ Ωs[t] (3.58)

ndi,t,s,ωs
[t]
≤ ñdi,t,s,ωs

[t]
i ∈ I, t ∈ T , s ∈ S, ωs[t]) ∈ Ωs[t] (3.59)∑

t∈T
ñdi,t,s,ωs

[t]
≤
∑
j∈J

Tj · σh,i,j , i ∈ I, s ∈ S, ωs[t] ∈ Ωs[t] (3.60)

lst,s,ωs
[t]
, ñdi,t,s,ωs

[t]
≥ 0, i ∈ I, t ∈ T , s ∈ S, ωs[t] ∈ Ωs[t] (3.61)
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The notation and constraints of the model are similar to those in section 3.3.
The goal of the household, depicted in Eq. (3.51), is to minimize the cost
of load shedding along with the cost of subscribing to a particular option of
the proposed menu. Constraints (3.52) to (3.55) detail the functioning of the
battery in the household. The power balance constraint for the house is ex-
pressed in Eq. (3.56), where the net demand of the household which drawn
from the grid, ndi,t,s,ωs

[t]
, is now indexed by the different reliability options of

the proposed menu. Eq. (3.57) expresses the upper limit on net demand that
the household is entitled to. The indicator variable 1[i,t,ωCt ] indicates whether
a certain reliability level i is being served at a given stage of a sequence of out-

comes or not. A new variable named ñdi,t,s,ωs
[t]

represents the positive part of

variable ndi,t,s,ωs
[t]

and therefore only the energy drawn by the household from

the grid. Indeed, the household is able to export excess solar power to the grid
but does not receive any payment from it. Moreover, this action does not allow
the reliability energy counter to move backwards either. Thus, Eq. (3.58) and
(3.59) allow us to describe this new variable. Constraint (3.60) imposes that
the amount of energy consumed under a certain option cannot exceed the total
energy credits that are topped up for that reliability option i ∈ I.

3.6 Case Study Data

This section is dedicated to the description of the datasets that are used for
populating the case study. This data includes household parameters, renewable
supply scenarios, and system parameters for the Belgian system in a forward-
looking scenario for the year 2050. Two simulations are presented in the next
section, with differing levels of temporal resolution. The approach is built
around representative days, each of which is split into (i) either six 4-hour time
steps in the first simulation or (ii) 96 15-minute blocks in the second simula-
tion. Section 3.6.1 is dedicated to the computation of the renewable production
scenarios. Household parameters are then detailed in section 3.6.2. The param-
eters linked with the operation of the system along with details on generators
are provided in section 3.6.3.

As already mentioned in section 3.2, the considered case study takes into
account two types of uncertainty: long-term and short-term uncertainty. Long-
term uncertainty is represented by seasonal variations captured by 8 reference
day types that consist of weekdays and weekends for each season of the year.
Then, for each scenario, short-term uncertainty is represented by the real-time
production of solar panels and color interruption patterns via a scenario tree.
For each day type we have correspondingly different profiles for households,
generators, industrial load, and so on.
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3.6.1 Renewable Supply Scenarios

Since two types of uncertainty are accounted for in this study, for each season,
two types of data need to be generated for renewable supply:

� Short-term uncertainty: a scenario tree representing solar real-time pro-
duction uncertainty.

� Long-term uncertainty: one daily profile that provides the forecast re-
newable supply (wind and solar) at every time period.

Only seasons are accounted for at this stage, because solar and wind pro-
duction are not influenced by weekends and weekdays. Data from the website
of the Belgian TSO Elia [41] for years 2013 to 2017 are collected in order to pro-
duce the required scenario tree and daily profiles. These data are then scaled
up based on the EU 2050 reference scenario [55].

Short-Term Uncertainty: Real-time Production

In order to generate a scenario tree of solar supply for each season, we imple-
ment a methodology developed by [149] which aims at capturing inter-temporal
uncertainty. This approach is developed in [96]. For the 4-hour case study, a
scenario tree with 2 different outcomes per time stage is considered for both
solar and wind power. For the 15-minute case study, we consider a more de-
tailed version of the scenario tree, by allowing ten possible realizations of both
solar and wind power for each time stage. Figure 3.4 depicts the lattice for
a typical spring day in the case study with 15-minute resolution for solar and
wind production. Note that the scenario tree encodes the normalized outcome
for renewable production that must be scaled by the total installed capacity
of renewable supply. Moreover, the wind lattice in this chapter is only used
for computing long-term uncertainty (see below) but will be used for further
analysis in the results of the next chapter (see section 4.4).
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Figure 3.4: Scenario tree for solar (left) and wind (right) production with 15-minute
resolution.
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Long-Term Uncertainty: Forecast Production

Long-term uncertainty is represented by a daily production profile for both
wind and solar production. This profile is obtained for each season by comput-
ing the mean production of the respective scenario tree. Figure 3.5 depicts the
obtained forecast solar production for 4-hour and 15-minute resolution. Wind
production is represented in Figure 3.6. In general, we can observe from these
figures that wind is typically less available in summer and spring in comparison
with winter and autumn while the inverse conclusion can be drawn for solar
supply.
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Figure 3.5: Long-term system-level forecast solar production.
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Figure 3.6: Long-term system-level forecast wind production.

3.6.2 Household Parameters

Belgium is composed of households with different electricity consumption be-
haviours. In order to represent the different household types in terms of demand
profiles realistically, we use data from the Belgian DSO Fluvius [69]. The data
includes injection and production for approximately 100 households with a res-
olution of 15 minutes for the year 2016. The dataset consists of households
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that are subject to a flat tariff, as well as others that subscribed to a two-part
tariff (day/night tariff). Our goal is to group household profiles present in this
dataset so as to generate three representative load profiles for Belgian house-
holds that can be used for populating our models. However, household profiles
in this dataset are influenced by the tariff that they are subscribed to during
the time when the data is collected. Therefore, we create a procedure in order
to recover only the inflexible part of the load profile of each household. The
steps used in order to obtain these three profiles are detailed hereafter:

1. Keep only households with daily load consumption between 2.5 and 40
kWh, in order to remove outliers [92].

2. For each day of a household under a flat tariff, find a day of a household
under a two-part tariff with a comparable daily consumption and with
a similar temporal profile. Compute an inflexible load profile from the
minimum of the two daily profiles. This step allows us to approximate
the part of the household consumption that is not dependent on the tariff,
and can therefore be interpreted as being inflexible.

3. Cluster the resulting inflexible profiles in order to obtain 3 groups of
households for each day type.

The mean profiles of each cluster for each day type are kept as the three repre-
sentative load profiles for each day type. The averaged representative household
daily load profiles are presented in Figure 3.7. In this figure, profile 1 (F1) cor-
responds to 67.78% of the population, profile 2 (F2) corresponds to 25.38%,
and profile 3 (F3) corresponds to 6.84%.
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Figure 3.7: Household profiles, averaged over day types, that we consider in the case
study. The data is based on Fluvius [69].
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In order to account for the behaviour of households with batteries and local
production (e.g. rooftop solar panels), we assume that (i) 16% of the households
is equipped with a PV panel2, (ii) one third of the households with a PV panel
is equipped with a large battery (whose specifications we describe below), (iii)
one third of the households with a PV panel is equipped with a smaller battery
(whose specifications we describe below), and (iv) one third of the households
with a PV panel is not equipped with a battery. Only types F2 and F3 are
assumed to own PV panels. The installed capacity of PV panels is dimensioned
so as to allow households to cover 100% of their annual consumption. Since
1kWc of PV panels produces 1000kWh on average per year [178], profile F2
is assumed to have an installed capacity of 2kWc, while profile F3 is assumed
to have an installed capacity equal to 3.2kWc. We assign no PV to profile
F1, because its annual consumption is considered too small to merit installing
PV. The technical specifications of household batteries are presented in Table
3.1. In total, we model nine types of households. Their characteristics are
presented in Table 3.23. Even though only nine different types of households
are considered in this work, the aggregator can apply the same menu design
method to a different group of households by capturing the heterogeneity of
the group via the representative aggregated demand function. The goal of
considering these different types of households is to close the loop by observing
the impacts of these two pricing schemes on these different types of households.

Table 3.1: Technical specifications of household batteries.

Battery Type Large [166] Small [113]
Energy Storage Limit [kWh] 13.5 3.84

Power Limit [kW] 5 0.85
Efficiency [%] 95 95

3.6.3 System Parameters

We now proceed to describe the configuration of the Belgian system. The fleet
of conventional generators in the model consists of 55 units. The installed
capacity of each technology follows the projected capacity of the year 2050,

2This percentage is computed by accounting for the fact that residential solar accounts
for 64% of the total installed solar capacity in Belgium in 2018 [177]. Moreover 50% of the
newly installed PV capacity up to 2030 will be residential solar capacity [58]. Therefore, in
the foreseen scenario of 2050, residential solar production is projected to account for 56.94%
of the total solar supply.

3Despite the fact that household types 2 to 7 represent a small fraction of the Belgian pop-
ulation, their contribution to system flexibility is not negligible (see section 4.4). Moreover,
our analysis aims at analyzing the impact of demand response not only on the system but
also on individual household types (see section 3.7.3 and 4.4), therefore we are interested in
household heterogeneity (e.g. different load profiles, and possible differences in ownership of
solar and/or storage), even if certain types of households represent a relatively small fraction
of the total population.
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Table 3.2: Characteristics of the different types of households.

Type 1 2 3 4 5 6 7 8 9
Category F1 F2 F3 F2 F3 F2 F3 F2 F3
PV Panel No Yes Yes Yes Yes Yes Yes No No

PV Installed [kW] 0 2 3.2 2 3.2 2 3.2 0 0
Battery Size No Large Large Small Small No No No No

Proportion [%] 67.8 1.35 0.365 1.35 0.365 1.35 0.365 21.32 5.74

according to the EU 2050 reference scenario [55]. The technical and economic
specifications of the units (maximum power production, marginal cost, heat
rates, ...) are available from the website of the Belgian TSO Elia [41]. The
installed capacity of conventional generators, which totals 15784 MW, can be
broken down as follows: gas (14965 MW), oil (10 MW), biomass (542 MW),
and waste (267 MW). Figure 3.8 compares the Belgian energy mix between
year 2015 and our forward-looking scenario of 2050. The long-term mainte-
nance schedule of units is accounted for by derating the maximum capacity of
the units by a certain availability ratio. The availability ratio follows the hourly
profiles of 2015 [41]. Import profiles for the year 2015 with hourly resolution
are collected from [41]. These profiles are scaled up according to the projected
value of the year 2050 of the EU 2050 reference scenario [55]. In order to create
system and household level inflexible load profiles, the total load profile of year
2015 [41] is split into residential, industrial and commercial load, according to
Synthetic Load Profiles (SLPs) [164]. Synthetic load profiles are normalized
electricity consumption time series with 15-minute resolution that are publicly
available for the residential and non-residential sectors. The load profiles are
scaled up to the year 2050 according to the EU 2050 reference scenario [55].
Figure 3.9 represents the evolution for import and total load in Belgium from
2015 to our forward-looking scenario of 2050.
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Figure 3.8: Installed capacity in Bel-
gium (2015 and 2050).
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Figure 3.9: Comparison of import and
demand for Belgium (2015 and 2050)

The pumped hydro storage in Belgium is assumed to have a pumping ca-
pacity amounting to 1200 MW, while the energy storage capacity of pumped
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hydro amounts to 5700 MWh. Pumped hydro resources are assumed to have
a roundtrip efficiency of 76.5% [138].

3.7 Application and Discussion

In this section, we continue by presenting the results obtained for each model
presented in section 3.2 populated with the data given in section 3.6. Note that
we consider two case studies, one with a 4-hour time step resolution and the
other considering time periods of 15 minutes. First, the household characteri-
zation model is used (see section 3.3) to create a system load duration curve in
section 3.7.1. Then, section 3.7.2 presents the resulting menus for both multi-
level demand subscription and priority service. Finally, section 3.7.3 presents
the subscription choices of households under both demand response schemes.
Numerical experiments are performed using the JuMP package [36] in the Ju-
lia programming language [12]. The mathematical programs are solved using
the Gurobi optimization solver [81]. The 4-hour resolution case study is solved
on a DELL Latitude 7490 with 1.7GHz Intel Quad Core i5 processors, whereas
the 15 minute resolution case study is run on the high performance computing
Lemaitre3 cluster hosted at UCLouvain as part of the CECI facility.

3.7.1 System-Level Load Duration Curve

In order to create a menu of options, we approximate the system-level load
duration curve using the model of section 3.3. This model is solved using the
stochastic dual dynamic programming (SDDP) technique [144,158] for the 15-
minute resolution case study due to the large number of outcomes per time
stage. We present the resulting demand functions for the first household type
in Figure 3.10 under both resolutions. The demand functions of each type
are then aggregated, according to the number of households in each type. We
thus obtain a system-level demand function, which is generally not concave.
In order to derive the concave functions Vl(t) in Eq. 3.13 of problem (CPl),
which approximate the system-level demand function, we use a least-square
fit that respects the concavity of Vl(t). The concave approximation of this
system-level demand function is presented in Figure 3.11 for both case studies.
Note that the obtained load duration curves for other household types for both
resolutions are presented in Appendix 3.B along with the non-concave version
of the system-level demand functions.

3.7.2 Optimal Menus

After computing the system-level load duration curve, we solve the MILP for-
mulation of the Stackelberg equilibrium presented in section 3.4.4 in order to
derive both a priority service and a multilevel demand subscription menu. In-
deed, since priority service is a special case of multilevel demand subscription,
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Figure 3.10: Demand functions for the first household type. The x-axis corresponds
to the time period of the load duration curve, the y-axis represents the fuse limit.
The tone of grey indicates valuation for an increment of fuse capacity, ranging from
0 to 500 e/MWh.
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Figure 3.11: Concave approximation of the system-level demand function.

the same MILP formulation can be used for designing a priority service menu.
This optimal set of options is presented in Table 3.3 for the case studies with
both resolutions.

In order to compare priority service and multilevel demand subscription
consistently, we fix the price and reliability of multilevel demand subscription
options that cover the full duration of service. By doing so, the set of options
under multilevel demand subscription includes the set of options under pri-
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Table 3.3: Optimal priority service menu for both resolutions.

Option
Reliability [%] Price [e/kW-month]

4-hour 15-minute 4-hour 15-minute
Green 66.49 58.37 37.79 31.39
Yellow 90.32 89.38 69.93 66.78

Red 100 100 91.94 87.08

ority service. The resulting optimal multilevel demand subscription menu is
presented in Table 3.4.

Table 3.4: Optimal multilevel demand subscription menu for both time resolutions.

Option
Duration Reliability [%] Price [e/kW-month]

[%] 4-hour 15-minute 4-hour 15-minute
Green 33.33

66.49 58.37
21.52 17.69

66.66 33.10 27.21
100 37.79 31.39

Yellow 33.33
90.32 89.38

41.41 43.04
66.66 63.14 61.72
100 69.93 66.78

Red 33.33
100 100

53.43 52.64
66.66 82.19 80.98
100 91.94 87.08

3.7.3 Household Contract Choices

Figure 3.12 presents the optimal subscription of each household type to the
priority service or the multilevel demand subscription menu for the 4-hour case
study. Moreover, Figure 3.13 presents household subscriptions under both de-
mand response schemes when time periods of 15 minutes are considered. These
results represent the output of the model presented in section 3.5. For the 15-
minute case study, due to the substantial number of potential realizations of
uncertainty, this model is solved using stochastic dual dynamic programming
(SDDP) [144, 158] as in the case of the other household model presented in
section 3.3.

By observing Figure 3.14 that compares the total energy subscription of
both schemes for both resolutions, we observe that the total subscribed energy
of each household under multilevel demand subscription is lower than under
priority service, despite the fact that the total subscribed capacity is higher.
This observation is driven by the offer of options with shorter duration in mul-
tilevel demand subscription. Consequently, multilevel demand subscription is
not only advantageous for households, by allowing higher peak capacity when
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Figure 3.12: Capacity subscriptions of each household type to each option under
priority service (left) and multilevel demand subscription (right) for the case study
with 4-hour resolution.
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Figure 3.13: Capacity subscriptions of each household for each option under priority
service (left) and multilevel demand subscription (right) for the case study with 15-
minute resolution.

needed, but is also favorable for the producer, because the subscribed energy
demand is closer to the real consumption of households.
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Figure 3.14: Comparison of the total energy subscription of households under priority
service and multilevel demand subscription for the 4-hour case study (left) and the
15-minute case study (right).
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Moreover, multilevel demand subscription allows the consumer to face a
lower bill than under priority service pricing as it can be observed in Figure
3.15 for the 15-minute case study. This is due to the fact that multilevel de-
mand subscription expresses the valuation of the consumer more accurately.
However, the 4-hour results of Figure 3.15 indicate that the subscription cost
for multilevel demand subscription is not always lower than for priority service,
as it is the case with 15-minute resolution. This is due to the fact that a 4-hour
resolution fails to capture the economic savings that a household achieves by
subscribing to options with very short duration (e.g. 1 hour).
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Figure 3.15: Comparison of the bill faced by households subscribing to priority service
and multilevel demand subscription for the 4-hour case study (left) and the 15-minute
case study (right).

Even though the electricity bill is not always lower under multilevel demand
subscription, Figure 3.16 highlights that the total cost faced by every type
of household is lower under multilevel demand subscription. The total cost
accounts for the electricity bill along with the cost incurred by households
due to involuntary curtailment of inflexible load. We can observe that, even
though in certain cases multilevel demand subscription leads to a higher bill,
it is still more beneficial to resort to it because the gain in terms of shortage
cost balances this effect.

3.8 Conclusion

This chapter focuses on the design of priority service and multilevel demand
subscription as two demand response options for mobilizing flexible residential
demand. We present a method for the utility to approximate the system load
duration curve. We then derive a MILP formulation of the bilevel Stackelberg
equilibrium for designing the two menus. Finally, we express the menu selection
problem of households. We perform a realistic case study of the Belgian mar-
ket, and find that households can better match their energy consumption under
multilevel demand subscription: they subscribe to less energy, and more capac-
ity than under priority service pricing. Households also experience a lower bill
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Figure 3.16: Comparison of the total cost (electricity bill and shortage cost) faced by
households subscribing to priority service or multilevel demand subscription for the
4-hour case study (left) and the 15-minute case study (right).

and total cost for multilevel demand subscription than under priority service.

3.A Notations

All the notations used throughout this chapter are summarized in the different
parts of this section.

Sets

G, |G| Set of generators and its car-
dinality

L, |L| Set of consumer types and
its cardinality

H, |H| Set of households and its
cardinality

T , |T | Set of time periods and its
cardinality

I, |I| Set of reliability options and
its cardinality

J , |J | Set of duration options and
its cardinality

S, |S| Set of long-term scenarios
and its cardinality

ΩS,s[t] Set of sequences of solar
panel production up to stage
t for scenario s (represen-
tation of the solar scenario
tree linked with the long-
term scenario s)

ΩC[t] Set of sequences of color
ON/OFF states up to stage
t

Ωs[t] Set representing the cross
product of solar panel pro-
duction for scenario s and
color ON/OFF states uncer-
tainty given by ΩS,s[t] × ΩC[t]

Parameters

Vcut Penalty parameter if a
shortage occurs for house-
holds, assumed to be equal
to 500 e/kWh

P s Probability of occurrence of
scenario s

P s
t,ω

S,s
[t]

Probability of occurrence of
a sequence of normalized so-
lar panel production ωS,s[t] up
to stage t of the set of sample
paths available from the sce-
nario tree belonging to sce-
nario s
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P st,ωs
[t]

Probability of occurrence of
a sequence of uncertainty re-
alization ωs[t] up to stage t of
the set of sample paths avail-
able from the scenario tree
belonging to scenario s mul-
tiplied by the probability of
occurrence of a sequence of
colors ON/OFF states up to
stage t from the interruption
pattern scenario tree

BDh Battery charge capacity in
household of type h [kW]

BCh Battery discharge capacity
in household pf type h [kW]

Eh Battery energy capacity in
household of type h [kWh]

ηdh Battery discharge efficiency
for household of type h

ηch Battery charge efficiency in
household h

∆t Number of time periods in
an hour (e.g. 4 for the 4-
hour case study and 0.25 for
the 15-minute analysis)

DPh,t,s Load (Demand Profile) of
household h at stage t in sce-
nario s [kW]

PVh Solar panel installed capac-
ity for household type h
[kW]

FL Fuse limit imposed on the
household model [kW]

Tj Duration of option j

Vl(Tj) Valuation of consumer type
l for a duration Tj [e/MWh]

Dl Demand of consumer type l
[MW]

σ∗l,i,j(r,π) Optimal subscription quan-
tity of consumer l under
option (i, j) [MW] for the
menu defined by (r,π)

Rt,s System-level renewable pro-
duction (solar and wind) at
time period t in scenario s
[MW]

Nj,t Binary parameters that de-
termines whether a certain
duration option j is being
served in time period t of ac-
tual operations or not

Π+ Upper bound of menu prices

Variables

lst,s,ωs
[t]

Load shedding at stage t
in scenario s for the se-
quence of uncertainty ωs[t] up
to stage t (given by the tu-
ple (ωS,s[t] , ω

C
[t]) representing

respectively the solar pro-
duction sequence and the
ON/OFF states of reliability
options)

bdt,s,ωs
[t]

Discharge power of the bat-
tery at stage t in sce-
nario s for the sequence
of uncertainty ωs[t] up to
stage t (given by the tu-
ple (ωS,s[t] , ω

C
[t]) representing

respectively the solar pro-
duction sequence and the
ON/OFF states of reliability
options)

bct,s,ωs
[t]

Charge power of the battery
at stage t in scenario s for
the sequence of uncertainty
ωs[t] up to stage t (given by

the tuple (ωS,s[t] , ω
C
[t]) repre-

senting respectively the so-
lar production sequence and
the ON/OFF states of relia-
bility options)

et,s,ωs
[t]

Energy stored in the battery
at stage t in scenario s for
the sequence of uncertainty
ωs[t] up to stage t (given by

the tuple (ωS,s[t] , ω
C
[t]) repre-

senting respectively the so-
lar production sequence and
the ON/OFF states of relia-
bility options)
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ndt,s,ωs
[t]

Net demand (positive and
negative) from the grid at
stage t in scenario s for
the sequence of uncertainty
ωs[t] up to stage t (given by

the tuple (ωS,s[t] , ω
C
[t]) repre-

senting respectively the so-
lar production sequence and
the ON/OFF states of relia-
bility options)

λ
t,s,ω

S,s
[t]

Dual variable of the fuse
limit constraint in the
household demand function
stochastic program at stage
t in scenario s for the solar
panel production sequence
ωS,s[t] up to stage t

σl,i,j The subscription quantity
of consumer l under option
(i, j) [MW]

ri Reliability of option i [%]

πi,j Price of option (i, j) with re-
liability ri and duration Tj
[e/MW]

γl Dual variable of Constraint
(3.15) representing the net
surplus of consumer type l

pg,t,s Production of generator g at
time period t in scenario s
[MW]

mg,t,s Start up decision of genera-
tor g at time period t in sce-
nario s

ng,t,s Shut down decision of gen-
erator g at time period t in
scenario s

og,t,s Unit commitment decision
of generator g at time period
t in scenario s

di,j,t,s Supply to option (i, j) at
time period t in scenario s
[MW]

µl,i,j Binary subscription decision
of consumer l for option
(i, j)

yl,i,j Auxiliary variable to repre-
sent πi,j · µl,i,j

wl,i,j Auxiliary variable to repre-
sent ri · µl,i,j

m Compact form of mg,t,s,
similarly for n, o, p, d, y,
w, γ, r, π, σ and µ

σh,i,j Subscription quantity under
option (i, j) for household h
kW]

ndi,t,s,ωs
[t]

Net demand (positive and
negative) from the grid for
option i with reliability ri
at stage t in scenario s for
the sequence of uncertainty
ωs[t] up to stage t (given by

the tuple (ωS,s[t] , ω
C
[t]) repre-

senting respectively the so-
lar production sequence and
the ON/OFF states of relia-
bility options)

ñdi,t,s,ωs
[t]

Net demand (only positive)
from the grid for option i
with reliability ri at stage
t in scenario s for the se-
quence of uncertainty ωs[t] up
to stage t (given by the tu-
ple (ωS,s[t] , ω

C
[t]) representing

respectively the solar pro-
duction sequence and the
ON/OFF states of reliability
options)

Functions

hg Cost function of generator g,
including production costs,
startup and minimum load
costs

fg Constraints of unit com-
mitment problems, includ-
ing minimum up and down
times, ramp rates and pro-
duction limits

SW Social welfare function

CS Consumer surplus function
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3.B Household Load Duration Curves

In section 3.7.1, the demand functions obtained for the first household type
are presented. The demand functions obtained for all household types are pre-
sented in detail in this section. Figure 3.17 corresponds to the 4-hour case
study and Figure 3.18 corresponds to the 15-minute case study.
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(b) Household Type 2

1 2 3 5 6 4
0.01

0.05
0.07

0.09

0.13

0.15
0.17

0.2

0.24
0.25

0.28

0.3

0.32
0.33

0.36

Time Period
D

em
an

d 
(k

W
)

50

100

150

200

250

300

350

400

450

500

(c) Household Type 3
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(d) Household Type 4
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(e) Household Type 5
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(f) Household Type 6
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(g) Household Type 7

6 5 4 3 1 2
0.12

0.14
0.15

0.17

0.19

0.21
0.22

0.24

0.26
0.27

0.33

0.35

0.38
0.39

0.41

Time Period

D
em

an
d 

(k
W

)

0

50

100

150

200

250

300

350

400

450

500

(h) Household Type 8
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(i) Household Type 9

Figure 3.17: Demand functions obtained for each household type for the 4-hour case
study. The x-axis corresponds to the time period of the load duration curve, while
the y-axis represents the fuse limit. The grey tone indicates the valuation for an
increment of fuse capacity, ranging from 0 to 500 e/MWh.

Figure 3.19 shows the non-concave system-level demand function obtained
by the aggregation of load duration curves from each household type for both
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(b) Household Type 2
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(c) Household Type 3
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(d) Household Type 4
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(e) Household Type 5
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(f) Household Type 6
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(g) Household Type 7
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(h) Household Type 8
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(i) Household Type 9

Figure 3.18: Demand functions obtained for each household type for the 15-minute
case study. The x-axis corresponds to the time period of the load duration curve
while the y-axis represents the fuse limit. The grey tone indicates the valuation for
an increment of fuse capacity, ranging from 0 to 500 e/MWh.

the 4-hour and 15-minute case studies.
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(a) 4-hour resolution
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(b) 15-minute resolution

Figure 3.19: Non-concave system-level demand functions.





4 Comparison of Priority Service with
Multilevel Demand Subscription

4.1 Introduction

Whereas the previous chapter is focused on the design of service contracts for
multilevel demand subscription and priority service, the focus of the present
chapter is on the quantification of the trade-offs between the increased opera-
tional efficiency and complexity of multilevel demand subscription relative to
priority service. The challenge in quantifying the benefits of multilevel demand
subscription relate to the coexistence of local distributed renewable supply
(rooftop solar) as well as local flexibility in the form of storage at the house-
hold level. This requires a careful modeling framework which is discussed in
this chapter. This framework is then applied to a realistic model of the Bel-
gian power market for two different time resolutions. By comparing these two
time resolutions, this study also demonstrates the importance of using a more
refined time scale in order to quantify the benefits of demand response more
accurately in production simulation models. Finally, the performance of these
two demand response schemes is also compared to the application of real-time
pricing on the same system. Figure 4.1 presents the difference between the
focus of the previous and the current chapter.

This chapter is organized as follows. First, section 4.2 presents the simula-
tion framework that is used for quantifying the efficiency of multilevel demand
subscription and priority service pricing. In section 4.3, the model used to
analyze the difference between real-time pricing and the two targeted demand
response schemes is described. Finally, section 4.4 analyzes the results that
are obtained for a case study of the Belgian power system, while section 4.5
concludes the analysis. Furthermore, section 4.A in the appendix details all
the mathematical notations used in this chapter.

81
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Figure 4.1: Chapter-by-chapter representation of the general framework applied for
comparing Multilevel Demand Subscription with Priority Service.

4.2 Performance Evaluation Framework

In order to simulate the performances of different residential pricing meth-
ods, we need to account for the interplay between utility-scale and distributed
rooftop solar uncertainty. Concretely, a realization of a sample path of uncer-
tainty over the horizon of our analysis is a realization of (ωU , ωH) ∈ ΩU ×ΩH .
Here, ΩU is the set of sample paths of renewable supply from utility-scale re-
newable resources, whereas ΩH is the set of sample paths of renewable supply
from rooftop solar resources.

The interface between the utility and the household is the service contract.
The service contract allows the utility and the household to decentralize their
decision-making according to locally observable information related to uncer-
tainty. This decentralization is represented in the left part of Figure 4.2. More
specifically, from the point of view of the utility, the uncertainty in the system
comprises utility-scale renewable supply and net residential demand. The net
residential demand is driven by rooftop solar supply at the households, however
the utility meters and reacts to net demand. Similarly, from the point of view
of the household, a realization of uncertainty comprises of rooftop solar power
supply as well as the interruption of different service options. The interrup-
tion patterns are of course driven by utility-scale renewable supply, however
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the household does not observe or react to this information. Essentially, the
residential service contracts can be viewed as a way of decentralizing a dy-
namic optimization problem under uncertainty (that of dispatching the entire
system against system-level uncertainty) between the utility and the household.

Figure 4.2: Illustration of the rolling optimization approach used to assess the perfor-
mance of priority service and multilevel demand subscription for a model with 4-hour
resolution. The stepsize is adjusted correspondingly for the model with 15-minute
resolution.

In this section, we describe our proposal for simulating this decentralized
decision-making process, so as to quantify the efficiency of priority service and
multilevel demand subscription via a rolling horizon approach. This proposal
bears similarities with the hierarchical coordination of transmission and dis-
tribution system operations proposed in [112, 137]. Our rolling optimization
approach is described in Figure 4.2. At each period, there is an interaction be-
tween the utility and households after the local uncertainty of each sub-system
(ωU , ωH) has been revealed.

First, in the spirit of a load following system, households (indexed by h ∈ H)
estimate their consumption for the present period by optimizing their behaviour
until the end of the horizon. This is achieved by solving the household decision
problem (Hh,t), given (i) the previous energy state of their residential storage
(if any is available), indicated by eht−1, (ii) the amount of energy left to consume
based on their contract subscription, indicated by echt−1, and (iii) the interrup-

tion pattern of options faced at time period t− 1, indicated by φt−1
i . This step

results in the computation of a residential aggregated net demand (NDi,t) for
time period t, which is observed by the utility for each option i ∈ I. Note
that households use the information of the previous time period concerning
the interruption of options because it corresponds to their best forecast of the
interruption for the upcoming balancing interval.

Generators are then dispatched at system level in order to meet the net de-
mand of all households in the population, while accounting for the uncertainty
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of system-level renewable supply. This is achieved by solving the mathematical
program (Ut). During this second step, the utility reacts to the net demand
of households by only supplying a certain portion of that demand (di,t). This
leads to a new interruption pattern of colors φti, and to a certain production
cost U tcost for the current time period.

Finally, households adapt their originally planned behaviour in response
to the actual supply that is provided by the system at the current time step
(represented by the new interruption pattern of options φti). This third step
leads to the computation of the shortage cost that the household actually ex-
periences at the present time period (Ht

cost). We can further compute the new
energy state of the battery, eht , as well as the remaining energy credits left on
the contract until the end of the horizon.

The overall procedure is described by Algorithm 1 and can also be summa-
rized as follows:

1. Initialize the option interruption profile. All options are available, the
energy stored in household batteries is equal to 0 kWh. The amount of
energy credits available to each household are based on their contract
subscription.

2. For every time step t ∈ T of the simulation horizon:

(a) Sample a realization of household renewable supply ωHt ∈ ΩH and
a realization of utility-scale renewable resources ωUt ∈ ΩU for that
particular time stage.

(b) Solve a household decision problem (Hh,t) for every type of house-
hold h ∈ H in order to obtain the requested demand by the house-
holds for that time stage.

(c) Solve a utility decision problem (Ut) in order to determine the action
of the utility in terms of supply decisions and interruption of options,
based on the total demand requested by households at step (2b).

(d) Update the household decisions (Hh,t) in order to account for the
supply decisions of the utility, along with the actual interruption
of options, in order to compute the shortage cost incurred by the
household.

(e) Increment t, update the state of the system, and return to step (2a).

In the remainder of this section, we describe the problems solved by the
utility (Ut) and households (Hh,t). The utility model is discussed first, as it
amounts to a simple economic dispatch model. We then define the multi-stage
optimization that drives household consumption.
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Algorithm 1 Performance evaluation framework using in the analysis of Chap-
ter 4.

Require: Number of simulations nsimu
1: for n← 1 to nsimu do
2: φ0

i ← 1
3: eh0 ← 0
4: echi,0 ←

∑
j∈J Ωh,i,j

5: for t← 1 to |T | do
6: ωHt ← SampleH(t)
7: ωUt ← SampleU(t)
8: NDi,t ← H(t, φt−1

i , ωHt , e
h
t−1, ec

h
t−1)

9: φti, di,t, U
t
cost ← U(t,NDi,t, ω

U
t )

10: Ht
cost, e

h
t , ec

h
t ← HCost(t, φti, ω

H
t , di,t, e

h
t−1, ec

h
t−1)

11: end for
12: end for

4.2.1 Rolling Optimization for the Utility

The decisions of the utility are depicted by means of a single-period optimiza-
tion problem. Inter-temporal unit commitment constraints (startup costs, min
up/down time constraints, and ramp constraints), and pumped hydro con-
straints are ignored here since the focus of this study is on the benefits that
can be achieved as a result of household flexibility. In future research, it could
be interesting to extend this formulation in order to account for the intertem-
poral constraints of the utility.

Concretely, the utility solves the following problem1:

(Ut) : max
di,t,pg,t

∑
i∈I

V̄i · di,t −
∑
g∈G

hg(pg,t) (4.1)

s.t. fg(pg,t) ≤ 0, g ∈ G (4.2)

di,t ≤ NDi,t, i ∈ I (4.3)∑
i∈I

di,t =
∑
g∈G

pg,t + ωUt (4.4)

di,t, pg,t ≥ 0, i ∈ I, g ∈ G (4.5)

The objective function of the utility is expressed in Eq. (4.1). Here, hg(pg,t)
represents the cost incurred by the utility for producing pg,t from generator g.
The valuation V̄i corresponds to the estimate of the average valuation that the
utility assigns to priority class i, based on how households decide to subscribe
to the multilevel demand service. This estimation is given by the following

1We describe the problem for the case of multilevel demand subscription, of which priority
service is a special instance.
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expression:

V̄i =
1

|T |
∑
t∈T

∑
l∈L:σ∗

l,i,j(t)
=Dl

Vl(Tj(t)) ·Dl∑
l∈L:σ∗

l,i,j(t)
=Dl

Dl
(4.6)

Here, σ∗l,i,j corresponds to the optimal subscription decision of consumer
type l for option (i, j), and Dl corresponds to the demand requested by con-
sumer type l given a certain valuation Vl(Tj) for duration Tj . Note that σ∗l,i,j
is the solution of problem (CPl) of section 3.4.2 and Vl(Tj) is given by the
system load duration curve computed in section 3.3. Finally, j(t) corresponds
to the duration options that are served at a certain time period t. It has a
similar interpretation to the binary parameter Nj,t of model (MD) of section
3.4.3. In the presented formula, for each time period t, the fraction computes
the weighted average of the valuation of consumers l that subscribe during the
menu design process (see section 3.4) to options with reliability i and duration
Tj(t) that are served at time period t of actual operations. These obtained
weighted averages are then averaged over the time horizon.

Regarding the remaining equations of the model, Constraint (4.2) expresses
the production constraints of the utility. Constraint (4.3) implies that the util-
ity may not offer more than the net demand that a certain priority class actually
decides to consume at any given time period. The variable di,t represents the
demand served by the utility for reliability class i. Constraint (4.4) expresses
the power balance constraint for the utility. The renewable supply ωUt in Con-
straint (4.4) is the utility-scale renewable production, which is sampled during
the procedure described in Algorithm 1. The net demand NDi,t in Constraint
(4.3) is obtained as the solution of the household rolling optimization which is
presented in the following section.

4.2.2 Rolling Optimization for the Household

In contrast to the utility model, which has been simplified in order to relax
inter-temporal dependencies, the household rolling optimization is represented
as a dynamic optimization under uncertainty in this chapter, since our analysis
is focused on the impact of residential sector flexibility to efficient system oper-
ations. The household faces uncertainty related to the supply of rooftop solar
power (ωHt ) at its premises and the interruption history of the service tiers (φti)
in the home. This uncertainty is depicted in Figure 3.3 in the case of only two
solar panel production possibilities per time period. The nodes of the scenario
tree are named according to the realization of renewable supply (with ‘L’ in-
dicating low solar supply, and ‘H’ indicating high solar supply) as well as the
service interruption (with ‘R’ indicating that only the red color is served, ‘RY’
indicating that only the red and yellow color are served, and ‘RYG’ indicating
that all colors are served).
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In this rolling optimization, the household reacts to a history of realizations
that have transpired up to stage t. For each stage t, given a stage uncertainty
realization of solar production ωHt and interruption of services φti, we can de-
scribe the household model in terms of future stage costs. The future costs are
captured by Hh,t+1(et, eci,t, ω

H
t , φ

t
i), namely the value function of the problem.

The household model is therefore given by:

Hh,t(et−1, eci,t−1, ω
H
t , φ

t
i) =

min
bdt,bct,et,eci,t,

ndi,t,ñdi,t

Vcut · lst +Hh,t+1(et, eci,t, ω
H
t , φ

t
i) (4.7)

s.t. 0 ≤ bdt ≤ BDh (4.8)

0 ≤ bct ≤ BCh (4.9)

0 ≤ et ≤ Eh (4.10)

et = et−1 −
bdt ·∆t
ηdh

+ bct · ηch ·∆t (4.11)

DPh,t − lst − PVh · ωHt + bct − bdt =
∑
i∈I

ndi,t (4.12)

ndi,t ≤
∑
j∈J

Θh,i,j · φti, i ∈ I (4.13)

ñdi,t ≤
∑
j∈J

Θh,i,j · φti, i ∈ I (4.14)

ndi,t ≤ ñdi,t i ∈ I (4.15)

eci,t = eci,t−1 − ñdi,t, i ∈ I (4.16)

lst, ñdi,t, eci,t ≥ 0, i ∈ I (4.17)

Unserved load in the household is denoted as lst. Home battery charge and
discharge are denoted as bct and bdt respectively. The energy level of the home
battery is denoted as et. The net demand of the household from the grid is
denoted as ndi,t, and is differentiated by reliability class i ∈ I. Note that
the net demand can be negative, in which case the household is injecting ex-
cess rooftop solar supply back to the grid but receives no payment or benefit
from this action. The non-negative part of the net demand is indicated by the

variable ñdi,t. This variable is useful for computing the value of variable eci,t
which represents the amount of energy credits left to be used by the household
at the end of time stage t. Note that the notation, variables and constraints
are similar to the ones used for the model that quantifies the load duration
curve of each household type (section 3.3) and for the household subscription
decision model (section 3.5).

The objective function (4.7) describes the goal of the household, which is to
minimize its expected cost of interruption. Note that the bill of the household
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is already accounted for when the household chooses its subscription from the
service menu (see section 3.5). The focus, here, is rather on optimally managing
the consumption patterns within the household, given a certain choice of con-
tract. The parameter Vcut quantifies the discomfort encountered by consumers
when a portion of their load is not served. Constraints (4.8) and (4.9) represent
the battery discharge and charge constraints respectively, with BDh and BCh
corresponding to the battery discharge and charge limits of household h ∈ H
respectively. Constraint (4.10) corresponds to the energy limit constraint of
the battery, with Eh the energy storage limit of household h. Constraint (4.11)
represents the charging dynamics of the home energy battery, where et−1 is a
parameter that has been determined in the previous step of the rolling opti-
mization. The charge and discharge efficiency of the battery are denoted as
ηch and ηdh for household h, respectively. Note that household batteries are as-
sumed to be empty at the beginning of the day, i.e. e0 = 0. Constraint (4.12)
expresses the power balance constraint of the household. The parameter DPt,h
gives the inflexible demand of household h in stage t, while PVh corresponds to
the rooftop solar capacity installed in the household. The parameter PVh ·ωHt
indicates the rooftop solar supply sampled during the rolling procedure given
in Figure 4.2. Constraints (4.13) and (4.14) express the upper limit on net
demand that a household is entitled to based on its chosen contract. The pa-
rameter φti indicates whether a certain reliability level i is being served at a
given stage of a sample path or not. This parameter is output by the utility
model (Ut) which is developed in section 4.2.1. Constraint (4.16) expresses the
energy limit of option i ∈ I. The parameter Θh,i,j in the right-hand side rep-
resents the subscription that the household chooses for each reliability option
i and each duration j.

The solution of (Hh,t) yields a net demand decision for each reliability
option i for the current period, nd?i,t, which we denote as NDh,i,t for every
household h ∈ H. The parameter NDi,t which is used in Constraint (4.4) is
then the sum of this net demand over all household types:

NDi,t =
∑
h∈H

Nh ·NDh,i,t, (4.18)

where Nh is the number of households of type h ∈ H in the population. Note
that the implicit assumption in Eq. (4.18) is that the realization of uncertainty
at every household of the same type is identical. Note that the two household
decision steps at each time period of the presented three-step performance
evaluation framework (see Algorithm 1) use the same optimization program,
but with different interruption patterns. The first step uses the interruption
pattern of the previous time step, φt−1

i , while the second uses its updated
version, φti.
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4.2.3 A Dynamic Programming Algorithm for Solving
the Household Model

The current chapter focuses on quantifying the performance of multilevel de-
mand subscription and priority service after designing the corresponding service
menus. Therefore, the datasets presented in section 3.6 are used as the basis
of our analysis, along with the menus and subscription results of the previous
chapter (see section 3.7). Two case studies are therefore examined: a case study
with a temporal resolution of 4 hours and a case study with a temporal resolu-
tion of 15 minutes. The number of possible outcomes per stage considered for
renewable production increases from 4 in the 4-hour resolution case study to
100 for the 15-minute resolution (see section 3.6). Therefore, dynamic program-
ming is required in order to compute the solution of the rolling optimization
program for the household in a reasonable amount of time. The present sec-
tion describes a customized solution strategy for the household model (Hh,t).
As a reminder, this model is represented as a multistage stochastic program
where uncertainty is represented by a set of finite outcomes and thus forms
a scenario tree [14]. The value function of the household model is denoted
as Hh,t(et−1, eci,t−1, ω

H
t , φ

t
i), while the expectation of the value functions is

denoted as:

Hh,t+1(et, eci,t, ω
H
t ,φ

t
i) = E

[
Hh,t+1(et, eci,t, ω

H
t+1, φ

t+1
i )

∣∣∣ωHt , φti]
Note that, as expressed in Eq. (4.7), the value function is then simply

the current period cost plus the expectation of the value functions of the next
stage. The dynamic programming algorithm approximates Hh,t+1 by support-
ing hyperplanes around the set of states, which are given by et, eci,t. Once
a collection of supporting hyperplanes has been found, the expectation of the
value function can be approximated as follows:

Hh,t+1(et, eci,t, ω
H
t , φ

t
i) = max

k=1,...,K

{
Ak +Bk · et +

∑
i∈I

Ck,i · eci,t
}

Here, Ak is the intercept and Bk, Ck,i are the supporting hyperplane co-
efficients. This parametrization allows us to approximate (Hh,t) by replacing
Hh,t+1(et, eci,t, ω

H
t , φ

t
i) with an auxiliary variable θ along with the following

constraints:

θ ≥ Ak +Bk · et +
∑
i∈I

Ck,i · eci,t ∀k = 1, . . . ,K (4.19)

It now remains to find the coefficients of the supporting hyperplanes. The pro-
cedure used in this work for deriving their values is described as follows. First,
let Γt denote a discretization of the state space at stage t.
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For t = T, · · · , 2:

1. For êt−1, êci,t−1 ∈ Γt−1:

(a) For all ξt = (ωHt , φ
t
i) at stage t: Solve the linear problem associated

to Hh,t(êt−1, êci,t−1, ω
H
t , φ

t
i) and store the dual multiplier πξt,t.

(b) Use the dual multipliers {πξt,t}ξt∈Ωt to build a supporting hyper-
plane that approximates Hh,t(et−1, eci,t−1, ω

H
t−1, φ

t−1
i ) around the

trial state êt−1, êci,t−1, for all uncertainty realizations ωHt−1, φt−1
i .

Further details on how to build a supporting hyperplane can be
found in [14].

2. In problem Hh,t−1(et−2, eci,t−2, ω
H
t−1, φ

t−1
i ), replace the expected value

functionsHh,t(et−1, eci,t−1, ω
H
t−1, φ

t−1
i ) by an auxiliary variable θ and add

the supporting hyperplanes as expressed by Eq. (4.19).

As the algorithm evolves backwards in the number of stages, supporting hyper-
planes are built around states in the set Γt to approximate the value functions of
the preceding stages. This approach is in the spirit of other common algorithms
such as stochastic dual dynamic programming (SDDP) [144]. Nevertheless, as
opposed to the sampling-based scheme of SDDP, the dynamic programming
scheme proposed here uses a discretization of the state space in order to ensure
that the performance evaluation described in section 4.2 can characterize the
optimal policy of the household at non-optimal parts of the state space, which
may occur in the simulation.

4.3 Real-Time Pricing

Our focus in this section is in describing a model that represents the behaviour
of the system under real-time pricing. We model real-time pricing by assum-
ing perfect coordination between households and producers. The coordination
assumption is equivalent to real-time pricing as established in [68, 146] for the
case of multi-stage uncertainty.

Similarly to our proposed framework for modeling multilevel demand sub-
scription, the model proposed in this section accounts for the realization of un-
certainty at the household and the utility-scale level, represented by ωH ∈ ΩH

and ωU ∈ ΩU . We denote by ω[t] = (ωH[t], ω
U
[t]) ∈ ΩH[t] × ΩU[t] = Ω[t] a realization

of the stochastic process of household renewable production up to time stage
t. The real-time pricing model is therefore described as follows:

(RTP ) : min
ls,nd,bd,bc,
e,ec,p,d,

ePHS ,ppump,

pprod

∑
t∈T

∑
ω[t]∈Ω[t]

Pt,ω[t]
·
[∑
g∈G

hg(pg,t,ω[t]
)

+
∑
h∈H

Vcut · lsh,t,ω[t]

]
(4.20)
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s.t. 0 ≤ bdh,t,ω[t]
≤ BDh, h ∈ H, t ∈ T , ω[t] ∈ Ω[t] (4.21)

0 ≤ bch,t,ω[t]
≤ BCh, h ∈ H, t ∈ T , ω[t] ∈ Ω[t] (4.22)

0 ≤ eh,t,ω[t]
≤ Eh, h ∈ H, t ∈ T , ω[t] ∈ Ω[t] (4.23)

eh,t,ω[t]
= eh,t−1,ω[t]

−
bdh,t,ω[t]

·∆t
ηdh

+ bch,t,ω[t]
· ηch ·∆t,

h ∈ H, t ∈ T , ω[t] ∈ Ω[t] (4.24)

DPh,t − lsh,t,ω[t]
+ bch,t,ω[t]

− PVh · ωHt − bdh,t,ω[t]

= ndh,t,ω[t]
, h ∈ H, t ∈ T , (ωH[t], ω

U
[t]) ∈ Ω[t] (4.25)

fg(pg,t,ω[t]
) ≤ 0, g ∈ G, t ∈ T , ω[t] ∈ Ω[t] (4.26)

dt,ω[t]
=
∑
g∈G

pg,t,ω[t]
+ ωUt − p

pump
t,ω[t]

+ pprodt,ω[t]
, t ∈ T ,

(ωH[t], ω
U
[t]) ∈ Ω[t] (4.27)

0 ≤ ePHSt,ω[t]
≤ EPHS , t ∈ T , ω[t] ∈ Ω[t], (4.28)

0 ≤ ppumpt,ω[t]
≤ P pump, t ∈ T , ω[t] ∈ Ω[t], (4.29)

0 ≤ pprodt,ω[t]
≤ P prod, t ∈ T , ω[t] ∈ Ω[t], (4.30)

ePHSt,ω[t]
= ePHSt−1,ω[t]

+ (ppumpt,ω[t]
· ηPHS − pprodt,ω[t]

) ·∆t, t ∈ T ,

ω[t] ∈ Ω[t], (4.31)

dt,ω[t]
=
∑
h∈H

Nh · ndh,t,ω[t]
, t ∈ T , ω[t] ∈ Ω[t] (4.32)

pg,t,ω[t]
, dt,ω[t]

, lsh,t,ω[t]
≥ 0, g ∈ G, t ∈ T , ω[t] ∈ Ω[t] (4.33)

The consumption of households is directly coordinated with the production
of the system in this model. Thus, the objective is to minimize the expected
total cost encountered by the system. This cost is given by the production
cost of generators and the shortage costs of households. Here, Pt,ω[t] represents
the probability of sample path ω[t] occurring at time period t. Constraints
(4.21) to (4.24) represent the dynamics of household batteries. The power
balance constraint at the level of the household is given by Eq. (4.25). The
generator restrictions in terms of production and their technical limitations are
represented in Constraint (4.26). Constraint (4.27) represents the power bal-
ance constraint at the level of the system. Pump hydro system constraints are
expressed by Eqs. (4.28) to (4.31) wit ηPHS being the efficiency of the pump

hydro storage system. Variables ePHSt,ω[t]
, ppumpt,ω[t]

and pprodt,ω[t]
represent, respectively,

the energy stored, the power pumped and the power produced by the pump hy-
dro storage system at a certain time period t for a certain uncertainty path ω[t].

Constraint (4.32) represents the link between the system and the house-
holds. The residential total demand is denoted by the variable dt,ω[t]

. This
variable is computed as the sum of the demand from each household type mul-
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tiplied by the number of households of that type present in the system. Note
that we restrict this total demand variable to be non-negative. This implies
that households can inject power back to the grid, but only for the purpose of
serving other household loads, and not for enabling the system to also serve
industrial load (which is represented as inelastic demand in our model).

To summarize, Constraints (4.21) to (4.25) characterize the behaviour of
the households (similar to section 4.2.2), while Constraints (4.26) to (4.31)
characterize the operation of the system (similar to section 4.2.1). Constraint
(4.32) is then used to coordinate the action of both parts of the system.

In order to account for pump hydro storage in the utility model of the
performance evaluation framework (see section 4.2.1) while isolating the ef-
fect of consumer-side inter-temporal flexibility in our analysis, pumped hydro
resources are assumed to follow a fixed profile in the rolling utility model of
section 4.2.1. This pump hydro storage profile is fixed using the solution of
the real-time pricing model presented in this section. The same profile is used
for priority service and multilevel demand subscription. Our goal in fixing
the schedule of pumped hydro exogenously is to isolate the effect of residen-
tial storage on system operations, as opposed to obscuring this effect by other
sources of flexibility (e.g. utility-scale storage). Another reason for fixing the
pumped-hydro storage profile is to be able to decouple the utility problem from
the household model. Indeed, it would have been computationally challenging
to solve the utility program and the household program at once, while simul-
taneously accounting for future realizations of both pumped-hydro storage and
household batteries.

4.4 Results

Using the simulation framework that is described in section 4.2, the data pre-
sented in section 3.6 and the menu design and menu subscription results that
are derived in section 3.7 of the previous chapter, we are able to compare the
performance of priority service (PSP), multilevel demand subscription (MDSP)
and real-time pricing (RTP). The performance evaluation framework of section
4.2 along with the real-time pricing model of section 4.3 is solved for every
day type, i.e. for weekends/weekdays of every season of the year (see the ex-
planation of the long-term scenarios in section 3.6). Numerical experiments
are performed using the JuMP package [36] in the Julia programming lan-
guage [12]. The mathematical programs are solved using the Gurobi optimiza-
tion solver [81] and run on the high performance computing Lemaitre3 cluster
hosted at UCLouvain as part of the CECI facility. Concerning multilevel de-
mand subscription and priority service, the simulation results are obtained
using 1000 sample paths for each day type and each resolution. On the other
hand, the real-time pricing model is solved using the stochastic dual dynamic
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programming algorithm applied to the solar and wind uncertainty lattices di-
rectly.

A number of conclusions can be drawn from the simulations. This set
of observations is covered in the present section. We divide the presentation
into implications for the system in section 4.4.1 and observations related to
households in section 4.4.2.

4.4.1 System-Wide Results

Table 4.1 presents key economic indicators for the case study with 4-hour reso-
lution as they relate to system-level performance. The corresponding results for
the case study with 15-minute resolution are presented in Table 4.2. The col-
umn ‘RTP-NHS’ corresponds to the results obtained using the real-time pricing
model while considering that household local storage (batteries) are not used
in a coordinated fashion by the system operator. This form of real-time pric-
ing seems more realistic in terms of coordination assumptions than a perfect
real-time pricing model, since the perfect coordination of storage assets in real
time implicitly assumes a perfect ability of a massive number of households to
anticipate real-time prices over the day. The residential shortage cost is calcu-
lated using the household rolling horizon model in the performance evaluation
process that is described in section 4.2.2. The supplied energy and the produc-
tion cost are computed using the producer model that is described in section
4.2.1. The total system cost is then given as the sum of residential shortage
and production cost.

Table 4.1: Comparison of system-level performance for the case study with 4-hour
resolution. Values are in [Me/month].

RTP RTP-NHS PSP MDSP
Total Production Cost [Me] 244.36 242.29 237.16 237.42

Estimated Industrial/Commercial Cost [Me] 157.78 157.78 157.78 157.78
Estimated Residential Cost [Me] 86.58 84.51 79.38 79.64

Shortage Cost Industrial Load [Me] 0 0 0 0
Total Residential Supply [TWh] 1.64 1.59 1.54 1.54

Total Residential Load Shortage Cost [Me] 123.34 139.72 166.55 165.27
Total Residential Payment [Me] NA NA 292.03 283.96

Total System Cost [Me] 367.7 382.01 403.7 402.69

Our first observation from the two previous tables is that multilevel demand
subscription is able to supply slightly more energy to households, and thus re-
duces load shortage cost compared to priority service. Indeed, since multilevel
demand subscription better discriminates consumers by means of the load du-
ration curve, this paradigm is able to better infer the supply needed at certain
time periods within the day. Consumers subscribe to less energy while adapting
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Table 4.2: Comparison of system-level performance for the case study with 15-minute
resolution. Values are in [Me/month].

RTP RTP-NHS PSP MDSP
Total Production Cost [Me] 243.67 240.34 237.44 239.01

Estimated Industrial/Commercial Cost [Me] 156.87 156.87 156.87 156.87
Estimated Residential Cost [Me] 86.8 83.47 80.57 82.14

Shortage Cost Industrial Load [Me] 0 0 0.7823 0.7823
Total Residential Supply [TWh] 1.6 1.55 1.48 1.51

Total Residential Shortage Cost [Me] 156.87 173.53 209.43 199.91
Total Residential Payment [Me] NA NA 285.36 272.53

Total System Cost [Me] 400.54 413.87 447.65 438.8

the timing of their consumption in order to better match the inflexible portion
of their consumption profile with the availability of resources in the system.

We observe a reduction of 0.25% of the system cost compared to priority
service. This amounts to about 1Me/month for the case study with 4-hour
resolution. This value increases to 1.98% (i.e. about 10Me/month) when
the resolution of the model is 15 minutes. Note that this gain underscores
the importance of a more detailed model (finer resolution with a more detailed
scenario tree) in accurately quantifying the efficiency of multilevel demand sub-
scription.

Finally, we can observe that, although multilevel demand subscription shows
improved performance compared to priority service in terms of overall system
operational efficiency, both schemes are notably worse in terms of residential
load shortage cost when compared to real-time pricing. Indeed, both schemes
result in an increase of more than 9% of total system cost. This gaps reduces to
approximately 5% if we consider real-time pricing without household storage
(since perfect coordination of residential storage through real-time electricity
markets is arguably a highly optimistic assumption in the first place). These
results underscore the potential of real-time pricing as the golden standard
of coordination for integrating residential demand response in power system
operations.

4.4.2 Households

Insofar as households are concerned, we arrive to a number of conclusions from
our simulations. These observations are performed across different household
types and different demand response service offerings policies. These observa-
tions are highlighted and explained in the present section.
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Household Cost Reduction

Figure 4.3 compares the total cost (subscription and interruption cost) be-
tween multilevel demand subscription and priority service for the case study
with 4-hour resolution. The figure also details the portion of the cost that can
be attributed to subscription costs. Figure 4.4 presents the same indicators
for the case study with 15-minute resolution. Note that the household short-
age cost of the present chapter is computed differently from the one given in
Chapter 3. Indeed, the shortage cost of Chapter 3 is estimated by the house-
hold while subscribing to the demand response menu (see section 3.5). In the
present chapter, it is now computed using the household model of the per-
formance evaluation framework (see section 4.2.2) and therefore represents the
shortage cost incurred by households during real-time operations of the system.
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Figure 4.3: Comparison of the total cost and the subscription cost for different types
of households under priority service and multilevel demand subscription (4-hour res-
olution).

We can observe from the case study with 15-minute resolution that all
homes with multilevel demand subscription tend to face a lower total cost, a
lower shortage cost and a lower subscription cost. However, this improvement
is reduced with the introduction of batteries. This is due to the fact that bat-
teries contribute to reducing the peak net demand of households, which implies
that the benefits brought about by the options with shorter duration in mul-
tilevel demand subscription decrease for households with large consumption.
Multilevel demand subscription is especially beneficial compared to priority
service when a household owns rooftop solar panels but no battery. Indeed,
options with shorter duration are especially helpful in this context because
they enable households to use these options when rooftop solar panels are not
producing. For these households, multilevel demand subscription reduces total
cost by more than 20%, whereas this total cost reduction amounts to 10% when
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Figure 4.4: Comparison of the total cost and the subscription cost for different types
of households under priority service and multilevel demand subscription (15-minute
resolution).

a battery is added.

Instead, the total costs of households are very close under priority service
and multilevel demand subscription for the case study with 4-hour resolution.
The maximum reduction that is achieved by multilevel demand subscription
in this case study is limited to 6.5%. These observations are consistent with
the observations of section 3.7.3 in the sense that the total cost of households
is reduced when faced with multilevel demand subscription. Moreover, we will
not discussed the differences in electricity bill between the two schemes in this
section since it is already detailed in the results of the previous chapter.

Finally, as we already observe in the discussion of the system-wide results
of the previous section, the additional detail of the higher-resolution 15-minute
model is justified. This is due to the fact that the higher temporal resolution
allows for a more precise assessment of the impact of the two contracts on
individual types of households since lower temporal resolution underestimates
the economic benefit of subscribing to shorter duration options under multilevel
demand subscription in terms of household cost reduction.

Service Comparison under Different Policies

As we observe in section 3.7.3, households tend to subscribe to a higher ca-
pacity under multilevel subscription than under priority service. On the other
hand, the subscribed energy is less. This observation is driven by the offer of
options with shorter duration in multilevel demand subscription. We are fur-
ther interested in understanding the amount of procured energy that is actually
used across different household types. For this purpose, we define a new metric
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called the utilization rate computed as follows:

URh =

∑
i∈I

∑
t∈T

ñdh,i,t − eh|T |∑
i∈I

∑
j∈J

Θh,i,j · Tj
(4.34)

Here, eh|T | records the energy left in the battery at the end of the hori-
zon during simulations. The utilization rate observed for priority service and
multilevel demand subscription for the case study with 4-hour resolution is
represented in Figure 4.5. For the case study with 15-minute resolution, the
same quantity can be found in Figure 4.6.
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Figure 4.5: Service utilization percentage under priority service pricing and multilevel
demand subscription for the case study with 4-hour resolution (left).

From these two figures, we can observe that multilevel demand subscription
always exhibits a better utilization rate compared to priority service. Indeed,
in the 4-hour test case, the lowest utilization ratio under multilevel demand
subscription is given by 32.74%, while it amounts to 28.85% for priority ser-
vice. This result is driven by the fact that households can choose options of
shorter durations under multilevel demand subscription. Instead, in priority
service, the capacity strip is procured for the entire horizon. Multilevel de-
mand subscription therefore allows households to better exploit the subscribed
energy. Consequently, multilevel demand subscription is not only advantageous
to households by allowing higher peak capacity when needed, but also by more
efficiently using their procured energy.

Note that households which own a battery tend to achieve a greater utiliza-
tion of their purchased power, and are thus able to improve their utilization
ratio for the 15-minute case study. However, this observation is not valid in
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Figure 4.6: Service utilization percentage under priority service pricing and multilevel
demand subscription for the case study with 15-minute resolution.

the 4-hour case study. This phenomenon can be explained by the short amount
of time periods (only 6) present in the 4-hour case study. This rougher time
resolution may prevent the local storage from fully exhibiting its full potential
compared to the 96 time periods available in the 15-minute case study. Once
again, we can find evidence of the value of a model with finer resolution for
precisely identifying the effect of these two demand response schemes.

Cost-Benefit Analysis of Local Storage

Figures 4.3 and 4.4 indicate that local storage plays an important role in reduc-
ing the total cost faced by households under both priority service and multilevel
demand subscription. Nevertheless, this reduction is less accentuated for the
second scheme. This is due to the fact that multilevel demand subscription
contains implicitly an energy cost in addition to the capacity cost, while the
battery is mainly beneficial in terms of reducing capacity cost. Furthermore,
the impact of storage on the utilization ratio of procured energy has already
been commented above. Our analysis indicates that batteries improve the ser-
vice utilization rate of households that own storage. Finally, Figures 4.7 and
4.8 describe the capacity subscription of each household type for each priority
class for the case studies with 4-hour and 15-minute resolution under both de-
mand response schemes. From these graphs we can observe that, as the size
of the battery decreases, a household tends to subscribe to a larger total ca-
pacity, as well as a higher quantity under the “Red” option. Therefore, we can
conclude that a battery is also beneficial for a household because it allows the
household to reduce its electricity bill by shortening the needed total capacity
subscription of that particular household while also allowing it to rely more on



4.4. Results 99

less reliable options.
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Figure 4.7: Capacity subscriptions of each household type to each option under pri-
ority service (left) and multilevel demand subscription (right) for the case study with
4-hour resolution.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Capacity [kW]

Flat - No Battery - No PV:1

Small Peak - Big Battery - PV:2

Big Peak - Big Battery - PV:3

Small Peak - Small Battery - PV:4

Big Peak - Small Battery - PV:5

Small Peak - No Battery - PV:6

Big Peak - No Battery - PV:7

Small Peak - No Battery - No PV:8

Big Peak - No Battery - No PV:9

0.0 0.2 0.4 0.6 0.8
Capacity [kW]

Flat - No Battery - No PV:1

Small Peak - Big Battery - PV:2

Big Peak - Big Battery - PV:3

Small Peak - Small Battery - PV:4

Big Peak - Small Battery - PV:5

Small Peak - No Battery - PV:6

Big Peak - No Battery - PV:7

Small Peak - No Battery - No PV:8

Big Peak - No Battery - No PV:9

Figure 4.8: Capacity subscriptions of each household for each option under priority
service (left) and multilevel demand subscription (right) for the case study with 15-
minute resolution.

Having outlined the benefits of local storage, we are now interested in as-
sessing whether the investment cost of a battery outweighs the benefits that we
have quantified through our analysis. Table 4.3 presents the reduction in to-
tal cost for different household profiles when a small or large battery is added
to the household for both simulation resolutions. Based on the assumption
suggested by [117], the monthly cost of the large battery is estimated to be
between 6.22 e/month and 36.48 e/month, while that of the small battery
ranges from 2.86 e/month to 16.83 e/month. Therefore, by comparing the
gains presented in Table 4.3 with the aforementioned investment costs, the in-
vestment cost of the large battery cannot be justified under either scheme for
households with a small peak profile. Moreover, we observe that the benefits
obtained with a small battery are almost equal to the ones achieved with a
large battery for the household with a small peak profile. Therefore, it seems
that the small battery is sufficient for this particular household type. However,



100 Chapter 4. Priority Service versus Multilevel Demand Subscription

we note that the investment cost in a small battery for this profile is justifi-
able only in optimistic scenarios for multilevel demand subscription but seems
worthwhile under priority service. Concerning households with a large peak,
the small battery appears to always be a worthwhile investment, whereas the
large battery is justified in optimistic scenarios, and only under priority service.

Table 4.3: Household total cost reduction in [e/month] for adding a small or a large
battery for different household consumption profiles under both resolutions. The
numbers reported in bold are cases for which the cost gains are superior to the re-
spective battery investment cost.

Profiles Battery Types
PSP MDSP

4-hour 15-min 4-hour 15-min

Small Peak
Small 14.66 19.85 13.87 13.75
Big 14.66 19.77 13.87 13.51

Big Peak
Small 27.39 35.74 23.99 24.44
Big 29.5 36.58 26.66 24.84

Cost-Benefit Analysis of Local Rooftop Solar Panels

Figures 4.3 and 4.4 demonstrate that households with rooftop solar panels and
without a battery experience the same level of shortage cost under priority
service. Instead, multilevel demand subscription appears to be more valuable
for households that only own rooftop solar panels. This phenomenon is already
highlighted in an aforementioned discussion in the first paragraph of section
4.4.2. Therefore, investing in a battery when already owning rooftop solar
panels may be favorable for certain household types, as we have discussed pre-
viously.

In order to verify that rooftop solar panels alone are not a viable investment
for households, we compute the monthly investment cost of such an investment
based on the assumptions of [117]. This cost is estimated by the following
expression:

MCPV =
OC · r12

1− 1
(1+r)T

Here, OC, r and T denote respectively the overnight investment cost, the
annual discount rate and the lifespan of the PV installation. The Belgium
mean PV installation cost amounts to 1.4e/W VAT excluded [103]. Based on
estimates of BloombergNEF, a 34% reduction in PV installation cost by 2030
may be achievable [71]. Since we consider a forward-looking scenario towards
2050, we employ a total overnight cost of 2236.1e and of 3577.7e for the small
peak and large peak households respectively. A lifetime of 25 to 30 years is
assumed [10]. The annual discount rate is assumed to be the same as for the
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battery (3 to 10%). Therefore, for households with a small peak, the monthly
investment cost is estimated to amount between 9.51 and 20.53e/month, while
it remains between 15.21 and 32.84e/month for households with large peaks.
Table 4.4 presents the gain that is estimated for the two household profiles for
both simulation resolutions under both demand response schemes. From the
results depicted in this table, we can conclude that installing only rooftop solar
panels is not worthwhile for any of the household types and under any of the
demand response contracts. This conclusion can be affected by our decision
not to pay consumers for exporting solar power to the grid. However, if it is
decided to include a reward to consumers for providing electricity to the grid,
one must handle the interplay that this decision has on the design of both
priority service and multilevel demand subscription menus with care.

Table 4.4: Household total cost reduction in [e/month] when installing rooftop solar
panels for different household consumption profiles under both resolutions.

Profiles
PSP MDSP

4-hour 15-min 4-hour 15-min
Small Peak 10.08 5.39 12.33 12.42
Big Peak 16.74 8.86 19.24 19.96

Household Shortage Cost in Real-Time Operations

The analysis presented in the present chapter goes one step beyond the results
of Chapter 3 by observing the impact of priority service and multilevel demand
subscription on the system and different household types. Figure 4.9 compares
the expected shortage cost experienced by households during the subscription
phase to the shortage cost experienced according as we quantify it during real-
time operation using the model of section 4.2.2. This can be interpreted as the
difference between what shortage cost households expect to experience, versus
the shortage cost that they actually experience. From this figure, we can ob-
serve that households actually face a larger shortage in real-time operations
than what is expected in their subscription model. This is corroborated by the
observed reliability of priority class in real-time conditions which is generally
lower than the one predicted by the proposed menu. This phenomenon may
be explained by the violation of the synchronization assumption in the origi-
nal theory of priority service and multilevel demand subscription. Indeed, the
synchronization between the consumption of households is not met in practice,
whereas it is assumed in the original theory. Moreover, inter-temporal link-
ing is also absent from [26]. This does not reflect the reality encountered by
households and the utility.
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Figure 4.9: Comparison of the expected shortage cost from subscription with the
realized shortage cost for different types of households under priority service (PSP)
and multilevel demand subscription (MDSP).

Comparison with Real-Time Pricing

Real-time pricing has also been modeled in our analysis, alongside multilevel
demand subscription and priority service, as already mentioned in section 4.3.
Figure 4.10 presents the shortage cost experienced by each household type
under every paradigm for both resolutions. Figure 4.11 compares the energy
withdrawn from the grid by the household under real-time pricing, and com-
pares it to the expected energy subscription of each household type.
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Figure 4.10: Comparison of the shortage cost for different types of households under
priority service, multilevel demand subscription and real-time pricing for the 4-hour
(left) and the 15-minute (right) resolution case studies.

In general, we observe that households incur greater shortage costs un-
der priority service than under multilevel demand subscription. Moreover,
real-time pricing is largely more beneficial for households than the two other
schemes. A small exception to this rule can be detected for households with
large batteries, for which multilevel demand subscription and sometimes even
priority service may be more beneficial. This phenomenon can be explained by
the information in Figure 4.11. Indeed, household types with large batteries
withdraw more energy from the grid under real-time pricing than the amount
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Figure 4.11: Comparison of the energy withdrawn from the grid under real-time
pricing with the subscribed energy under priority service and multilevel demand sub-
scription for the 4-hour (left) and the 15-minute (right) resolution case studies.

of energy that they subscribe to under priority service or multilevel demand
subscription. This excess amount of energy is stored in the large battery under
real-time pricing, in order to be used afterwards by the system for supplying
other household types for time periods when less supply is available from the
utility2. For other household types, we can observe that the energy withdrawn
from the grid under real-time pricing is lower than the subscribed energy under
priority service and multilevel demand subscription. Indeed, real-time pricing
allows the user to access the exact amount of power it needs at a certain time
period. Instead, the two other service contracts lead to power being bought
but not used due to the duration of those options.

Finally, we can conduct a cost-benefit analysis for household batteries and
solar panels under real-time pricing. In that case, the shortage cost gain is
always smaller than 8e/month. Therefore, neither batteries or rooftop solar
panels are worthy investments. Note that this conclusion may change if a
service payment is considered in addition to the experienced household shortage
cost.

4.5 Conclusion

In this chapter, we compare priority service and multilevel demand subscrip-
tion as two alternative means of mobilizing demand response in the residential
sector against the economic golden standard of real-time pricing. This analy-
sis is motivated by our desire to investigate aggregator business models that
achieve simplicity, privacy and control for residential consumers.

2Note however the difference in treatment between households under multilevel demand
subscription or priority service who are not payed to provide electricity to the grid while it
is the case under real-time pricing.
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We first develop a framework for modeling the system-wide effects of res-
idential flexibility under both schemes. Multilevel demand subscription is a
generalized form of priority service. As such, it increases implementation com-
plexity from the side of both the utility as well as the residential consumer. On
the upside, it improves operational efficiency by allowing the utility to better
discriminate flexible consumers. A model is also implemented for investigating
the effect of real-time pricing under the same setting.

We examine this trade-off between simplicity and operational efficiency in
a case study of the Belgian market. Many observations are highlighted from
these experiments. First of all, the ability of multilevel demand subscription
to better discriminate consumers results in a total cost reduction of about 2%
relative to priority service, which represents about 10 Me/month for the exper-
iment with 15-minute resolution. However, multilevel demand subscription and
priority service appear to be significantly more costly for the system than real-
time pricing. The consistency of these results is also observed in an experiment
with a lower resolution, even though the improvement is smaller. Indeed, the
lower resolution of the 4-hour model underestimates the system cost benefits of
multilevel demand subscription along with household subscriptions to options
with shorter durations. This underscores the value of an accurate model with
finer time resolution at the level of 15 minutes for arriving at more reliable
conclusions regarding the interplay of demand response and system operations.

Multilevel demand subscription is found to allow household to reduce their
costs compared to priority service because capacity strips that are procured
under priority service remain idle for a significant portion of the service hori-
zon. This reduction amounts to 20% for households that only own solar panels
and is limited to 10% when households also own a battery. Multilevel demand
subscription also allows consumers to employ their subscribed energy more effi-
ciently since households always exhibit an improved utilization rate than under
priority service.

The benefits of solar panels and batteries in household is also quantified.
Even though a battery allows households to reduce their total subscription and
inconvenience cost, the investment cost of a battery may prohibit its acqui-
sition, especially under multilevel demand subscription. Indeed, the benefit
of batteries is reduced in this case because of the energy component already
present in the multilevel demand subscription scheme with short duration. On
the other hand, owing only solar panels without a battery seems to be unjus-
tifiable in terms of household gains compared to investment cost.

Finally, the impact of real-time pricing is also analyzed for different house-
hold types. Real-time pricing always enables households to reduce their short-
age cost compared to the two other schemes, except for households with large
batteries that serve as a system reservoir for supporting other households dur-
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ing periods of low renewable production.

On the basis of these observations, we conclude that it may become challeng-
ing to engage flexible households with installed renewable supply and storage
using pure capacity tariffs. In future markets with distributed flexibility and
storage, a mix of energy and capacity charges are likely to be necessary in order
to improve the efficiency of operations and keep electricity service charges of
households at acceptable levels.

4.A Notations

Notations used throughout this chapter are summarized in this section.

Sets

G, |G| Set of generators and its car-
dinality

L, |L| Set of consumer types and
its cardinality

H, |H| Set of households and its
cardinality

T , |T | Set of time periods and its
cardinality

I, |I| Set of reliability options and
its cardinality

J , |J | Set of duration options and
its cardinality

ΩU Set of sample paths of re-
newable supply from utility-
scale resources

ΩH Set of sample paths of re-
newable supply from rooftop
solar resources

Parameters

nsimu Number of simulations of
the performance evaluation
algorithm

φti Indicator ranging from 0 to 1
included representing the in-
terruption pattern of option
i faced at time period t

V̄i Estimate of average valua-
tion that the utility assigns
to priority class i based on

how households decide to
subscribe to the multilevel
demand subscription service
(or priority service)

NDi,t Residential aggregated net
demand for priority class i at
time stage t [MW]

σ∗l,i,j Optimal subscription quan-
tity of consumer l under op-
tion (i, j) [MW]

Θh,i,j Optimal subscription quan-
tity of household type h to
option (i, j) [kW]

Tj Duration of option j

Nj,t Binary parameters that de-
termines whether a certain
duration option j is being
served in time period t of ac-
tual operations or not

Vl(Tj) Valuation of consumer type
l when the duration is Tj
[e/MWh]

Dl Demand of consumer type l
[MW]

Vcut Penalty parameter if a
shortage occurs for house-
holds, assumed to be 500
e/kWh

BDh Battery charge capacity in
household of type h [kW]

BCh Battery discharge capacity
in household pf type h [kW]
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Eh Battery energy capacity in
household of type h [kWh]

ηdh Battery discharge efficiency
for household type h

ηch Battery charge efficiency in
household h

DPh,t Load (Demand Profile) of
household h at stage t in sce-
nario s [kW]

PVh Solar panel capacity in-
stalled at household type h
[kW]

∆t Number of time periods in
an hour (e.g. 4 for the 4-
hour case study and 0.25 for
the 15-minute analysis)

Nh Number of households of
type h

Pt,ω[t]
Probability of occurrence of
uncertainty sequence ω[t] up
to stage t of the set of sam-
ple paths available

EPHS Maximum energy that can
be stored in the pump hydro
storage system [MWh]

P pump Maximum power that can be
pumped by the pump hydro
storage [MW]

P prod Maximum power that can be
produced by the pump hy-
dro storage [MW]

ηPHS Efficiency of the pump hydro
storage system [%]

OC Overnight investment cost
[e]

r Annual discount rate [%]

T Installation lifetime [years]

MCPV Monthly investment cost
for rooftop solar panels
[e/month]

URh Service utilization ratio for
household type h [%]

URh Improved service utilization
ratio for household type h
[%]

r̄i Realized reliability of prior-
ity class i under real-time
system operating conditions
[%]

Variables

eht , et Energy stored in the battery
at time period t for house-
hold type h [kWh]

echi,t, eci,t Amount of energy left to
consume for household type
h at time period t based on
its contract subscription for
priority class i

pg,t Production of generator g at
hour t [MW]

di,t Supply to priority class i at
hour t [MW]

dt,ω[t]
Total supply at time stage t
for the uncertainty sequence
ω[t] up to stage t [MW]

lst Load shedding at stage t
[kW]

bdt Discharge power of the bat-
tery at stage t [kW]

bct Charge power of the battery
at stage t [kW]

ndi,t Net demand from the grid
at stage t for priority class
i [kW]

ñdi,t Positive version of variable
ndi,t for priority class i [kW]

θ Auxiliary variable used for
the approximation of the
household rolling optimiza-
tion program

ppumpt,ω[t]
Power pumped by the pump
hydro storage at time stage t
for the uncertainty sequence
ωs[t] up to stage t [MW]
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pprodt,ω[t]
Power produced by the
pump hydro storage at time
stage t for the uncertainty
sequence ω[t] up to stage t
[MW]

ePHSt,ω[t]
Energy stored in the pump
hydro storage system at
time stage t for the uncer-
tainty sequence ω[t] [MWh]

Functions

U tcost Utility cost encountered at

time period t

Ht
cost Cost face by the total

amount of households at
time period t

hg Cost function of generator g,
including production costs

fg Constraints of unit com-
mitment problems, includ-
ing production limits

E Expectancy operator





5
Hierarchical Coordination of

Medium and Low Voltage
Distribution Grids in the Presence

of Demand Response

5.1 Introduction

The analysis presented in the previous chapters of this dissertation provide in-
sights regarding the impact of priority service, and its generalization, on the
system but also on the costs incurred by households. However, with the in-
creased penetration of distribution-scale generation such as rooftop solar panels
in households, but also flexible devices such as electric vehicles and heat pumps,
demand response is bound to grow in use. The goal for power systems will be
to manage to mobilize an increasing number of flexible resources from the res-
idential and commercial sector so as to support power system operations such
as real-time balancing and associated ancillary services. The present chapter
therefore dives into the broad question of the efficient integration of demand
response in electricity market operations by conducting a preliminary analysis
of the topic. A hierarchical coordination of the different parts of the power sys-
tem is already proposed in [112,137], and is used as the underlying framework
in this chapter. This hierarchical approach allows us to link several layers of
power system operations by means of residual supply or demand functions that
internalize the physics behind the corresponding layer. Since Papavasiliou et
al. [137] focus on the coordination of European countries, while Mezghani [112]
concentrates on the coordination of high-voltage and medium-voltage networks,
we limit our focus on the coordination of medium-voltage with low-voltage
transmission networks, i.e. distribution networks which typically connect the
targeted residential flexible resources to the grid. Thus, the present chapter
develops a methodology for aggregators who are responsible for groups of house-
holds to aggregate residential sector flexibility through priority service, while
accounting for distribution network physics. The goal is to make this service
available to system operators, while respecting the constraints of the electricity
network. This hierarchical coordination, coupled with the demand response
framework analyzed in this thesis, aims at enabling distributed resources of

109
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distribution networks to be efficiently accounted for through residual demand
functions in power system operations, while preventing the scale of power sys-
tem operation decision models to grow in an intractable way. Even though
we employ a hierarchical scheme in order to coordinate different portions of
the electricity grid, there exist other coordination schemes, as highlighted for
example in [82].

In the present chapter, low-voltage networks are accounted for using dif-
ferent models for representing distribution network physics. Typically, single-
phase approximations are used for representing power flow constraints in power
systems. However, these approximations rely on the assumption that power sys-
tems are operating in a balanced way. This assumption is typically inaccurate
for low-voltage transmission networks which are often unbalanced. Therefore,
in our analysis, we compare the effect that different formulations of power flow
constraints have on the computed residual demand function of low-voltage net-
works for a simple one-line example.

This chapter is organized as follows. First, section 5.2 introduces the hi-
erarchical framework that is used for computing residual demand functions
for low-voltage networks in the presence of demand response. Then, section
5.3 presents the different formulations used for single-line approximations. In
section 5.4, the three-phase unbalanced network models that are employed in
our analysis are described. Finally, section 5.5 analyzes the results that are
obtained for a small case study, while section 5.6 concludes the analysis. Fur-
thermore, section 5.A in the appendix details the mathematical notations that
are used in this chapter.

5.2 Hierarchical Coordination Framework

This section is dedicated to the exposition of the hierarchical coordination
framework used in this chapter. Under this approach, power systems are di-
vided in blocks that interact between each other by means of residual supply or
demand functions. Figure 5.1 depicts this idea by considering the high-voltage
transmission network, the medium-voltage distribution network and the low-
voltage distribution network as the different layers of the total network1. This
concept allows different actors, who are responsible for different parts of the
network, to only exchange residual demand or supply functions, while main-
taining privacy on networks characteristics. This principle is used in [137]
for the coordination of several high-voltage transmission networks of different
neighbouring European countries, and in [112] for coordinating high-voltage
with medium-voltage transmission networks. As observed in Figure 5.1, the
hierarchical approach proceeds as follows when considering priority service as

1Medium-voltage and low-voltage networks are represented in the Figure as radial net-
works, even though they may be meshed in practice.
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the employed demand response paradigm. Firstly, at the low-voltage network,
the aggregator passes on to the consumer the demand response menu2. From
this menu, consumers subscribe to different options. The subscription quantity
of each option for each location along with the subscribed valuation are trans-
mitted by the aggregator to the low-voltage network operator (DSO). The DSO
constructs the residual demand function by merging (according to the method-
ology presented in this chapter) the subscription information provided by the
aggregator and the low-voltage power flow network constraints. This residual
demand function is then transmitted to the medium-voltage network operator.
The medium-voltage operator, based on the demand and production informa-
tion at its level, along with network constraints, constructs a residual supply
function that is passed on to the high-voltage network operator (TSO). The
TSO then clears the market and determines a price for power while accounting
for its network constraints and the residual supply functions provided by its
connected medium-voltage networks. The power injected / withdrawn by the
TSO at each interface with a medium-voltage network along with electricity
price is passed down to the medium-voltage network operator that will decide
on power supply at each part of its network. The supply decision at the inter-
face with the lower-voltage network is then passed on to the DSO in order to
enable it to reach its own dispatch decisions at its level. Every network operator
is therefore responsible of their layer of the network. Regarding the low-voltage
network, the operator can curtail consumers based on network constraints and
electricity coming from the medium level using priority service. Indeed, the
different options to which the consumer subscribes allow the operator to rank
consumers and curtail them if needed based on the reliability ordering of the
options, so as to balance the system while accounting for congestion in the
low-voltage network.

As emphasized in the previous paragraph, residual demand or supply func-
tions are computed by a particular block, in order to provide information on
the amount of power that can be consumed or produced for a certain price.
This curve can be computed for each network by only aggregating the supply or
demand information of assets present in this network. However, as highlighted
in [112, 137], it is important to account for network physics while aggregating
such information, since network operating limits may prevent production assets
from transporting their produced power to different parts of the network. In
order to compute a residual demand function for a low-voltage network, the re-
sponsible network operator can therefore solve, during a certain time period, a
set of optimization programs with a varying amount of power being withdrawn
at the substation bus of the network. In the case where household flexibility is
harnessed by means of priority service, the residual demand function model of

2In this thesis, the design of the priority service menu by the aggregator for the consumers
does not account for network constraints and consumer location, which is a simplifying
assumption.
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Figure 5.1: Representation of the hierarchical coordination principle considered in
this dissertation.
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the aggregator can be formulated as follows:

RDF (p̄0) : max
nd,n,p0

∑
h∈H

∑
i∈I

MBi · ndi,h (5.1)

s.t. 0 ≤ ndi,h ≤ Θh,i, i ∈ I, h ∈ H (5.2)

(λ) : p0 ≤ p̄0, (5.3)

(p0,n,nd) ∈ Net (5.4)

The power consumed by household h ∈ H in a given priority class i ∈ I is
represented by the variable ndi,h. The goal of the aggregator is therefore to
maximize the total benefit procured by serving households for which MBi rep-
resents consumer marginal benefit for power of reliability class i. Constraint
(5.2) outlines that household h can only consume power up to its subscription
limit for a certain priority class i represented by parameter Θh,i. Then, the
amount of power that can be withdrawn by the network at the substation bus,
indicated by p0, to serve the demand is forced to be smaller than the fuse
limit decided beforehand and denoted as p̄0. Finally, the set of variables repre-
senting household consumption, power withdrawal at the substation bus, and
network state n, are subject to the distribution network physics represented
by the feasibility set Net in Eq. (5.4). The physics that govern distribution
network flows can be represented via different formulations based on one- or
three-phase equations which are respectively the focus of sections 5.3 and 5.4.
By solving this optimization program for several values of Pmax0 , the aggregator
can construct its residual demand function using the dual λ of Constraint (5.3).

It is important to note that this hierarchical approach is exact if the lower-
level problem is convex only when considering one time period and one con-
nection point between two levels. Indeed, in the case of 2 connection points
between the two levels, a multidimensional residual demand function must be
created. To solve this issue, the multidimensional function can be approxi-
mated. It is observed in a stylized example in [137] that this issue does not
affect results significantly, although, in realistic cases, it becomes more impor-
tant [121]. Finally, note that this hierarchical approach has connections with
bid filtering procedures considered by TSOs [121]. Accounting for network
constraints implies that household bids are filtered with the aim of avoiding
congestion during the dispatch phase. A study on the benefit of a hierarchical
approach and a discussion on bid filtering in Norway is presented in [121].

5.3 Single-Phase Network Models

In order to compute a residual demand function that accounts for the charac-
teristics of distribution networks, Constraint (5.4) of the aforementioned model
is given by the Power Flow (PF) equations and the respective operating bounds
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of each network variable. The PF equations define a nonlinear mapping be-
tween power injections at each bus and power flows on lines. There exist two
different ways to model these constraints: the Bus Injection model (BIM) and
the Branch Flow model (BFM) [165]. These two models are equivalent and
their use depends on the variables and data chosen by the user.

In this section, we focus on the derivation of the power flow equations by
assuming balanced system operation, so that the equations can be derived using
only a single phase. This formulation will be extended to unbalanced three-
phase operation cases in section 5.4. The optimal power flow model will be
described along with some of its relaxations and approximations for the bus
injection and branch flow formulations respectively. The following references
[60,104,165] provide a detailed explanation of the different formulations.

5.3.1 Bus Injection Model

Without loss of generality, power networks can be modeled by an undirected
graph with a set of nodes N and a set of edges E . Let Vj be the complex
voltage at bus j ∈ N , where sgj = pgj + iqgj and sdj = pdj + iqdj correspond re-
spectively to the complex apparent power generated or consumed at node j of
the power system. We denote sj = sgj − sdj in order to simplify the exposition.
We denote as zjk = rjk + ixjk the impedance of line (j, k). Its inverse, the
admittance of the line, is expressed as yjk = z−1

jk = gjk + ibjk. Finally, the
variable Sjk = Pjk + iQjk represents the apparent departing power flow from
node j to node k, while Ijk corresponds to the current along the same line. To
complete the exposition, these notations are depicted in Figure 5.2.

Figure 5.2: Illustration of notation that is used for deriving the power flow equations.

The bus injection model is defined by the following three power flow equa-
tions, which are derived from Kirchhoff’s laws:

Pjk + iQjk = Vj(V
∗
j − V ∗k )y∗jk, (j, k) ∈ E (5.5)∑

(j,k)∈E

Pjk = pj , j ∈ N (5.6)

∑
(j,k)∈E

Qjk = qj , j ∈ N (5.7)
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Eqs. (5.6) and (5.7) provide the active and reactive power balance at each bus
while accounting for power losses along lines. Note that the (∗) sign represents
the mathematical operation that computes the complex conjugate of a complex
number.

A number of constraints can be added to the previous set of equations in
order to express the supplementary characteristics of distribution networks.
Among these, we note that voltage magnitude must usually satisfy certain
stability limits. A deviation of more than 5% from of its nominal value is
typically not allowed3. Moreover, the amplitude of the apparent power flowing
through a line may be bounded by a line capacity limit. Finally, the power
generation or demand at a certain node is limited. All of the aforementioned
constraints are described by the four following inequalities:

V j ≤ |Vj | ≤ V̄j , j ∈ N (5.8)

P 2
jk +Q2

jk = |Sjk| ≤ S̄jk, (j, k) ∈ E (5.9)

p
j
≤ pj ≤ p̄j , j ∈ N (5.10)

q
j
≤ qj ≤ q̄j , j ∈ N (5.11)

By observing the set formed by Constraints (5.5) to (5.11), we note that
these equations form a nonconvex feasibility set, due for example to the quadratic
equality of Constraint (5.5). Several relaxations or approximations of this for-
mulation can be derived in order to obtain convex and even linear formulations.
First of all, before presenting these simpler formulations, we replace the com-
plex voltage of this set by its polar definition (Vj = |Vj |eθj ). Eq. (5.5) becomes:

Pjk = gjk|Vj |2− |Vj ||Vk|(gjk cos(θj − θk) + bjk sin(θj − θk)), (j, k) ∈ E (5.12)

Qjk =−bjk|Vj |2−|Vj ||Vk|(gjk sin(θj − θk)− bij cos(θj − θk)),(j, k) ∈ E (5.13)

Two linear approximations can be derived based on these two equations, and
are detailed in the following paragraphs.

Direct Current Power Flow Approximation (BIM-DCOPF) This new
linear formulation is obtained by applying the following assumptions:

1. Voltage magnitudes are assumed to equal to 1pu (|Vj | = 1);

2. Conductance is ignored since it is assumed to be negligible compared to
the susceptance of the line (gjk << bjk so gjk = 0);

3The European norm (EN50160) being applied for distribution networks allows statistical
variations of +/-10% during 95% of the time on a daily basis. Network operators are legally
required to comply and therefore usually adopt stricter standards internally, such as allowed
deviations of 5 to 6%.
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3. Voltage differences between nodes are assumed to be small, which allows
us to replace the sine function directly by the difference between the two
angles;

4. Reactive power flows are assumed to be negligible, and are therefore
removed.

Based on these assumptions, the complete version of the BIM-DCOPF lin-
ear program is given by the following set of equations:

Pjk = bjk(θk − θj), (j, k) ∈ E (5.14)∑
(j,k)∈E

Pjk = pj , j ∈ N (5.15)

p
j
≤ pj ≤ p̄j , j ∈ N (5.16)

Pjk ≤ S̄jk, (j, k) ∈ E (5.17)

This formulation is mostly used for modeling high-voltage transmission net-
works [112].

Decoupled Linear Power Flow Approximation (BIM-DecoupledOPF)
To improve the above linear formulation by considering reactive power flows
and voltage, the Decoupled Linear Power Flow formulation is proposed based on
the original set of equations. All the above assumptions except the one related
to reactive power are used in this formulation. Moreover, regarding reactive
power, a linearization is obtained by only assigning the voltage magnitude of a
single bus to 1pu. The following formulation is obtained:

Pjk = bjk(θk − θj), (j, k) ∈ E (5.18)∑
(j,k)∈E

Pjk = pj , j ∈ N (5.19)

p
j
≤ pj ≤ p̄j , j ∈ N (5.20)

Pjk ≤ S̄jk, (j, k) ∈ E (5.21)

Qjk = bjk(|Vk| − |Vj |), (j, k) ∈ E (5.22)∑
(j,k)∈E

Qjk = qj , j ∈ N (5.23)

q
j
≤ qj ≤ q̄j , j ∈ N (5.24)

V j ≤ |Vj | ≤ V̄j , j ∈ N (5.25)

This formulation is less employed in practice [165]. The two linear formulations
presented above neglect losses and the coupling between real and reactive power
flows, compared to the original formulation.
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5.3.2 Branch flow Model

Now that the Bus Injection formulation is presented, in this section we focus
on the Branch Flow formulation of Kirchhoff’s laws, that is also used for ob-
taining useful power flow models. The Branch Flow formulation is given by the
following set of constraints [104]:∑

(k,m)∈E

Skm =
∑

(j,k)∈E

(Sjk − zjk|Ijk|2) + sk, k ∈ N (5.26)

Ijk = yjk(Vj − Vk), (j, k) ∈ E (5.27)

Sjk = VjI
∗
jk, (j, k) ∈ E (5.28)

Eq. (5.26) represents the apparent power balance at each bus. Constraint
(5.27) is Ohm’s law, while Eq. (5.28) defines the power flowing through a line.
These three equations replace Constraints (5.5) to (5.7) of the Bus Injection
model. Therefore, Constraints (5.8) to (5.11), which represent supplementary
characteristics of the system, can be added to complete the Branch Flow model.
The interest in using the Branch Flow model is in the fact that the Bus Injection
model is prone to numerical errors relative to this formulation due to the voltage
difference of Eq. (5.5) [104]. Therefore, it is interesting to provide convex
relaxations or approximations of this problem. Some of them are presented in
the remaining paragraphs of this section. The present formulation includes line
losses.

Quadratic Relaxation (BFM-QRACOPF) A quadratic relaxation of Eqs.
(5.26)-(5.28) can be obtained by combining the two last constraints and taking
the squared magnitude of the equality. Two new variables are defined which
represent respectively the squared magnitude of the voltage vj = |Vj |2 and the
current ljk = |Ijk|2. The quadratic relaxation formulation is given by:∑

(k,m)∈E

Skm =
∑

(j,k)∈E

(Sjk − zjkljk) + sk, k ∈ N (5.29)

vj − vk = 2 · Re{z∗jkSjk} − |zjk|ljk, (j, k) ∈ E (5.30)

|Sjk|2 = vj ljk, (j, k) ∈ E (5.31)

Note that this formulation is still non-convex because of the quadratic equal-
ity. However, this relaxation is exact for radial networks which is a reasonable
starting point of an approximation for distribution networks [104]. This for-
mulation accounts for power losses through lines by means of the term −zjkljk
in Eq. 5.29.

Second Order Cone Relaxation (BFM-SOCPOPF) From the previous
quadratic relaxation, a second order cone relaxation can easily be obtained by
relaxing the quadratic equality into an inequality:

|Sjk|2 ≤ vj ljk, (j, k) ∈ E (5.32)
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Note that this new formulation forms a convex set.

Branch Flow Linear Approximation (BFM-LinDistFlow) A linear ap-
proximation of the nonconvex formulation can be obtained by ignoring the line
losses. It allows us to remove the current variable from the formulation which
leads to the following new system:∑

(k,m)∈E

Skm =
∑

(j,k)∈E

Sjk + sk, k ∈ N (5.33)

vj − vk = 2 · Re{z∗jkSjk}, (j, k) ∈ E (5.34)

Since this linear approximation neglects line losses, it tends to underestimate
the required power for supplying loads. However, compared to the two linear
approximations presented for the Bus Injection model, this formulation does
not fix voltage magnitude, nor does it neglect reactive power [104].

5.4 Unbalanced Three-Phase Network Models

Since distribution networks are typically not loaded in a balanced fashion, the
single-phase approximation employed in the previous section may be inaccu-
rate. We therefore decided to include in our analysis three-phase power flow
formulations, in order to more accurately account for the behavior of the distri-
bution network. This section presents the two three-phase formulations that are
used in this chapter. Regarding notations, three phases per node must now be
considered. They are denoted by a, b and c. The complex voltage and apparent
power injection at each bus are now vectors for which each entry corresponds
to a different phase. They are respectively denoted by Vj = (V φj , φ ∈ {a, b, c})
and sj = (sφj , φ ∈ {a, b, c}) for each bus j ∈ N of the power network. For
each line connecting bus j to k, the impedance is now expressed as a 3 by

3 complex matrix zjk = (z
φjφk
jk , (φj , φk) ∈ {a, b, c} × {a, b, c}). The current

on the line is given by Ijk = (Iφjk, φ ∈ {a, b, c}). The power flow on the line

is represented by Sjk = VjI
H
jk ∈ C3×3, where the ()H operator provides the

hermitian transpose of a vector or matrix. Finally, we also define these two
new notations: vj = VjV

H
j ∈ C3×3 and ljk = IjkI

H
jk ∈ C3×3. Note that

the diagonal of the two aforementioned matrices is real, because it respectively
represents the squared magnitude of the voltage and the current on each phase.

Even though the literature on optimal power flow and its convex relax-
ations for single-phase approximations is well developed [104], the literature on
three-phase unbalanced optimal power flow problems with convex relaxations is
currently expanding [72,142,152] along with practical implementations [70,170].
The proposed formulations in this section are only derived based on the Branch
Flow model. For details, we invite the reader to refer to [72,152].
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The three-phase Branch Flow formulation is given by the following three
power flow equations:

diag

( ∑
(k,m)∈E

Skm

)
= diag

( ∑
(j,k)∈E

(Sjk − zjkljk)

)
+ sk, k ∈ N (5.35)

Vj − Vk = zjkIjk, (j, k) ∈ E (5.36)

ljk = IjkI
H
jk and Sjk = VjI

H
jk, (j, k) ∈ E (5.37)

Eq. (5.35) represents the power balance at each bus of the power system. Ohm’s
law is expressed by means of Eq. (5.36), while the power flow on a line and
the squared current are defined in Eq. (5.37). The Branch Flow formulation is
equivalent to the Bus Injection model in terms of optimal solution, even though
it enhances numerical stability as for the single-phase approximation [72]. From
this formulation, one relaxation and one approximation can be obtained as
detailed in the following paragraphs.

Three-phase Semidefinite Power Flow Relaxation (BFM-SDPOPF3)
The above set of three equations can be reformulated as follows:

diag

( ∑
(k,m)∈E

Skm

)
= diag

( ∑
(j,k)∈E

(Sjk − zjkljk)

)
+ sk, k ∈ N (5.38)

vj − vk = zjkS
H
jk + Sjkz

H
jk − zjkljkzHjk, (j, k) ∈ E (5.39)(

vj Sjk
SHjk ljk

)
∈ S+, (j, k) ∈ E (5.40)

rank

(
vj Sjk
SHjk ljk

)
= 1, (j, k) ∈ E (5.41)

where S+ stands for the set of hermitian positive semidefinite matrices. The
presented set of three equations provide the same solution as the full unbalanced
three-phase power flow model for radial networks [72]. The semidefinite power
flow relaxation is therefore obtained by removing Eq. (5.41). A distributed
resolution of this model is presented in [142].

Three-phase Linear Power Flow Approximation (BFM-LinDist3Flow)
A linear approximation of this three-phase unbalanced power flow model is pro-
posed in [6,72,152]. This approximation is based on the following assumptions:

1. Line losses are small (zjkljk << Sjk, (j, k) ∈ E) and therefore are ignored;

2. Voltages are nearly balanced:
V aj
V bj
≈ V bj

V cj
≈ V cj

V aj
≈ ei 2π3 .
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The following set of equations therefore provides the aforementioned linear
approximation:∑

(k,m)∈E

diag(Skm) =
∑

(j,k)∈E

diag(Sjk) + sk, k ∈ N (5.42)

vj − vk = γPjk · diag(Pjk) + γQjk · diag(Qjk), (j, k) ∈ E (5.43)

γPjk =

 −2raajk rabjk −
√

3xabjk racjk +
√

3xacjk
rbajk +

√
3xbajk −2rbbjk rbcjk −

√
3xbcjk

rcajk −
√

3xcajk rcbjk +
√

3xcbjk −2rccjk

 , (j, k) ∈ E (5.44)

γQjk =

 −2xaajk xabjk +
√

3rabjk xacjk −
√

3racjk
xbajk −

√
3rbajk −2xbbjk xbcjk +

√
3rbcjk

xcajk +
√

3rcajk xcbjk −
√

3rcbjk −2xccjk

 , (j, k) ∈ E (5.45)

Regarding other constraints representing supplementary characteristics of
the network (see Eqs. (5.8) to (5.11)), their formulation can be extended to
the three-phase case in the following way:

V j ≤ diag(vj) ≤ V̄j , j ∈ N (5.46)

sj ≤ |sj | ≤ s̄j , j ∈ N (5.47)

|diag(Sjk)| ≤ S̄jk, (j, k) ∈ E (5.48)

5.5 Case Study and Results

The models presented in the previous sections (5.3 and 5.4) are applied on
a one-line example, in order to illustrate the impact that each formulation
has on the resulting demand function. The settings used for this example are
presented in Figure 5.3. The chosen base apparent power is 1kVA, so as to
be consistent with household power consumption and the chosen base voltage
is 416V, which is the same as the IEEE European Low Voltage Test Feeder [91].

Figure 5.3: Distribution network setting used for the case study.

We consider a distribution network composed of a unique three-phase (de-
noted a, b and c) line. The resistance and reactance matrix of the line are
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given by the following quantities [91,98]:

r =

2.821 1.128 1.007
1.128 2.788 1.128
1.007 1.128 2.821

 · 10−3 [pu],

x =

29.013 2.135 −0.927
2.135 26.274 2.135
−0.927 2.135 29.013

 · 10−3 [pu]

When a single-line approximation is used, the 3 by 3 matrices are replaced by
the mean of their diagonal elements. Bus 0 represents the substation bus of the
distribution network. The reactive power that can be sent into the distribution
network is limited to 10kVAr, while the active power is limited to 12kW. The
voltage at bus 0 is assumed to be equal to 1 0◦, 1 −240◦ and 1 240◦ per unit
respectively for phase a, b and c. At bus 1 of the distribution network, three
households are connected, each one to a different phase. These three house-
holds subscribe to a common aggregator using priority service pricing. Their
respective demand functions for active power are given in Figure 5.4 where the
marginal benefit for each priority class is respectively in decreasing order 5, 3.5
and 1 e/kW. Regarding reactive power consumption, households are assumed
to have a power factor of 0.95 [91], therefore the reactive power consumed by
the household is given by 0.3287 times its active power consumption. Finally,
the voltage magnitude at bus 1 is assumed to be able to deviate from its nomi-
nal value by 5% (between 0.95 and 1.05 per unit) as emphasized in the previous
section.

The considered case study takes into account only a subset of the for-
mulations presented previously: BIM-DCOPF, BIM-DecoupledOPF, BFM-
QRACOPF, BFM-SOCPOPF, BFM-LinDistFlow, BFM-LinDist3Flow and BFM-
SDPOPF3. Figure 5.5 presents the evolution of the total benefit obtained with
each of the aforementioned formulations by varying the maximum allowed with-
drawal of active power at the substation node from 0 to 12kW. The residual de-
mand function is therefore given by the successive dual values of the constraint
limiting the entry of generated power at the substation node, as explained in
section 5.2. The resulting curve is presented in Figure 5.6 for different optimal
power flow models. Regarding solving time, a significant difference between
the computational time of the models is not observed for such an illustrative
example. However, as emphasized in [70], the authors observe that expanding
the scale of the used distribution network for three-phase models rapidly in-
creases the required solving time. Moreover, this computational time is also
dependent on the chosen three-phase problem formulation.

From the two presented figures, several conclusions can be drawn regard-
ing the effect of network power formulations on the obtained residual demand
function. Regarding the single phase approximation, we observe that both
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Figure 5.4: Household capacity subscription under priority service pricing used for
the case study. Subscription of household 1 is given on the upper left, household 2
on the upper right and household 3 at the bottom respectively.
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Figure 5.5: Evolution of the total benefit obtained for different optimal power flow
formulations by varying the maximum allowed active power withdrawal at the sub-
station node.

BFM-QRACOPF and BFM-SOCPOPF provide the same results, which shows
that the second-order cone formulation is exact for this example. These two for-
mulations, compared to the linear approximations, reach a peak in total benefit
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Figure 5.6: Residual demand function of the distribution network obtained for several
optimal power flow formulations.

at approximately 2kW. This is due to the lower bound on voltage magnitude.
The corresponding constraint does not permit more power to be consumed by
the distribution network, since this would result in a violation of voltage limits.
We detect the same saturation effect for the BFM-LinDistFlow formulation at
a slightly higher level of injected active power. This is due to the same effect,
even though it occurs at a higher injected active power, since this formulation
neglects the effect of power losses along the lines, which also impacts the voltage
at the household nodes. The BIM-DecoupledOPF saturation is even higher be-
cause, even though the model accounts for reactive and active power flow, this
formulation does not take into consideration the interplay between these two
quantities which lead to larger possibilities before violating the lower voltage
bound constraint. In order to highlight the effect of the lower voltage magni-
tude limit on the resulting residual demand function, Figure 5.7 presents the
total benefit obtained when removing the lower voltage magnitude limit from
the different formulations. We therefore observe that, without this bound, all
the linear formulations exhibit a similar behaviour as the BIM-DCOPF formu-
lation, which does not account for reactive power flow and therefore voltage
limits. Note that the BFM-QRACOPF and BFM-SOCPOPF formulations do
not exhibit a saturation anymore but are still below the linear formulations
because they both account for power losses along lines.

Regarding the three-phase models, we observe that they are also affected by
the lower voltage bound, even though their saturation level seems to be supe-
rior to the one-phase nonlinear formulations. Finally, we can observe that the
residual demand function for the three formulations BFM-QRACOPF, BFM-
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Figure 5.7: Evolution of the total benefit obtained for different optimal power flow for-
mulations without voltage magnitude lower bound by varying the maximum allowed
active power withdrawal at the substation node.

SOCPOPF and BFM-SDPOPF3 decreases gradually between 0 and 2kW com-
pared to their corresponding linear approximations. Power losses are the cause
of this decrease. Indeed, the linear approximations do not account for power
losses, while these three formulations do. Therefore, if the substation node
procures 2kW for the distribution network, only a smaller portion of these
2kW will be consumed at the households, because of the power lost during
distribution.

5.6 Conclusion

In this chapter, we propose a framework for aggregators to coordinate with
DSO in order to participate efficiently in electricity market operations in the
presence of priority service. This is achieved by computing residual demand
functions, while accounting for power flow constraints. Even though the impor-
tance of taking into account network physics in these residual demand functions
is already highlighted in [112, 137], we show by employing several power flow
formulations that they produce different residual demand functions for a simple
one-line example. The importance of the formulation choice is therefore also
essential for creating accurate residual demand functions. Indeed, due to cer-
tain modeling choices, the aggregator may be prompted to absorb more power
than what the distribution network can physically manage. The inverse effect
may also appear with an aggregator not seeing the benefit of increasing its
power withdrawal from the substation node.
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5.A Notations

All the notations used throughout this chapter are summarized in the different
parts of this section.

Sets

H, |H| Set of households and its
cardinality

I, |I| Set of reliability options and
its cardinality

Net Feasibility set representing
the physics behind distribu-
tion network

N Set of buses present in the
distribution network

E Set of lines connecting two
bus of the distribution net-
work

{a, b, c} Set of phases of a three-
phase power networks

S+ Set of hermitian positive
semidefinite matrix

Parameters

p̄0 Maximum amount of in-
jected power at the root
node of the distribution net-
work [kW]

MBi Consumer marginal benefit
for power of priority class i
[e/kW]

Θh,i Subscribed quantity by
household h for the relia-
bility option i [kW]

zjk Impedance of line connect-
ing bus j to bus k of the dis-
tribution network [Ω]

rjk Resistance of line connecting
bus j to bus k of the distri-
bution network [Ω]

xjk Reactance of line connecting
bus j to bus k of the distri-
bution network [Ω]

yjk Admittance of line connect-
ing bus j to bus k of the dis-
tribution network [S]

gjk Conductance of line con-
necting bus j to bus k of the
distribution network [S]

bjk Susceptance of line connect-
ing bus j to bus k of the dis-
tribution network [S]

V j Voltage magnitude lower
limit at bus j of the dis-
tribution network [V]

V̄j Voltage magnitude upper
limit at bus j of the distri-
bution network [V]

S̄jk Apparent power magnitude
flowing from bus j to bus k
upper limit [kVA]

p
j

Active power injected at bus
j lower limit [kW]

q
j

Reactive power injected at
bus j lower limit [kVAr]

p̄j Active power injected at bus
j upper limit [kW]

q̄j Reactive power injected at
bus j upper limit [kVAr]

Variables

ndi,h Power consumption of
household h from priority
class i [kW]

λ Dual variable of the fuse
limit constraint in the resid-
ual demand function cre-
ation program

p0 Active power injected at the
substation node of the dis-
tribution network [kW]
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n Variable representing all
variables needed to repre-
sent the distribution net-
work physics

Vj Complex voltage at bus j of
the distribution network [V]

θj Complex voltage phase an-
gle at bus j of the distribu-
tion network

sj Apparent power injected at
bus j of the distribution net-
work (sj = sgj − s

d
j ) [kVA]

pj Active power injected at bus
j of the distribution network
(pj = pgj − p

d
j ) [kW]

qj Reactive power injected at
bus j of the distribution net-
work (qj = qgj − q

d
j ) [kVAr]

sgj Apparent power generated
at bus j of the distribution
network [kVA]

pgj Active power generated at
bus j of the distribution net-
work [kW]

qgj Reactive power generated at
bus j of the distribution net-
work [kVAr]

sdj Apparent power consumed
at bus j of the distribution
network [kVA]

pdj Active power consumed at
bus j of the distribution net-
work [kW]

qdj Reactive power consumed at
bus j of the distribution net-
work [kVAr]

Sjk Apparent power flowing
from bus j to bus k of the
distribution network [kVA]

Pjk Active power flowing from
bus j to bus k of the distri-
bution network [kW]

Qjk Reactive power flowing from
bus j to bus k of the distri-
bution network [kVAr]

Ijk Current flowing from bus j
to bus k of the distribution
network [A]

Functions

RDF (p̄0) Function providing the
residual demand function
valuation for a maximum
injected power at the sub-
station node p̄0

| · | Magnitude of a complex
number

(·)∗ Complex conjugate of a
complex number

(·)H Hermitian operation on a
complex matrix

Re{·} Real part of a complex num-
ber

diag(·) Return a vector formed by
the diagonal elements of a
matrix

rank(·) Return the rank of a matrix



6 Conclusions and
Future Perspectives

As emphasized in the introduction of this dissertation, residential demand re-
sponse has recently gained increasing attention in the scientific literature as
well as in practical applications since it is perceived as a valuable option for
enabling the deeper penetration of renewable energies. The different contribu-
tions of this work therefore focus on the application of a residential electricity
tariff, referred to as priority service, and its generalized form, namely multilevel
demand subscription. Both service definitions are predicated on considering
electricity as a service with different degree of quality.

First, in Chapter 2, a consumer-centric methodology is proposed for inves-
tigating the impact of priority service on consumer comfort and bills. In order
to compare priority service to real-time pricing on a fair basis, a priority ser-
vice menu is designed which is based on real-time prices. The original priority
service theory is also extended in order to include a general form of service
charges. Two simulations are conducted, which consider a Texas and a Belgian
household. The case study allows us to quantify the essential role played by
introducing energy service charges in alleviating the cost of priority service,
relative to real-time pricing.

Subsequently, multilevel demand subscription, the extension of priority ser-
vice, is considered in Chapters 3 and 4. The former chapter focuses on the
design of priority service and multilevel demand subscription as two demand
response options for the system to mobilize residential flexible demand. In order
to achieve this objective, a method is proposed for the utility to approximate
the system load duration curve, which is an essential input for the design of a
demand response menu. Then, a mixed integer linear program is proposed to
compute both menus while relaxing restrictive assumptions of the original the-
ory. Finally, an optimization program is constructed for enabling households
to select efficiently capacity strips from the proposed utility menu. Chapter 4
develops a framework for modeling the system-wide effects of residential flexi-
bility under both priority service and multilevel demand subscription relative

127
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to the economic golden standard of real-time pricing. In both chapters, a real-
istic case study of the Belgian market is performed. The case study allows us
to examine the trade-off between simplicity and operational efficiency for each
of these three proposed demand response schemes.

Finally, Chapter 5 presents preliminary results of a methodology for aggre-
gating residential sector flexibility through priority service, while accounting
for power flow constraints in the low-voltage network. This framework enables
distributed resources of distribution networks to be efficiently accounted for
through residual demand functions, while maintaining scalability in power sys-
tem operations. Low-voltage network constraints are taken into account in this
chapter through different formulations, approximations, and relaxations, based
on either three phases or a single-phase approximation of power flow. The im-
pact of these different formulations on the obtained residual demand function
is analyzed on a simple one-line distribution network example.

In the remainder of the present chapter, a summary of the important con-
clusions obtained for each analysis undertaken in this dissertation is performed
in section 6.1, while section 6.2 is dedicated to the exposition of future interest-
ing directions that have been inspired by the analysis conducted in the present
thesis.

6.1 Summary of the Key Messages

The common main theme of this dissertation is the importance of adding an
energy component to capacity-based tariffs. Indeed, whether this energy com-
ponent is represented by adding energy service charges to the original priority
service pricing theory in the first study or with an added differentiation with
respect to duration in the second investigation, it enables to reduce the cost
faced by households while allowing increased operational efficiency for the sys-
tem. Therefore, in future electricity markets with distributed flexibility and
storage, a mix of energy and capacity charges is likely to be necessary for in-
creasing the efficiency of operations while keeping electricity service charges of
households at acceptable levels. The use of these two components in tandem
is also advocated in [61]. The other significant outcomes resulting from the
present work are summarized in the following sections.

6.1.1 Consumer-centric Comparison of Priority Service
with and without Service Charges to Real-Time
Pricing

• Importance of service charges: Our work shows that adding energy
service charges is essential for a viable implementation of priority service
pricing in a practical setting. It allows households to decrease “wasted
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expenditures” by shifting charges from the capacity to the energy com-
ponent of the service.

• Priority service expenditures: Priority service pricing is significantly
more expensive for households than real-time pricing. Indeed, under real-
time pricing, consumers only pay for the electricity they actually use,
while under priority service, consumers pay for reserving capacity that
may not be entirely employed at any given time interval. The results that
pertain to real-time pricing in this work are idealized, since we consider
consumers as rational agents that react instantaneously to prices. In
practice, this assumption may not hold. This will lead to a degradation
of the observed performance of real-time pricing.

• Effect of batteries: The benefit for households in investing in batteries
is studied for real-time pricing and priority service. In the real-time
pricing setting, even though a battery allows a reduction in the electricity
bill by 25 %, the consumer fails to recover the cost of investing in home
energy storage. However, if consumers are constrained to choose among
priority service contracts, the gain provided by batteries is sufficient to
cover battery investment costs.

• Subscription duration: A significant benefit is observed in consumer
costs when using weekly priority service contracts instead of yearly ones.
Indeed, renewing subscription on a weekly basis allows consumers to bet-
ter adapt their contract to the weekly fluctuations of their load, thereby
reducing their incurred cost. There is therefore a significant added value
for consumers to change their subscription relatively frequently, however
this undermines the claimed advantage of simplicity in priority service.

6.1.2 Comparison of Priority Service and Multilevel De-
mand Subscription to Real-Time Pricing in terms
of System Operation

• Operational efficiency: Even though multilevel demand subscription
increases the implementation complexity from both the aggregator and
the household sides, it improves operational efficiency by allowing the
utility to better discriminate flexible consumers. This results in a total
cost reduction of about 2% relative to priority service, which amounts to
10Me/month for the 15-minute case study for Belgium. However, multi-
level demand subscription and priority service appear to be significantly
more costly for the system than real-time pricing. As detailed previously,
the performance of real-time pricing in this work is an ideal benchmark
compared to a real-world setting.

• Comparison of household energy/capacity subscription for dif-
ferent pricing policies: Households can better match their actual con-
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sumption with multilevel demand subscription compared to priority ser-
vice. Indeed, they subscribe to less energy, and more capacity, than under
priority service. Households are also shown to employ their subscription
more efficiently under multilevel demand subscription because of a higher
utilization rate than under priority service pricing.

• Households expenditures under different pricing policies: House-
holds experience a lower bill and a lower total cost under multilevel de-
mand subscription than under priority service. This is due to capacity
strips procured under priority service that remain idle for a significant
portion of the service horizon. This reduction amounts to 20% for house-
holds that only own solar panels and is limited to 10% when households
also own a battery.

• Cost-benefit analysis of local storage: Even though a battery allows
households to reduce their total subscription and inconvenience cost, the
investment cost of a battery may prohibit its acquisition, especially un-
der multilevel demand subscription. Indeed, the benefit of batteries is
reduced in this case because of the energy component already present in
the multilevel demand subscription scheme by means of short durations.

• Cost-benefit analysis of local rooftop solar panels: Owning only
solar panels without a battery seems to be unjustifiable in terms of house-
hold gains compared to investment cost. Note, however, that this type of
households are the ones that are most rewarded by changing from priority
service to multilevel demand subscription in terms of total cost reduction.

• Effect of real-time pricing on households: Real-time pricing always
enables households to reduce their shortage cost compared to the two
other schemes, except for households with large batteries that serve as
a system reservoir for supporting other households during periods of low
renewable production1.

• Influence of the model resolution: The consistency of all previous
conclusions is observed for two different resolutions. We note that the
lower resolution underestimates the benefits of multilevel demand sub-
scription compared to priority service for both the system and house-
holds. This observation stresses the value of an accurate model with
finer time resolution at the level of 15 minutes for arriving at more re-
liable conclusions regarding the interplay between demand response and
system operations.

1Note however the difference in treatment between households under multilevel demand
subscription or priority service who are not payed to provide electricity to the grid while it
is the case under real-time pricing.
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6.1.3 Combination of Distribution Network Physics with
Priority Service

• Importance of the employed network model: Our analysis under-
scores the importance of carefully choosing the network model that is
employed for computing the residual demand function. Indeed, due to
certain modeling choices, an aggregator may be prompted to absorb more
power than what the distribution network can physically manage.

6.2 Future Perspectives

Since the interest in demand response for future power systems continues to
grow, in this last section we detail possibilities for future research on the sub-
ject that are triggered by the present work.

Chapter 5 proposes a preliminary investigation on the interaction between
DSO and priority service. Several improvements or research directions can be
considered:

• Larger distribution networks with more components: It would
be interesting to deepen the analysis of Chapter 5 by applying the pro-
posed methodology on larger distribution networks, such as the European
network from the proposed IEEE unbalanced distribution networks test
cases [91,153] to see if the conclusions from this chapter maintain with in-
creasing scale. Roland in [151] describes typical characteristics of low- and
medium-voltage networks which can also be helpful for creating larger-
scale examples. Moreover, components of distribution networks such as
transformers, shunts or switches are not considered in the proposed for-
mulations. It would be interesting to observe the impact that they may
have on the creation of the residual demand function.

• Network charges: Although we investigate the issue of coordinating
aggregators with DSO in Chapter 5, it would be worthwhile to study
the impact of network charges on the design of the priority service and
multilevel demand subscription menus.

• Subsidies for batteries and rooftop solar panels: It would be valu-
able to study the impact of batteries and solar panels on the distribution
network in terms of network investment for the DSO. In the case in which
demand response indeed reduces required investments in networks, it may
create another stream of revenue for batteries or rooftop solar panels that
can be provided by the DSO to the consumer so as to actually enable
households to cover battery investment costs.
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• Capacity expansion planning: It would be relevant to analyze the
impact that demand response in the form of priority service or multilevel
demand subscription can have on capacity expansion decisions of power
networks in terms, for example, of the amount of renewable resources
that can be absorbed by power networks.

The approach presented in this manuscript focuses on the consumer and the
impact of different demand response schemes on its electricity bill but also
comfort. An extension of this work can also be created for which the main
focus is on the aggregator that designs such demand response contracts. In-
deed, how the aggregator owning no specific assets but only interacting with
the wholesale electricity market can buy enough power to satisfy its consumers
while respecting the proposed reliability is an interesting direction for future
research. Moreover, studying the influence of the incorporation of several de-
mand response aggregators that bid into the market on the wholesale electricity
price is a further direction of research. Such variations can be inspired by the
research of [20].

Finally, home energy management system is a field of research in its own
right. The study provided in this dissertation uses it as a tool to measure
the impact of priority service or multilevel demand subscription on residential
consumers. However, it would be valuable to develop home energy management
systems that can manage the daily consumption of consumers. Indeed, such a
home energy router can gain knowledge, through repeated experience, about
the consumption patterns of households, the interruption patterns of different
colors, as well as the discomfort of consumers from different interruption events.
It is particularly relevant since the interruption patterns of colors and the
arrival patterns of appliances are random. This allows the home energy router
to continuously improve by gradually learning how to best serve the needs of
the household. This creates a scope for the application of learning, such as
reinforcement learning algorithms, in home energy scheduling, for which an
increasing body of literature is currently being developed [140,180].
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[46] Enefit Latvia. Elektr̃ıba mãjai. https://www.enefit.lv/en/majai/
elektriba.

[47] Enemalta. Tariffs, billing and payments. https://www.enemalta.com.mt/
services/tariffs-billing-and-payments/.

[48] Energia. All energy plans. https://www.energia.ie/plans-and-
switching-info/all-energy-plans.
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[107] MälarEnergi. Fast eller rörligt elpris - vilket passar mig bäst? https:
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