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Institut Montefiore





Abstract

The increasing integration of intermittent renewable production requires more flexible as-
sets in power systems. There are two potential paths in order to increase the remuneration
of these flexible assets. The first one is to improve trading strategies in existing markets.
The second one is to introduce new market mechanisms. This thesis studies both aspects
by developing trading strategies for the Continuous Intraday Market, and by analyzing dif-
ferent options for implementing a “scarcity pricing mechanism” in the European electricity
market design.

The contributions of the dissertation are organized in three chapters. Chapter 2
presents a method for trading the production of a storage unit in the Continuous In-
traday Market. We model this problem in the Markov Decision Process framework. We
present an approach based on Policy Function Approximation for tackling the problem.
We provide relevant parameters for defining our policy, and demonstrate the effectiveness
of our approach by comparing it to a method commonly employed in the industry on
real historical data. In chapter 3, we are interested in the problem of a renewable unit
covering its position in the Continuous Intraday Market. As a starting point for tackling
this problem, we characterize an optimal policy for trading a fixed quantity in a simplified
version of the Continuous Intraday Market. We use this analytical solution as a basis for
developing a Value Function Approximation algorithm and an alternative Stochastic Dual
Dynamic Programming algorithm that can trade under a more realistic set of assumptions.
Chapter 4 proposes a methodology for analysing different market design options for imple-
menting scarcity pricing in the European markets. The methodology relies on analytical
insights that can be derived under an assumption of price-taking behavior. These insights
are validated by a simulation model which represents the European balancing market as
a Markov Decision Process. Our results highlight the benefit of introducing a market in
the European market design for trading balancing capacity in real time.
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Chapter 1

Introduction

1.1 Motivation

In order to reduce CO2 emissions, the European Commission launched, in 2007, the Re-
newable Energy and Climate Change Package which targets sourcing 20% of EU energy
consumption by renewable resources by 2020 [EC08]. Thanks to this plan, the integration
of renewable energy, in Europe, has increased from 13.2% in 2010 to 18% in 2019 [Eur].
This increase is foreseen to continue with the adoption of the Climate and Energy Pack-
age [EC]. This integration of renewable resources has drastically impacted electricity
markets. The random availability of renewable supply creates the need for correcting
system dispatch closer to real time when the forecast of renewable supply becomes more
precise. An interesting option for such corrections is to trade in the Continuous Intraday
Market (CIM).

Renewable energy integration may explain the recent increase of liquidity in this mar-
ket. Specifically, traded volumes in the German CIM have increased from 10 TWh in 2010
to 41 TWh in 2016 [MO18]. This market is therefore becoming an interesting option for
(i) fast-moving assets, such as batteries or pumped hydro storage, that can extract value
from their flexibility; (ii) renewable units that can cover their forecast errors.

Another impact of the penetration of renewable resources is the development of new
market designs (scarcity pricing [Hog13], flexible ramping products [CAI11]) that can bet-
ter remunerate flexible assets. The need for a better remuneration stems from the following
discrepancy. On the one hand, flexible assets are needed now more than ever in order to
cope with the variability of renewable production. On the other hand, the profitability
of these units is limited in recent years. This has been observed in [PS17], where the
authors realize a simulation of the Belgian electricity market between January 2013 and
September 2014. From their simulation, they observe that combined cycle gas turbine
(CCGT) units, which represent the majority of flexible assets in Belgium at present, are
not profitable enough to cover their investment cost. This is confirmed by Fig. 1.1 which
is sourced from the yearly market monitoring report of the Belgian regulator [CREb]. This
figure illustrates the evolution of the estimated (according to the regulator) profitability
of a CCGT unit in the Belgian market1. It can be observed that the profitability in recent

1This estimation is based on an assumed trading strategy that trades 30% of the unit in the forward
market (if the price is higher than the marginal cost of the unit). Then, in the short term, (i) if the price
is higher than the marginal cost of the unit, the remaining energy of the unit capacity is sold, and (ii) if
the price is lower than the marginal cost of the unit, the capacity offered in the forward market is bought
back [CREb].
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years is lower than the one that was achieved before 2012.
One of the reasons for this decreased profitability may be related to the change in the

merit order curve resulting from the increased penetration of renewable units, as illustrated
in Fig. 1.2. Renewable units, which have a near-zero marginal cost because they do not
require burning fuels, shift the merit order curve to the right. This places flexible assets,
which are often characterized by a high marginal cost, out of the market [Pap].

Figure 1.1: Annual profitability of a CCGT unit of 400 MW in Belgium with an efficiency of 50%
and a yearly fixed cost of 7.5 million euros. The production is offered in the forward market, as
well as in short-term markets [CREb].

Figure 1.2: Merit order curve with low renewable infeed (left) and high renewable infeed (right)
[PS].

This lack of profitability, which is observed in models, has been confirmed in practice by
the fact that, in 2014, the closure of some CCGT units was announced [CREc]. As a short-
term plan, in order to keep these units running, Belgium has been implementing a strategic
reserve [ELIg]. The idea of this mechanism is to keep power plants that have announced
their plan to close available during winter months [HDV16]. This mechanism will soon
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be replaced by a capacity remuneration mechanism [ELIf], which aims at remunerating
market participants for their installed capacity.

Another option that has been investigated by the Belgian regulator in order to improve
the profitability of CCGT units is to introduce a scarcity pricing mechanism in Belgium.
The idea of this mechanism is to apply an adder to real-time prices which represents the
scarcity in the system (the less real-time reserve the system has, the greater the adder is).
In order to study scarcity pricing, the Belgian regulator has assigned a number of studies
to the Center for Operations Research and Econometrics of UCLouvain. One important
conclusion of the early studies is that, if we want the mechanism to be efficient (improve
significantly the profitability of CCGT units), we need the effect to not be limited only to
real-time markets (which corresponds only to a small fraction of the market) but also to
impact forward markets [PSB18]. This effect is referred to as back-propagation.

Motivated by these challenges, this dissertation focuses on intraday and balancing
markets as means of enhancing the value of flexible assets. (i) Intraday markets. The
focus in this part of the work is in developing trading strategies at high frequency for the
CIM that outperform methods traditionally used in the industry. We mainly focus on
three elements when developing our trading strategies: (a) We account for the impact of
the trading frequency. Most methods developed in the literature consider at best hourly
trading, which does not represent accurately the evolution of the CIM. The reason being
that, as shown later in Table 2.1, if we trade at an hourly frequency, we only observe
a fourth of the offers that are placed in the market, because the three other fourths
of the offers have appeared and disappeared before we reach a decision. (b) We aim
for methods that are capable of reaching decisions rapidly, since interesting offers can
disappear at any moment in the CIM. (c) In order to develop an approach that can be
useful for practitioners, we also aim at developing trading strategies that are based on
insights that originate from analytical solutions and from detailed market analysis. (ii)
Balancing markets. Our goal in this part of the work is to compare the performance
of different market designs in order to introduce scarcity pricing in the Belgian electricity
market. More specifically, we are interested in testing the ability of different options of
EU balancing market designs to back-propagate the value of reserve capacity to the day-
ahead reserve market. This is an important characteristic of a market design, because this
back-propagation contributes towards producing a stable price signal for investment.

The remainder of this chapter is devoted to the presentation of notions that will be
used through this dissertation. Section 1.2 present the concept of flexibility. Section 1.3
provides an overview of electricity market operations in Europe. Section 1.4 introduces
the basis of the methodology employed in this dissertation.

1.2 Flexibility

In this section, we provide the background for understanding the concept of flexibility
in electricity markets. We define flexible assets as the ones that can participate in the
CIM or balancing energy market. This means that flexible resources are able to update
their output at short notice. The relevant timelines that we consider in this work are
the following: 30 minutes intervene between the closure of the CIM and product delivery,
3 minutes is the maximum amount of time between the activation notification and the
activation start in the balancing market [ELIc].

As an example, flexible assets include storage units, combined cycle gas turbines, or
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demand response units.

Another way to understand the concept of flexibility is based on option theory. There
is a long literature about the use of option theory for estimating the value of power
plants [DO03,DJS99]. The intuition is that owning a power plant provides the opportunity
but not the obligation to burn fuel in order to produce electricity at any point in time
during the lifetime of a power plant. If the owner decides to produce electricity, its payoff
is equal to the spark spread (the electricity price minus the fuel cost multiplied by the
heat rate). Therefore, the owner of the power plant will only operate its power plant if
the spark spread is positive [DO03]. On the other side, a spark spread call option is an
option the payoff of which is equal to the spark spread if it is positive or zero else [DJS99].
Therefore, it can be observed that the payoff of the power plant owner is exactly the same
as the one that would be obtained from a spark spread call option. Finally, the value of
the power plant can be computed as the sum of the spark spread call option payoffs over
its lifetime.

The increased penetration of renewable units will influence the expected value of flex-
ible power plants in two ways: (i) The fact that renewable units push flexible assets with
high marginal costs out of the market may decrease the electricity price. This would de-
crease the value of the option, and therefore the expected value of owning the power plant.
(ii) The increased volatility in the electricity price will increase the value of the option,
because it increases the probability of the call option to be exercised. Therefore, this will
increase the expected value of the power plant.

Nevertheless, this intuition based on option theory lacks two important factors: (i)
Computing properly how much energy a generator can produce and how much it costs to
operate it requires the modeling of important complicating features. These include ramp
constraints, non-constant marginal cost, start up costs that are dependent on the time at
which the power plant has been stopped, and so on. Thus, a market simulation model is a
more accurate option for quantifying the value of power generating units [PS17]. (ii) It is
too simplistic to treat investment decisions on the basis of expected profit alone, because
investors are risk averse. Increased volatility will also discourage investments, because risk-
averse investors are not willing to build power plants just based on infrequent spikes on
which they might recover their investment costs. As explained in section 1.3.6 , scarcity
pricing is also a remedy to this risk aversion problem because, under tight conditions
without load shedding, the mechanism would cause moderate but frequent price spikes of
medium height. This strongly decreases the risk faced by investors, because, if the power
plant is not available (e.g. forced outage) during a price spike, the investor knows that
other opportunities are likely to occur for recovering the investment cost of the plant.

1.3 Overview of Electricity Markets

In this section, we provide basic background on the operation of electricity markets. We
commence by presenting the positioning of each market in a timeline. We then describe
each market briefly. In Fig. 1.3, we present the timing of the different short-term electricity
markets in the central European power exchange. We use indicative values from the
German and Belgian market. Short-term market operations commence with the balancing
capacity market at 10AM the day before electricity delivery (D-1) [ELIa]. The day-ahead
auction follows, with gate closure taking place at 12 noon, on D-1 [EPEf]. Subsequently,
the intraday auction gate closure is at 3PM on D-1 [EPEf]. Following the conclusion of

4



Chapter 1

the intraday auction, the continuous intraday market (which is a separate process from the
intraday auction) commences at 3 PM for hourly products and at 4 PM for quarter-hourly
products [MO18]. The CIM closes 30 minutes before delivery2. The balancing energy
market gate closure is 45 minutes before delivery [ELIh]. Finally, imbalances are cleared
at the imbalance price [TEN].

Figure 1.3: The sequence of operations in a typical central European short-term electricity market.

1.3.1 Day-ahead Auction

The day-ahead auction is a central operation of European electricity markets. The day-
ahead auction is characterized by high liquidity. The total quantity traded in the day-
ahead market was 234 TWh in Germany in 2016 compared to 36 TWh in the continuous
intraday market and 5 TWh in the intraday auction [EPEd]. Many different products can
be traded in the day-ahead auction (block orders, linked blocks, exclusive blocks) [EPEg].
This allows traders to represent with a fair degree of accuracy the operational constraints
of their power plants. This market is an auction, with traders submitting bids to the
market. The market operator collects these bids, clears the market and announces the
cleared bids and the uniform price for each delivery hour.

1.3.2 Intraday Auction

As in the case of the day-ahead auction, the intraday auction allows for a large variety
of products to be traded. The granularity of the products in the intraday auction is 15
minutes, compared to the 1-hour granularity of the day-ahead market. This is interesting
for traders, because it allows them to trade at the granularity that corresponds to the
settlement of electricity in real time [EPEa] and [EPEe]. This is especially useful for solar
units, the production of which can vary substantially within the time span of a single hour
in the morning or evening. The bidding and clearing process of the intraday auction is
similar to that of the day-ahead auction.

1.3.3 Continuous Intraday Market

This market is very important for renewable units because they face considerable supply
uncertainty, and therefore stand to gain by adjusting their position dynamically in the
CIM, as more accurate forecast information arrives for their real-time supply. This mar-
ket is therefore becoming an interesting option for fast-moving assets that can valorize
their flexibility by covering the uncertainty that stems from renewable production. The

2This is an indicative value for our dataset, which covers 2015 and 2016. It has been changed to 5
minutes in 2017 [KKP20]
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operation of this market is drastically different compared to the one of the day-ahead and
intraday auction because it is not cleared at one moment in time. Instead, it is a con-
tinuous process. At any moment of operation of the CIM, there is an order book which
collects all the available bids. These bids have 4 characteristics: (i) a delivery time, which
is the moment at which the power should be injected to or withdrawn from the grid; (ii)
a type (sell/buy): a sell (resp. buy) bid corresponds to an offer from a counter-party to
sell (resp. buy) power; (iii) a price (in e/MWh); and (iv) a quantity (in MWh). At any
moment, a trader can place a new bid that is added to the order book, or accept a bid
that is already present in the order book.

1.3.4 Balancing Markets

The balancing of the system in the European market design is somewhat decentralized
relative to other designs that are encountered, such as the US Standard Market Design.
Concretely, the balancing of the system in the European design is, to a certain extent,
“outsourced” to market participants. The entities that are responsible for keeping their
portfolios balanced in real-time are the Balancing Responsible Parties (BRPs), supported
by the transmission system operator (TSO) who is responsible for handling any residual
imbalances. BRPs are essentially portfolio owners that are responsible for ensuring that
their production or consumption follows the schedule that is derived from their trades
in the day-ahead auction, intraday auction and continuous intraday market, as well as
any other forward markets. Nevertheless, it is possible that BRPs fail to fully balance
their portfolio. This creates an imbalance between production and consumption which
can cause technical problems3. In order to mitigate this imbalance, the TSO activates
balancing capacity4. This balancing capacity is offered by balancing service providers
(BSP) as follows: the capacity is committed in the balancing capacity market, and is
activated in the balancing energy market5. Each BSP must be attributed to at least one
BRP portfolio, as foreseen in article 18(4).d of the European Balancing Guideline [Eur17].

1.3.4.1 Balancing Capacity Market

In the balancing capacity market, the BSPs can offer a certain capacity of their assets for
the purpose of resolving real-time imbalances. This means that, if BSPs place succesful
bids in balancing capacity auctions, they are required to keep this capacity available in
real time in case it is requested by the TSO. In order to keep this capacity unused, BSPs
receive a payment no matter if they are activated in real time or not [ELIh].

1.3.4.2 Balancing Energy Market

The balancing energy market remunerates BSPs if they are activated in real time. There
are two options for bidding in the balancing energy market. According to the first option,
BSPs that are cleared in the balancing capacity market for a quantity q are required to bid

3If the imbalance is too large, the electrical frequency will move too far from the reference frequency.
This can cause power plants to shut down and therefore lead to a blackout.

4Notice that different balancing capacity products exist. They differ by the amount of time in which
they should be available after notification by the TSO. In this thesis, we consider only one generic balancing
capacity product. Nevertheless, the case with several balancing capacity products has also been considered
in [PSB18].

5Balancing capacity and balancing energy are the European equivalent of day-ahead reserve and real-
time energy in the US, respectively. In this thesis, we use the European and US terms equivalently.
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this quantity q in the balancing energy market, but can choose the associated price [ELIh]
at which they can be activated. Otherwise, if a BSP has not been cleared in the balancing
capacity market and has leftover flexibility in its portfolio, it can submit an offer to the
TSO for the quantity that it wishes to make available and the associated price. These are
referred to as free bids. Thus, what distinguishes free bids from BSPs that are cleared in
the balancing capacity market is that the former are not obliged to bid any capacity in
the balancing energy market, whereas the latter are required to bid at least the balancing
capacity that they have successfully sold in the balancing capacity market. The TSO
collects all free bids, aggregates them with the aforementioned balancing energy bids, and
activates them in real time according to their merit order6, as shown in figure 1.4 [ELId].
In this figure, the blocks correspond to the bids submitted by all the BSPs (the block
height is the bid price and the block width is the quantity of the bid). These bids are
ranked from the cheapest to the most expensive one. The red line represents the system
imbalance which is the quantity that the TSO needs to activate to restore the system
balance. The offers in blue are the ones that would be activated by the TSO. The price of
the bid that is partially accepted7 is the balancing price that will paid to all the activated
BSPs8.

Figure 1.4: Illustration of a merit order curve.

1.3.5 Imbalance Settlement

In real time, the TSO observes the system-wide imbalance and activates balancing energy
in order to address this imbalance. BRPs are settled for their real-time energy deviations
at a so-called imbalance price. The settlement rules (BRP obligation and payments) faced
by BRPs typically differ among different European countries, and the resulting incentives
for BRPs to deviate from balancing their portfolio vary according to these different pricing
rules. In Belgium, the imbalance price is computed as the price of the marginal balancing
capacity that is activated, to which a term α is added in case of large system imbalance.

6The bids are activated from the cheapest to the most expensive one.
7In case the volume activated by the TSO happens to activate partially an indivisible bid, the TSO will

select the next acceptable bid [ELIc].
8Although certain European national balancing markets currently rely on pay-as-bid settlements, the

new European balancing platforms (“MARI” initiative and “PICASSO” initiative) that are being put in
place will be trading at a uniform balancing price.
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The rationale of the alpha parameter [ELI19] is the following: ”The alpha parameter
offers an additional incentive that is applicable in the event of a structural imbalance in
the Belgian control area.”

1.3.6 Scarcity Pricing based on an Operating Reserve Demand Curve

The aim of scarcity pricing is to align the remuneration of flexible assets that can offer
reserve services to the system with the actual value of the services that they provide. The
lack of profitability that flexible assets face is related to the missing money problem, that
has been exacerbated by the introduction of renewable units in electricity markets [CREa].

The missing money problem arises in electricity markets in the presence of price caps.
Price caps have been put in place in electricity markets in order to cope with market
power issues. However, due to price caps, electricity prices may not rise sufficiently high
for certain power plants to recover their investment costs. Although lifting price caps
would, under ideal conditions, largely address the missing money problem, this option
faces practical obstacles. Under tight system conditions, it is difficult for regulators to
differentiate between legitimate price increases that are due to exhausted capacity and the
exercise of market power [CREa]. Moreover, it is not desirable for producers to rely on
very few price spikes that are difficult to predict, in order to recover their investment cost.

The idea of scarcity pricing based on Operating Reserve Demand Curves (ORDC) is
to produce equilibrium prices for real-time balancing capacity that correspond to the level
of stress in the system. These prices also affect the equilibrium price of real-time energy.
The evolution of these ORDC prices as a function of the available reserve in real time is
illustrated in Fig. 1.5. It can be observed that ORDC prices are low if the amount of
reserve available in the system is high, and become higher when the system is tighter. The
ORDC proposed by Hogan connects the equilibrum price to the loss of load probability in
the system [Hog05,Hog13], and can be expressed mathematically as follows:

λR(R) = max((V OLL−MC) · LOLP(R), 0) (1.1)

where:

• V OLL is the value of lost load. For the implementation of scarcity pricing in Bel-
gium, it is foreseen that the current bidding limit for the balancing energy market
will be used (13500 e/MWh). This choice is based on a simulation of the Belgium
market [CP21]. In this simulation, two different values have been employed (8300
e/MWh and 13500 e/MWh). In order to decide between the two options, the au-
thors propose to compare the total system cost for the 2 different options and choose
the one with the smallest total cost. This total system cost includes: (i) fuel cost;
(ii) fixed cost; (iii) activation cost; and (iv) shortage cost.

• MC is a proxy of the marginal cost of the marginal unit in the system. This can
be estimated as the price of the real-time energy market. In the current design
proposed in Belgium, it would be the marginal incremental price MIP (highest price
for upward activated reserve)9.

9The situation will become more complex with the introduction of the European platforms MARI and
PICASSO.
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• R is the amount of upward reserve available in the given time period when reserve
is being activated. This can either be based on data that is metered in real time, or
on the offers that are placed by market participants in the balancing energy market.

• LOLP (R) is the loss of load probability as a function of reserve capacity R in the
system. This loss of load probability represents the probability of load shedding given
the amount of reserve that is available in real time. The loss of load probability is
estimated using a Gaussian distribution. Different Gaussian distributions are used
depending on the season and on the moment of the day. The mean and standard
deviation of LOLP (R) can be derived from historical system imbalance data.

An appealing aspect of scarcity prices based on ORDCs is that these scarcity prices
become non-zero when the system is tight but there is no load shedding. This is exactly
their intended function. When the loss of load probability becomes non-zero frequently
(the system is tight and needs investment in extra capacity), the adder will cause moderate
but frequent spikes in the electricity price which will provide a signal for investing in new
capacity. This is perceived as a less risky investment environment than one which relies
on rare occurrences of load shedding where the price of energy reaches V OLL10.

Figure 1.5: Illustration of scarcity pricing [CP21].

1.4 Reinforcement Learning

As we discuss in previous sections, both the continuous intraday market and the balanc-
ing market are useful for coping with the uncertainty of renewable supply. Therefore,
the problem faced by owners of flexible assets in these markets falls under the scope of
multistage optimization under uncertainty, because asset owners need to arrive to deci-
sions while accounting for the fact that recourse actions can be adopted in an uncertain
future. There are two main ways to approach this type of problem that are considered
in this thesis: (i) Stochastic Programming; and (ii) Reinforcement Learning. For trading
in the CIM, our method of choice is Reinforcement Learning because we are interested in

10A scarcity pricing mechanism helps in sending a price signal which is less risky for investors. Never-
theless, our work does not tackle the risk faced by investors due to regulatory uncertainty.
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developing trading strategies at a high frequency. Trading at 1-second frequency would
be impossible for a stochastic programming approach, because it would require solving
a multistage program with several million stages. In order to compare different market
designs, there are also two main approaches to the problem that can be considered (i)
stochastic equilibrium methods, and (ii) multi-agent Reinforcement Learning. We opt for
multi-agent Reinforcement Learning in our analysis. The reason is that, as explained in
section 4.1.2, stochastic equilibrium methods are not able to model some of the features
that are under consideration in the balancing market design debate.

The basic idea of Reinforcement Learning (RL) is that an agent can learn how to
interact with an environment in order to achieve a goal. An agent in the context of
RL is able to sense the state of the environment (state), take decisions that influence
the environment (action), and quantify how well it is performing with respect to its goal
(reward).

1.4.1 Markov Decision Processes

RL problems can be formalized mathematically using the framework of Markov Deci-
sion Processes (MDPs). We commence this section by defining MDPs. Subsequently, we
present important notions related to the solution of MDPs. The detailed MDP formula-
tions for the problems that are the focus of this work are presented in sections 2.3, 3.2.2
and 4.2.2.

In the MDP framework, an agent interacts with the environment for a certain number11

of discrete time steps: 0, 1, · · · , T−1, T . These interactions at each time step are illustrated
in Fig. 1.6. The agent takes an action At. Based on this action and the previous state St,
the environment returns a scalar reward Rt+1 and a new state St+1. Therefore, in order
to model a problem in the MDP framework, we define the following for every time step t:

• a state space S which is the collection of all the information that is required in order
for the agent to reach a decision.

• an action space A which contains all the feasible actions of the agent.

• a reward function R:

Ras
.
= E[Rt|St−1 = s,At−1 = a] (1.2)

This represents the expected reward that is obtained if the agent chooses action a
in state s.

• a transition function P:

P ass′
.
= Pr[St = s′|St−1 = s,At−1 = a] (1.3)

This provides the probability of reaching state s′ if the agent chooses action a in
state s. This transition function is assumed to respect the Markov property:

Pr(St|St−1, At−1) = Pr(St|St−1, At−1, · · · , S1, A1)

which means that the future evolution of the environment only depends on the
current state and action, and not on past states and actions.

11In this thesis, we only consider problems with a finite horizon. This implies that the agent interacts
with the environment for a fixed number of time steps [SB18]. Therefore, we only describe the MDP
framework and the solution methods adapted to finite horizon problems. The precise horizons for the
different problems we consider are described in sections 2.3, 3.2.2 and 4.2.2.
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Figure 1.6: Description of the interaction between the agent and the environment in the Reinforce-
ment Learning paradigm12.

In order to complete the characterization of an MDP, we define the objective of the
agent and what it aims at optimizing:

• The objective of the agent is to maximize the expectation of the return Gt. This
return is defined as the sum of rewards until the end of an episode:

Gt = Rt +Rt+1 + · · ·RT

• In order to maximize the expected return Gt, the agent optimizes over a set of
decision rules that are followed in any state. This set of rules is referred to as a
policy. A policy π(a|s) = Pr(At = a|St = s) is a function which is a distribution
over actions for every state of the MDP13.

For a given initial state s0, the MDP problem can therefore be expressed as:

max
π∈Π

Eπ [G0|s0] , (1.4)

Here, Eπ refers to the expectation given that an agent follows policy π.

In order to verify that a policy is optimal, we can use the Bellman optimality equation.
This equation relies on the concept of a value function.

Intuition of value functions. The idea of a value function is to inform the agent about
the prospect of finding itself in a given state. Concretely, the value function of a state
s under policy π, denoted as vπ(s), is defined as the expected return that the agent can
obtain if it applies policy π starting in state s. It can be be expressed as:

vπ(s) = Eπ[Gt|St = s] (1.5)

Similarly, it is also possible to define the action-value function of state s and action a
under policy π: qπ(s, a). This is the expected return that the agent achieves if it applies
action a starting in state s, and then applies policy π. It can be expressed as:

qπ(s, a) = Eπ[Gt|St = s,At = a]

12This graph is inspired from the one presented in [SB18].
13This is the standard definition of an MDP. In chapter 2 and 3, we employ non-deterministic policies

for learning, in order to ensure sufficient exploration. Exploration refers to the notion that every potential
actions should be attempted regularly, in order to check whether the decision-maker can improve on what
is currently perceived as the best possible action. Nevertheless, we apply a deterministic policy when we
are testing our derived policy out-of-sample.
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Value function computation for a given policy. In order to compute the value
function associated to a given policy, we can use the Bellman equation. The idea of the
Bellman equation is to split the return between the direct reward and the return of the
next state, as shown in Eq. (1.6). By applying the definition in Eq. (1.2), (1.3) and (1.5),
we obtain Eq. (1.7). This shows that the Bellman equation is a set of linear equations.
This means that, in order to evaluate a policy, we simply need to solve the following linear
system:

vπ(s) = Eπ[Rt+1 +Gt+1|St = s] (1.6)

=
∑
a∈A

π(a|s)

(
Ras +

∑
s′∈S
Pass′vπ(s′)

)
(1.7)

Similarly, the Bellman equation can also be written for the action-value function:

qπ(s, a) = Eπ[Rt+1 +Gt+1|St = s,At = a] (1.8)

= Ras +
∑
s′∈S
Pass′

∑
a′∈A

π(a′|s′)qπ(s′, a′) (1.9)

Bellman optimality equation. The Bellman optimality equation is the application of
the Bellman equation (1.7) for the optimal policy. It can be written as:

v∗(s) = max
a

E[Rt+1 + v∗(St+1)|St = s,At = a] (1.10)

and similarly for the action-value function:

q∗(s, a) = E[Rt+1 + max
a′

q∗(St+1, a
′)|St = s,At = a] (1.11)

These equations state that the value of a state under an optimal policy must be equal
to the expected return assuming the best action in that state. Unfortunately, due to the
max operator, Eqs. (1.10) and (1.11) are systems of non-linear equations. It is for this
reason that iterative methods have been developed in order to find optimal or high-quality
policies. We will present some of these methods in the following section.

1.4.2 Methods for Solving MDPs

We organize this section by first covering early methods that were developed in the liter-
ature and discussing their limitations. We then introduce more recent methods that are
applicable for our problems.

Policy iteration One of the early methods that have been proposed for solving MDPs
is policy iteration. This algorithm can be decomposed into two steps that are applied in
alternating order:

• Evaluate the policy: To this aim, we need to solve the Bellman equation. This
can be accomplished by solving the linear system (1.7).
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• Improve the policy: It has been proven [SB18] that by choosing the optimal
action after one step of look-ahead (1.13) according to vπ, we obtain π′ which is a
better policy than π.

π′(s)
.
= argmaxaqπ(s, a) (1.12)

= argmaxaE[Rt+1 + vπ(St+1|St = s,At = a)] (1.13)

Note that, when the policy stops changing, we are guaranteed to have converged to
the optimal solution, because Eq. (1.13) becomes identical to the Bellman optimality
equation (1.10).

The limitation with this method is that it relies on knowledge of the transition function
as well as the reward function. For many problems, this assumption is too strong, instead
we may be limited to access to samples of the transition and reward function.

Tabular methods When we can only access samples of the transition and reward
function, we can resort to tabular methods. The idea of these methods is to compute
a table that stores an estimation of the action-value function for all pairs of states and
actions. Using this idea, the policy π can be optimized using the following algorithm
[SB18]:

Initialize:

π ← an arbitrary policy

Q(s, a)← an arbitrary action-value function

N(s, a)← 0

Repeat forever:

(a) Generate an episode using π : S0, A0, R1, · · · , ST−1, AT−1, RT

G← 0

Loop for each step of the episode, t = T − 1, T − 2, · · · , 0 :

G← G+Rt+1

(b) N(St, At)← N(St, At) + 1

Q(St, At)← Q(St, At) +
1

N(St, At)
(G−Q(St, At))

(c) A∗ ← argmaxaQ(St, a) (1.14)

For all a ∈ A :

π(a|St)←

{
1− ε+ ε

|A| if a = A∗

ε
|A| if a 6= A∗

This algorithm can be decomposed into three steps. The first step is to run an episode
following policy π. The second step is to update the value function based on the results
obtained from that episode. The action-value function Q(s, a) is equal to the average of
all the returns that are collected after selecting action a in state s. The third step is
to update the policy based on the value function. In this update, a high probability is
assigned to the action that is perceived as the best and a small probability is assigned to
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all other actions. This is known as an ε-greedy policy and is used in order to ensure that
all actions are tested regularly.

The limitation of tabular methods is that it requires the state and action space to
be relatively low-dimensional. Indeed, if the state/action spaces are high-dimensional or
continuous, the number of states/actions can become intractable. If the number of states
becomes too large, the number of times each state is visited becomes smaller, and therefore
the estimates of the value function become less reliable. If the number of actions becomes
too large, the algorithm becomes inefficient. This stems from (1.14), which requires finding
the best action associated to an action-value function. If there are too many actions to
choose from, this operation cannot be performed efficiently.

1.4.3 Approximation Methods

There are two main ideas in the literature in order to cope with high-dimensional state/action
spaces. The first one is value function approximation. This methodology solves the prob-
lem of large state spaces but not the one of large action spaces. The second one is policy
function approximation which can handle both large action and state spaces. After pre-
senting these two methodologies, we describe some weaknesses that need to be considered
when using these methods.

Value function approximation The idea of value function approximation is similar
to that of tabular methods. The main difference resides in the estimation of the action-
value function. Instead of recording the action-value function for every state-action pair
Q(s, a), the idea of value function approximation is to parametrize q∗(s, a) as q̂(s, a;w),
where w is a set of parameters that need to be optimized. This change does not affect the
first and third step of the algorithm for tabular methods. In the second step, the same
idea is followed, which is to improve the estimation of the action-value function. This can
be achieved by minimizing the error between the prediction from the action-value function
q̂(St, At;wt) and the return from the episode Gt. This error can be expressed as:

L = (Gt − q̂(St, At;wt))2 .

We minimize this loss function using one step of a stochastic gradient algorithm. This
yields the following update for w:

wt+1 = wt −
1

2
αt∇ [Gt − q̂(St, At;wt)]2

= wt + αt [Gt − q̂(St, At;wt)]∇q̂(St, At;wt).

This method can solve problems with very large state spaces. Nevertheless, the method
can still be inefficient for problems with large action spaces because the algorithm requires
finding the action associated with the best action-value function (line (1.14) of the algo-
rithm).

Policy function approximation The idea of policy function approximation is to di-
rectly compute the policy without considering a value function. Specifically, policy func-
tion approximation parametrizes the policy πθ(a|s) with respect to a parameter vector θ,
and optimizes over this θ:

πθ(a|s) = P[At = a|St = s; θ].
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An algorithm that can be employed in order to optimize the parameter θ is the RE-
INFORCE algorithm:

• Initialize θ

• for each episode {S0, A0, R1, · · · , ST−1, AT−1, RT } ∼ πθ(a|s)
for t = 1 : T-1 do

θ = θ + γt∇θlog(πθ(a|s))Gt (1.15)

end
end

The REINFORCE algorithm adapts the parameter vector θ so as to maximize expected
rewards from a certain policy, based on repeated episodes of the decision process. When
an episode is finished, we update θ using Eq. (1.15). It has been proven in [Wil92] that
the REINFORCE algorithm is effectively a stochastic gradient algorithm. It is therefore
guaranteed to converge under standard stochastic approximation conditions for decreasing
step-sizes γt. A variance-reducing adaptation to the REINFORCE algorithm is to subtract
a baseline from the return Gt, as illustrated in Eq. (1.16).

θ = θ + γt∇θlog(πθ(a|s))(Gt − b(s)) (1.16)

In this equation, the b(s) term is a baseline payoff. It can be any function of the state
s, but not the action a. The presence of this baseline does not influence the expected
value of the update, nevertheless it can reduce its variance [SB18]. A classical choice for
this function is an estimate of the value function that can be obtained using the method
presented in section 1.4.3. As we explain later, estimating a value function for our problem
is a difficult task. Therefore, we use an alternative method described in section 2.6.2.

There are two potential sources of challenges related to methods that rely on function
approximation:

• By using function approximation, we consider only a small subset of potential poli-
cies. This implies that we likely arrive to a policy that may be sub-optimal. There
is no guarantee on how close our obtained policy is compared to the optimal one.

• There is no guarantee that the problem of optimizing the parameters of the policy
is a convex problem. Therefore, we can only guarantee a local optimum and not a
global one.

Deep Reinforcement Learning Deep Reinforcement Learning corresponds to the use
of approximation methods for which the function approximation relies on a deep neural
network. The advantage of Deep Reinforcement Learning is that it does not require any
knowledge of a good parametrization. Moreover, neural networks can represent a much
wider span of functions than tailor-made function approximation. The disadvantages are
that (i) There are many more parameters, which implies that the optimization problem
is more complicated. (ii) The results are more difficult to interpret, because the neural
network essentially behaves like a black box. In this thesis, we have opted not to rely on
deep Reinforcement Learning because the trading problems that we consider have never
been studied using Reinforcement Learning and therefore it is meaningful to gain insights
from simple parametrizations.
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1.5 Contributions

The main contributions of this dissertation are organized into three chapters, which are
summarized in the following.

1.5.1 Chapter 2

In chapter 2, we develop trading strategies for a storage unit in the CIM. We start by mod-
eling the trading problem faced by the storage unit owner in the Markov Decision Process
framework. After that, we present an approach based on policy function approximation
for tackling the problem. This approach parametrizes the policy using 2 thresholds, one
below which we buy power and one above which we sell power. We introduce and justify
a collection of factors that can be used for adapting our trading thresholds to system con-
ditions. We demonstrate the effectiveness of our approach by comparing it to the rolling
intrinsic policy on real historical data. Our proposed approach outperforms the rolling
intrinsic policy, which is commonly employed in practice for storage units, by increasing
profitability by 17.8% on out-of-sample testing for a storage with perfect round-trip effi-
ciency and by 13.6% for a storage unit with a round-trip efficiency of 81%. Finally, we
analyse the results in order to explain the performance difference between our approach
and rolling intrinsic. This chapter is based on the following publications:

• G. Bertrand and A. Papavasiliou, “An Analysis of Threshold Policies for Trading
in Continuous Intraday Electricity Markets,” 2018 15th International Conference on
the European Energy Market (EEM), Lodz, 2018.

• G. Bertrand and A. Papavasiliou, “Reinforcement-Learning Based Threshold Policies
for Continuous Intraday Electricity Market Trading,” IEEE PES General Meeting,
Atlanta, 2019.

• G. Bertrand and A. Papavasiliou, “Adaptive Trading in Continuous Intraday Elec-
tricity Markets for a Storage Unit,” IEEE Transactions on Power Systems, vol. 35,
no. 3, pp. 2339 - 2350, May 2020.

1.5.2 Chapter 3

In chapter 3, we provide the first step in the direction of developing trading strategies
for a renewable unit in the CIM. As a starting point, we consider selling a fixed quantity
of power in an idealized version of the CIM. We start by modeling this problem in the
MDP framework. Then, we derive the optimal trading strategy for this problem through
backward induction. We use this analytical solution as a basis for developing value function
approximation algorithm14 and an alternative Stochastic Dual Dynamic Programming that
can trade under a more realistic set of assumptions. We test the performance of these two
algorithms against our idealized CIM model and demonstrate that they both arrive to the
optimal policy in a 10-step example. This chapter is based on the following publication:

14It would be possible to apply policy function approximation as in chapter 2 to solve the problem of
chapter 3. Nevertheless, we decide to use value function approximation because we are not only interested
in comparing the obtained profit with the one of a Stochastic Dual Dynamic Programming algorithm but
also the value function obtained by both methods. Notice that the reverse argument is not true, the value
function approximation method used in this chapter would not be suitable for the problem of chapter 2
because, as explained in section 1.4.3, it cannot handle a large action space.
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• G. Bertrand and A. Papavasiliou, “Optimal Trading of a Fixed Quantity of Power
in an Illiquid Continuous Intraday Market”, Powertech 2021.

1.5.3 Chapter 4

The European design is characterized by a missing market for real-time reserve capac-
ity. This missing market undermines the valuation of reserve capacity, and the back-
propagation of price signals to forward reserve markets that can support investment in
reserves. The goal of chapter 4 is to develop a methodology that exposes the implica-
tions of this missing market. The methodology relies on analytical insights that can be
derived under an assumption of price-taking behavior. These insights are validated by a
simulation model which represents the European balancing market as a Markov Decision
Process. The simulation model is used for validating the analytical insights and testing the
ability of various balancing market design options to back-propagate the real-time value
of reserve to forward reserve markets. This chapter is based on the following publications:

• A. Papavasiliou, G. Bertrand, A. Marien and J. Cartuyvels “Implementation of
Scarcity Pricing without Co-Optimization in European Energy-Only Balancing Mar-
kets“ Utilities Policy (under review).

• A. Papavasiliou, and G. Bertrand “Market Design Options for Scarcity Pricing in
European Balancing Markets,“ IEEE Transactions on Power Systems.

• A. Papavasiliou, Y. Smeers, and G. Bertrand, “An extended analysis on the remuner-
ation of capacity under scarcity conditions,“Economics of Energy and Environmental
Policy, vol. 7, no. 2, 2018.
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Chapter 2

Optimizing Trading Strategies in
the Continuous Intraday Market
for a Storage Unit using
Reinforcement Learning

2.1 Introduction

An important consequence of the integration of renewable resources in electricity markets
is the need for correcting system dispatch closer to real time. An interesting option for
such corrections is to trade in the CIM because it is the last market that operates before
real-time market clearing, as shown in section 1.3. This explains the recent increase of
liquidity in this market. Specifically, traded volumes in the German CIM have increased
from 10 TWh in 2010 to 41 TWh in 2016 [MO18]. This market is therefore becoming an
interesting option for fast-moving assets, such as batteries or pumped hydro storage, to
extract value from their flexibility.

2.1.1 Literature Review

Several papers analyze the optimization of bidding strategies in different electricity mar-
kets. In [MS06], the authors consider trading in the day-ahead market and covering their
position in imbalance for a wind power producer. This work has been extended in [CHR13]
in which the authors also consider bidding in the intraday market. In [LSB18], the authors
develop a trading strategy for a wind power producer who trades in the day-ahead market,
followed by settlement in the real-time market. The authors account for the impact of
the dependence between the wind production error and the real-time price on the trading
strategy of the wind farm.

A certain body of the literature focuses specifically on storage units. The operation of
storage units in the context of a US-style centralized unit commitment has been studied in
the literature using unit commitment models such as in [OF15] and [KSW13]. Neverthe-
less, these models are out of scope in an EU context, where resource owners self-commit
and self-schedule individual resources at the nomination stage which follows the clearing
of the portfolio-based day-ahead market. In the EU context, the authors in [BJF14] fo-
cus on the interaction of trading strategies in the day-ahead market and the balancing
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market, while the interaction between day-ahead and intraday auctions has been analysed
in [Bra16].

The strategies developed for these markets cannot be applied directly to the CIM due
to the continuous format of this market, which differs from the day-ahead auction or the
intraday auction. Indeed, in auctions the producer has one chance to submit bids. Instead,
in the CIM, the producer is afforded a certain amount of time in order to observe the offers
submitted by other participants. Moreover, in the CIM, buy and sell prices for the same
delivery time may evolve over the horizon of trading. Due to these particularities, the
CIM has received separate treatment in the literature. The specific literature about the
CIM can be classified into the three following categories.

(i) The first category of papers focuses on modeling the price evolution in the CIM.
This includes literature that focuses on the explanatory variables for the evolution of
the price [KP17], [Zie17], and on the factors that influence the liquidity and the bid-ask
spread [Bal18]. In [Kie17] the authors develop a Hawkes process for modeling the arrival
of orders. A model for the simulation of the CIM based on data from the European Power
Exchange is proposed in [MO18].

(ii) The second category of papers focuses on optimal trading strategies, and assumes
that the intraday prices follow a given parametric model. Trading for a pumped hydro
storage facility is presented in [BH16] and [ESFK18]. The first paper discusses the opti-
mization problem of pumped hydro storage trading, where it is assumed that traders can
access a forward curve. The second paper studies the problem of trading in the CIM and
in the balancing market. Other papers consider solving for other assets. In [GM15], the
authors consider trading in the CIM for balancing the forecast error of renewable energy.
The authors assume that the intraday price follows a geometric Brownian motion. This is
a classical assumption in finance [DO03]. Nevertheless, a geometric Brownian motion may
not be appropriate to model electricity prices, since it assumes that the price is always
positive, which is not guaranteed in electricity markets. A trading strategy for a thermal
power plant is developed in [RAP16] for two different price models. The first price model
is an additive Brownian motion which is further influenced by the most recent trades of
the producers. In the second price model, the authors add the possibility of jumps in
the price process. These jumps represent the situation in which renewable forecasts are
inaccurate and are updated. The jump arrivals are assumed to follow a Poisson process.
These jumps can either assume a fixed positive value δ+ with probability p+ or a fixed
negative value δ− with probability 1− p+.

(iii) The third strand of literature focuses on developing trading strategies, without
placing assumptions on the parametric distribution of the data. The authors in [SEM15]
propose a heuristic trading method for wind power producers. In early work, the thesis
author considers, in [BP18], the problem of virtual trading between the CIM and the im-
balance settlement (taking a position in the CIM and closing it as an imbalance). The
problem is modeled as a one-stage MDP, which is solved using policy function approxi-
mation. Related to MDP, in [BEPC18] the authors have modelled the problem of trading
for a storage unit in the CIM using MDP. In order to solve this MDP, they rely on value
function approximation. They prove that their strategy is efficient in-sample. The same
authors extend their results out-of-sample in [BET+19]. Their strategy increases prof-
itability compared to rolling intrinsic by 1.5% out-of-sample.
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2.1.2 Contributions

The contributions of our work are the following: (i) We cast the intraday market trading
problem for a storage unit in the MDP framework. (ii) We employ policy function ap-
proximation in order to arrive at a computationally tractable problem formulation. More
precisely, we use a threshold policy according to which we seek a sell threshold above which
we accept to sell power, and a buy threshold below which we accept to buy power. (iii)
We propose a parametrization of the trading thresholds that accounts for several effects
(e.g. the time before market closure, the delivery hour, the price in the intraday auction),
in order to arrive at a policy that outperforms a benchmark policy referred to as rolling
intrinsic. (iv) We analyse the results at higher trading frequency than the one considered
in [BEPC18]: whereas in [BEPC18] the results are derived using a 5 minute frequency
on a horizon of 2 hours, in the present publication we consider a horizon of 1 day with
a frequency of 5 minutes for learning and 1 second for testing out of sample. Moreover,
we demonstrate through experiments the important role of frequency on the training and
evaluation of trading strategies.

2.1.3 Chapter Organization

Section 2.2 describes the assumptions that we place on the problem and how we simulate
the continuous intraday market. Section 2.3 explains how to model the trading problem
faced by a storage unit using the MDP framework. In section 2.4, we introduce the idea
of a threshold policy, in order to arrive to a tractable problem for optimizing over policies.
Section 2.5 presents the factors that we propose in order to adapt the threshold policy. In
section 2.6, we present a test case which demonstrates the effectiveness of our approach
on German market data, and we analyze how our proposed policy fares relative to rolling
intrinsic. Finally, in section 2.7 we conclude the chapter and propose directions for further
research.

2.2 Continuous Intraday Market Simulation

In our work, we consider trading only in the continuous intraday market. We are interested
in the development of trading strategies for a storage asset owner. A storage unit is an
especially interesting asset to consider in the context of intraday trading, since it offers
the possibility to procure power from relatively cheap sell bids, store the power, and sell
it back to subsequent buy bids that place a greater valuation on the procured power. We
consider the following simplifications in our work:

1. The trading strategies that we develop are balanced. This implies that, at the closing
time of the continuous intraday market, the position of the storage unit should
be feasible. We thus adhere to German regulation [TEN], which requires that the
producer only be in imbalance if this imbalance is caused by an unpredictable event1

(forecast error, outages). Practically, this implies that if we do not have any energy
stored in our reservoir, we cannot sell power and cover it in the imbalance market.

1Note that US market operations differ in this respect due to central dispatch, which allows the system
operator to actively manage resources in real time in order to increase trading surplus, as opposed to
requiring them to remain in balance at all costs.
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2. We only accept bids that are already present in the market, as opposed to also
placing bids in the market. Adding the option of placing bids would complexify
our Markov Decision Process in 2 ways: (i) we would have to add to our state all
the bids that we have placed on the market at previous time steps. (ii) We would
need to extend our action space in order to decide on suppressing the bids that
we have placed at previous time steps. We have estimated an upper bound on the
additional profit that could be obtained by also placing bids. The computation of
this upper bound is illustrated in Fig. 2.1. The intuition is that (i) when we sell
power by accepting bids, the best price that we can obtain is the highest buy bid
on the market (in red), while (ii) when we sell power by placing bids, the best price
that we can hope for is the lowest sell bid (in blue). Indeed, if we would place a
bid at a higher price, the lowest sell bid would be accepted before our bid. Thus,
the difference between the profit obtained while we accept bids and the profit that
we could obtain by placing bids is the bid-ask-spread (the difference between the
lowest sell bid and the highest buy bid). Therefore, we estimate the upper bound on
the extra profit as the sum, over all delivery periods and time steps, of the product
between the bid-ask-spread and the quantity that we trade. We obtain a potential
additional profit of 27% at an hourly frequency and 69% at a 1-minute frequency.
Nevertheless, we expect this upper bound on the potential gains of placing bids in the
market to be loose, because there is no guarantee that another trader would accept
our offer. If our offer is not matched, it may create a missed opportunity because
the price might become less interesting in the future. Moreover, the looseness of the
bound is expected to increase with trading frequency, because the number of trades
increases with frequency.
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Figure 2.1: Comparison between the best price for selling power that can be achieved when ac-
cepting bids versus when placing bids.

3. In practice, CIM bids are categorized into more complex products, referred to as
continuous bids, all-or-none bids (bids that cannot be partially accepted), block bids
(bids that link several delivery periods), iceberg bids (bids for which the volume
is split into several sub-bids that become available when the previous sub-bid has
been accepted), and so on [MO18]. For our case study, we assume that all the data
that we have access to corresponds to continuous bids or iceberg bids (a complete
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description of how we handle the data is available in 2.8.4). This implies that we can
accept fractions of bids. There are two reasons for adopting this simplification: (i)
The information about the type of bids (continuous, integer, block) is not disclosed
in the German market data set that we use for our case study. (ii) Practitioners
have indicated to us that the impact of this restriction is minor, because most of the
bids are continuous bids. To a certain extent, the more complex products have been
inherited from the products that are available in the day-ahead market. A major
reason for the existence of these complex products in the day-ahead market is in
order to provide the option for a producer to account for complex unit commitment
constraints. This interest is more limited in the CIM, because the commitment
variables have to be decided several hours before delivery, through the so-called
nomination procedure.

4. We only consider hourly products in our work, as opposed to also considering quar-
terly products that refer to delivery within a specific 15-minute interval.

5. We assume that our producer is risk-neutral. The reason for this is that the daily
average profit obtained for our storage unit is around 6400 e, whereas the profit
for the worst day is approximately −500 e. Typical energy companies have the
financial ability to absorb this potential loss for several days without any problem.
Therefore, the company can only focus on maximizing its long-term profit, which
will be obtained by being risk neutral on a daily basis.

6. We assume that, no matter which bid we accept in the market, we do not influence
the bids that the other actors will place later in the market. This simplification has
been adopted in order to simplify the problem, and is completely in line with the state
of the art on the topic of intraday trading in electricity markets [BH16,SEM15]. The
only way to assess the validity of this assumption would be to run the policy in the
actual market and observe the reaction of other traders to our strategy. Nevertheless,
we can gain certain insights by comparing the size of our assumed asset compared
to the market size. To this aim, we compare, in appendix 2.8.1, the quantity that
we exchange for different delivery hours with the total exchanged quantity in the
German CIM.

Using these simplifying assumptions, we describe how we simulate the evolution of
the order book. To this aim, we consider 4 types of events (the complete procedure for
obtaining these events based on the available market data is explained in section 2.8.4):

1. Open: the appearance of a trade

2. Cancel: the disappearance of a trade

3. Acceptance: the acceptance of a certain quantity of a bid

4. Trading: the moment when we decide which bids we accept.

The simulation of the market can now be described as follows. At the beginning of the
simulation, we rank all the events, which are included in the set Event, chronologically.
We then iterate on this set: for each new event j, we classify it in one of the 4 categories
and we update the order book as described in the following procedure.
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L = []

for j ∈ Event

if j ∈ Open

Add bid j to L

elseif j ∈ Close

Remove bid j from L

elseif j ∈ Acceptance

Reduce partially accepted quantity from bid j

elseif j ∈ Trading

Launch the trading algorithm

Remove the bids that we have accepted from L

end

end

2.3 Modelling the Intraday Trading Problem Using the
MDP Framework

Having defined how to simulate the market, we can now analyse the trading problem. The
decision problem is to decide, at different moments of the Continuous Intraday Market,
which bids should be accepted in order to maximize the future expected profit of our
storage unit. We consider a 1-day horizon, which is motivated by the observation that
electricity prices are typically low during the night hours. Therefore, a storage unit has
an interest in entering a new day with an empty reservoir and filling the reservoir up
with cheap power that is available during the night hours. This makes it meaningful to
decouple consecutive days, because the storage unit typically has an interest in having an
empty reservoir at midnight.

In the rest of the chapter, we refer to a general storage unit. This storage unit is
characterized by a certain charging and discharging efficiency. These settings create the
basis for representing a battery, a simplified model of a pumped storage hydro unit, or
certain types of demand response. The main trade-off for our decision problem is the
following: Do we want to trade power at the current price and lock in the profit? Or is it
worth waiting for a potential future bid, the price of which would be more advantageous,
despite the risk that the current favorable bids may disappear? This problem enters the
scope of Reinforcement Learning described in section 1.4, and as explained in section 1.4.1,
a common way to model this class of problems is the Markov Decision Process framework.

2.3.1 State Variables

In order to reach a decision at time step t, we require 3 ingredients in our state St: (i) The
offers available in the continuous intraday market at time step t. This data is available in
the market order book. (ii) A variable vt−1,d, ∀d ∈ D which indicates the capacity that
would be stored in the storage unit at delivery hour d if we were only executing the trades
decided at time step t − 1 or earlier. This value can be easily computed based on the
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results of all the trades that we have realized in the past. (iii) Exogenous data that we
anticipate should influence our decision. Some examples of these exogenous parameters
include the remaining time before market closure, and the price of the intraday auction.
The full list of these parameters, and the way in which we use them, is discussed in section
2.5.

2.3.2 Action Variables

In order to model our action space At, we require one action variable at,d for each delivery
time d. This action indicates how much we wish to sell at time step t. In theory, this
variable can be continuous. But, in order to reduce the size of the action space, we
discretize this variable into 2n+ 1 potential actions:

at,d ∈ {−qn, · · · ,−q1, 0, q1, · · · qn}

2.3.3 Reward

The total reward obtained from the CIM at time step t is equal to the sum of the rewards
obtained for every delivery hour:

Rt =
∑
d∈D

rev(at,d),

where the reward for delivery hour d at time step t is computed as the integral of the
demand curve pt,d from 0 to at,d:

rev(at,d) =

∫ at,d

0
pt,d(z)dz.

2.3.4 State Transition Function

For this intraday trading problem, we do not have access to the transition function (since
we do not place any assumptions on the evolution of intraday prices). As explained in
section 1.4.2, this prohibits us from using methods such as policy iteration. Nevertheless,
we are perfectly within the scope of Reinforcement learning, because tabular methods (see
section 1.4.2) and function approximation methods (see section 1.4.3) do not require any
knowledge of the transition function to be applied. Note that the round-trip efficiency of
a storage unit is part of this transition function, which we do not model explicitly.

2.4 Threshold Policy

As we have to simultaneously reach decisions for the 24 delivery periods, our state and
action spaces are intractable for tabular methods and value function approximation meth-
ods. Therefore, we rely on policy function approximation. More precisely, we focus on a
policy which is parametrized by buy and sell price thresholds. The threshold policy that
we investigate in this chapter accepts sell bids if their price is below a buy threshold, and
accepts buy bids if their price is above a sell threshold. Our focus on threshold policies is
justified by several factors: (i) Optimal inter-temporal arbitrage in a deterministic setting
is achieved by a threshold policy if the reservoir limit constraint is not binding, as proven
in appendix 2.8.2. (ii) Threshold policies have also been proven to be optimal in a number
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of papers in the literature regarding specific instances of stochastic optimal control prob-
lems with uncertain prices [Mor59,Kin69,Gol85]. (iii) The idea of using a threshold policy
in order to trade for a storage unit has already been proposed in other settings [PM16b].

We apply a stochastic2 threshold policy, in order to ensure that sufficient exploration
takes place during the learning stage of the algorithm. Concretely, we propose drawing
the sell and buy thresholds from a Gaussian distribution. Therefore, we define our policy
parameter, θ, as θ = (µX , σX , µY , σY ),where the buy threshold for delivery hour d, Xd,
is drawn according to a normal distribution with parameters3 (µX , exp(σX)), and the
sell threshold for delivery hour d, Yd, is drawn according to a normal distribution with
parameters (µY , exp(σY )). We draw one threshold per delivery hour d. Therefore, the
distribution of actions over all future delivery hours can be decomposed as the product of
the distribution for each delivery hour. Mathematically, this can be expressed4 as:

πθ(a|s) =
∏
d∈D

πdθ (ad|s) (2.1)

In order to illustrate how the stochastic threshold is implemented, we consider the
example of Fig. 2.2. at delivery hour d. (i) The green decreasing function corresponds
to the buy bids that are available in the order book for delivery hour d. This data is
available in the order book at the time we are deciding on whether or not to accept a
bid. The demand curve is associated with the lower x-axis. (ii) The bell curve represents
the probability density function of the threshold. This curve can be computed based on
the current vector parameter θ. The bell curve is associated with the upper x-axis. With
these two elements, we illustrate how we use the threshold policy in order to arrive at
decisions. Consider, for instance, the action Sell 10 MWh: if the sell threshold that we
draw is between the price associated to a sell quantity of 15 MWh and the price associated
to a sell quantity of 5 MWh, we sell 10 MWh. The probability of this action corresponds
to the red surface πdθ (10|s). This probability can also be computed mathematically, as
illustrated below:

πdθ (10|s) , Pr(ad = 10)

= Pr(p(15) ≤ Yd ≤ p(5))

= Pr(Yd ≤ p(5))− Pr(Yd ≤ p(15))

= Φ(p(5);µY , exp(σY ))− Φ(p(15);µY , exp(σY ))

where Φ(·;µ, σ) indicates the cumulative distribution function of the normal distribution
with mean µ and standard deviation σ. In order to apply the REINFORCE algorithm,
we also need to compute the policy derivatives for the different actions. These derivatives
can be computed analytically as illustrated below for the derivative of the probability of
the action Sell 10 MWh with respect to µY :

2Notice that our threshold is only stochastic in the learning phase. When we test the performance
out-of-sample, we apply deterministically the thresholds that have been learned in the training phase.

3We use exp(σX) and not σX directly in order to ensure that the standard deviation remains positive.
4In order to simplify notation, we present the situation for which the actions for the different delivery

hours are independent of each other. If this is not the case, a similar formula using the conditional
distributions can be used.
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∂πdθ (10|s)
∂µY

=
∂Φ(p(5);µY , exp(σY ))

∂µY
− ∂Φ(p(15);µY , exp(σY ))

∂µY

= −φ(p(5);µY , exp(σY )) + φ(p(15);µY , exp(σY ))

where φ(·;µ, σ) denotes the probability density function of the normal distribution with
mean µ and standard deviation σ.

Figure 2.2: Threshold policy for the hydro problem if we consider four possible actions: sell 0, 10,
20 or 30 MWh. The bell curve indicates the probability density function of the sell threshold. The
two purple segments and the two red segments of the bell curve indicate the probability of each of
the four actions. The green decreasing function corresponds to the buy bids that are available in
the order book.

2.5 Factors Driving the Optimal Threshold

In the previous section, we have developed a basic threshold policy for trading in the
CIM. This simple threshold policy does not achieve satisfactory performance in practice,
because it is not sufficient to maintain the same threshold for every time step of every
day. This suggests that the threshold should be further dependent on certain factors that
are pertinent towards an adaptive trading strategy. In this section, we propose a number
of such factors and explain the reason for which we consider them. Then, we explain how
the REINFORCE algorithm can be adapted in order to incorporate these factors.

2.5.1 Delivery Time

The need for using different thresholds depending of the delivery hour is illustrated in Fig.
2.3. This graph represents the CIM price (which we define as the center of the bid-ask
spread) for the 24 different delivery hours. The red dot represents the price of buying
energy at the 6th hour, while the green dot is the price of buying energy at the 17th hour.
These two prices are equal, however the buying decision should be different. Indeed, the
price corresponding to the red dot is not interesting, because the same amount of power
could have been procured and stored at the reservoir at a lower price at hour 4. On the
contrary, the price corresponding to the green dot is interesting, because it corresponds
to a local minimum price. Thus, in hour 17 we can buy power, in order to sell that power
back at a later delivery time.
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Figure 2.3: The delivery time of an order impacts its threshold: buying power at 30 e/MWh is
not worthwhile in hour 6, but it is worthwhile in hour 17.

Having argued that it is necessary to employ different thresholds for different delivery
times, our idea is to define regimes for which the threshold mean should be the same.
We will define these regimes based on the intraday auction price curve, which conveys a
significant amount of information about the CIM price.

We present an example of these regimes based on the intraday auction price curve, for
one precise day of our dataset, in Fig. 2.4. The justification of why we use the intraday
auction in order to compute the regimes is provided in appendix 2.8.5.1. These graphs
illustrate that the buy threshold switches at the maximum of the price curve, since any
power that we buy between two maxima can be sold at the second maximum. Similarly,
the sell threshold switches at the minimum of the price curve, because any power that we
sell between two minima can be bought at the first minimum5. On average, there are 1.53
regimes per day.

The introduction of regimes impacts the parameter vector θ. Since we introduce dif-
ferent thresholds for the different regimes, µX and µY are now indexed by the regime k,
and are thus denoted as µkX and µkY . In the remainder of this section, we will express
these threshold means6 µkX and µkY as a function of 10 parameters7, which we denote as
(αs1,αb1,αs2,αb2,αs3,αb3,αs4,αb4,αs5,αb5). We will then show how the REINFORCE algorithm can
be used in order to learn the values of the parameter vector α.

2.5.2 Intraday Auction Curve

Our motivation for using the intraday auction curve as a feature for determining thresholds
is illustrated in Fig. 2.5, where we present the CIM price for two different trading days.
From this graph it is clear that it is not possible to set a single threshold which would

5This reasoning is slightly simplified. The full explanation on how the regimes are computed can be
found in appendix 2.8.5.2.

6In contrast to the mean, we do not make the standard deviation dependent on exogenous parameters.
This is due to the fact that the standard deviation is only used in order to ensure sufficient exploration in
the learning phase.

7The final thresholds µk
X and µk

Y are dependent on the regime, however the α parameters are not.
Therefore, the number of regimes does not affect the number of parameters that need to be learned.
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Figure 2.4: Buy regime (left), and sell regime (right) based on the intraday auction price.

perform well for both days, because the average level of the curves is different. In order
to set an appropriate base level for the thresholds, we use the intraday auction price. The
idea is that the price of previous markets can provide an indication about the state of the
market, and thus support the forecast of the price for subsequent market-clearing stages.
This observation has been inspired by (i) reference [SZ19], in which the authors use future
prices in order to forecast the day-ahead market prices; (ii) reference [MRRFJC16], where
the authors use the day-ahead market prices and past intraday prices in order to forecast
the next intraday prices in the Spanish market8; (iii) reference [KEF15], in which the
authors use the last balancing price in order to forecast the next balancing price; and (iv)
reference [BJF14], where the authors observe a strong correlation between the day-ahead
market and the balancing market.
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Figure 2.5: Continuous intraday market price for two different days. The curves correspond to
different average values, therefore different thresholds need to be applied for an effective threshold
strategy.

Motivated by this observation, we propose an adaptation of the thresholds as follows:

µkX ← pmin,k + αs1(pmax,k − pmin,k)

µkY ← pmax,k − αb1(pmax,k − pmin,k)

where pmin,k is the minimum of the kth buy regime of the intraday auction curve, pmax,k is

the maximum of the kth sell regime of the intraday auction curve, and α
s/b
1 are the weights

8Note that, in Spain, there is no continuous intraday market but rather 6 sequential auctions.

29



Chapter 2

that will be optimized using the REINFORCE algorithm.

The idea behind this parametrization is that pmin,k (resp. pmax,k) is a reasonable
starting point for the buy (resp. sell) threshold because it is the best price that could have
been obtained in the intraday auction for regime k. Then, with the parameter αs1 (resp.
αb1) we allow the REINFORCE algorithm to determine to what extent the threshold should
move from pmin,k (resp. pmax,k) to pmax,k (resp. pmin,k), based on learning from repeated
episodes. In order to apply the REINFORCE algorithm for learning the parameter vector
α, we need to compute the derivative of our policy with respect to α. The derivative can
be computed using the chain rule, as we show in Eq. (2.2) for the derivative of αb1, for
delivery hour d in regime k.

∂πdθ (ad|s)
∂αb1

=
∂πdθ (ad|s)

∂θ

T
∂θ

∂αb1

=
∂πdθ (a|s)
∂µkY

(pmin,k − pmax,k) (2.2)

2.5.3 Quantity Already Traded

The intuition for this adaptation is that, at any stage of the trading process, if we have
already bought a large quantity of power and have not sold it yet, we wish to avoid the
risk of ending up with unsold power. Note that we assume that there is no residual value
for leftover water in the reservoir at the end of the horizon, which is consistent with the
fact that we have an interest in entering a new day with an empty reservoir and filling the
reservoir up with cheap power that is available during the night hours.

In order to capture this effect, we add a penalty in order to accept buying at a lower
price and to accept selling at a lower price:

µkX ← µkX − αs2 · vend

µkY ← µkY − αb2 · vend

where vend is the volume that we would obtain at the last delivery period with the trades
that we have already engaged in. This adjustment of the thresholds implies that, moving
forward, we become less selective about selling power and more selective about buying
power, until the reservoir eventually becomes empty.

2.5.4 Remaining Time before Market Closure

Whenever the producer has not sold all the energy stored in its reservoir close to the
maximum of a regime, the producer should become less selective in the price it asks.
This is due to the fact that there are few subsequent opportunities to trade, and the
currently observed price is possibly the best price that the producer can secure for the
trade. Similarly, whenever the producer has not bought up to the capacity of its reservoir
as it is approaching the minimum of a regime, it should become less selective with the
price that it asks for buying power. This approach is inspired by the theory of the optimal
stopping problem [Lin61], [TR99].
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We capture this effect by varying the threshold means as follows:

µkX ← µkX + αs3
pmax,k − pmin,k

2
exp(αs4(t− T sk )) (2.3)

µkY ← µkY − αb3
pmax,k − pmin,k

2
exp(αb4(t− T bk)) (2.4)

where t is the current time step, T bk is the delivery time of the maximum of the kth sell
regime, and T sk is the delivery time of the minimum of the kth buy regime.

We employ 4 coefficients in Eqs. (2.3) and (2.4): (i) α
s/b
3 determines the strength of

this effect; (ii) α
s/b
4 determines how smoothly the threshold adapts with respect to the

gate closure time. A large value for α
s/b
4 would decrease the selectivity very close to the

delivery time. On the contrary, a small value for α
s/b
4 would decrease the selectivity more

smoothly with respect to the remaining time.

2.5.5 Relative Value of Observable Bids

The motivation for this factor is to account for the coupling among the bids of different
delivery hours, due to the fact that the battery can only store a finite amount of energy.
Concretely, we wish to avoid accepting a bid even though the order book includes a bid
at an adjacent delivery period that can be traded for a better price. In order to account
for this inter-dependency, we penalize the bids that would not be accepted by the rolling
intrinsic method. The rolling intrinsic method is a myopic policy which means that it will
select the subset of trades which can be absorbed by the reservoir without exposing the
unit to imbalances, and will do so by maximizing the profit of the current time step (the
rolling intrinsic method is presented in more details in section 2.6.1).

Concretely, the adjustment to our algorithm is illustrated in Fig. 2.6. The figure
corresponds to the case in which rolling intrinsic sells 20 MWh for delivery period d.
When this occurs, we wish to decrease the probability of selecting the action of selling 30
MWh, and reallocate it to the probability of selling 20 MWh. To this end, we introduce
an auxiliary Gaussian distribution with a mean of µkY +αb5 and with a standard deviation
of exp(σY ). We compute the probability of the action Sell 30 MWh by using a threshold
drawn from the auxiliary Gaussian distribution, which is indicated with the green bell
curve in the figure. Mathematically, this is illustrated in Eq. (2.8). This change decreases
the probability of the action Sell 30 MWh, relative to the probability that would have
been obtained from the original bell curve of Fig. 2.6. The difference in probability mass
is transferred to the last action that is accepted by rolling intrinsic (Sell 20 MWh), as
illustrated in Fig. 2.6 and in Eq (2.7). As we can see in the figure, the higher the value
of αb5, the less likely we are to choose the action that is not selected by rolling intrinsic.
Finally, the probability for (Sell 0 MWh) and (Sell 10 MWh) is exactly the same as in the
initial situation, as shown in Fig. 2.6 and in Eqs. (2.5) and (2.6). The reason is that these
actions are feasible, and do not correspond to the feasible action with the greatest volume
of trading (Sell 20 MWh), therefore we wish to keep their probability of being selected
intact.
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Figure 2.6: Illustration of the probability reallocation that relies on the auxiliary Gaussian distri-
bution, as described in section 2.5.5.

• Sell 0 MWh:

πdθ (0|s) = Pr(ad = 0)

= Pr(Yd ≥ p(5))

= 1− Pr(Yd ≤ p(5))

= 1− Φ(p(5);µkY , exp(σY )) (2.5)

• Sell 10 MWh:

πdθ (10|s) = Pr(ad = 10)

= Pr(p(15) ≤ Yd ≤ p(5))

= Pr(Yd ≤ p(5))− Pr(Yd ≤ p(15))

= Φ(p(5);µkY , exp(σY ))− Φ(p(15);µkY , exp(σY )) (2.6)

• Sell 20 MWh:

πdθ (20|s) = Pr(ad = 20)

= Pr(Yd ≤ p(15))− Pr(Yd + αb5 ≤ p(25))

= Φ(p(15);µkY , exp(σY ))− Φ(p(25);µkY + αb5, exp(σY )) (2.7)

• Sell 30 MWh:

πdθ (30|s) = Pr(ad = 30)

= Pr(Yd + αb5 ≤ p(25))

= Φ(p(25);µkY + αb5, exp(σY )) (2.8)
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In order to implement the REINFORCE algorithm, we also need the policy derivative
for the different actions. The development in order to compute these is made in Eqs. (2.9),
(2.10), (2.11) and (2.12). The derivatives for 0 and 10 MWh are equal to 0 because αb5 does
not appear in the probability of these actions. The derivative for the action Sell 30 MWh
is negative. This is coherent with the intuition that the higher the value of αb5, the less
likely we are to choose the action that is not selected by rolling intrinsic. The derivative
for the action Sell 20 MWh is the opposite of the one of the action Sell 30 MWh. This is
due to the fact that the probability lost by the action Sell 30 MWh is exactly transferred
to the action Sell 20 MWh.

∂πdθ (0|s)
∂αb5

= 0 (2.9)

∂πdθ (10|s)
∂αb5

= 0 (2.10)

∂πdθ (20|s)
∂αb5

= φ(p(25), µkY + αb5, exp(σY )) (2.11)

∂πdθ (30|s)
∂αb5

= −φ(p(25), µkY + αb5, exp(σY )) (2.12)

2.5.6 Preventing Imbalances

As we explain in the assumptions in section 2.2, we are only interested in developing
trading strategies that do not result in imbalance. Therefore, in order to suppress actions
that result in imbalances, we re-assign their probability to the closest action which does
not result in an imbalance, using the same idea as in section 2.5.5. In this case, the
parameter αb5 is replaced by a constant M which is sufficiently large in order to ensure
that an action which would result in an imbalance is never selected.

2.5.7 Adapting with Respect to Round-Trip Efficiency

In order to account for round-trip efficiency, we present an example that illustrates the
concept of perceived efficiency, which distinguishes whether we are planning to cover a bid
financially or physically. Suppose that we have two delivery hours, a charging efficiency
ηin of 0.9 and a discharging efficiency ηout of 0.9. Suppose that we have already bought
20 MWh for the first delivery hour at the previous time step. Therefore, the quantity
that would be stored is 18 MWh for both delivery times. If we want to sell power at the
second delivery time, we can only sell 16.2 MWh, because we have to apply the discharge
efficiency. We define the perceived efficiency for this order as 16.2

18 = 0.9. On the contrary,
if we want to sell at the first delivery time, we can sell 20 MWh, because this operation
will simply cancel the previous purchase of 20 MWh. This is a purely financial operation.
We thus define the perceived efficiency for this order as 20

18 = 1.11.

In order to account for this effect in the threshold parametrization, we use the same
idea as in section 2.5.5.

• We determine a certain baseline for the mean of the Gaussian distribution of our
buy and sell threshold, which corresponds to the case in which we are accepting a
certain quantity that serves as a purely financial transaction. We then adapt the
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thresholds as follows:

µkX ←
1

ηout
µkX

µkY ← ηinµ
k
Y

This adaptation is coherent with the intuition presented in the example. Indeed,
if we are canceling a position that we have previously taken in the market, we can
accept a less interesting price (i.e. accepting a lower sell / higher buy threshold),
because the perceived efficiency is higher than 1.

• The mean of the auxiliary Gaussian represents the case in which we are opening a
new position. Therefore, the auxiliary Gaussian distribution mean will be equal to

(i) ηin · ηout · µkX for the buy threshold, and (ii)
µkY

ηin·ηout for the sell threshold. This is
also coherent with the example, because we are requesting a more selective price if we
are opening a new position than if we are engaging in a purely financial transaction,
since the perceived efficiency is less good. Note that this adaptation does not add
any new parameters in the learning algorithm.

2.6 Case Study

In this section we present results from the implementation of the proposed policy on the
German continuous intraday market. The data for the German CIM has been procured
from the European Power Exchange (EPEX), and spans the years 2015 and 20169. For
the purpose of the case study, we place ourselves in the position of a storage asset owner
who manages a unit with a maximum storage capacity of 200 MWh and that has not made
any trades in earlier markets (day-ahead, intraday auction). We assume that, on July 19,
the owner adopts our strategy and has at its disposal market data since the beginning of
the year10. Therefore, we use the 200 first days of 2015 as training set, and the last 165
days of 2015 and the 366 days of 2016 as a test set.

2.6.1 Rolling Intrinsic Method

We compare our approach to the rolling intrinsic method. This method has already been
used as a benchmark in the literature [BEPC18]. This method is also popular in the gas
trading context [LW21].

The rolling intrinsic policy is a myopic method for trading in continuous markets.
The idea of the method is to trade so as to maximize the instantaneous reward at each
time step [PM16a]. In the context of our problem, the rolling intrinsic method will select

9There have been a number of changes in the German CIM since 2016. Firstly, the time between the
closure of the CIM and the product delivery was 30 minutes in 2016, and has been changed to 5 minutes
in 2017 [KKP20]. Secondly, liquidity has kept increasing in Germany. The exchanged quantity in 2016
was 41TWh, and reached 56TWh in 2020 [EPEb]. Finally, cross-border bids have been introduced in the
CIM in June 2018 [EPEc]. These bids allow for trading between different countries if there is sufficient
interconnection capacity available. Nevertheless, this change is less drastic for the German market, because
it still represents 56% of the total exchanged volume in European CIMs in 2020 [EPEb]. These changes
do not affect the possibility of applying our method. Moreover, there is no reason to believe that the
results would be significantly different if the method would be applied on more recent data featuring these
changes.

10Note that data which extends too far back in time may not be as useful, due to the rapid structural
evolution of the market (increase in renewable energy integration, changes in market design, etc.).
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the subset of trades which can be absorbed by the reservoir without exposing the unit
to imbalances, and will do so by maximizing the profit of the current time step. This
myopic policy can be written as an optimization problem at every time step of trade. The
optimization model is developed in appendix 2.8.3.

2.6.2 Learning Process

In order to optimize our policy parameters, we rely on the REINFORCE algorithm as
described in section 1.4.3. In order to reduce the update variance, we use a baseline
function. It would be complicated to find a good parametrization in order to compute an
estimation of the value function, as presented in section 1.4.3. Indeed, the expected profit
(value function) of a storage asset is highly non-linear with respect to the offers available
in the market, as it is not an offer in itself that creates a potential profit but rather a
combination of offers. In order to avoid this complexity, we use the instantaneous profit
that rolling intrinsic would obtain on the available offers as a baseline function.

We aim at learning the optimal threshold, so as to apply our threshold policy with a
frequency of 1 second. We consider 1 second as a sufficiently high frequency for testing
the algorithm in the continuous intraday market because, as observed in Table 2.1, if
we trade every second, we will observe 98.3% of the offers. This means that almost all
of the offers remain in the market for at least one second11, before being matched with
competing offers on the platform. Notice that our method can be used for trading at
any frequency, because the computational effort for optimizing the policy parameters is
performed off-line. Therefore, applying our threshold policy in real time is instantaneous.

In order for the learning stage of the algorithm to be computationally tractable, we
gradually refine the learning frequency from hourly steps to 15-minute steps and ultimately
to 5-minute steps12, as indicated in Fig. 2.7. In this figure, 1 iteration corresponds to 4
repetitions of the 200 days of learning, which amounts to 800 episodes. These episodes
are executed in parallel on an HPC cluster using 8 CPUs for 40 hours.

Length of time step Percentage of offers observed

1 hour 25.7

15 minutes 41.5

5 minutes 56

1 minute 74.8

15 seconds 86.7

5 seconds 92.2

1 second 98.3

Table 2.1: Percentage of offers that are observed as a function of frequency of accessing the market
data.

A potential issue for our learning phase is that the REINFORCE algorithm is a stochas-
tic algorithm. Therefore, different runs can produce different results. In order to test the
sensitivity of our results, we have conducted an experiment in which we run 6 different

11The average time between two offer arrivals is 29.9 seconds. Nevertheless, the offer arrivals are not
distributed uniformly over time. Indeed, during the last hour, the average time between two offer arrivals
is 4.3 seconds.

12We decide to switch to a higher learning frequency when the profit appears to stabilize. This is due
to the fact that there is no reason to run the algorithm until full convergence for the hourly frequency,
because it is not the problem we are interested in (the order data arrives at much higher frequency than
hourly).
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Figure 2.7: Evolution of profit as a function of iterations of the REINFORCE algorithm.

realizations of the REINFORCE algorithm at hourly frequency and compare the evolution
of the alpha parameters and the profit. We illustrate the results for parameter αs4 (left
panel of Fig. 2.8) and the average profit (right panel of Fig. 2.8). We observe that the
different runs exhibit very similar average profit and parameter evolution.
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Figure 2.8: Evolution of αs
4 (left) and the average profit (right) for 6 realizations of the REIN-

FORCE algorithm.

2.6.3 Out-of-sample Testing

In this section, we present the results obtained by our threshold policy on out-of-sample
data. More precisely, we apply the θ parameter vector learned on the 200 first days of 2015
on the remainder of 2015 and to the entire year of 2016. We compare these results with
the ones obtained by rolling intrinsic on the same data. We present the results in Table
2.2. (i) Column 1 represents the trading frequency. (ii) Column 2 refers to the method
that we use: ”Threshold” refers to the method presented in this chapter, ”Threshold init”
is the early method that we have developed in [BP19a]13, ”Rolling 4 PM” refers to rolling
intrinsic starting at 4 PM, ”Rolling 11 PM” refers to rolling intrinsic starting at 11 PM,
and ”Threshold without αi” is the policy learned by the REINFORCE algorithm if we
fix αsi and αbi to 0. (iii) Column 3 refers to the round-trip efficiency of the considered

13This method is similar to the one presented in the present chapter, although it does not include any
information about the prices that are available for the other delivery hours (there is no αs

5 and αb
5).
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storage unit. (iv) Column 4 refers to the data that are used for the test. It can either
be in-sample (the 200 first days of 2015) or out-of-sample (the remainder of 2015 and
2016). (v) Column 5 contains the average profit. From this table, 6 main observations
can be made. (i) The performance of rolling intrinsic strongly depends on the time at
which the algorithm is started. (ii) Our threshold policy outperforms rolling intrinsic (iii)
the threshold policy presented in this chapter is more suited for high frequency than the
early method we propose in [BP19a]. (iv) Our threshold policy also outperforms rolling
intrinsic for a non perfect round-trip efficiency. (v) The results in and out-of-sample are
very similar. (vi) The most important parameters are α3 α4 and α5. In the remainder of
this section, we will analyse these 6 observations in more details.

Trading
frequency Method Efficiency

Used
data

Profit
mean

1 hour Threshold 1 out 5374

1 hour Threshold init 1 out 4776

1 hour Rolling 11PM 1 out 4591

1 second Threshold 1 out 6405

1 second Threshold init 1 out 5186

1 second Rolling 11PM 1 out 5438

1 second Rolling 4PM 1 out 4742

1 second Threshold 0.81 out 3762

1 second Rolling 11PM 0.81 out 3311

1 second Threshold 1 in 6605

1 second Rolling 11PM 1 in 5694

1 hour
Threshold
without α1 1 out 5362

1 hour
Threshold
without α2 1 out 5375

1 hour
Threshold

without α3 and α4 1 out 4652

Table 2.2: Profit mean [e/day]

Comparison of rolling intrinsic for different starting time We compare the per-
formance of rolling intrinsic when we start it at 11PM (row 6) and when we start it at
4PM (row 7). We observe that the performance is better when we start the algorithm at
11PM rather than at 4PM. The low profit that is observed when we launch the algorithm
at 4PM results from the fact that rolling intrinsic is myopic and therefore sells most of its
flexibility directly without accounting for potentially better offers that would appear in
the future. When we launch rolling intrinsic at 4PM, it is therefore selling its flexibility
while very few offers are available on the market (the market has just opened) which is
not a good option. Therefore, in the rest of this section, we only consider the results of
rolling intrinsic when we launch it at 11PM.

Superiority of the threshold policy compared to rolling intrinsic By observing
rows 4 and 6 of the table, we observe that the average profit difference amounts to 17.8%.
Moreover, the proposed threshold policy achieves a higher profit in 77.4% of the days. In
Fig. 2.9 we present the daily profit difference. The figure demonstrates that the extra
profit is a cumulative effect of multiple days of superior performance, as opposed to being
the result of a few isolated days in which the threshold policy performed significantly
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Figure 2.9: Distribution of the difference between the profit of the threshold policy and the rolling
intrinsic policy

In Fig. 2.10, we illustrate one of the effects that justifies the superior profit of the
threshold policy. Fig. 2.10 indicates whether power has been traded for the different
delivery times and time steps. A green dot indicates that we have bought power, whereas
a red dot indicates that we have sold power. The left graph illustrates one of the weaknesses
of rolling intrinsic: at every line where there are green dots, there are also red dots. This
implies that the method only considers buying power if it can sell it directly (except if it
can buy power at a negative price). This is due to the fact that the method maximizes
the profit of the current time step, and ignores future trading opportunities which may
arrive but have not yet been observed. On the contrary, the threshold method procures
power at the beginning of the horizon, but may turn down offers for selling power if the
sales price is not sufficiently attractive. Thus, the threshold method may wait in order to
sell the power later, counting on the possibility that at a later moment there will be offers
arriving in the market with a higher willingness to pay than the currently available offers.

Figure 2.10: Bid acceptance patterns for 1 day of trading for the rolling intrinsic (left) and threshold
method (right).

Comparison of the threshold policy and the threshold init policy at high fre-
quency We compare the influence of the trading frequency on the performance of three
different methods: (i) the threshold policy presented in the present chapter; (ii) the rolling
intrinsic policy; (iii) the threshold init policy. Note that the threshold init policy does not
incorporate the parameters αs5 and αb5 in the parametrization of the threshold. From rows
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1-6 of the table, we observe that the cumulative payoff increases with respect to the trading
frequency for all the methods. This is expected, since an increase in the trading frequency
increases the number of offers that we observe and use for trading. However, this increase
is smaller for the threshold init policy. In order to interpret this result, Figs. 2.11 and 2.12
compare the evolution of five different policies: (i) rolling intrinsic with an hourly trading
frequency, (ii) rolling intrinsic with a trading frequency of 15 seconds, (iii) rolling intrinsic
with a trading frequency of 1 second, (iv) a threshold policy with a trading frequency of
1 second, and (v) the threshold init policy with a trading frequency of 1 second.

In Fig. 2.11, we observe that two factors contribute to the cumulative payoff. (i)
The first factor is the payoff that results from the significant arbitrage possibilities of the
storage unit. These arbitrage opportunities can be anticipated. These pay-offs correspond
to the large jump of the rolling intrinsic method at 11 PM on D-1. (ii) The second factor
corresponds to the payoffs that result from trades of smaller volume, which are not visible
at the outset of the trading day. These payoffs correspond to the slight increase of the
cumulative payoff of the rolling intrinsic policy, following the large jump. It is worth noting
that these small increases are almost insignificant when trading at an hourly time step,
but become very important at a higher trading frequency.

This analysis highlights that, when trading at a higher frequency, we require a trading
strategy that is effective at capturing the value of both predictable large arbitrage oppor-
tunities as well as less predictable small opportunities with a significant cumulative effect.
In Fig. 2.12 we observe that the threshold policy attains a similar performance to rolling
intrinsic in terms of capturing small arbitrage opportunities. This is represented by the
right graph, where we observe that the two curves follow a similar pattern towards the end
of the day. On the contrary, the threshold init policy is not able to capture these small
arbitrage opportunities, which is clear from the fact that the cumulative pay-off remains
constant at the end of the day. Note that the parametrization of the threshold init policy
does not include any information about the prices that are available for the other delivery
hours. The problem is that, for these small arbitrage opportunities, a bid is not interesting
only due to its price but also because if we accept it along with a bid with another delivery
time, we can directly secure a positive payoff using our storage unit.

On the other hand, the main difference between our threshold policy and rolling in-
trinsic mainly rests on the fact that the threshold policy is better suited for trading for big
arbitrage opportunities. This is illustrated by the fact that the cumulative payoff reached
after the large jump of the threshold policy (the jump of the red curve at 9:20AM) is higher
than that of rolling intrinsic. The rolling intrinsic policy buys and sells prematurely in the
beginning of the trading period (the jump in the blue curve at 11 PM on D-1), whereas
the threshold policy holds back until more favorable trades can be locked in.

Threshold performance for a non perfect roundtrip efficiency In this section,
we present the results for a storage unit with a charging efficiency of 0.9 and a discharging
efficiency of 0.9. Our aim is to verify that our threshold policy is also suitable for an asset
with an imperfect round-trip efficiency. The results are presented in rows 8 and 9 of the
table. As before, we compare the results obtained by our threshold policy with the ones
obtained by rolling intrinsic on the same data. The proposed threshold policy achieves a
higher profit in 64.6% of the days. The average profit difference amounts to 13.6%. In Fig.
2.13 we present the daily profit difference. These results are relatively close to the ones
obtained for a storage unit with a perfect round-trip efficiency. The results thus suggest
that our policy is also suitable for the case with round-trip efficiency losses.
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Figure 2.11: Cumulative payoff evolution for one day of trading for the rolling intrinsic method for
various trading frequencies.
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Figure 2.12: Cumulative payoff evolution for one day of trading for the full day (left) and a zoom
in on the end of the day (right).

Stability of the method with respect to change in the data From rows 4, 6,
10 and 11 of the table, we observe that our threshold policy outperforms rolling intrinsic
by 16.0% in-sample and 17.8% out-of-sample. This suggests that our threshold policy
performs comparably on unseen data (out-of-sample) as on data on which it has been
trained (in-sample). Thus, our method is observed to achieve a robust performance against
out-of-sample data.

Importance of the different parameters In order to test the influence of each ele-
ment of the threshold parametrization, we have launched the REINFORCE algorithm by
cancelling each of the parameters one by one. Then we apply the learned policy out-of-
sample. More precisely, we have realized 3 simulations: (i) we optimize the policy while
fixing αs1 and αb1 to 0; (ii) we optimize the policy while fixing αs2 and αb2 to 0; (iii) we
optimize the policy while fixing αs3, αb3, αs4 and αb4 to 0. The reason for fixing both α3 and
α4 is that cancelling one will cancel the other automatically, as shown in Eqs. 2.3 and 2.4.

We have not considered the case in which we set αs5 and αb5 to 0, because the importance
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Figure 2.13: Distribution of the difference between the profit of the threshold policy and the rolling
intrinsic policy in the case with round-trip efficiency losses.

of this parameter is already discussed extensively when analysing the threshold init policy.
The results are presented in the last three rows of the table and will be analysed in detail
in the remainder of the section.

1. Without αs1 and αb1: We observe that the profit is slightly better if we include αs1
and αb1 compared to the case in which we set them to 0. This suggests that these
parameters help, but their impact is not decisive14.

2. Without αs2 and αb2: We observe that the profit with and without αs2 and αb2
is almost identical. This suggests that this parameter could be discarded without
hurting the profitability of the policy.

3. Without αs3, α
b
3, α

s
4 and αb4: In this case, we observe a big drop in the profit,

compared to the initial case. By further investigating the obtained parameters, we
observe that the algorithm converges to a high value of αs1 and αb1. This implies that
the sell threshold will be low and the buy threshold will be high. Simultaneously, the
algorithm increases the parameters αs5 and αb5 to a very high value. The consequence
of this behaviour will be that the policy will aim at accepting every possible bid that
is also accepted by rolling intrinsic. This indicates that this policy is attempting to
mimic the rolling intrinsic policy. In order to confirm this intuition, we present in
Fig. 2.14 the profit difference between the rolling intrinsic policy and this policy.
We observe that the values are concentrated around 0, which confirms our intuition
that the algorithm is attempting to mimic rolling intrinsic.

2.6.4 Profitability of a storage unit trading in the CIM

In this section, we compare the profit earned by our storage unit in the CIM to its invest-
ment cost. We consider two types of storage units, a pumped storage hydro unit and a

14Notice that we have realized the same experiment at a frequency of 1 minute, and the extra profit was
more significant (around 0.83%).
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Figure 2.14: Distribution of the difference between the profit of the rolling intrinsic policy and the

profit of the threshold policy without parameters α
s/b
3 and α

s/b
4

large scale battery. We present the relevant financial data about these two types of assets
in Table 2.3. In order to quantify revenues, we use the results presented in Table 2.2. For
a pumped storage hydro unit, we select the results with a round-trip efficiency of 81%;
and for a battery, we select the results with a perfect round-trip efficiency. Using these
data15, we can compute the return on investment for the different projects.

Pumped storage hydro: For a pumped storage hydro, if we use the most optimistic
parameters, we obtain a return of 2.5% while if we use the least optimistic parameters, we
obtain a return of −5.4%. This indicates that the CIM might be one of the main sources
of revenue for a pumped storage hydro unit. These results are encouraging, because they
do not account for all of the profits that a pumped storage hydro unit can have access to.
Indeed, we only trade products with an hourly granularity, and could still extract an extra
profit from adapting our output on a 15-minute basis. Moreover, market participants
coordinate their strategy in several markets. Therefore, not all of the profit is expected
to originate from a single market. For instance, part of the flexibility could be sold in
ancillary services, or could be used to balance the portfolio of the market participant in
real time.

Large-scale battery: For the battery, the yearly profit does not cover the annual fixed
cost. This result indicates that the CIM should not be the main source of revenue for a
battery. This is confirmed by [IRE21], where it is shown that most installed large-scale
batteries are used for providing (primary/secondary) reserve. Nevertheless, this does not
imply that other markets than reserve should not be considered. Given that the capacity

15Notice that we use the data of the CIM in 2015−2016. Since 2016, the liquidity in the CIM has
increased, and cross-border bids have been introduced. This increases trading opportunities, and may
therefore increase the return on investment if the strategy would be applied against current market condi-
tions.
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cleared in day-ahead reserve markets cannot be traded in the CIM, an effective strategy
in the CIM mitigates the risk of not being accepted in the reserve markets, and therefore
allows a more aggressive bidding strategy in reserve markets (bidding at a higher price
while covering the risk of not being accepted by trading the flexibility in the CIM).

Characteristics/Unit type Pumped storage hydro Large scale battery

Investment cost [ke/MW] 106 [US 21a]-800 [RAE21] 200 [ZT20]-700 [RAE21]

Round-trip efficiency [%] 79 [US 21b] 90 [Tes21]

Annual fixed cost [ke/MW] 4 [RAE21] 14 [RAE21]

Economic Lifetime [years] 50 [RAE21]-100 [NRE03] 10 [RAE21]

Table 2.3: Financial and technical informations on storage units.

2.7 Conclusions and Perspectives

In this chapter, we tackle the problem of intraday trading for storage units. We model the
problem using Markov Decision Processes. We focus on policies that are parametrized on
price thresholds, and we optimize the resulting policy functions using the REINFORCE
algorithm. We introduce and justify a collection of factors that can be used for adapting
the trading threshold to system conditions. We compare our threshold policy to the
rolling intrinsic method on the German continuous intraday market. We demonstrate
that the threshold policy performs significantly better than rolling intrinsic, and analyze
the results in order to explain the performance difference. Future extensions of the work
can include the following items. (i) One can improve the policy functions by adding more
explanatory variables of the price thresholds such as renewable forecasts or generator
outages. (ii) One can compute the value of coordinated trading strategies between early
markets (day-ahead and intraday auction, day-ahead reserve markets) and the continuous
intraday market. Day-ahead reserve markets are likely good candidates because they are
also a notable revenue stream for flexible assets such as storage units. (iii) One could
consider the possibility of placing bids in the market. This might be interesting because,
as explained in section 2.2, it may lead to a significant increase in profits. A first approach
that would allow us to still rely on our threshold policy would be to consider that all the
bids that we have placed during previous time steps are always cancelled, and to place
bids for a predefined quantity.

2.8 Appendix

2.8.1 Appendix A: Quantity that we exchange compared to the total
exchanged quantity

In order to better understand the potential for our trading strategy to influence the strat-
egy of other agents, we have compared the quantity that we exchange for different delivery
hours with the total exchanged quantity in the market. More precisely, we have recorded
the total exchanged quantity in the German CIM for every hour of 10 days that are ran-
domly selected in our dataset. We have then computed the ratio between our traded
quantity and the total exchanged quantity for these hours. We present the results graph-
ically in Fig. 2.15. It can be observed that, for most hours, the ratio is quite low (the
average ratio is around 1.65%). For these hours, it could be argued that our influence on
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the future behavior of other actors could be negligible. On the contrary, for a few hours,
our trading volume can reach a ratio of 10%.
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Figure 2.15: Ratio between our traded quantity and the total exchanged quantity for 10 randomly
selected days.

2.8.2 Appendix B: Characterization of Optimal Trading Policy in a De-
terministic Setting

In this appendix, we prove that optimal inter-temporal arbitrage in a deterministic setting
is achieved by a threshold policy if the reservoir limit constraint is not binding. Towards
this aim, we characterize the optimal policy in a perfect foresight setting16. This char-
acterization is obtained from an analysis of the KKT conditions of the perfect foresight
model.

2.8.2.1 Notations

In order to describe the model, we need to define the sets, the parameters and the variables.

• The sets are:

– T , the set of time steps.

– D, the set of the delivery times.

– It,d, ∀t ∈ T, d ∈ D, the set of bids available for a given time step and delivery
time.

• The parameters are:

– pbi,t,d, the price of the ith buy bid for delivery time d at time step t.

– psi,t,d, the price of the ith sell bid for delivery time d at time step t.

16Perfect foresight should be understood as the situation in which we know in advance all the bids which
will arrive in the future.
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– Qbi,t,d, the available quantity of the ith buy bid for delivery time d at time step
t.

– Qsi,t,d, the available quantity of the ith sell bid for delivery time d at time step
t.

– V , the maximum capacity of the reservoir.

• The variables are:

– qbi,t,d, the quantity we accept from the ith buy bid for delivery time d at time
step t.

– qsi,t,d, the quantity we accept from the ith sell bid for delivery time d at time
step t.

– vd, the capacity stored in the reservoir at delivery hour d.

2.8.2.2 Model

The model is given by (P ).

(P ) : max
∑
t∈T

∑
d∈D

∑
i∈It,d

(
pbi,t,dq

b
i,t,d − psi,t,dqsi,t,d

)
(2.13)

q
s/b
i,t,d ≤ Q

s/b
i,t,d, ∀i ∈ It,d, d ∈ D, t ∈ T (µ

s/b
i,t,d) (2.14)

q
s/b
i,t,d ≥ 0, ∀i ∈ It,d, d ∈ D, t ∈ T (ν

s/b
i,t,d) (2.15)

vd = vd−1 +
∑
t∈T

∑
i∈It,d

(
qsi,t,d − qbi,t,d

)
,∀d ∈ D (λd) (2.16)

0 ≤ vd, ∀d ∈ D (βd) (2.17)

vd ≤ V,∀d ∈ D (γd) (2.18)

Objective function (2.13) determines the profit as the sum of the revenue for what
we sell minus the cost of what we buy. Constraints (2.14) and (2.15) state that we can
only accept a positive quantity of the bids and less than the maximal quantity of the bid.
Constraint (2.16) models the evolution of the capacity stored in the reservoir. Constraints
(2.17) and (2.18) ensure that the stored energy remains in the reservoir limit.

2.8.2.3 KKT Conditions

In order to compute the KKT conditions, we compute the Lagrangian:

L =
∑
t∈T

∑
d∈D

∑
i∈It,d

(
pbi,t,dq

b
i,t,d − psi,t,dqsi,t,d + µsi,t,d(Q

s
i,t,d − qsi,t,d) + µbi,t,d(Q

b
i,t,d − qbi,t,d)

+ νsi,t,dq
s
i,t,d + νbi,t,dq

b
i,t,d

)
−
∑
d∈D

λd

vd − vd−1 −
∑
t∈T

∑
i∈It,d

qsi,t,d +
∑
t∈T

∑
i∈It,d

qbi,t,d


+
∑
d∈D

(
βdvd + γd(V − vd)

)
The constraint that the gradient of the Lagrangian vanishes can be written as:
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0 = pbi,t,d − µbi,t,d + νbi,t,d − λd (qbi,t,d) (2.19)

0 = −psi,t,d − µsi,t,d + νsi,t,d + λd (qsi,t,d) (2.20)

0 = βD − γD − λD (vD) (2.21)

0 = βd − γd − λd + λd+1 (vd) (2.22)

From equations (2.19), we obtain

• If pbi,t,d > λd then νbi,t,d = 0 and µbi,t,d > 0, which implies that qbi,t,d = Qbi,t,d.

• If pbi,t,d < λd then µbi,t,d = 0 and νbi,t,d > 0, which implies that qbi,t,d = 0.

• If pbi,t,d = λd, then the bid is partially accepted.

From equations (2.20) we obtain

• If psi,t,d < λd then νsi,t,d = 0 and µsi,t,d > 0, which implies that qsi,t,d = Qsi,t,d.

• If psi,t,d > λd then µsi,t,d = 0 and νsi,t,d > 0, which implies that qsi,t,d = 0.

• If psi,t,d = λd, then the bid is partially accepted.

From these expressions, we can interpret λd as the trading threshold for delivery time
d. Indeed, we have proven that we accept any sell bids with a lower price and any buy
bids with a higher price. After that, we can analyse the link between the λ for different
delivery times. We start by analysing the value of the threshold at the last delivery time
using equation (2.21), where we note 3 possibilities:

• If vD = 0 then γD = 0, which implies that λD ≥ 0.

• If vD = V then βD = 0, which implies that λD ≤ 0.

• If 0 < vD < V then βD = 0, γD = 0, which implies that λD = 0.

Proceeding backwards using equation (2.22), at delivery time d we have the three
following possibilities:

• If vd = 0 then γd = 0, which implies that λd+1 ≤ λd.

• If vd = V then βd = 0, which implies that λd+1 ≥ λd.

• If 0 < vd < V then βd = 0, γd = 0, which implies that λd+1 = λd.

From this, we conclude that, if the reservoir is not binding, the λd are equal to each
other. This means that the optimal policy is a threshold policy if the reservoir is not
binding, which is the result that we wish to prove.

2.8.3 Appendix C: Rolling Intrinsic Model

In this appendix, we present the optimization model that the rolling intrinsic method
solves at each time step t ∈ T in the case of a perfect round-trip efficiency storage. We
start by defining the notation. Then we present the model.
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2.8.3.1 Notations

• The sets are:

– D, the set of the delivery times.

– It,d, ∀d ∈ Dt, the set of bids available for a given delivery time at time step t.

• The parameters are:

– pbi,t,d, the price of the ith buy bid for delivery time d at time step t.

– psi,t,d, the price of the ith sell bid for delivery time d at time step t.

– Qbi,t,d, the available quantity of the ith buy bid for delivery time d at time step
t.

– Qsi,t,d, the available quantity of the ith sell bid for delivery time d at time step
t.

– V , the maximum capacity of the reservoir.

– vt−1,d, the capacity that we would get at delivery time d, with the trade we
have realized until time step t− 1.

• The variables are:

– qbi,t,d, the quantity we accept from the ith buy bid for delivery time d at time
step t.

– qsi,t,d, the quantity we accept from the ith sell bid for delivery time d at time
step t.

– vt,d, the capacity that we would get at delivery time d, if we do not trade after
time t.

2.8.3.2 Model

The interpretation is that we accept, at each time step t, the set of bids that maximize
the instantaneous profit. It means that, ∀t ∈ T we solve (Pt). Objective (2.23) determines
the profit as the sum of the revenue for what we sell minus the cost of what we buy.
Constraint (2.24) requires that we cannot accept a quantity greater than the maximum
capacity of the bid. Constraint (2.25) imposes that we accept a positive quantity of the
bid. Constraint (2.26) shows how the capacity of the reservoir evolves with respect to the
quantity that we trade. Constraints (2.27) and (2.28) require that the capacity stored in
the reservoir should stay in the reservoir limit.

(Pt) max
q
s/b
i,t,d,vt,d

∑
d∈D

∑
i∈It,d

(
pbi,t,dq

b
i,t,d − psi,t,dqsi,t,d

)
(2.23)

q
s/b
i,t,d ≤ Q

s/b
i,t,d ∀i ∈ It,d, d ∈ D (2.24)

q
s/b
i,t,d ≥ 0 ∀i ∈ It,d, d ∈ D (2.25)

vt,d = vt−1,d +
∑

a∈D|a≤d

∑
i∈It,a

(
qsi,t,a − qbi,t,a

)
∀d ∈ D (2.26)

0 ≤ vt,d ∀d ∈ D (2.27)

vt,d ≤ V ∀d ∈ D (2.28)
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2.8.4 Appendix D: Order book simulator

We commence by describing the format of the bids received from EPEX. We then present
the 4 steps that we apply in order to obtain the data for our simulator. These 4 steps
include (i) linking the partially accepted bids, (ii) linking the iceberg bids, (iii) suppressing
invisible bids, and (iv) cancelling arbitrage opportunities. Finally, we convert the data to
the format that is compatible with the simulator that is presented in section 2.2.

Initial format of the data: The format of the data is illustrated in table 2.4. Each
line of the table represents a bid placed in the market. The bids have the following
characteristics: (i) Instrument type, the length of the delivery period. It can be 1
hour or 15 minutes. (ii) Delivery instrument (delivery period), the moment at which
the energy should be produced. (iii) Delivery date, the date at which the power needs
to be produced (iv) Start validity date, the moment at which the bid appears in the
platform (v) End validity date, the moment at which the bid is not available anymore
(vi) Cancelling date, the moment at which the bid has been cancelled (only if the bid
has been withdrawn by the trader who has placed it, not if the bid has been matched by
another trader). (vii) Is executed, this indicator is equal to 0 if the bid has not been
matched, 1 if the bid has been matched for its total quantity, and 2 if the bid has been
matched for a partial quantity. (viii) Side, S if it is a sell bid and B if it is a buy bid.
(ix) Price, the price at which the bid has been placed. (x) Execution price, the price
at which the bid has been executed. (xi) Volume, the volume of the bid. (xii) Executed
volume, the volume of the bid which has been matched. After presenting the way in
which the data is made available, we describe in the next sections what adaptations we
perform to the data in order to be able to simulate the market.

Partially accepted bids: We illustrate in table 2.5 the case of a bid that is partially
accepted for 10MW in a first exchange and that is matched for the remaining quantity
in a second exchange. The way that EPEX handles this is as follows. When the bid
is partially matched in the first exchange (between the bids of lines 1 and 2), the bid is
cancelled from the order book (line 1) and a new bid is created with the same characteristics
and with a quantity equal to the unmatched quantity of the initial bid (line 3). This way
of representing the data is not suitable for our problem, because, if we would decide to
accept (partially or fully) the bid of the first line before the arrival of the bid of line 2, our
simulator would still observe the arrival of the bid of line 3. The problem is that the bid
in line 3 is dependent on the bid of line 1, however this dependence is not represented in
the data. In order to overcome this problem, we filter all of the bids in order to find the
ones that are linked together (bids that are created following the partial acceptance of a
previous bid). For this purpose, we iterate over all of the bids and consider a bid as being
linked to a previous one if (i) the new bid arrives at the same time as the previous one
disappears, (ii) the volume of the new bid is equal to the initial volume of the previous
bid minus the volume accepted from the previous bid, (iii) the two bids have the same
price, (iv) the two bids have the same side (buy/sell), (v) the new bid is not yet part of
another group, and (vi) the accepted quantity of the first bid is non-zero.

Iceberg bids: An iceberg bid is a particular type of bid in the CIM. It is a bid for
which only a partial volume of the bid is observed on the platform. For instance, a trader
can split a bid of 200MWh into 4 bids of 50MWh. In this case, only a bid of 50MWh will
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be visible on the platform. When the 50MWh are accepted, the next 50MWh block is
made available on the platform. The interest for these products is that the traders do not
wish to reveal that they are willing to buy/sell a large quantity of power. An example of
how an iceberg bid is represented in EPEX data is provided in table 2.6. In this example,
an iceberg bid for selling 90MWh is split into three 30MWh bids (line 1, line 3, line 5
and line 7). This iceberg bid is first matched with a 30MWh bid (line 2) and later with
a 40MWh bid (line 4 and 6). The remaining 20MWh are later withdrawn by the trader
(line 7). As for the partial acceptance of a bid, there is no link between the different parts
of an iceberg bid in the EPEX data. In order to overcome this problem, we filter all of
the bids in order to find which bids are part of an iceberg bid. An interesting property for
detecting if a bid is part of an iceberg bid is illustrated in Table 2.6. For a bid that is part
of an iceberg bid, if its executed volume is equal to its volume, its is executed property is
set as being partially accepted (in line 1 and 3, is executed is equal to 2). For linking bids
that are part of the same iceberg bids, we iterate through all of the bids and consider a
bid as being linked to a previous one if (i) the executed volume of the previous bid is equal
to its total volume, (ii) the is executed of the previous bid is equal to 2, (iii) the price of
the new bid is the same as the price of the previous bid, (iv) the side of the new bid is the
same as the side of the previous bid, (v) the new bid is not yet part of any iceberg bid,
(vi) the new bid arrives at the same time as the previous bid disappears, (vii) the new
bid is a starting bid (not a bid that is created because a previous bid has been partially
accepted).

Suppression of invisible bids: The concept of an invisible bid is illustrated in Table
2.5. By observing the data, we may think that the bid of line 2 is available during 14
millisecond. In fact, this is not true because the bid is directly matched with the bid of
line 1. The 14 milliseconds correspond to the time for the platform to realize that the bid
of line 1 and 2 should be matched. Therefore, it would not make sense that our algorithm
has the chance to accept the bid of line 2 during these 14 milliseconds. Thus, we suppress
offers that appear and (i) have a price to sell (resp. buy) power lower (resp. higher) than
the available bid with the best price to buy (resp. sell) power, and (ii) are available for less
than 300 milliseconds. The reason for suppressing only bids that remain for less than 300
milliseconds is that it can be legitimate to have, for the same delivery period, a sell bid
that has a lower price than a buy bid if one of them is part of a block bid (bid spanning
multiple delivery periods) or is an all-or-none bid (bids that can only be fully accepted).
Therefore, if we would not use this threshold of 300 milliseconds, we could have an initial
all-or-nothing sell (resp. buy) bid that stays long in the market, which would mean that
we would cancel many buy (resp. sell) bids (with a higher (resp. lower) price) even though
they are perfectly valid on the market.

Cancellation of arbitrage opportunities As explained above, it is possible to have,
for the same delivery period, a sell bid that has a lower price than a buy bid if one of them
is part of a block bid (bid spanning multiple delivery periods) or is an all-or-none bid (bids
that can only be fully accepted). Nevertheless, as our simulator only considers continuous
bids and iceberg bids (we do not have information about block bids or all-or-none bids),
this would lead to a direct arbitrage opportunity. Indeed, we would be able to sell and
buy power for the same delivery hour and have a positive payoff without assuming any
risk. In order to cancel these arbitrage opportunities, we use the following algorithm. We
simulate the bid arrival in the market and check if there is an arbitrage opportunity. If
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it is the case, we compute for the buy and the sell side how many bids we would need to
remove in order to cancel the arbitrage opportunity. Finally, we cancel the bids from the
side that requires removing the fewest bids.

Computation of Events Following the data treatment presented earlier, we can input
the data in the format of the simulator presented in section 2.2. To this aim, we iterate
through each bid group (partial activation or iceberg) and we define (i) an open event
when the first bid of the group arrives, the associated volume is the total volume of the
group; (ii) an acceptance event, every time a sub-bid is posted on the market; (iii) a
close event when the last bid of the group disappears. Notice that, in the initial data, it
is possible that two bids arrive at the same time. If it is the case, there are two possibilities.
(i) The bids are linked together. This situation only occurs in the three cases explained
above (partial acceptance, iceberg bids, suppression of invisible bids). (ii) The different
bids are independent of each other. In this case, we can simply execute both events in any
order.
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Instrument
Type

Delivery
Instrument

Delivery
date

Start
validity date

End
validity date

Cancelling
date

is
Executed Side Price

Execution
price Volume

Executed
volume

Hour 6:00 12/01/15
11/01/15

22:43:27.007
12/01/15

02:53:23.432
12/01/15

02:53:23.432 0 B 15 50 0

Hour 13:00 12/01/15
11/01/15

05:01:35.007
11/01/15

10:01:35.123 1 S 25 50 50

Hour 18:00 12/01/15
11/01/15

07:23:43.145
11/01/15

13:31:57.364 2 S 32 32 50 9.8

Table 2.4: Format of the data provided by EPEX.

Instrument
Type

Delivery
Instrument

Delivery
date

Start
validity date

End
validity date

Cancelling
date

is
Executed Side Price

Execution
price Volume

Executed
volume

Hour 18:00 12/01/15
11/01/15

07:23:43.145
11/01/15

13:31:57.364 2 S 32 32 50 10

Hour 18:00 12/01/15
11/01/15

13:31:57.350
11/01/15

13:31:57.364 1 B 32 32 10 10

Hour 18:00 12/01/15
11/01/15

13:31:57.364
11/01/15

14:42:57.495 1 S 32 32 40 40

Table 2.5: Example of the partial acceptance of a bid and of unavailable bids in EPEX data

Instrument
Type

Delivery
Instrument

Delivery
date

Start
validity date

End
validity date

Cancelling
date

is
Executed Side Price

Execution
price Volume

Executed
volume

Hour 22:00 12/01/15
11/01/15

10:00:00.000
11/01/15

11:00:00.142 2 S 40 40 30 30

Hour 22:00 12/01/15
11/01/15

11:00:00.000
11/01/15

11:00:00.142 1 B 40 40 30 30

Hour 22:00 12/01/15
11/01/15

11:00:00.142
11/01/15

12:00:00.038 2 S 40 40 30 30

Hour 22:00 12/01/15
11/01/15

12:00:00.000
11/01/15

12:00:00.038 2 B 40 40 40 30

Hour 22:00 12/01/15
11/01/15

12:00:00.038
11/01/15

12:00:00.038 2 S 40 40 30 10

Hour 22:00 12/01/15
11/01/15

12:00:00.038
11/01/15

12:00:00.038 1 B 40 40 10 10

Hour 22:00 12/01/15
11/01/15

12:00:00.038
11/01/15

15:00:00.000
11/01/15

16:00:00.000 0 S 40 20 0

Table 2.6: Example of an iceberg bid in EPEX data
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2.8.5 Determination of Regimes

In this section, we start by presenting why we compute the regimes based on the intraday
auction price curve. Then, we describe how we compute these regimes in details.

2.8.5.1 Regimes based on the intraday auction

As explained in section 2.5.1, the regimes are computed from the pattern of the intraday
auction. There are three reasons for this choice (i) this assumption seems coherent with
the observations from the data. In Fig. 2.16, we compare the price in the CIM one
hour before delivery, with the price of the intraday auction and the price in the CIM at
11PM. It can be observed that the pattern of the intraday auction price is very similar to
the one of the CIM price at 11PM and fits relatively well with the CIM price one hour
before delivery (ii) The gain of using the CIM price pattern at 11PM rather than the
intraday auction price to predict the pattern of the CIM price one hour before delivery
seems relatively limited (in Fig. 2.16, the yellow curve is not really more resembling to
the blue one than the red one). (iii) As the price pattern can change at any moment of
the CIM, it would be too heavy computationally to recompute the regimes every time an
offer appears/disappears from the CIM. Indeed, this would require running the procedure
of section 2.8.5.2 which includes running an (easy) optimization problem.
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Figure 2.16: Price in the CIM and in the intraday auction for the first week of 2015.

2.8.5.2 Stable optimum

In order to define our regimes, we do not consider every maxima and minima of the intraday
auction price curve. We only consider the one that can bring a sufficient arbitrage profit
meaning that the difference between the regime maximum and the regime minimum is
large enough. The reasons for this choice are (i) to avoid having too many regimes (ii)
only have minima and maxima that remains valid through the CIM trading time (as shown
in section 2.8.5.1, the pattern in the CIM might slightly change through time).

In order to detect the stable optima, we use the following optimization model ((2.29)-
(2.34)) where: (i) qd is the quantity we sell for delivery hour d; (ii) vd is the capacity stored
in the reservoir at delivery time d; (iii) sd is the quantity traded for delivery hour d (iv) pd
is the price for delivery hour d; (v) c is the selectivity parameter. It is the minimum profit
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per MWh traded that is needed in order to define a new regime; and (vi) V is the maximum
capacity of the reservoir. Objective (2.29) determines the profit as the sum of the revenue
for what we trade in the intraday auction at which we subtract the minimum profit we
want per MWh traded. Constraints (2.30) and (2.31) require that sd is the quantity traded
for delivery hour d (absolute value of qd). Constraint (2.32) shows how the capacity of the
reservoir evolves with respect to the quantity that we trade. Constraints (2.33) and (2.34)
require that the capacity stored in the reservoir remains in the reservoir limit. Solving
this optimization problem, it is possible to not obtain any regime. In that situation, we
use an iterative procedure that decreases the selectivity parameter c until we obtain at
least one regime. The selectivity parameter is arbitrarly fixed at 4 e

MWh .

max
qd,vd,sd

∑
d∈D

(pd · qd − c · sd) (2.29)

sd ≥ qd ∀d ∈ D (2.30)

sd ≥ −qd ∀d ∈ D (2.31)

vd = vd−1 − qd ∀d ∈ D (2.32)

0 ≤ vd ∀d ∈ D (2.33)

vd ≤ V ∀d ∈ D (2.34)
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Chapter 3

Optimal Trading of a Fixed
Quantity of Power in an Illiquid
Continuous Intraday Market

Renewable assets face considerable supply uncertainty, and therefore stand to gain by
adjusting their position dynamically in the CIM, as more accurate forecast information
arrives for their real-time supply. Moreover, trading later in the day also increases oppor-
tunities for profitable trades, since bid-ask spreads in CIMs are empirically observed to
decrease as we approach real time. These benefits need to be traded off against the fact
that the CIM is typically less liquid than earlier forward (e.g. day-ahead) markets. There-
fore, there is a counter-balancing interest for a renewable supplier to sell its power earlier,
in order to avoid “pushing” the price against its profits by unloading large quantities of
supply in a thin market.

In this work we set the foundation for capturing the latter tradeoff (thin markets), and
leave matters associated to the uncertainty of supply and the increasing information that
is revealed closer to real time for future work, but set in place the algorithmic framework
for this extension. Concretely, we focus on developing an optimal trading strategy for
selling a fixed quantity of power in an idealized CIM for which we have a model of the
price evolution. Our motivation is to set the basis for value function approximation (VFA)
algorithms that can be used for trading the production of a renewable unit in the real CIM
without any assumption on the price evolution model.

Our analytical work draws similarities to early work on optimal control by [Mor59].
In this work, the authors develop an optimal trading strategy in order to trade a fixed
quantity within a certain deadline subject to independent random prices. They prove that
the optimal strategy is characterized by a threshold beyond which the producer should
trade the required quantity. This work has been extended by [Kin69] and [Gol85], where
the authors consider that the trader (i) has the option to store the good for a given
holding cost, and (ii) faces a deterministic demand at each time period. They prove that
the optimal policy still follows a threshold strategy.

In more recent work in the context of electricity markets [RAP16], the authors derive
an optimal strategy for a thermal unit trading in the CIM, while assuming that the price
follows an additive Brownian motion. In [CJP15], the authors also present the solution for
trading a fixed quantity. The difference with our work is that [RAP16] does not account
for any bid-ask spread and [CJP15] only considers the case of a constant bid-ask spread.
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On the contrary, in our work, we solve the problem using a non constant spread in order
to reflect the empirical observation that the CIM remains relatively illiquid, despite its
growth.

In the previous chapter, we have motivated the idea for developing a threshold policy
by the fact that threshold policies have been proven to be optimal in a number of papers
in the literature regarding specific instances of stochastic optimal control problems with
uncertain prices [Mor59, Kin69, Gol85]. By analogy, in the present chapter, we develop
a value function approximation for the context of a renewable supplier with uncertain
supply.

Our contributions can be summarized as follows: (i) We cast the problem of unloading
a fixed quantity of power in a simplified CIM, as an MDP. (ii) We characterize the optimal
policy as well as the optimal value function for this MDP. (iii) We use this optimal value
function to develop basis functions for a VFA algorithm. (iv) We use the MDP frame-
work to also develop an SDDP algorithm, that can be used as a benchmark for the VFA
algorithm. We validate our VFA and SDDP algorithms by demonstrating that they both
arrive to the optimal analytical solution of a 10-period example.

3.1 Continuous Intraday Market Model

As explained in section 1.3.3, at any moment, a trader in the CIM observes a collection
of bids. This collection of bids is called an order book. This order book can be further
split into 24 “hourly” order books1, one for each delivery hour. We present such an order
book in Fig. 3.1. The order book consists of two parts: (i) the buy side, which contains
all the bids of traders which want to buy power from us (in blue), and (ii) the sell side,
which contains all the bids of traders which want to sell power to us (in red).
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Figure 3.1: Example of an order book.

In order to derive an optimal trading strategy, we propose decomposing the order book
into three components that are presented in Fig. 3.2: (i) a bid-ask spread, which is the
price difference between the most favorable sell and buy bids that have yet to be matched
(illustrated in the left panel); (ii) the center of the bid-ask spread, which is the average
price between the best sell bid and the best buy bid (illustrated in the left panel); and

1In the remainder of the chapter, we only consider “hourly” order books.
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(iii) a linear price impact (illustrated in the right panel). We exploit the linearity in the
derivation of the optimal trading policy.
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Figure 3.2: Illustration of the different components of the order book.

This decomposition of the order book at time step t can also be expressed mathemat-
ically as:

pst (qt) = pt −∆t − 2rqt (3.1)

where

• pst (qt) is the marginal price at which we sell quantity qt;

• pt is the center of the bid ask spread. We assume that pt follows a stochastic
evolution, according to the following model2:

pt−1 = pt + εt (3.2)

where εt can follow any distribution respecting E[εt] = 0, where the expectation is
conditional on the information available in time t.

• 2r is the slope of the linear impact and qt is the quantity we sell. The 2rqt term
therefore represents the impact of the producer on the price. This term represents the
fact that the price lowers as a producer sells more power in the CIM. The parameter
r is assumed to be deterministic. In order to estimate it, we use confidential data
from the German CIM for 2015− 2016 which has been sourced from the European
Power Exchange (EPEX). We use the following strategy, which is initially proposed
in [CJP15]. We record the state of the market in different instances. For each of
these instances i, we compute the marginal price psi(qj) that we would obtain if we
were selling different quantities of power qj . For each of these quantities, we compute
the average price obtained from the different instances:

p̄s(qj) =

I∑
i=1

psi(qj)

I
,

where I is the number of instances. These averages are presented in the left panel
of Fig. 3.3. Finally, we use a linear regression to obtain the red line, the slope of
which is equal to the price impact coefficient 2r. Estimating the value against the
200 first days of 2015 yields a value of r = 0.0095.

• ∆t is half the bid-ask spread which is assumed to be deterministic. As in the case of
r, we record the state of the market in different instances, although we now separate

2In order to simplify the notations for the backward induction proof, we reverse the time index. Specif-
ically, we consider that the index of the last time step is 0 and the index of the first time step is T .
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the instances in different batches, depending on how much time before delivery the
instance has been captured. For each of these batches, we compute the average
spread. The results of this computation are presented in the right panel of Fig. 3.3.
One important insight from this graph is that, as we arrive closer to delivery, the
bid-ask-spread decreases. This indicates that it can be favorable to wait for market
closure to trade power.
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Figure 3.3: Estimation of r (left), and expected bid-ask-spread (right).

3.2 Analytical Solutions

3.2.1 Assumptions

In the analytical derivations of this section, we consider trading a fixed quantity of power.
We assume the following:

• We discretize time. This appproach is similar to the one proposed in [BP19b] and
[SEM15].

• From one time step to the next one, the order book evolves as described in section
3.1.

• In order to simplify the analysis, we assume that the closer we are to market closure,
the smaller the bid-ask spread is. This is consistent with the results that we obtain
from the right panel of Fig. 3.3.

• We cannot be in imbalance at the end of the CIM. This assumption originates
from the German regulation which discourages resources from being in imbalance
on purpose [TEN].

• By considering every delivery period independently, we ignore time coupling effects.
These have been considered in chapter 2.

3.2.2 Modelling the Problem as an MDP

As we trade a fixed quantity of power for a given delivery period, we can consider each
delivery period independently. Therefore, our horizon ranges from the opening of the
CIM to the closure of the CIM. We model our problem using the Markov Decision Process
framework. To this aim, we need to define the state space, the action space, the reward
function, as well as the state transition function.
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Our state space contains two variables: (i) st, the quantity that still needs to be traded
at time step t (for a trader in the CIM, it would correspond to the difference between the
quantity that it had to trade initially and the quantity that it has already traded), and
(ii) pt, the center of the bid-ask-spread at time step t. Our action space consists of qt, the
quantity that we sell at time step t. The reward at time step t corresponds to the earnings
obtained from selling qt in the order book pst (qt). It is expressed as:

rev(qt) =

∫ qt

0
pst (z)dz

=

∫ qt

0
(pt −∆t − 2rz)dz

= ptqt −∆tqt − rq2
t

The transition function links the state variable at time step t− 1 with the one at time
step t:

st−1 = st − qt (3.3)

pt−1 = pt + εt (3.4)

Eq. (3.3) states that the quantity that needs to be traded at time step t−1 is equal to the
quantity that needs to be traded at time step t minus the quantity traded at time step t.
Eq. (3.4) corresponds to the price evolution model of Eq. (3.2).

3.2.3 Optimal Trading Policy

In this section, we derive the optimal decision at each time step, as well as the optimal
value function for the case in which we have a positive3 quantity to sell st ≥ 0. We prove
by induction, starting at the last time step 0, that the value function and the optimal
decision at time step t are characterized by the formula in Table 3.1, where:

• V ∗j (st, pt)
.
= ptst −

(∑j
i=0 ∆i

)
st
j+1 −

rs2t
(j+1) +

∑j
i=1

(i+1)r
i C2

i

• Cj
.
=

∑j−1
i=0 ∆i−j∆j

2(j+1)r

• Xj
.
= [

j∆j−
∑j−1

i=0 ∆i

2r ,
(j+1)∆j+1−

∑j
i=0 ∆i

2r [.

Range of quantity st
to be traded X0 · · · Xt−1 R+\(X0 ∪ · · · ∪Xt−1)

Optimal quantity to trade q∗t 0 · · · 0 st
t+1 +

∑t−1
i=0 ∆i−t∆t

2(t+1)r

Value function V ∗t (st, pt) V ∗0 (st, pt) · · · V ∗t−1(st, pt) ptst −
(∑t

i=0 ∆i

)
st
t+1 −

rs2t
(t+1) +

∑t
i=1

(i+1)r
i C2

i

Table 3.1: Summary of the value function and optimal decision for step t.

We commence from time step 0. As explained in section 3.2.1, at the last time step
we have to cover our position. Therefore, the decision is q0 = s0, and the associated value
function is given by:

V ∗0 (s0, p0) = p0s0 −∆0s0 − rs2
0 (3.5)

3The case with st < 0 can be computed similarly.
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We now move to the first step of the induction. We first derive the optimal solution if
we are one time step before delivery. The value function is given by:

V ∗1 (s1, p1) = max
0≤q1≤s1

p1q1 −∆1q1 − r(q1)2 +

∫ ∞
−∞

V ∗0 (s0, p0)f(p0)dp0

= max
0≤q1≤s1

p1q1 −∆1q1 − r(q1)2 +

∫ ∞
−∞

(
p0s0 −∆0s0 − rs2

0

)
f(p0)dp0 (3.6)

= max
0≤q1≤s1

p1q1 −∆1q1 − r(q1)2 + E[p0]s0 −∆0s0 − rs2
0

= max
0≤q1≤s1

p1q1 −∆1q1 − r(q1)2 + p1s0 −∆0s0 − rs2
0 (3.7)

= max
0≤q1≤s1

p1q1 −∆1q1 − r(q1)2 + p1(s1 − q1)−∆0(s1 − q1)− r(q1)2 + 2rs1q1 − rs2
1

(3.8)

= max
0≤q1≤s1

∆0(q1 − s1)−∆1q1 − 2r(q1)2 + p1s1 + 2rs1q1 − rs2
1

For Eq. (3.6), we use the definition of the value function (3.5). In Eq. (3.7), we use
the fact that E[p0] = p1. For Eq. (3.8), we use the transition function of st defined in
(3.3). As this objective function is quadratic, we can compute the maximum if we would
be ignoring the constraints. To this aim, we compute the point at which the gradient
vanishes:

0 = ∆0 −∆1 − 4rq∗1 + 2rs1

4rq∗1 = ∆0 −∆1 + 2rs1

q∗1 =
s1

2
+

∆0 −∆1

4r

There are three cases to consider for this maximum:

• The maximum is feasible, 0 ≤ q∗1 ≤ s1: This condition is equivalent to ∆1−∆0
2r ≤

s1. In this case, we have the optimal decision. The associated value function is given
by the following expression, in which we fix C1 = ∆0−∆1

4r :

V ∗1 (s1, p1) = ∆0(−s1

2
+ C1)−∆1(

s1

2
+ C1)− 2r(

s1

2
+ C1)2

+ p1s1 + 2rs1(
s1

2
+ C1)− rs2

1

= ∆0(−s1

2
+ C1)−∆1(

s1

2
+ C1)− r

2
s2

1 − 2rC2
1 + p1s1

= −∆0

2
s1 −

∆1

2
s1 −

r

2
s2

1 + p1s1 + C1(∆0 −∆1 − 2rC1)

= −∆0

2
s1 −

∆1

2
s1 −

r

2
s2

1 + p1s1 + 2rC2
1

• q∗1 < 0: This condition is equivalent to s1 ≤ ∆1−∆0
2r . In this case, we observe that

the derivative is always negative, because (i) ∆0 − ∆1 + 2rs1 is negative, and (ii)
−4rq1 is negative for q1 ≥ 0. Therefore, it is optimal to have q∗1 = 0. This case
represents the situation in which the spread at the last time step is significantly
smaller than the one at time step 1 (∆1 >> ∆0). Therefore, it is optimal to trade
the entire remaining quantity at the last time step. The associated value function is
given by:

V ∗1 (s1, p1) = p1s1 −∆0s1 − rs2
1
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• q1 > s1: This solution can never occur because, as assumed in section 3.2.1,
∆0 ≤ ∆1.

We summarize the value function of time step 1 as a function of the quantity to trade
s1 and the price p1 in Table 3.2.

Range of quantity s1

to be traded [0, ∆1−∆0
2r [ [∆1−∆0

2r ,∞[

Optimal quantity to trade q∗1 0 s1
2 + ∆0−∆1

4r

Value function V ∗1 (s1, p1) (p1 −∆0 − rs1)s1

(
p1 − ∆0

2 −
∆1
2 −

r
2s1

)
s1 + 2rC2

1

Table 3.2: Summary of the value function and optimal decision for step 1.

In order to conclude the induction proof, we need to prove that, if the value function
and the optimal quantity to trade at time step t follows the format given in Table 3.3,
the optimal quantity and the associated value function have the same format at time step
t+ 1 as shown in Table 3.4 where:

• Vj(st, pt) = ptst −
(∑j

i=0 ∆i

)
st
j+1 −

rs2t
(j+1) +

∑j
i=1

(i+1)r
i C2

i

• Cj =
∑j−1

i=0 ∆i−j∆j

2(j+1)r

• Xj = [
j∆j−

∑j−1
i=0 ∆i

2r ,
(j+1)∆j+1−

∑j
i=0 ∆i

2r [.

Range of quantity st
to be traded X0 · · · Xt−1 R+\(X0 ∪ · · · ∪Xt−1)

Optimal quantity to trade q∗t 0 · · · 0 st
t+1 +

∑t−1
i=0 ∆i−t∆t

2(t+1)r

Value function V ∗t (st, pt) V ∗0 (st, pt) · · · V ∗t−1(st, pt) ptst −
(∑t

i=0 ∆i

)
st
t+1 −

rs2t
(t+1) +

∑t
i=1

(i+1)r
i C2

i

Table 3.3: Summary of the value function and optimal decision for step t.

Range of quantity st+1

to be traded X0 · · · Xt R+\(X0 ∪ · · · ∪Xt)

Optimal quantity to trade q∗t+1 0 · · · 0 st+1

t+2 +
∑t

i=0 ∆i−(t+1)∆t+1

2(t+2)r

Value function Vt+1(st+1, pt+1) V ∗0 (st+1, pt+1) · · · V ∗t (st+1, pt+1) pt+1st+1 −
(∑t+1

i=0 ∆i

)
st+1

t+2 −
rs2t+1

(t+2) +
∑t+1

i=1
(i+1)r
i C2

i

Table 3.4: Summary of the value function and optimal decision for step t+ 1

We start the proof by observing that, as shown in Table 3.3, the value function at time
step t can be decomposed in t + 1 different options depending of the quantity that still
needs to be traded, st. Therefore, we can write the value function at time step t + 1 as
the maximum of t+ 1 functions:

V ∗t+1(st+1, pt+1) = max
(
V ∗t+1,0(st+1, pt+1), · · · , V ∗t+1,t(st+1, pt+1)

)
where V ∗t+1,j(st+1, pt+1) corresponds to the optimal value function at time step t+1 under
the constraint that st+1− qt+1 ∈ Xj (option j is optimal at time step t). Mathematically,
this can be written as:

V ∗t+1,j(st+1, pt+1) = max
qt+1∈Yj

pt+1qt+1 −∆t+1qt+1 − r(qt+1)2 + V ∗j (st+1 − qt+1, pt+1) (3.9)

We refer to this as the value function for option j, at time step t + 1. The interval Yj
is defined as the interval of the quantity qt+1 such that, if we trade qt+1, the remaining
quantity to trade at time step t, st, is in the interval Xj . Mathematically, this can be
expressed as:
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• Y0 is the interval [max(st+1 − ∆1−∆0
2r , 0), st+1].

• Yj , ∀j ∈ 1..t− 1, is the interval

[max(0, st+1 −
(j + 1)∆j+1 −

∑j
i=0 ∆i

2r
),min(st+1 −

j∆j −
∑j−1

i=0 ∆i

2r
, st+1)]

As the spread is decreasing4, st+1 ≥ st+1 −
j∆j−

∑j−1
i=0 ∆i

2r . Therefore, Yj can be
simplified as:

[max(0, st+1 −
(j + 1)∆j+1 −

∑j
i=0 ∆i

2r
), st+1 −

j∆j −
∑j−1

i=0 ∆i

2r
] (3.10)

• Yt is the interval

[0,min(st+1 −
t∆t −

∑t−1
i=0 ∆i

2r
, st+1)]

As the spread is decreasing, st+1 ≥ st+1−
t∆t−

∑t−1
i=0 ∆i

2r . Therefore, Yt can be simplified
as:

[0, st+1 −
t∆t −

∑t−1
i=0 ∆i

2r
]

The idea of the rest of the proof is to compare the value function of the different
options Vt+1,j depending of the quantity to trade st+1. We start by computing the value
of st+1 for which the interval Yj is empty:

• st+1 ∈ X0 (0 ≤ st+1 ≤ ∆1−∆0
2r ):

In this case, Yj , ∀j ∈ 1 · · · t, is empty because its upper bound (Eq.(3.10)) is negative.
Therefore, there is only one possible option: Vt+1,0.

• st+1 ∈ R\X0 ∪ · · · ∪Xt−1 (st+1 ≥
t∆t−

∑t−1
i=0 ∆i

2r ):

In this case, the upper bound of Y0, · · · , Yt are positive. Therefore, all the options
are feasible.

• st+1 ∈ Xk (
k∆k−

∑k−1
i=0 ∆i

2r ≤ st+1 ≤
(k+1)∆k+1−

∑k
i=0 ∆i

2r ):

In this case, Vt+1,j , ∀j ∈ k+1 · · · t is infeasible because the upper bound (Eq.(3.10))
of Yj is negative in interval Xk. Therefore, the only feasible options are Vt+1,j , ∀j ∈
0 · · · k.

Table 3.5 summarizes the value functions that are infeasible for the different options
in the different intervals of st+1.

In order to compute the value functions associated to the feasible options, we use
3 propositions, which we derive below. These propositions compute the value function
evaluated at the optimal unconstrained quantity and at a quantity equal to 0. The proof
of these propositions can be found in appendix 3.6.

Proposition 1. The unconstrained optimal solution of V ∗t+1,j(st+1, pt+1) is given by:

q∗t+1,j =
st+1

j + 2
−

(j + 1)∆t+1 −
(∑j

i=0 ∆i

)
2r(j + 2)

4The closer we are to market closure, the smaller the bid-ask spread is.
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st+1 X0 X1 · · · Xj−1 Xj Xj+1 · · · Xt R+\(X0 ∪ · · · ∪Xt)

Vt+1,0

Vt+1,1 −∞
...

. . .
. . .

Vt+1,j−1 −∞ −∞ . . .

Vt+1,j −∞ −∞ . . . −∞

Vt+1,j+1 −∞ −∞ . . . −∞ −∞
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Vt+1,t −∞ −∞ . . . −∞ −∞ −∞ . . .

Table 3.5: Value function for the different options in the different intervals of st+1.

Proposition 2. The value function evaluated at this optimal unconstrained solution q∗t+1,j,
defined as V u

t+1,j(st+1, pt+1), is given by:

V u
t+1,j(st+1, pt+1) = pt+1st+1 −∆t+1

st+1

j + 2
− st+1

j + 2

(
j∑
i=0

∆i

)
− r

s2
t+1

(j + 2)

+

j∑
i=1

(i+ 1)r

i
C2
i + r

j + 2

j + 1
C2
t+1,j (3.11)

where Ct+1,j =
(j+1)∆t+1−(

∑j
i=0 ∆i)

2r(j+2)

Proposition 3. The value function evaluated at qt+1,j = 0 defined as V 0
t+1,j(st+1, pt+1) is

given by:

V 0
t+1,j(st+1, pt+1) = pt+1st+1 −

st+1

j + 1

(
j∑
i=0

∆i

)
− r

(
s2
t+1

j + 1

)

+

j∑
i=1

(i+ 1)r

i
C2
i (3.12)

Using these 3 propositions, we compute the value function for the different options j
depending on the quantity to trade st+1:

• st+1 ∈ X0 (0 ≤ st+1 ≤ ∆1−∆0
2r )

For option 0, the optimal unconstrained quantity is given by:

q∗t+1,0 =
st+1

2
− ∆1 −∆0

4r
as proven in proposition 1. By the definition of X0, the optimal unconstrained
quantity is negative. Therefore, the optimal quantity to trade is equal to 0 and the
associated value function is given by V 0

t+1 (proposition 3).

• st+1 ∈ R\(X0 ∪ · · · ∪Xt) (st+1 ≥
(t+1)∆t+1−

∑t
i=0 ∆i

2r )

For option t, the optimal unconstrained quantity is given by:

q∗t+1,t =
st+1

t+ 2
−

(t+ 1)∆t+1 −
∑t

i=0 ∆i

2r(t+ 2)
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as proven in proposition 1. By definition of the interval, this optimal unconstrained
quantity is feasible. For option j, ∀j ∈ 0 · · · t−1, we use the value function evaluated
at the unconstrained optimal quantity V u

t+1,j as an upper bound for the optimal value
function V ∗t+1,j .

• st+1 ∈ Xk (
k∆k−

∑k−1
i=0 ∆i

2r ≤ st+1 ≤
(k+1)∆k+1−

∑k
i=0 ∆i

2r )

For option k, the optimal unconstrained quantity is given by:

q∗t+1,k =
st+1

k + 2
−

(k + 1)∆t+1 −
(∑k

i=0 ∆i

)
2r(k + 2)

as proven in proposition 1. By definition of Xk, the optimal unconstrained quantity
is negative. Therefore, the optimal quantity to trade is equal to 0. For option
j, ∀j ∈ 0 · · · k−1, we define an upper bound to the optimal value function V ∗t+1,j as:

V̄t+1,j =

{
V u
t+1,j If q∗t+1,j > 0

V 0
t+1,j If q∗t+1,j ≤ 0

Table 3.6 presents the value function of the different options in the different intervals
of st+1. The value functions that have been computed exactly are highlighted in blue.
The other terms are the upper bounds for the other options.

st+1 X0 X1 · · · Xj−1 Xj Xj+1 · · · Xt R+\(X0 ∪ · · · ∪Xt)

Vt+1,0 V 0
t+1,0 V̄t+1,0 · · · V̄t+1,0 V̄ u

t+1,0 V̄t+1,0 · · · V̄t+1,0 V u
t+1,0

Vt+1,1 −∞ V 0
t+1,1

. . . V̄t+1,1 V̄t+1,1 V̄t+1,1
. . . V̄t+1,1 V u

t+1,1
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

Vt+1,j−1 −∞ −∞ . . . V 0
t+1,j−1 V̄t+1,j−1 V̄t+1,j−1

. . . V̄t+1,j−1 V u
t+1,j−1

Vt+1,j −∞ −∞ . . . −∞ V 0
t+1,j V̄t+1,j

. . . V̄t+1,j V u
t+1,j

Vt+1,j+1 −∞ −∞ . . . −∞ −∞ V 0
t+1,j+1

... V̄t+1,j+1 V u
t+1,j+1

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

Vt+1,t −∞ −∞ . . . −∞ −∞ −∞ . . . V 0
t+1,t V u

t+1,t

Table 3.6: Value function for the different options in the different intervals of st+1

In order to conclude the proof, we show that the exact value functions are higher
than the upper bound for the other options. We use the following three propositions5 to
compare the value function of consecutive options:

Proposition 4. For two consecutive unconstrained value functions V u
t+1,j−1(st+1, pt+1)

and V u
t+1,j(st+1, pt+1),

V u
t+1,j(st+1, pt+1) ≥ V u

t+1,j−1(st+1, pt+1), ∀st+1,∀pt+1

Proposition 5. For the value function of option j evaluated at 0, V 0
t+1,j(st+1, pt+1),

and the value function of option j − 1 evaluated at the unconstrained optimal quantity
V u
t+1,j−1(st+1, pt+1),

V 0
t+1,j(st+1, pt+1) ≥ V u

t+1,j−1(st+1, pt+1), ∀pt+1,∀st+1 ≥
j(∆j + ∆t+1)− 2

(∑j−1
i=0 ∆i

)
4r

5These propositions have been proven in appendix 3.7.
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Proposition 6. For two consecutive value functions evaluated at 0, V 0
t+1,j−1(st+1, pt+1)

and V 0
t+1,j(st+1, pt+1),

V 0
t+1,j(st+1, pt+1) ≥ V 0

t+1,j−1(st+1, pt+1),∀pt+1, ∀st+1

We compare the value function for the different options depending on the quantity to
trade st+1:

• st+1 ∈ R+\(X0 ∪ · · · ∪Xt):

The unconstrained optimal quantity is feasible for option t. Therefore, we can apply
proposition 4 recursively in order to obtain:

V u
t+1,t(st+1, pt+1) ≥ V u

t+1,t−1(st+1, pt+1) ≥ · · · ≥ V u
t+1,1(st+1, pt+1) ≥ V u

t+1,0(st+1, pt+1)

We conclude that the option with the highest value function is t and that the asso-
ciated value function is:

V ∗t+1,t(st+1, pt+1) = pt+1st+1 −∆t+1
st+1

t+ 2
− st+1

t+ 2

(
t∑
i=0

∆i

)
− r

s2
t+1

(t+ 2)

+
t∑
i=1

(i+ 1)r

i
C2
i + r

t+ 2

t+ 1
C2
t+1,t

= pt+1st+1 −∆t+1
st+1

t+ 2
− st+1

t+ 2

(
t∑
i=0

∆i

)
− r

s2
t+1

(t+ 2)

+

t+1∑
i=1

(i+ 1)r

i
C2
i

• st+1 ∈ Xj , ∀j ∈ 1 · · · t− 1:

We start by comparing the value function associated to option j, V 0
t+1,j and the

upper bound on the value function associated to option j− 1, V̄t+1,j−1. To this aim,
we compute the unconstrained optimal quantity associated to option j − 1 using
proposition 1:

q∗t+1,j−1 =
st+1

j + 1
−
j∆t+1 −

(∑j−1
i=0 ∆i

)
2r(j + 1)

From this unconstrained optimal quantity, we can distinguish two cases:

1. When the unconstrained optimal quantity is positive (q∗t+1,j−1 ≥ 0):
In this case, we have that

st+1 ≥
j∆t+1 −

(∑j−1
i=0 ∆i

)
2r

(3.13)
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Using proposition 5, we know that:

V 0
t+1,j(st+1, pt+1) ≥ V u

t+1,j−1(st+1, pt+1),∀pt+1,∀st+1 ≥
j(∆j + ∆t+1)− 2

(∑j−1
i=0 ∆i

)
4r

(3.14)

It can be observed that, if q∗t+1,j−1 is positive, the condition of proposition 5 is

also respected because the lower bound of this condition (Eq. (3.14)) is lower6

than the bound for q∗t+1,j−1 to be positive (Eq. (3.13)):

j(∆j + ∆t+1)− 2
(∑j−1

i=0 ∆i

)
4r

≤
2j∆t+1 − 2

(∑j−1
i=0 ∆i

)
4r

=
j∆t+1 −

(∑j−1
i=0 ∆i

)
2r

This establishes that the value function associated to option j evaluated at 0
is higher than the value function associated to option j − 1 evaluated at the
optimal unconstrained solution.

2. When the unconstrained optimal quantity is negative (q∗t+1,j−1 < 0):
In this case, we know from proposition 6 that:

V 0
t+1,j(st+1, pt+1) ≥ V 0

t+1,j−1(st+1, pt+1)

This establishes that the value function associated to option j evaluated at 0
is higher than the value function associated to option j − 1 evaluated at 0.

The same reasoning can be applied in order to prove that the value function associ-
ated to option j−1 is higher than the one associated to option j−2. By applying this
recursively, we obtain that the value function associated to option j is the highest
one in interval Xj . The optimal decision is to sell 0 and the optimal value function
is given by:

V ∗t+1(st+1, pt+1) = V 0
t+1,j(st+1, pt+1)

= pt+1st+1 −
st+1

j + 1

(
j∑
i=0

∆i

)
− r

(
s2
t+1

j + 1

)
+

j∑
i=1

(i+ 1)r

i
C2
i

The final results are summarized in Table 3.7. This table is exactly the same as Table
3.4, which concludes the proof.

3.2.4 Insights from the Analytical Solution

In this section, we present the insights that we gain from the analytical solution.

6This is due to the fact that ∆t+1 is bigger than ∆j . The reason for this is that we assume that the
closer we are from market closure, the smaller the bid-ask spread is.
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Range of quantity st+1

to be traded X0 · · · Xt R+\(X0 ∪ · · · ∪Xt)

Optimal quantity to trade q∗t+1 0 · · · 0 st+1

t+2 +
∑t

i=0 ∆i−(t+1)∆t+1

2(t+2)r

Value function Vt+1(st+1, pt+1) V ∗0 (st+1, pt+1) · · · V ∗t (st+1, pt+1) pt+1st+1 −
(∑t+1

i=0 ∆i

)
st+1

t+2 −
rs2t+1

(t+2) +
∑t+1

i=1
(i+1)r
i C2

i

Table 3.7: Summary of the value function and optimal decision for step t+ 1

Optimal quantity to trade The optimal quantity to trade at time step t (there are
still t+ 1 chances to trade) is given by:

st
t+ 1

+

∑t−1
i=0 ∆i − t∆t

2(t+ 1)r
.

If we would consider only the first term, it would imply that we trade 1
t+1 of the capacity

available. The second term is a correction for the difference in spread between the different
time steps. This term is negative, which means that we always trade at most st

t+1 . We can
analyse two extreme cases (i) r → 0: This means that the second term is very negative.
In this situation, the optimal decision is to always trade 0 until the last time step. This
results from the fact that the price impact is negligible, and therefore we can trade all
the power when the spread is the lowest. (ii) The spread is constant: This means that
the second term is equal to 0. In this case, it is optimal to trade the same quantity at
each time step. This can be interpreted as follows: As the spread is constant, there is no
reason to prefer one time step over another and therefore we simply aim at minimizing our
impact on the price. Another property of the optimal decision that is worth highlighting is
that it does not depend on the middle of the bid-ask-spread, pt. This property stems from
the assumption that we adopt on the evolution of the center of the bid-ask spread in (Eq.
3.4). Indeed, no matter the value of pt, we assume that E[pt−1] = pt. Therefore, there is
no reason for us to sell more (resp. less) power at the current time step, in anticipation
that the the center of the bid-ask-spread will become lower (resp. higher) than the value
that we currently observe.

Intuition about the value function The optimal value function is presented in Table
3.3. From this table, we observe that for different ranges of power to sell, st, we have
different expressions for the value function. These different ranges represent different time
steps over which we are required to trade. For instance, (i) X0 represents the case for which
we have a small quantity of power to sell. In this case, we can ignore the price impact and
trade all the power at the last time step where the bid-ask-spread is the lowest. (ii) X1

represents the case for which we have more power to sell. In this situation, we would be
affected more significantly by the price impact, and we therefore split the quantity that
we have to sell between the two last time steps.

Mathematical format of the value function As explained before, the value function
is a piecewise function. For each of these pieces, the value function can be decomposed as
(i) a quadratic function in st, and (ii) a bilinear term in ptst. We exploit this observation
in the algorithmic section.

Example with the true estimated parameters We illustrate, in Fig. 3.4, the trading
behaviour that we obtain if we apply the analytical solution to the simplified market with
the parameters that are estimated in section 3.1. More precisely, we present the quantity
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that still needs to be traded st for each time step. In the left panel, we present the
results if we start with 25MWh to sell 10 hours before market closure. In this situation,
we observe that we only start trading 2 hours before delivery. This means that, for that
range of power, the difference in bid-ask-spread is more important to consider than the
price impact. In the right graph, we present the results if we start with 100MWh to sell
10 hours before market closure. As expected by the analytical solution, we start trading
earlier (4 hours ahead) than if we have 25MWh to trade. This illustrates that, when
we have a larger quantity of power to sell, it is not sufficient to trade all the power at
the moment at which the bid-ask-spread is the smallest, we also need to account for our
impact on the price while we are trading.
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Figure 3.4: Analytical solution: quantity that remains to be traded, st, with an initial quantity of
25MWh (left) and 100MWh (right).

3.3 Algorithmic Approaches

We now use the modeling setup and the insights of the analytical solution as a basis for a
VFA and SDDP algorithm.

3.3.1 Value Function Parametrization

In our problem, we face continuous state and action spaces. In order to develop a VFA
algorithm, we parametrize the action-value function q∗(s, a) as q̂(s, a;w), where w is a set
of parameters that we need to optimize.

In order to determine basis functions for the value function, we exploit the insights
from the analytical solution. By definition of the action-value function [SB18], we know
that:

Qt((st, pt), qt) = ptqt −∆tqt − r(qt)2 + V ∗t−1(st − qt, pt)
where V ∗t+1(st − qt, pt) is the optimal value function described in section 3.2.3. The
parametrization of this action-value function can therefore be split into two parts:

q̂((st, pt), qt;w) = f0(st, pt, qt;w0) +
T∑
j=1

fj(st − qt, pt;wj) · 1j

In this expression:

• f0 contains the parameters for the payoff obtained at time step t which can be
parametrized as:

f0(st, pt, qt;w0) = w0,0 · (pt −∆t) · qt + w0,1 · q2
t .
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• fj is the basis function that represents V ∗j (st−qt, pt). As we know that this function is
piecewise quadratic in st−qt and has a bilinear term in pt(st−qt), we can parametrize
it as:

fj(st − qt, pt;wj) = wj,0 + wj,1 · (st − qt)
+ wj,2 · (st − qt)2 + wj,3 · pt(st − qt).

• 1j is an indicator function which evaluates to 1 if fj should be used and 0 otherwise.
Based on Table 3.3, there are two cases in which fj should be used (i) t > j and
st − qt ∈ Xj , and (ii) t = j and st − qt ∈ R+\(X0 ∪ · · · ∪Xj−1).

Having defined basis functions, we minimize the error between the prediction from
our value function q̂((st, pt), qt;w) and the obtained outcome from the episode, using the
update presented in section 1.4.3.

3.3.2 Stochastic Dual Dynamic Programming

SDDP is a method for solving a specific class of multi-stage stochastic convex programs.
For a complete description of the algorithm, the reader can refer to [PP91]. In order to use
SDDP, we need to define the subproblem faced at every stage. This subproblem, referred
to as the Nested L-Shaped Decomposition Subproblem (NLDS), is defined for every time
step t and node k of the uncertainty model. In our case, the NLDS is expressed as:

max
qst≥0,qbt≥0

(pt,k −∆t − rqst )qst − (pt,k + ∆t + rqbt )q
b
t

st = st−1 − qst + qbt

There are two specificities compared to the classical problems solved using SDDP. (i)
Our objective function is quadratic in qst and qbt . These terms can be linearized using a first-
order Taylor approximation [BLS+12]. (ii) The uncertain parameter pt,k appears in the
objective function and follows an auto-regressive process, based on our model for the price
evolution (Eq. (3.2)). This is not suitable for classical implementations of SDDP [DDB20]
because the value function is convex in st and concave in pt. Therefore, we use the modified
version of the algorithm that is presented in [DDB20] and implemented in toolbox [DK20].
As explained in [DDB20], this algorithm is guaranteed to converge almost surely to the
optimal solution.

3.4 Case Study

In this section, we compare the main results obtained by the analytical solution, VFA
and SDDP. We start by comparing these methods based on their numerical performance.
Afterwards, we present their run-times.

Numerical results: We compare the numerical results obtained by the analytical so-
lution, VFA and SDDP for a problem with 10 time steps. We start by comparing the
evolution of the value function with respect to the initial quantity to trade, in the left
graph of Fig. 3.5. We observe that both SDDP and VFA provide very close results com-
pared to the analytical solution. To be more specific, we present, in the right panel of
Fig. 3.5, the error in the value function computed by ADP and SDDP relative to the
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value function of the analytical solution. We observe that these differences are very small
(around 1 euro) compared to the magnitude of the value function (around 1000 euros).
Finally, we present, in Fig. 3.6, the evolution of the quantity st that still needs to be
traded for each time time step. We observe that the decisions that are reached by SDDP
and VFA are very close to the ones obtained by the analytical solution. This confirms
that both methods are suitable for solving this simplified problem.
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Figure 3.5: comparison of value functions for the analytical solution, VFA and SDDP (left). Error
in the value function of ADP and SDDP compared to the analytical solution (right).
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Figure 3.6: Quantity that still needs to be traded, st, with an initial quantity of 50MWh (left) and
100MWh (right).

Run-times Regarding the run-time required when applying the method in real time, it
is negligible for all methods, since the work has been performed off-line. For the analytical
solution and for VFA, we simply need to evaluate a number of functions (there are more
function evaluations in VFA than for the analytical solution). For SDDP, we need to solve
one NLDS, which is a linear program. This is slightly more demanding than evaluating
functions, but still fairly fast. The second run-time to consider is the one for performing
the offline computation. We compare SDDP to ADP with respect to this run time on the
example with 10 time steps in Fig. 3.7. Specifically, we run the learning process for 21
different quantities to trade (uniformly distributed between 0 and 100MW). We compute
the error in the value function after a certain time and plot the average error in Fig. 3.7.
From this figure, we observe that SDDP seems faster than VFA. For instance, it reaches
a precision of 1% in 4 seconds while VFA requires approximately 40 seconds for reaching
the same precision.
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Figure 3.7: Comparison of the error percentage in the value function with respect to the run-time
for VFA and SDDP.

3.5 Conclusions and Perspectives

In this chapter, we model the problem of selling a fixed quantity of power in a simplified
model of the CIM using the MDP framework. We derive the optimal trading strategy for
this problem through backward induction. We use the optimal value function to develop
basis functions for a VFA algorithm. We then develop VFA and SDDP algorithms for
testing against our idealized CIM model and demonstrate that they both arrive to the
optimal policy on a 10-step example.

In future work, we aim at enriching this algorithmic framework in order to trade the
output of a renewable unit in the real CIM. To this aim, we would need to adapt the
algorithms in the following ways. Firstly, we need to be able to include uncertainty in the
production output. The model would also need to be adapted to the fact that the CIM
price evolution does not follow precisely the model of section 1.3.3. Deviations, for exam-
ple, may result from the fact that, in practice, r and ∆t do not evolve deterministically.
Moreover, it is possible that the center of the bid-ask spread does not obey Eq. (3.2).
Indeed, in practice, the information available in the CIM may allow us to predict if the
CIM price would increase or decrease on average.

For the analytical solution, it is clear that these changes would require revisiting the
analytical framework. For SDDP, the uncertainty on the unit production can be repre-
sented by modifying the NLDS. We can even consider that the output of our renewable
unit is (negatively) correlated with the center of the bid-ask-spread. This is likely the
case, because if we over-produce (resp. under-produce), there is a high chance that other
producers will also over-produce (resp. under-produce), which would push the price down
(resp. up). Another adaptation that can be considered with respect to SDDP is to assume
that the evolution of the r and ∆t parameters is stochastic. These parameters can even be
considered as (positively) correlated. An illiquid (resp. liquid) market is characterized by
a high (resp. low) bid-ask-spread ∆t as well as a high (resp. low) price impact r. Another
adaptation that could be considered is to include exogenous parameters in order to provide
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indications on the future evolution of the center of the bid-ask-spread. This cannot be
achieved easily using SDDP. For the VFA approach, a broad range of adaptations can be
considered because the algorithm is able to account for it as long as it is present in the
data and in the value function parametrization7. Some of the parameters that we would
be interested in including in the parametrization are (a) the renewable forecasts and last
realizations; (b) the load forecasts and last realizations; (c) the last realizations of the
imbalance price; (d) a representation of the trend in the CIM price; (e) indicators about
the bid-ask-spread.

In conclusion, both SDDP and VFA present relative strengths and weaknesses. SDDP
is empirically observed to be faster and can accommodate more realistic features of the
CIM with fewer efforts. On the other hand, VFA seems more flexible in including exoge-
nous parameters that can explain price evolution.

7Notice that including these parameters properly in the value function parametrization remains a chal-
lenging problem.
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3.6 Appendix A: Computation of the Value Function

3.6.1 Proof of Proposition 1

We know that the value function for the jth option at times step t+ 1 is given by:

Vt+1,j(st+1, pt+1) = max
qt+1∈Yj

pt+1qt+1 −∆t+1qt+1 − r(qt+1)2 + V ∗j (st+1 − qt+1, pt+1)

By developing V ∗j (st+1 − qt+1, pt+1) in this expression, we obtain:

Vt+1,j(st+1, pt+1) = max
qt+1∈Yj

pt+1qt+1 −∆t+1qt+1 − r(qt+1)2 + (st+1 − qt+1)pt+1

− st+1 − qt+1

j + 1

(
j∑
i=0

∆i

)
− r (st+1 − qt+1)2

j + 1
+

j∑
i=1

(i+ 1)r

i
C2
i

= max
qt+1∈Yj

−∆t+1qt+1 − r(qt+1)2 + pt+1st+1 −
st+1 − qt+1

j + 1

(
j∑
i=0

∆i

)

− r (st+1 − qt+1)2

j + 1
+

j∑
i=1

(i+ 1)r

i
C2
i

We compute the point at which the gradient of the expression vanishes in order to
obtain the unconstrained optimal quantity to trade q∗t+1.

0 = −∆t+1 − 2rq∗t+1 +

(
j∑
i=0

∆i

j + 1

)
− 2r

(
st+1 − q∗t+1

)
·

−1

j + 1

0 = −∆t+1 − 2rq∗t+1 +

(
j∑
i=0

∆i

j + 1

)
−

2rq∗t+1

j + 1
+

2rst+1

j + 1

0 = −∆t+1 − 2rq∗t+1

(
j + 1 + 1

j + 1

)
+

(
j∑
i=0

∆i

j + 1

)
+

2rst+1

j + 1

2rq∗t+1

(
j + 2

j + 1

)
= −∆t+1 +

(
j∑
i=0

∆i

j + 1

)
+

2rst+1

j + 1

q∗t+1 =
st+1

j + 2
−

(j + 1)∆t+1 −
(∑j

i=0 ∆i

)
2r(j + 2)

=
st+1

j + 2
− Ct+1,j

where we define Ct+1,j =
(j+1)∆t+1−(

∑j
i=0 ∆i)

2r(j+2)

3.6.2 Proof of Proposition 2

We evaluate the value function of option j at the optimal unconstrained solution.
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V u
t+1,j(st+1, pt+1) = −∆t+1q

∗
t+1 − r(q∗t+1)2 + pt+1st+1 −

st+1 − q∗t+1

j + 1

(
j∑
i=0

∆i

)

− r
(
st+1 − q∗t+1

)2
j + 1

+

j∑
i=1

(i+ 1)r

i
C2
i

= −∆t+1

(
st+1

j + 2
− Ct+1,j

)
− r

(
st+1

j + 2
− Ct+1,j

)2

+ pt+1st+1

−
st+1 −

(
st+1

j+2 − Ct+1,j

)
j + 1

(
j∑
i=0

∆i

)
− r

(
st+1 −

(
st+1

j+2 − Ct+1,j

))2

j + 1
+

j∑
i=1

(i+ 1)r

i
C2
i

= −∆t+1
st+1

j + 2
+ ∆t+1Ct+1,j − r

s2
t+1

(j + 2)2
− rC2

t+1,j + 2r
st+1

j + 2
Ct+1,j + pt+1st+1

− st+1
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(
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(
j∑
i=0

∆i

)
− r

(
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j+2 + Ct+1,j

)2
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i
C2
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j + 2

(
j∑
i=0

∆i

)
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s2
t+1

(j + 2)2
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t+1,j

+ 2r
st+1

j + 2
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(
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t+1
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= pt+1st+1 −∆t+1
st+1

j + 2
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(
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− r
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3.6.3 Proof of Proposition 3

We evaluate the value function of option j at qt+1 = 0.

V 0
t+1,j = −∆t+1qt+1 − r(qt+1)2 + pt+1st+1 −

st+1 − qt+1

j + 1

(
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i
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(
j∑
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)
− r

s2
t+1

j + 1
+

j∑
i=1

(i+ 1)r

i
C2
i

3.7 Appendix B: Comparison of the Value Functions

3.7.1 Proof of Proposition 4

We compare the value function, evaluated at the unconstrained optimal solution for two
consecutive options j−1 and j. We show that the one corresponding to the highest option
(j) is always higher than the other one (j-1).

V u
t+1,j(st+1, pt+1)− V u

t+1,j−1(st+1, pt+1) = D1 −D2

where
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j + 1

j
C2
t+1,j−1

In order to simplify the development, we develop D1 and D2 separately.
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After computing D1 and D2, we can write the difference of the two value functions.

V u
t+1,j(st+1, pt+1)− V u

t+1,j−1(st+1, pt+1)

=
st+1
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As this expression is always positive, it means that, if evaluated at the unconstrained
optimal solution, the value function of option j is always higher than the value function
of option j − 1 for any st+1 and pt+1.

3.7.2 Proof of Proposition 5

We compute, for which value of st+1, the value function of option j evaluated at 0,
V 0
t+1,j(st+1, pt+1) is higher than the value function of option j− 1 evaluated at the uncon-

strained optimal solution, V u
t+1,j−1(st+1, pt+1).
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3.7.3 Proof of Proposition 6

We compare the value function, evaluated at 0 for two consecutive options j − 1 and j.
We show that the value function corresponding to the highest option (j) is always higher
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than the value function of option (j − 1).
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As this expression is always positive, it means that, if evaluated at 0, the value function
of option j is always higher than the value function of option j − 1 for any st+1 and pt+1.
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Market Design Options for
Scarcity Pricing in European
Balancing Markets

4.1 Introduction

4.1.1 Comparison between European and US markets

Scarcity pricing based on operating reserve demand curves has been initially proposed by
Stoft [Sto02]. This concept has been further explored by Hogan in the context of US-type
markets [Hog05, Hog13]. It is therefore worth mentioning some major axes of differences
between the European and US-type markets.

• Co-optimization of balancing capacity and energy: In Europe, the day-
ahead market and the balancing capacity market are cleared independently (section
1.3.1 and 1.3.4.1). On the contrary, in US markets, there is a co-optimization of
reserve and energy.

• Unique price signal for real-time energy: In Europe, BRPs are settled for
their real-time energy deviations at the imbalance price (section 1.3.5), whereas BSPs
are settled for their real-time deviations at the balancing price (section 1.3.4.2). On
the contrary, in US-style markets, real-time energy is typically cleared at the same
price.

• Real-time market for reserve capacity: In the US standard market design,
there is a market for real-time reserve capacity which is not the case in Europe. A
real-time market for reserve capacity settles reserve imbalances at a real-time reserve
price. Putting such a market in place in an EU design would imply that (i) free bids1

that are available in real time are paid even if they have not sold balancing capacity
in the day ahead, and (ii) resources that are activated as upward balancing energy
and are no longer available as balancing capacity in real time are required to buy
back their day-ahead balancing capacity at the real-time price of balancing capacity.

These differences in design create challenges in the valuation of reserve, as we discuss next.

1Free bids refer to bids that are not linked to a capacity cleared in the day-ahead balancing capacity
market.
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4.1.2 Motivation

The accurate valuation of energy and reserve is an increasingly crucial function of real-time
markets in a regime of large-scale renewable energy integration. Operating reserve demand
curves (ORDCs) [Hog05] have been proposed as a means for achieving this important goal.
ORDC adders are computed on the basis of available reserve in the system as presented
in section 1.3.6.

ORDC adders have been adopted in Texas [ERC15], and their adoption is moving
forward in PJM [HP19]. The Electricity Balancing Guideline of the European Commission,
which is the reference text for European balancing legislation (and which we will refer to
as “EBGL” hereafter), introduces the legal possibility of implementing ORDC adders
by referring to the mechanism as a “scarcity pricing function” in article 44(3) of the
legislation [Eur17].

Belgium has made steps in advancing the implementation of scarcity pricing. A series
of preliminary analyses have focused on quantifying the possible implications of the mech-
anism for resources that can provide balancing capacity to the system [PS17,PSB18]. The
Belgian regulator and TSO [ELI18] have collaborated towards computing and publishing
scarcity adders based on the “available reserve capacity” (ARC) of the system. These
adders are computed for every quarter of the day, and published one day after operations.
The next step of the process is to decide the details of the integration of ORDC in the Bel-
gium market. The target is to have a market design that sends a stable investment signal
to investors. This is achieved by the back-propagation of the balancing capacity price to
forward markets. Therefore, there is a need for a methodology which is able to detect the
ability of the different proposed designs to back-propagate this balancing capacity value
to forward markets.

4.1.3 Existing Modeling Frameworks

In previous analysis [PSd19], stochastic equilibrium has been used for representing the
back-propagation effect quantitatively. The stochastic equilibrium framework that has
been developed, which has originally been applied in the context of investment [RS15,
ES11], reveals the strengths and weaknesses of different market design choices in back-
propagating the value of balancing capacity to forward balancing capacity auctions. How-
ever, the stochastic equilibrium framework encountered an immediate weakness from the
outset during discussions with stakeholders: it embeds the law of one price [Cra17], mean-
ing that the model assumes a unique market for real-time energy, and therefore a unique
price for real-time energy. This assumption contradicts the practice of using imbalance
prices for BRP settlement that are different from balancing prices for BSP settlement2. To
put it differently: whereas stochastic equilibrium can be used for understanding the effect
of certain market design choices on the back-propagation of balancing capacity prices to
forward markets, it cannot be used for assessing the validity of different mixtures of BSP
and BRP settlement on this back-propagation.

An alternative model that is developed in this chapter is the representation of the
balancing market as a Markov Decision Process (MDP). Our approach is inspired by a

2Note that this assumption is also not compatible with the future implementation of the European
balancing platforms (MARI and PICASSO). Indeed, the price generated by these separate platforms for
the activated energy of the different reserve products can be different. The reason is that, as stated in
ACER decision [ACE20], the price for each reserve product should be set at the marginal price of each
platform and cannot be set at the marginal price between the platforms.
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growing body of work on the application of agent-based models to the analysis of electricity
markets. In early work on this topic, Bunn and coauthors [BB01,BO01] analyze the effect
of a change of design in the England and Wales market. In recent work, with the broader
use of Reinforcement Learning techniques such as Q-Learning [WD92], researchers have
applied MDPs [YLP10, ND07] in more complex settings. However, these classical Rein-
forcement Learning techniques are inefficient for high-dimensional problems because they
rely on the discretization of the state and action space (see section 1.4.3). This problem
has been overcome recently by the development of deep-learning [YQLS19, YQS+20]. As
we discuss in section 4.2, our problem is low-dimensional, and therefore we rely on the
standard Q-learning algorithm [WD92].

In the context of our analysis, we consider BRPs and BSPs as agents that engage in
trade in a balancing market, and develop trading strategies given different market design
options. We then test the ability of agents to infer the value of the balancing capacity
that they offer to the market under different market design choices, and thus the ability
of different market design choices to back-propagate the value of this reserve capacity in
forward reserve markets.

The MDP framework offers powerful modeling flexibility. However, since one is limited
to observing the outcome of a simulation, it might be difficult to extract conclusions about
he role of a market design in driving a certain outcome. For this reason, we supplement
our MDP-based market simulation framework with an analytical characterization of the
best response of market agents to different balancing market design choices under an
assumption of perfect competition. The MDP simulation framework is then used for
providing tangible evidence for the behavior that the analytical mathematical framework
predicts, which can be valuable for discussions with stakeholders.

By comparison, the stochastic equilibrium approach [PSdMd20] combines the advan-
tages of analytical insights and numerical scalability in a single modeling framework.
Concretely, the complementarity conditions of the stochastic equilibrium model provide
generalizable conclusions about the effect of market design choices on the back-propagation
of balancing capacity prices (see, for instance, the discussion in page 21 of [PSdMd20]).
Assuming risk-neutral market agents, the stochastic equilibrium models of [PSdMd20]
can further be expressed as equivalent tractable two-stage or three-stage stochastic pro-
gramming optimization problems. However, it is not clear how the stochastic equilibrium
framework can be adapted in order to account for how agents internalize opportunity costs
in their bidding behavior, and for the fact that the EU market design allows BSPs and
BRPs to trade at different settlement prices.

4.1.4 Contributions and Structure

Our claimed contribution in this chapter is twofold. We propose an analytical framework
for analyzing European balancing markets which we supplement by an MDP-based market
simulator. And we use our framework to arrive at concrete insights and recommendations
regarding the design of the European balancing market. One important recommendation
is to introduce a real-time balancing capacity market in the European balancing design.

The remainder of the chapter is structured as follows. In section 4.2, we describe the
basic MDP framework for simulating the balancing market. In section 4.3, we present
various market design options, show their specificity related to the European balancing
market and describe the adaptations that need to be applied to the basic MDP to represent
them. After that, in section 4.4, we analyze these different market design options under
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an assumption of perfect competition, and summarize our main conclusions regarding the
strengths and weaknesses of different market design proposals. In section 4.5 we validate
our theoretical results by applying the MDP simulation framework of section 4.2.2 in order
to test the ability of different balancing market design options in back-propagating the
value of reserve capacity to forward reserve markets. We conclude our analysis and discuss
prospects for future research in section 4.6.

4.2 Modeling the Balancing Market in the MDP Framework

4.2.1 Problem Description

As we mention in section 1.3.4, each BSP must be attributed to a unique BRP according to
article 18(4).d of the EBGL [Eur17]. Virtual traders3 are not present in our model because
they are not legal in European balancing markets. Indeed, offers in the balancing energy
market have to be backed by assets that have been pre-qualified by the TSO [ELIc]. The
TSO verifies regularly the ability of BSP assets to provide the promised balancing energy.
Moreover, virtual trading of reserve is also not foreseen4. Without loss of generality,
therefore, we consider a generic agent participating in the balancing market as one which
owns (i) a pool of uncontrollable assets that impose a price-inelastic imbalance (positive or
negative) to the system as well as (ii) a set of controllable assets with marginal cost C that
is private5 information of the agent, and with a total upward capacity P+ and downward
capacity P− that is common knowledge for the TSO. The controllable set of assets can be
offered to the balancing market. The sequence of events faced by the agent is illustrated in
Fig. 4.1. The agent starts by placing a bid in the day-ahead balancing capacity at a price
pR and a quantity qR. The TSO collects the bids of every agents, clears the market using
an ORDC and announces the day-ahead balancing capacity price λR,DA as well as the
quantity cleared for each agent qaR. Then, the agent can submit a bid to the balancing
market with a price p and quantity q where q should be at least equal to the quantity
cleared in the day-ahead balancing capacity market qaR. After that, the agent observes
the imbalance of the part of its portfolio with uncontrollable assets Imb. The convention
is that positive imbalance means that a portfolio is consuming more than it is producing.
With this information, the agent can decide if it wants to resort to active imbalance6 with
its leftover capacity7. Finally, the TSO (i) observes the system imbalance (ii) activates
the necessary balancing capacities to cover it (iii) computes the balancing price λB as well
as the imbalance price λI and realizes the payment to the agents accordingly.

3We refer to virtual traders as market participants that would attempt to arbitrage between the day-
ahead and real-time balancing capacity market without physical assets.

4Virtual trading of reserve is also not typically foreseen in US markets. In Europe, there is anyway no
real-time market for reserve.

5Our analysis if the marginal cost of the agent would be known by the other agents or by the TSO
would not change.

6This means that the agent changes its production, on purpose, compared to the scheduled one without
notifying the market. Notice that the representation of this third step is a simplification. In reality, it is
a continuous interaction between the agent observing the system imbalance and reacting by performing
active imbalance which changes the system imbalance.

7The capacity that has not be promised in the balancing energy market.
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Figure 4.1: Sequence of events faced by an agent in the balancing markets.

4.2.2 MDP Modelling

The decision process faced by the agent can be described as an MDP. It should be noticed
that the MDP might be slightly different from one design to another. Therefore, in this
section, we present the basis that is common for every design and we present the differences
related to each of them in section 4.3.

• Stage 1

– State: a single element, the default state of the world

– Action: (pR, qR), the price-quantity offers in the balancing capacity auction

– Reward: the payment from the balancing capacity auction, λR,DA · qaR, where
λR,DA is the forward price of balancing capacity and qaR is the amount of
balancing capacity that has been cleared in the forward balancing capacity
auction

• Stage 2

– State: the capacity qaR awarded in the balancing capacity auction

– Action: (p, q), the price-quantity offers in the balancing platform. The offered
quantity can be no less than what has been cleared in the balancing capacity
auction, i.e. q ≥ qaR.

– No reward is collected at this stage

• Stage 3:

– State: (i) the bid price p, (ii) the leftover BSP capacity8 P+−q after the capacity

8Note that the bid quantity q is also implied by the second state. Effectively, the actions of the second
stage are states for the third stage. This is required, because the part of the reward of the third stage
that depends on BSP payments is a result of these second-stage decisions, and since we need to obey the
structure of an MDP, it is necessary to augment the state space in order to maintain the Markov property.
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q has been offered to the balancing auction, and (iii) the level of imbalance Imb
of an agent.

– Action: How much of the imbalance Imb to cover (this action, denoted as ai and
referred to as “active imbalance”, must be limited to the leftover capacity that
the BSP has not allocated to the balancing capacity auction, i.e. ai ≤ P+− q).

– Reward: (i) BSP payment for upward/downward activation, expressed as λB ·
qa, (ii) BRP payment for imbalance settlement9, expressed as −λI · qi = −λI ·
(Imb − ai), and (iii) fuel costs related to self-balancing and BSP activation,
expressed as −C · (ai+ qa).

4.3 Considered Designs

Our analysis will focus on six different market design options. These options are inspired by
discussions with stakeholders about different ways in which the European balancing market
could be organized so as to more accurately reflect the value of balancing capacity. For
each of these designs, we first summarize the design and present the underlying intuition.
We also present the adaptations that need to be effected on the vanilla MDP.

4.3.1 Design 1

The default European design is the one described in section 4.2.1 for which the imbalance
price is equal to the balancing price, λI = λB. Note that it has already been argued, using
a stochastic equilibrium framework in [PSd19], that this design is unable to generate a
forward reserve price signal that reflects the value of reserve capacity. The MDP is exactly
the one described in section 4.2.2.

4.3.2 Design 2

For the second design, a difference between the balancing price and the imbalance price is
introduced in the model. This is the current practice, for example, in Belgium, where the
system operator computes the imbalance price by applying a surcharge α+ whenever the
system is short, or a discount α− whenever the system is long [ELI19]. Mathematically,
the imbalance price in this setting can be expressed as:

λI = λB + α (4.1)

α , αU · I[Imbt > UI]− αD · I[Imbt < LI] (4.2)

Here, Imbt corresponds to the total imbalance of the system. The parameters UI and
LI represent the upper and lower imbalance thresholds at which the surcharge or discount
apply, respectively.

We consider this design because, as a response to the request of the European Com-
mission for planned market reforms in order to implement scarcity pricing (article 20(3) of
regulation 2019/943 [Eur19]) the Belgian government [ELIb] mentions that the imbalance
penalty α of Eq. (4.1), “already exhibits quite some characteristics of a scarcity pricing
mechanism” [ELIb].

9In this section, we will use a generic λI for the imbalance price. The definition of this λI will differ
from design to design and will be described in section 4.3
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It is important to note that design (D2) relies on imbalance penalties α which depend
on the level of system imbalance, which is not to be confused with the level of scarcity in
the system. To clarify: a system that is exhibiting a very large positive imbalance is not
experiencing scarcity if it carries abundant reserve capacity at the moment in time when
the large imbalance occurs.

In practice, the imbalance penalty in Eq. (4.1) depends on the imbalance of the current
and previous interval (see Eq. (4.4) below). Therefore, the MDP model that we develop for
design (D2) requires an additional state variable, the imbalance of the previous balancing
interval, which is is added to the state vector of stages 2 and 3. It is not added to stage 1
of the problem because this quantity is unknown in day-ahead.

4.3.3 Design 3

Scarcity pricing, as presented in section 1.3.6, introduces a real-time price for balancing
capacity, or ORDC adder, which is a function of the instantaneous amount of leftover
capacity in the system, λR. The question is where this adder should be applied. It has
been proposed [Gie19] to apply this adder as an imbalance charge, as an alternative to the
α penalty of Eq. (4.1).

λI = λB + λR

The MDP model that we develop for design (D3) is exactly the same as the one for
design (D1) in section 4.2.2.

4.3.4 Design 4

The intuition for this design is based on the following economical principles:

• Economic principle 1: law of one price [Cra17]. Real-time energy is a unique
product, therefore the buyer and seller should exchange it at the same price.

• Economic principle 2: back-propagation. If we put in place a real-time mar-
ket for balancing capacity, then agents will only sell balancing capacity in forward
markets at the value that they would need to buy it back in real time. This second
principle is especially crucial, since it allows the value of balancing capacity to back-
propagate into forward balancing capacity auctions, and send the signal to investors
that the market can support investments in balancing capacity.

These two economical principles translate to the following market design proposals for
implementing scarcity pricing in the EU market design [PSd19]:

• Market design proposal 1: the introduction of a scarcity adder to the imbalance
price.

• Market design proposal 2: the application of the same adder to the balancing
energy price.

• Market design proposal 3: the implementation of an EU real-time market for
balancing capacity (equivalently, a market for “balancing capacity imbalances”, in
the same way that we operate a market for energy imbalances), which is a missing
market in the existing EU balancing design.
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In terms of the MDP model, this implies adding λR to the balancing price λB and to
the imbalance price λI . Moreover, we need to introduce the following term in settlement:

−λR · qaR + λR · (P+ − qa− ai).

This term effectively implies that agents buy back their day-ahead balancing capacity
at real-time balancing capacity prices, and sell their entire real-time balancing capacity
at real-time balancing capacity prices. Introducing this settlement of real-time balancing
capacity imbalances induces agents to bid their balancing capacity in forward markets in
a way that anticipates the expected price at which they would be required to buy that
balancing capacity back in real time. This effect results in the back-propagation of the
scarcity signal.

The mechanism amounts to introducing a real-time market for balancing capacity, and
is exactly analogous to the practice of settling energy imbalances at prevailing real-time
energy prices. Furthermore, the approach is compatible with the EBGL, since one can
invoke article 44(3) of the EBGL for introducing a scarcity adder (shortage pricing function
in EBGL) to the imbalance price, and article 20(c) of [Eur19] for introducing a scarcity
adder on top of the balancing energy price.

The representation of this design requires augmenting the MDP model of section 4.2.2
by adding the awarded day-ahead balancing capacity qaR to the state of the third time
step, since this quantity affects the third-stage payoff under design (D4).

4.3.5 Design 5

Design (D5) is the design proposed by ELIA in its September 2020 report [ELIe]. The
aim of this design is to incorporate the scarcity adder of design (D3) into design (D2).
Mathematically, the imbalance price can be written as:

• if the system is long, λI = λB − αD · I[Imbt < LI]

• if the system is short, λI = λB + max(αU · I[Imbt > UI], λR)

The MDP model that we develop for design (D5) is the same as the one for (D2).
It requires an additional state variable, the imbalance of the previous balancing interval,
which is is added to the state vector of stages 2 and 3.

4.3.6 Design 6

We now consider a design that is a mix between what is proposed in (D4) and what ELIA
proposes (D5). Specifically, the idea is to keep the real-time market for balancing capacity
and the application of the scarcity adder to the balancing energy price presented in (D4)
(market design proposal 2 and 3) as well as using the same imbalance settlement as in
(D5).

The MDP model that we develop for design (D6) requires (i) one extra variable for
stage 2, the imbalance of the previous balancing interval (ii) two extra variables for stage 3,
the imbalance of the previous balancing interval and the the awarded day-ahead balancing
capacity qaR.
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4.4 Analysis under Perfect Competition Assumption

This section analyzes each of the six designs that are introduced in section 4.3 under the
simplifying assumption of perfect competition10. Unveiling difficulties in back-propagating
balancing capacity prices in the case of perfect competition suggests fundamental market
design problems, and offers insights about what to expect in the simulations of section
4.5.2. Our simplifying assumption can be stated as follows:

Perfect competition assumption: We consider fringe agents, i.e. ones with in-
finitesimal capacity.

In order to keep the development concise, and since the proof strategy is the same for
the different designs, we only present the complete proof for (D1). For the other designs,
we present the optimal strategy for the agent. The proofs are available in appendix 4.7.

4.4.1 Generalities

The first step in the proof for all the designs is to demonstrate that there is no loss of
generality in considering the case of an agent which has only downward capacity (i.e.
P+ = 0 and P− < 0) or the case of an agent which has only upward capacity (i.e. P− = 0
and P+ > 0).

Consider the general case of an agent for which P+ > 0 and P− < 0. Suppose that
the agent has offered q+ > 0 of capacity in the balancing auction for upward energy, and
q− < 0 of capacity in the balancing auction for downward energy.

The balancing activation payoff is as follows:

zB(ω) = (λB(ω)− C) · (qa+(q+, ω) + qa−(q−, ω))

where

• ω corresponds to a realization of system imbalance.

• qa+(q+, ω) is the quantity accepted for upward balancing if the agent bids q+ in
scenario ω.

• qa−(q−, ω) is the quantity accepted for downward balancing if the agent bids q− in
scenario ω.

• λB(ω) is the balancing price in scenario ω. Our assumption of focusing on a fringe
supplier justifies the assumption of considering λB(ω) as not being influenced by the
agent decisions q+ and q−.

The bid quantities obey the following constraints:

0 ≤ q+ ≤ P+

P− ≤ q− ≤ 0

As q+ and q− never appear in the same constraint and do not interact in the objec-
tive, the balancing payoff zB is separable in q+ and q−. Denote as aiD the positive active

10The analytical solutions of design (D1)− (D4) have been originally developed in [Pap20] [PB21]. On
the other hand, the proofs of designs (D5) and (D6) are original contributions of this thesis. As the proof
strategies are similar, we also reproduce the results for (D1)− (D4) in this thesis.
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imbalance (downward regulation), and aiU as the negative active imbalance (upward reg-
ulation). Given a second-stage active imbalance ai = aiD−aiU (and an implied imbalance
qi), the agent receives an imbalance payoff which is computed as follows:

−λI(ω) · qi− C · (aiU − aiD)

with

qi = Imb(ω) + aiD − aiU

where Imb(ω) is the imbalance of the agent in scenario ω.
By substituting out the imbalance and considering expectations, the active imbalance

optimization is written as:

zI = max
aiD,aiU

(E[λI ]− C) · aiU + (C − E[λI ]) · aiD − E[λI · Imb]

aiU + q+ ≤ P+

aiU ≤ P+

aiD − q− ≤ −P−

aiD ≤ −P−

aiD, aiU ≥ 0

Note that the upward active imbalance aiU only interacts with the upward capacity
bid q+, and the downward active imbalance aiD only interacts with the downward bid
capacity q−. Thus, the problem is separable in (aiU , q+) and in (aiD, q−), insofar as zI
is concerned. And since the payoff zB is separable in q+ and q−, the desired conclusion
follows.

4.4.2 Design 1

For the first design, we have four different situations depending on the agent characteristics
(i) agents with upward capacity and for which E[λB] < C; (ii) agents with upward capacity
and for which E[λB] ≥ C; (iii) agents with downward capacity and for which E[λB] ≥ C;
and (iv) agents with downward capacity and for which E[λB] < C.

(D1) Case 1: C ≤ E[λB], P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ ≥ 0 (and

therefore q ≥ 0):

max
ai

(
E[λB]− C

)
· ai− E[λB] · Imb

ai+ q ≤ P+

ai ≥ 0

As C ≤ E[λB], we have ai∗ = P+ − q. The expected payoff zI is then expressed as
follows:

zI =
(
E[λB]− C

)
· (P+ − q) +D

where D , −E[λB] · Imb
The balancing payoff zB(ω) can be expressed as follows:
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• If p > λB(ω), then zB(ω) = 0

• If p = λB(ω), then zB(ω) = (λB(ω) − C) · qa for some qa which is selected by the
auctioneer. We get rid of this case by assuming that the auctioneer always activates
zero MW of the supplier when the bid is at the money. Since this is a fringe supplier,
the auctioneer can always source the imbalance energy from alternative suppliers.
Thus, we have qa(ω) = 0 and zB(ω) = 0 in this case.

• If p < λB(ω), then zB(ω) = (λB(ω)− C) · q

Therefore, the expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

where µ is the probability measure of the balancing price λB.
The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB]− C

)
· P+ +D

C2 = E[λB]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

In order to determine the optimal bidding strategy, let us first fix the bid quantity q
of the agent. We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q
We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at

C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −(E[λB]− C) + C3(C)

= −
(∫

x≤C
(x− C) · dµ(x) +

∫
x>C

(x− C) · dµ(x)

)
+

∫
x>C

(x− C) · dµ(x)

= −
∫
x≤C

(x− C) · dµ(x)

> 0

93



Chapter 4

Therefore, it is optimal to bid q∗ = P+ in the balancing auction and ai∗ = 0. This
reflects the fact that, when being in active imbalance, the agent takes the risk of producing
power when being out of the money. Instead, the balancing market will only activate the
agent when its marginal cost is lower than the balancing price. The fact that the balancing
and imbalance price are equal sends the correct incentive to the agent for bidding its entire
capacity to the balancing auction. Note that every MW cleared in the day-ahead balancing
capacity market comes with an obligation to bid that MW in the balancing energy auction,
so this is a loss of opportunity because the agent does not have the chance to resort to active
imbalance. For D1, since the optimal strategy of the agent is to bid its entire capacity in
the balancing energy auction, there is no opportunity cost for the agent. Therefore, the
price at which the agent would bid in the day-ahead balancing capacity market is zero.

(D1) Case 2: E[λB] < C,P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ > 0 (and

therefore q ≥ 0):

max
ai

(
E[λB]− C

)
· ai− E[λB] · Imb

ai+ q ≤ P+

ai ≥ 0

Since E[λB] < C, we have ai∗ = 0. The expected payoff zI is then expressed as follows:

zI = D

where D , −E[λB] · Imb
The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = D

C3(p) =

∫
x>p

(x− C) · dµ(x)

In order to determine the optimal bidding strategy, let us first fix the bid quantity q
of the agent. We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.

94



Chapter 4

And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x>C

(x− C) · dµ(x)

> 0

Therefore, it is optimal to bid q∗ = P+ in the balancing energy market. Since the
optimal strategy of the agent is to bid its entire capacity in the balancing energy auction,
there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.

(D1) Case 3: C ≤ E[λB], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
C − E[λB]

)
· ai− E[λB] · Imb

ai− q ≤ −P−

ai ≥ 0

Since E[λB] − C ≥ 0, we have ai∗ = 0. The expected payoff zI is then expressed as
follows:

zI = D

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = D

C3(p) =

∫
x<p

(x− C) · dµ(x)

In order to determine the optimal bidding strategy, let us first fix the bid quantity q
of the agent. We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

95



Chapter 4

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x<C

(x− C) · dµ(x)

< 0

Therefore, it is optimal to bid q∗ = P− in the balancing energy market.

(D1) Case 4: C > E[λB], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
C − E[λB]

)
· ai− E[λB] · Imb

ai− q ≤ −P−

ai ≥ 0

Since E[λB]−C ≤ 0, we have ai∗ = −P−+q. The expected payoff zI is then expressed
as follows:

zI =
(
E[λB]− C

)
· (P− − q) +D

where D , −E[λB] · Imb
The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB]− C

)
· P− +D

C2 = E[λB]− C

C3(p) =

∫
x<p

(x− C) · dµ(x)

In order to determine the optimal bidding strategy, let us first fix the bid quantity q
of the agent. We can express the first-order conditions with respect to p as:
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∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −
(
E[λB]− C

)
+

∫
x<C

(x− C) · dµ(x)

= −
(∫

x<C
(x− C) · dµ(x) +

∫
x≥C

(x− C) · dµ(x)

)
+

∫
x<C

(x− C) · dµ(x)

= −
∫
x≥C

(x− C) · dµ(x)

< 0

Therefore, it is optimal to bid q∗ = P− in the balancing energy market.

(D1) Conclusion: We can state that it is always optimal for agents to bid their entire
balancing capacity at the true marginal cost to the balancing energy market. For agents
with upward balancing capacity (P+ > 0), the opportunity cost of bidding their capacity
to the day-ahead balancing capacity market is zero. We have characterized a pure strategy
Nash equilibrium.

4.4.3 Design 2

In this section, we present the main results for (D2). The proofs for this design are
available in appendix 4.7.1.

(D2) Case 1: C ≤ E[λB], P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since the

optimal strategy of the agent is to bid its entire capacity in the balancing energy market,
there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.

(D2) Case 2: E[λB] < C,P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since the

optimal strategy of the agent is to bid its entire capacity in the balancing energy market,
there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.
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(D2) Case 3: C ≤ E[λB], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D2) Case 4: C > E[λB], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D2) Conclusion: Under the assumption of independent symmetric imbalances, we
can state that it is always optimal for agents to bid their entire balancing capacity at the
true marginal cost to the balancing energy market. For agents with upward balancing ca-
pacity (P+ > 0), the opportunity cost of bidding their capacity to the day-ahead balancing
capacity market is zero. We have characterized a pure strategy Nash equilibrium.

4.4.4 Design 3

In this section, we present the main results for (D3). The proofs for this design are
available in appendix 4.7.2.

(D3) Case 1: C ≤ E[λB + λR]−
∫
x>C(x− C) · dµ(x), P+ > 0, P− = 0

In this case, it is optimal to bid q∗ = 0 in the balancing energy market. This implies
that for agents with low marginal costs, the incentive is to self-balance. The opportunity
cost of bidding in the day-ahead balancing capacity market is equal to:

E[λB + λR]− C −
∫
x>C

(x− C) · dµ(x)

= E[λR] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

= E[λR] +

∫
x≤C

(x− C) · dµ(x)

≤ E[λR]

(D3) Case 2: E[λB + λR]−
∫
x>C(x− C) · dµ(x) < C ≤ E[λB + λR], P+ > 0, P− = 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since the
optimal strategy of the agent is to bid its entire capacity in the balancing energy market,
there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.

(D3) Case 3: E[λB + λR] < C,P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = P+ in the balancing auction. Since the

optimal strategy of the agent is to bid its entire capacity in the balancing energy market,
there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.

(D3) Case 4: C ≤ E[λB + λR], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.
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(D3) Case 5: C > E[λB + λR], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D3) Conclusion: We can state that it is sometimes, but not always, optimal for
agents to bid their entire balancing capacity at the true marginal cost to the balancing
energy market. For agents with upward balancing capacity (P+ > 0), the opportunity
cost of bidding their capacity to the day-ahead balancing capacity market is less than
or equal to the scarcity value E[λR]. We have not characterized a pure strategy Nash
equilibrium, since some agents find it optimal to self-balance. This design is depressing
the scarcity price in two ways: (i) agents who find it optimal to bid their entire capacity to
the balancing energy market face an opportunity cost of zero for bidding in the day-ahead
balancing capacity market; and (ii) agents who find it optimal to self-balance face an
opportunity cost which is less than the scarcity price E[λR]. Moreover, the fact that some
market participants find it optimal to perform self-balancing rather than offering their
flexibility to the system might create a distortion of the price signal. Indeed, with certain
agents performing self-balancing, it becomes difficult for a TSO to decide how much reserve
to activate. This is due to the fact that the decision of which reserve to activate has to
be reached before knowing how much self-balancing will take place. Therefore, there is
no guarantee that the obtained dispatch will be optimal (respect the merit order) which
would be the case if all the capacity was offered to the TSO as balancing energy. A second
potential distortion of the price signal might come from the fact that, even if the TSO
activates the right amount of reserve, if the most expensive activated unit is performing
self-balancing, it is not part of the merit order and therefore does not set the price. This
depresses the balancing price.

4.4.5 Design 4

In this section, we present the main results for (D4). The proofs for this design are
available in appendix 4.7.3.

(D4) Case 1: C ≤ E[λB], P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.

(D4) Case 2: E[λB] < C,P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.

(D4) Case 3: C ≤ E[λB + λR], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D4) Case 4: C ≥ E[λB + λR], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D4) Conclusion: We can state that it is always optimal for agents to bid their entire
balancing capacity at the true marginal cost to the balancing energy market. We have
characterized a pure strategy Nash equilibrium. The opportunity cost is E[λR]. The
opportunity cost can be explained by the real-time balancing capacity market. Indeed,
the day-ahead contracted balancing capacity is bought back at a real-time price.
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4.4.6 Design 5

In this section, we present the main results for (D5). The proofs for this design are
available in appendix 4.7.411.

(D5) Case 1: C ≤ E[λB] + E[max(λR, α+)|Imbst−1] − E[α−|Imbst−1] −
∫
x>C(x − C) ·

dµ(x), P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = 0 in the balancing energy market. This implies

that for agents with low marginal costs, the incentive is to self-balance. The opportunity
cost of bidding in the day-ahead balancing energy market is equal to C2 − C3(C), which
can be rewritten as:

E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C −
∫
x>C

(x− C) · dµ(x) (4.3)

= E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

≤ E[λR] + E[α+|Imbst−1]− E[α−|Imbst−1] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

= E[λR] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

≤ E[λR]

We can compare this result with the one obtained for (D3). For (D3), we had the
following opportunity cost:

E[λB] + E[λR]− C −
∫
x>C

(x− C) · dµ(x)

If we take the difference between the opportunity cost of (D3) and (D5), we obtain:

E[λR] + E[α−|Imbst−1]− E[max(λR, α+)|Imbst−1]

As shown in appendix 4.7.1, E[α−|Imbst−1] = E[α+|Imbst−1]. Therefore, we can rewrite
the difference as:

E[λR] + E[α+|Imbst−1]− E[max(λR, α+)|Imbst−1]

We are comparing the sum of two random variables with the maximum of these two
random variables. As these two random variables are always positive, their sum is higher
than their maximum.

This brings us to the conclusion that the opportunity cost given by (D5) is always
smaller than or equal to the one given by (D3). Moreover, as E[max(λR, α+)|Imbst−1] −
E[α−|Imbst−1] do not cancel each other in Eq. (4.3), the profit is dependent on the previous
period imbalance Imbst−1.

(D5) Case 2: E[λB] +E[max(λR, α+)|Imbst−1]−E[α−|Imbst−1]−
∫
x>C(x−C) · dµ(x) <

C ≤ E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since the

optimal strategy of the agent is to bid its entire capacity in the balancing energy market,

11The notations of E[α+|Imbst−1] and E[α−|Imbst−1] are defined in appendix 4.7.1.
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there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.

(D5) Case 3: C > E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ > 0, P− = 0
In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since the

optimal strategy of the agent is to bid its entire capacity in the balancing energy market,
there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.

(D5) Case 4: C ≤ E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D5) Case 5: C > E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D5) Conclusion: We can state that it is sometimes, but not always, optimal for
agents to bid their entire balancing capacity at the true marginal cost to the balancing
energy market. For agents with upward balancing capacity (P+), the opportunity cost of
bidding their capacity to the day-ahead balancing capacity market is less than or equal to
the one of design (D3) which is itself lower than or equal to the scarcity value E[λR]. We
have not characterized a pure strategy Nash equilibrium, since some agents find it optimal
to self-balance. This design is depressing the scarcity price in two ways: (i) agents who find
it optimal to bid their entire capacity to the balancing energy market face an opportunity
cost of zero for bidding in the day-ahead balancing capacity market; and (ii) agents who
find it optimal to self-balance face an opportunity cost which is less than or equal to the
opportunity cost in (D3) which is itself lower than the scarcity price E[λR]. Moreover,
the fact that some market participants find it optimal to perform self-balancing rather
than offering their flexibility to the system might create a distortion of the price signal.
Indeed, with certain agents performing self-balancing, it becomes difficult for a TSO to
decide how much reserve to activate. This is due to the fact that the decision of which
reserve to activate has to be taken before knowing how much self-balancing will take place.
Therefore, there is no guarantee that the obtained dispatch will be optimal (respect the
merit order) which would be the case if all the capacity was offered to the TSO as balancing
energy. A second potential distortion of the price signal might come from the fact that,
even if the TSO activates the right amount of reserve, if the most expensive activated unit
is performing self-balancing, it is not part of the merit order and therefore does not set
the price. This depresses the balancing price.

4.4.7 Design 6

In this section, we present the main results for (D6). The proofs for this design are
available in appendix 4.7.5.

(D6) Case 1: C ≤ E[λB] + E[max(λR, α+)|Imbst−1] − E[α−|Imbst−1] − E[λR], P+ >
0, P− = 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.
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(D6) Case 2: E[λB] + E[max(λR, α+)|Imbst−1] − E[α−|Imbst−1] − E[λR] < C,P+ >
0, P− = 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.

(D6) Case 3: C ≤ E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D6) Case 4: C > E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D6) Conclusion: We can state that it is always optimal for agents to bid their
entire balancing capacity at the true marginal cost to the balancing energy market. The
opportunity cost is E[λR]. We have characterized a pure strategy Nash equilibrium. This
result is equivalent to the one of design (D4). This is justified by the fact that (i) the only
difference between the two designs is the pay-off from active imbalance. (ii) the optimal
decision in both designs is to not perform active imbalance at all.

4.5 Case study

We now proceed to a numerical illustration in a simple case study. In section 4.5.1 we
validate the analytical results of section 4.4 by considering a single fringe agent. In section
4.5.2 we assess the ability of the different designs to back-propagate balancing capacity
prices by considering multiple agents that compete against each other.

4.5.1 Validation of Analytical Results

Consider a system with a fringe supplier that manages a flexible upward capacity of P+ = 1
MW (and downward capacity of P− = 0 MW). The marginal cost of the agent is C = 50
e/MWh. We discretize the action space as follows: the balancing energy auction bid q
and balancing capacity auction bid qR is either 0 MW or 1 MW, and the agent can bid
any value p between 25 to 75 e/MWh, in increments of 5 e/MWh.

The system imbalance is assumed to be normally distributed with a mean of 0 MW
and a standard deviation of 91.5 MW. The imbalance of the fringe agent is assumed to
be uniformly distributed between −0.5, 0 and 0.5. In the analytical model, the balancing
supply function of the system is assumed to be affine, and is expressed mathematically as
a+ b · q, where q is the amount of activated balancing capacity (with q > 0 corresponding
to upward activation and q < 0 corresponding to downward activation), a = 50 e/MWh,
and b = 0.11 (e/MWh)/MW. This supply function is an approximation of a balancing
market with 8 agents, whose parameters are defined in Table 4.1. The fringe agent that
we are interested in is agent A5.

A1 A2 A3 A4 A5 A6 A7 A8

P+ 0 0 0 0 1 100 100 100

P− -100 -100 -100 -50 0 0 0 0

C 20 30 40 50 50 60 70 80

Table 4.1: The balancing capacity and marginal cost of different agents for the MDP code of
section 4.5.1. Units are in [MW] for P+ and P−, and in [e/MWh] for C.
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For the case of design (D2), we use the formula proposed by ELIA [ELI19]: UI =
LI = 150 MW, and

αU = αD =
200

1 + exp
(

450−x
65

) (4.4)

where x =
|Imbt|+|Imbtt−1|

2 is the average of the absolute total system imbalances of the
previous and current imbalance interval. For the case of design (D3) and (D4), we assume
a value of V OLL = 1000 e/MWh.

Design (D1) (D3) (D4)

q∗ [MW] 1 0 1

p∗ [e/MWh] 55 any 50

Average Profit [e] 6.34 14.43 18.85

Opportunity cost dR?/dq [e/MWh] 0 8.11 12.71

Table 4.2: Results for (D1), (D3) and (D4) in the single-agent simulation.

Imbtt−1 [MWh] (∞,−150] (-150,0] (0,150] (150,∞)

q∗ [MW] 1 1 1 1

p∗ [e/MWh] 50 55 55 50

Average Profit [e] 6.43 6.30 6.32 6.46

dR?/dq [e/MWh] 0 0 0 0

Table 4.3: Results for (D2) for different ranges of Imbtt−1 in the single-agent simulation.

Imbtt−1 [MWh] ]∞,−150] [-150,0] [0,150] [150,∞[

q∗ [MW] 0 0 0 0

p∗ [e/MWh] any any any any

Average Profit [e] 13.56 14.03 14.02 14

dR?/dq [e/MWh] 6.93 7.80 7.79 7.45

Table 4.4: Results for (D5) for different ranges of Imbtt−1 in the single-agent simulation.

Imbtt−1 [MWh] ]∞,−150] [-150,0] [0,150] [150,∞[

q∗ [MW] 1 1 1 1

p∗ [e/MWh] 50 45 50 45

Average Profit [e] 18.98 18.58 18.90 19.15

dR?/dq [e/MWh] 11.81 11.86 12.51 13.30

Table 4.5: Results for (D6) for different ranges of Imbtt−1 in the single-agent simulation.

Design (D1) (D2) (D3) (D4) (D6)

q∗ [MW] 1 1 0 1 1

p∗ [e/MWh] 50 50 any 50 50

Average Profit [e] 4.04 4.04 12.57 16.63 16.63

Opportunity cost dR?/dq [e] 0 0 8.53 12.59 12.59

Table 4.6: Results for different market designs using the analytical solution.

For the single-agent simulation, we use the Q-learning algorithm12 [WD92] under a
uniformly distributed policy for the purpose of learning the Q function. We use a learning
rate of 1

n(s,a) for each state-action pair (s, a), where n(s, a) counts the number of visits to

(s, a). We run 2, 000, 000 episodes for each design with the same seeds, in order to isolate

12This is a type of tabular method presented in section 1.4.2
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Imbtt−1 [MWh] ]∞,−150] [-150,0] [0,150] [150,∞[

q∗ [MW] 0 0 0 0

p∗ [e/MWh] any any any any

Average Profit [e] 12.30 12.47 12.47 12.30

dR?/dq [e/MWh] 8.24 8.41 8.41 8.24

Table 4.7: Results for (D5) for different ranges of Imbtt−1 in the analytical solution.

the effect of the market design changes on the results.
We summarize the results of the simulations in Tables 4.2, 4.3, 4.4 and 4.5 as well as

the analytical solution in Table 4.6 and 4.7. We observe the following. (i) For every design,
the bid quantity and price are equivalent for the analytical case and the MDP model13.
(ii) The profits are in the same range for the analytical solution and the MDP model.
Differences (which amount to a range of 2 e) can be expected, because the analytical
model assumes a continuous supply function, which is a continuous approximation of the
stepwise supply function that is used in the MDP code. (iii) The opportunity costs are
very close to each other for the analytical model and the MDP code. (iv) For designs
(D2) and (D6), the value of the previous period imbalance, Imbtt−1, influences neither
the selected action nor the profit, see Tables 4.3 and 4.5 4.6. These observations are in
line with sections 4.4.3 and 4.4.7. For design (D5), the previous period, Imbtt−1, does not
influence the selected action but it influences the profit and the opportunity cost as shown
in Tables 4.4 and 4.7. This observation is in line with section 4.4.6.

4.5.2 Back-Propagation

We now concentrate on assessing experimentally the ability of the different market designs
to back-propagate the real-time value of balancing capacity to the day-ahead balancing
capacity market. For this purpose, we use our MDP model for developing a multi-agent
simulation. In order to focus the analysis on the effects of the design in conditions of high
competition for upward balancing capacity, we replace producers 5 − 8 by 35 producers
with a capacity of 10 MW and marginal costs that increase uniformly from 50 e/MWh
to 84 e/MWh.

We discretize the agent action space by having agents bid in price increments of 5
e/MWh and in quantity increments of half of their capacity. Each agent is facing a
portfolio imbalance which is uniformly distributed between zero, half of its maximum
capacity and minus half of its maximum capacity. There is also a system imbalance with
a zero mean and a standard deviation of 72.9 MW. Agent imbalances are independent of
each other and of the system imbalance. The day-ahead balancing capacity demand curve
is assumed to be identical to the real-time balancing capacity demand curve, and based
on the ORDC formula of Eq. (1.1).

13Indeed, in the MDP model, bidding at a price of 45 or 55 e/MWh is equivalent to bidding at 50
e/MWh, because there is no other producer with a marginal cost in the intervals [45, 50) and ()50, 55].
For design (D3) and (D5), the bid price does not matter, because the bid quantity is 0 MW.
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We let every agent optimize its own policy using the Q-learning algorithm14 under an
ε−greedy policy. During the learning phase, εk evolves as 0.05

N−k , where N is the maximum
number of iterations and k is the current iteration. Since all agents are learning simul-
taneously, from the perspective of any single agent, the environment is non-stationary,
which implies that we have no convergence guarantees. In order to cope with the non-
stationarity of the environment, we use a constant learning rate [SB18]. We run 1, 500, 000
iterations in blocks of 100. After each block of 100 iterations, we compute the outcome
that we would have obtained in the balancing capacity market if each agent were applying
its policy greedily. We plot the sample average of this balancing capacity price for the
different designs in Fig. 4.2.
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Figure 4.2: The evolution of the balancing capacity price in the simulation of section 4.5.2.

We observe the following. (i) For (D1) and (D2), the balancing capacity price sample
average converges to a small value. This is anticipated by the analytical results, because
the opportunity cost for each agent is equal to 0. (ii) For (D3) and (D5), the balancing
capacity price sample average arrives slightly above the one resulting from (D1). As shown
analytically in section 4.4, under (D3) and (D5) certain low-cost producers may face a
positive opportunity cost when bidding into the day-ahead balancing capacity market.
Nevertheless, the resulting balancing capacity price remains close to the one of (D1),
because few producers are sufficiently cheap to fulfill this condition. (iii) Under design
(D4) and (D6), the day-ahead balancing capacity price converges to a value which is close
to the average real-time scarcity adder, i.e. 9.35 e/MWh.

4.5.3 Relaxing the Perfect Competition Assumption

The analytical model of section 4.4 assumes perfect competition. This is not necessarily
representative of balancing markets, where balancing capacity requirements are sometimes
quite small and the market may be dominated by a limited number of suppliers.

14An alternative method has been developed recently in order to solve this class of problems [Ber20].
The intuition is to generalize the value iteration algorithm to a multi-agent setting. To this aim, the author
applies one step of the value iteration algorithm to each agent sequentially (the transition function for a
precise agent can be computed if the policy of all the other agents is fixed). The advantage of this method
compared to our approach is that it converges faster because it does not rely on sampling the uncertainty.
Nevertheless, our approach has a natural interpretation as an iterative learning process that agents would
engage in if we let them trade in the market without knowing the strategy of their competitors.
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The analytical results of section 4.4 are only valid in a setting of perfect competition.
Concretely, this assumption is required in order to arrive to the observation that balancing
capacity prices are depressed under designs (D1), (D2), (D3) and (D5). If we lift the
perfect competition assumption, then we can still use the MDP model of section 4.2.2
in order to investigate possible outcomes in the market. However, in such a setting it
is typically difficult to verify that the point at which the MDP model converges is an
actual equilibrium, since the condition that the agent policy should be optimal given the
strategy of the other agents need to hold for every agent, and every possible state at
every stage of the MDP model. Due to the fact that the Q functions are estimated in
the MDP model, this verification is necessarily probabilistic, and typically accompanied
by very weak confidence guarantees, since certain points of the state-action space are not
explored extensively. In lieu of an analytical model that can predict equilibrium outcomes
in the case of perfect competition, the results of the MDP model should therefore be
considered as being purely suggestive because these results are only experimental and not
based on an analytical characterization of an equilibrium. Moreover, we do not have an
experimental guarantee that we converge to decisions that correspond to an equilibrium.
Bearing this limitation in mind, we proceed with an application of our MDP model where
we consider 11 agents. We maintain the 4 first agents of Table 4.1. We replace producers
5− 8 of Table 4.1 by 7 agents with a capacity of 50 MW and marginal cost that increases
uniformly from 50 to 80 e/MWh. We discretize the agent action space by having agents
bid in price increments of 5 e/MWh and in quantity increments of a tenth of their capacity.
The imbalance from the rest of the system has a zero mean and a standard deviation of
54.6MW . The other parameters are kept the same as in the case of perfect competition.

We present the results of our simulation in Fig. 4.3. We observe that the price is
higher for all designs compared to the case of perfect competition (see Fig. 4.2). This
suggests that market power can be applied under every market design, and that our MDP
model can be used for capturing such effects.
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Figure 4.3: The evolution of the balancing capacity price in the simulation of section 4.5.3 under
a setting of imperfect competition.
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4.5.4 Other Factors Affecting Balancing Capacity Prices

The MDP model and analytical results that we have developed employ a number of sim-
plifying assumptions. We discuss the assumption of perfect competition in section 4.5.3.
In this section we comment on other factors that affect the formation of balancing ca-
pacity prices, including the inter-temporal coupling of market time units, fixed costs, and
multiple balancing capacity types.

Inter-temporal coupling Both our analytical approach and our MDP model are im-
plicitly assuming away inter-temporal dependencies. Inter-temporal dependencies occur
in market clearing due to the dynamic constraints of resources (generator startups, ramp
rates, min up / down times, storage levels, and so on) as well as the multi-interval na-
ture of day-ahead and real-time energy and balancing capacity markets. For example,
European day-ahead energy market clearing (as well as future integrated European day-
ahead balancing capacity platforms, see articles 40-42 of [Eur17]) spans a 24-hour horizon.
Similarly, a number of US day-ahead energy and balancing capacity markets based on
co-optimization typically span a horizon of at least one day, while a number of US real-
time markets such as CAISO and the New York ISO [Sch17] employ a multi-interval look
ahead.

The introduction of inter-temporal coupling in our MDP model would create serious
computational challenges that would require moving away from a simple lookup table
representation of agent policies as explained in section 1.4.3. It is worth noting that
pumped hydro resources in Belgium presently constitute a significant resource for the
provision of frequency restoration reserves (a type of balancing capacity). The effect of
inter-temporal constraints on Belgian market prices has been considered in [PS17,PSB18].
Inter-temporal constraints are ignored in this chapter in order to focus the analysis on
the interaction of scarcity pricing and the back-propagation of balancing capacity prices
to forward markets.

Fixed costs Fixed costs are not accounted for in our analysis. Belgium relies exten-
sively on combined cycle gas turbines for frequency restoration reserves. These resources
incur fixed costs for being online that contribute to the formation of forward balancing
capacity prices [PS17]. The fixed cost associated to bringing a unit online so that it can
provide balancing capacity to the system would introduce a non-zero cost associated to
the sale of balancing capacity in the day-ahead market, and would therefore introduce a
non-zero forward balancing capacity price that can contribute towards covering the op-
erating cost that balancing capacity incurs for delivering balancing capacity services to
the system. Instead, an important goal of scarcity pricing is to remunerate fixed long-run
investment costs of resources that contribute to the system during scarcity. Our analysis
uncovers balancing market designs that exhibit deficiencies in back-propagating this value
to forward balancing capacity markets by considering the special case of zero fixed costs.

4.6 Conclusion

We present a methodology for analyzing the European balancing market based on an ana-
lytical derivation of optimal bidding under perfect competition assumptions, accompanied
by an MDP-based simulation. The analysis exposes the inability of various market design
alternatives in back-propagating the value of balancing capacity in day-ahead markets.
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The analysis validates the ability of a real-time market for balancing capacity [PSd19] to
back-propagate the value of balancing capacity to day-ahead markets, while also preserv-
ing the incentive of agents to make their balancing resources available in the balancing
market.

In future research, we intend to analyse the results in presence of market power in
more detail. Moreover, we are interested in further analyzing numerous important aspects
of the mechanism. The specific parameter choices for computing the scarcity adders,
i.e. the shape of the ORDC, are currently being investigated for the implementation of
the mechanism in Belgium. Finally, it is important to understand the interaction of the
mechanism with neighboring energy and balancing capacity markets that are not adopting
the mechanism, and to ensure its compatibility with the legal framework of EBGL in this
multi-area setting.

4.7 Appendix A: Computation of the Analytical Solution in
the Perfect Competition Case

4.7.1 Design 2

Denote Imbt , Imbs + Imb − aiU + aiD as the total system imbalance. The α penalty
will be embedded in the imbalance price:

λI(ω) = λB(ω) + α(Imbt) · I[Imbt > UI]− α(Imbt) · I[Imbt < LI]

' λB(ω) + α(Imbs) · I[Imbs > UI]− α(Imbs) · I[Imbs < LI]

= λB(ω) + α+(ω)− α−(ω)

α+(ω) = α(Imbs) · I[Imbs > UI]

α−(ω) = α(Imbs) · I[Imbs < LI]

Here Imbs is the imbalance of the rest of the system (that does not include the agent),
and α(x) is the α surcharge which applies when positive imbalances exceed the level UI,
or when negative imbalances go below the level LI.

ELIA has decided to apply UI = −LI = 150MW , and the following formulat for
alpha:

α(Imbs|Imbst−1) =
200

1 + exp

(
450−

|Imbs|+|Imbst−1|
2

65

)
where we consider the imbalance of the previous balancing interval, Imbst−1, as a fixed
parameter. Note that the ELIA formula is symmetric, in the sense that α(−y|x) = α(y|x)
and α(y| − x) = α(y|x). We also have LI = −UI. Therefore, the conditional expectation
for the alpha penalties can be written as:

E[α+|Imbst−1] =

∫
y≤LI

α(y|Imbst−1) · ν(y|x) · dy

E[α−|Imbst−1] =

∫
y≥UI

·α(y|Imbst−1) · ν(y|x) · dy
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If we assume that (i) consecutive imbalances are independent and (ii) the imbalance dis-
tribution is symmetric. We obtain:

E[α−|Imbst−1] =

∫ LI

y=−∞
α(y|Imbst−1) · ν(y) · dy

= −
∫ −LI
y′=∞

α(−y′|Imbst−1) · ν(−y′) · dy′

=

∫ ∞
y′=−LI

α(y′|Imbst−1) · ν(y′) · dy′

=

∫ ∞
y′=UI

α(y′|Imbst−1) · ν(y′) · dy′

= E[α+|Imbst−1]

(D2) Case 1: C ≤ E[λB], P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ ≥ 0 (and

therefore q ≥ 0):

max
ai

(
E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]− C

)
· ai

−
(
E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai+ q ≤ P+

ai ≥ 0

Under the assumption of independent symmetric imbalances, we have E[α+|Imbst−1]−
E[α−|Imbst−1] = 0, and the analysis reverts to that of (D1).

(D2) Case 2: E[λB] < C,P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ > 0 (and

therefore q ≥ 0):

max
ai

(
E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]− C

)
· ai

−
(
E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai+ q ≤ P+

ai ≥ 0

Under the assumption of independent symmetric imbalances, we have E[α+|Imbst−1]−
E[α−|Imbst−1] = 0, and the analysis reverts to that of (D1).

(D2) Case 3: C ≤ E[λB], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):
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max
ai

(
C − E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]

)
· ai

−
(
E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai− q ≤ −P−

ai ≥ 0

Under the assumption of independent symmetric imbalances, we have E[α+|Imbst−1]−
E[α−|Imbst−1] = 0, and the analysis reverts to that of (D1).

(D2) Case 4: C > E[λB], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
C − E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]

)
· ai

−
(
E[λB] + E[α+|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai− q ≤ −P−

ai ≥ 0

Under the assumption of independent symmetric imbalances, we have E[α+|Imbst−1]−
E[α−|Imbst−1] = 0, and the analysis reverts to that of (D1).

4.7.2 Design 3

(D3) Case 1: C ≤ E[λB + λR]−
∫
x>C(x− C) · dµ(x), P+ > 0, P− = 0

The expected imbalance payoff will be computed as follows for agents with P+ ≥ 0 (and
therefore q ≥ 0):

max
ai

(
E[λB + λR]− C

)
· ai− E[λB + λR] · Imb

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = P+ − q. The expected payoff zI is then expressed as follows:

zI =
(
E[λB + λR]− C

)
· (P+ − q) + E

where E , −
(
E[λB] + E[λR]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
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where the terms can be described as follows:

C1 =
(
E[λB + λR]− C

)
· P+ + E

C2 = E[λB + λR]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −E[λB + λR] + C + C3(C)

< 0

In this case, it is optimal to bid q∗ = 0 in the balancing energy market. This implies
that for agents with low marginal costs, the incentive is to self-balance. The opportunity
cost of bidding in the day-ahead balancing capacity market is equal to:

E[λB + λR]− C −
∫
x>C

(x− C) · dµ(x)

= E[λR] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

= E[λR] +

∫
x≤C

(x− C) · dµ(x)

≤ E[λR]

(D3) Case 2: E[λB + λR]−
∫
x>C(x− C) · dµ(x) < C ≤ E[λB + λR], P+ > 0, P− = 0

The expected imbalance payoff will be computed as follows for agents with P+ ≥ 0 (and
therefore q ≥ 0):

max
ai

(
E[λB + λR]− C

)
· ai− E[λB + λR] · Imb

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = P+ − q. The expected payoff zI is then expressed as follows:

zI =
(
E[λB + λR]− C

)
· (P+ − q) + E
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where E , −E[λB + λR] · Imb
The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB + λR]− C

)
· P+ + E

C2 = E[λB + λR]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −E[λB + λR] + C + C3(C)

= −E[λB + λR] + C +

∫
x>C

(x− C) · dµ(x)

> 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since
the optimal strategy of the agent is to bid its entire capacity in the balancing energy
market, there is no opportunity cost for the agent. Therefore, the price at which the agent
would bid in the day-ahead balancing capacity market is zero.

(D3) Case 3: E[λB + λR] < C,P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ > 0 (and

therefore q ≥ 0):
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max
ai

(
E[λB + λR]− C

)
· ai− E[λB + λR] · Imb

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = 0. The expected payoff zI is then expressed as follows:

zI = E

where E , −E[λB + λR] · Imb
The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = E

C3(p) =

∫
x>p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x>C

(x− C) · dµ(x)

> 0

In this situation, it is optimal to bid q∗ = P+ in the balancing auction. Since the
optimal strategy of the agent is to bid its entire capacity in the balancing energy market,
there is no opportunity cost for the agent. Therefore, the price at which the agent would
bid in the day-ahead balancing capacity market is zero.
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(D3) Case 4: C ≤ E[λB + λR], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
C − E[λB + λR]

)
· ai− E[λB + λR] · Imb

ai− q ≤ −P−

ai ≥ 0

Since E[λB + λR]− C ≥ 0, we have ai∗ = 0. The expected payoff zI is then expressed
as follows:

zI = E

where E , −
(
E[λB + λR]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = E

C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x<C

(x− C) · dµ(x)

< 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.
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(D3) Case 5: C > E[λB + λR], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
C − E[λB + λR]

)
· ai− E[λB + λR] · Imb

ai− q ≤ −P−

ai ≥ 0

Since E[λB + λR] − C < 0, we have ai∗ = −P− + q. The expected payoff zI is then
expressed as follows:

zI =
(
E[λB + λR]− C

)
· (P− − q) + E

where E , −E[λB + λR] · Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB + λR]− C

)
· P− + E

C2 = E[λB + λR]− C

C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
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If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −
(
E[λB + λR]− C

)
+

∫
x<C

(x− C) · dµ(x)

= −
(∫

x<C
(x− C) · dµ(x) +

∫
x≥C

(x− C) · dµ(x)

)
+

∫
x<C

(x− C) · dµ(x)− E[λR]

= −
∫
x≥C

(x− C) · dµ(x)− E[λR]

< 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

4.7.3 Design 4

(D4) Case 1: C ≤ E[λB], P+ > 0, P− = 0
The expected imbalance payoff (including the quantity of leftover capacity paid at the

real-time price for balancing capacity) will be computed as follows for agents with P+ > 0
(and therefore q ≥ 0):

max
ai

(
E[λB + λR]− C

)
· ai− E[λB + λR] · Imb+ E[λR] · (P+ − ai− q)

ai+ q ≤ P+

ai ≥ 0

This can be rewritten as:

max
ai

(
E[λB]− C]

)
· ai− E[λB + λR] · Imb+ (P+ − q) · E[λR]

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = P+ − q. The expected payoff zI is then expressed as follows:

zI =
(
E[λB]− C + E[λR]

)
· (P+ − q) + E

where E , −E[λB + λR] · Imb
The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x) + E[λR] · q

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q + C4 · q
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where the terms can be described as follows:

C1 =
(
E[λB + λR]− C

)
· P+ + E

C2 = E[λB + λR]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

C4 = E[λR]

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q + C4 · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C) + C4

= −E[λB + λR] + C + C3(C) + E[λR]

= −E[λB] + C + C3(C)

= −
(∫

x≤C
(x− C) · dµ(x) +

∫
x>C

(x− C) · dµ(x)

)
+

∫
x>C

(x− C) · dµ(x)

= −
∫
x≤C

(x− C) · dµ(x)

≥ 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.

(D4) Case 2: E[λB] < C,P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ > 0 (and

therefore q ≥ 0):

max
ai

(
E[λB]− C

)
· ai− E[λB + λR] · Imb+ (P+ − q) · E[λR]

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = 0. The expected payoff zI is then expressed as follows:

zI = E − F · q
where E , −E[λB + λR] · Imb+ P+ · E[λR] and F = E[λR]
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The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x) + E[λR] · q

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q + C4 · q
where the terms can be described as follows:

C1 = E

C2 = F

C3(p) =

∫
x>p

(x− C) · dµ(x)

C4 = E[λR]

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q + C4 · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C) + C4

= −E[λR] + C3(C) + E[λR]

= C3(C)

=

∫
x>C

(x− C) · dµ(x)

≥ 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.

(D4) Case 3: C ≤ E[λB + λR], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
−E[λB + λR] + C

)
· ai− E[λB + λR] · Imb

ai− q ≤ −P−

ai ≥ 0
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We have ai∗ = 0. The expected payoff zI is then expressed as follows:

zI = E

where E , −E[λB + λR] · Imb
The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = E

C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x<C

(x− C) · dµ(x)

≤ 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D4) Case 4: C ≥ E[λB + λR], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
−E[λB + λR] + C

)
· ai− E[λB + λR] · Imb

ai− q ≤ −P−

ai ≥ 0

119



Chapter 4

We have ai∗ = q − P−. The expected payoff zI is then expressed as follows:

zI =
(
E[λB + λR]− C

)
· (P− − q) + E

where E , −E[λB + λR] · Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB + λR]− C

)
· P− + E

C2 = E[λB + λR]− C

C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −
(
E[λB + λR]− C

)
+

∫
x<C

(x− C) · dµ(x)

= −
(∫

x<C
(x− C) · dµ(x) +

∫
x≥C

(x− C) · dµ(x)

)
+

∫
x<C

(x− C) · dµ(x)− E[λR]

= −
∫
x≥C

(x− C) · dµ(x)− E[λR]

< 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.
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4.7.4 Design 5

(D5) Case 1: C ≤ E[λB] + E[max(λR, α+)|Imbst−1] − E[α−|Imbst−1] −
∫
x>C(x − C) ·

dµ(x), P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ ≥ 0 (and

therefore q ≥ 0):

max
ai

(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = P+ − q. The expected payoff zI is then expressed as follows:

zI =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· (P+ − q) + E

where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· P+ + E

C2 = E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
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If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1] + C + C3(C)

< 0

Therefore, it is optimal to bid q∗ = 0 in the balancing auction. This implies that for
agents with low marginal costs, the incentive is to self-balance. The opportunity cost of
bidding in a balancing capacity auction is equal to C2 − C3(C), which can rewritten as:

E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C −
∫
x>C

(x− C) · dµ(x)

= E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

≤ E[λR] + E[α+|Imbst−1]− E[α−|Imbst−1] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

= E[λR] +

∫
(x− C) · dµ(x)−

∫
x>C

(x− C) · dµ(x)

≤ E[λR]

(D5) Case 2: E[λB] +E[max(λR, α+)|Imbst−1]−E[α−|Imbst−1]−
∫
x>C(x−C) · dµ(x) <

C ≤ E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ ≥ 0 (and

therefore q ≥ 0):

max
ai

(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = P+ − q. The expected payoff zI is then expressed as follows:

zI =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· (P+ − q) + E

where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q

122



Chapter 4

where the terms can be described as follows:

C1 =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· P+ + E

C2 = E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1] + C + C3(C)

> 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since
the optimal strategy of the agent is to bid its entire capacity in the balancing energy
market, there is no opportunity cost for the agent. Therefore, the price at which the agent
would bid in the day-ahead balancing capacity market is zero.

(D5) Case 3: C > E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ > 0, P− = 0
The expected imbalance payoff will be computed as follows for agents with P+ ≥ 0 (and

therefore q ≥ 0):

max
ai

(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = 0. The expected payoff zI is then expressed as follows:

zI = E

where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:
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R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = E

C3(p) =

∫
x>p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x>C

(x− C) · dµ(x)

> 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market. Since
the optimal strategy of the agent is to bid its entire capacity in the balancing energy
market, there is no opportunity cost for the agent. Therefore, the price at which the agent
would bid in the day-ahead balancing capacity market is zero.

(D5) Case 4: C ≤ E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
C − E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1]

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai− q ≤ −P−

ai ≥ 0

Since E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]−C ≥ 0, we have ai∗ = 0. The
expected payoff zI is then expressed as follows:

zI = E

where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb
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The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = E

C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x<C

(x− C) · dµ(x)

< 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D5) Case 5: C > E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
C − E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1]

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai− q ≤ −P−

ai ≥ 0

Since E[λB]+E[max(λR, α+)|Imbst−1]−E[α−|Imbst−1]−C ≤ 0, we have ai∗ = −P−+q.
The expected payoff zI is then expressed as follows:

zI =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· (P− − q) + E
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where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· P− + E

C2 =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
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If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
+

∫
x<C

(x− C) · dµ(x)

= −
(∫

x<C
(x− C) · dµ(x) +

∫
x≥C

(x− C) · dµ(x)

)
+

∫
x<C

(x− C) · dµ(x)− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1]

= −
∫
x≥C

(x− C) · dµ(x)− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1]

= −
∫
x≥C

(x− C) · dµ(x)− E[max(λR, α+)|Imbst−1] + E[α+|Imbst−1]

≤ −
∫
x≥C

(x− C) · dµ(x)− E[α+]|Imbst−1] + E[α+|Imbst−1]

= −
∫
x≥C

(x− C) · dµ(x)

< 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

4.7.5 Design 6

(D6) Case 1: C ≤ E[λB] + E[max(λR, α+)|Imbst−1] − E[α−|Imbst−1] − E[λR], P+ >
0, P− = 0

The expected imbalance payoff (including the quantity of leftover capacity paid at the
real-time price for balancing capacity) will be computed as follows for agents with P+ > 0
(and therefore q ≥ 0):

max
ai

(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

+ E[λR] · (P+ − ai− q)
ai+ q ≤ P+

ai ≥ 0

This can be rewritten as:

max
ai

(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C − E[λR]

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb+ (P+ − q) · E[λR]

ai+ q ≤ P+

ai ≥ 0
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We have ai∗ = P+ − q. The expected payoff zI is then expressed as follows:

zI =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

− E[λR] + E[λR]
)
· (P+ − q) + E

where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x) + E[λR] · q

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q + C4 · q
where the terms can be described as follows:

C1 =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· P+ + E

C2 = E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

C4 = E[λR]

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q + C4 · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C) + C4

= −E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1] + C + C3(C) + C4

= −E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1] + C + C3(C) + E[λR]

≥ −E[λB] + C + C3(C)

= −
(∫

x≤C
(x− C) · dµ(x) +

∫
x>C

(x− C) · dµ(x)

)
+

∫
x>C

(x− C) · dµ(x)

≥ 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.
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(D6) Case 2: E[λB] + E[max(λR, α+)|Imbst−1] − E[α−|Imbst−1] − E[λR] < C,P+ >
0, P− = 0

The expected imbalance payoff will be computed as follows for agents with P+ > 0 (and
therefore q ≥ 0):

max
ai

(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C − E[λR]

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb+ (P+ − q) · E[λR]

ai+ q ≤ P+

ai ≥ 0

We have ai∗ = 0. The expected payoff zI is then expressed as follows:

zI = E − F · q
where

• E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb+ P+ · E[λR]

• F = E[λR]

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x) + E[λR] · q

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q + C4 · q
where the terms can be described as follows:

C1 = E

C2 = F

C3(p) =

∫
x>p

(x− C) · dµ(x)

C4 = E[λR]

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q + C4 · q
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If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C) + C4

= −E[λR] + C3(C) + E[λR]

= C3(C)

=

∫
x>C

(x− C) · dµ(x)

≥ 0

In this situation, it is optimal to bid q∗ = P+ in the balancing energy market.

(D6) Case 3: C ≤ E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
−E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1] + C

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai− q ≤ −P−

ai ≥ 0

We have ai∗ = 0. The expected payoff zI is then expressed as follows:

zI = E

where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 + C3(p) · q
where the terms can be described as follows:

C1 = E

C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
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C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= C3(C)

=

∫
x<C

(x− C) · dµ(x)

≤ 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.

(D6) Case 4: C > E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1], P+ = 0, P− < 0
The expected imbalance payoff will be computed as follows for agents with P− < 0 (and

therefore q ≤ 0):

max
ai

(
−E[λB]− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1] + C

)
· ai

−
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

ai− q ≤ −P−

ai ≥ 0

We have ai∗ = q − P−. The expected payoff zI is then expressed as follows:

zI =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· (P− − q) + E

where E , −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]

)
· Imb

The expected balancing payoff can be expressed as follows:

zB = E[zB(ω)]

=

∫
x<p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q
where the terms can be described as follows:

C1 =
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
· P− + E

C2 = E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

C3(p) =

∫
x<p

(x− C) · dµ(x)

We can express the first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= µ(p) · (p− C) · q
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We note that the payoff function R(p, q) for fixed q is increasing in (−∞, C], zero at
C, and decreasing in [C,+∞). Thus, for any q, an optimal strategy is to bid the true cost.
And, given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q
If we take the derivative with respect to q, we have:

∂R(C, q)

∂q
= −C2 + C3(C)

= −
(
E[λB] + E[max(λR, α+)|Imbst−1]− E[α−|Imbst−1]− C

)
+

∫
x<C

(x− C) · dµ(x)

= −
(∫

x<C
(x− C) · dµ(x) +

∫
x≥C

(x− C) · dµ(x)

)
+

∫
x<C

(x− C) · dµ(x)− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1]

= −
∫
x≥C

(x− C) · dµ(x)− E[max(λR, α+)|Imbst−1] + E[α−|Imbst−1]

= −
∫
x≥C

(x− C) · dµ(x)− E[max(λR, α+)|Imbst−1] + E[α+|Imbst−1]

≤ −
∫
x≥C

(x− C) · dµ(x)− E[α+]|Imbst−1] + E[α+|Imbst−1]

= −
∫
x≥C

(x− C) · dµ(x)

< 0

In this situation, it is optimal to bid q∗ = P− in the balancing energy market.
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Conclusions and Perspectives

This thesis focuses on the analysis of ways for improving the remuneration of flexible assets
in electricity markets. In chapter 2 we develop trading strategies for a storage unit in the
CIM. We model this problem as an MDP. In order to make this problem tractable, we rely
on policy function approximation. We parametrize our policy using relevant exogenous
variables. We demonstrate that our approach outperforms a rolling intrinsic method which
is commonly used in the industry. Then, in chapter 3, we compute an analytical solution
for trading a fixed quantity of power in a simplified version of the CIM. We use this
analytical solution in order to parametrize a value function approximation algorithm that
can trade in more realistic settings. We compare the performance of our value function
approximation approach and of an alternative SDDP approach on the simplified version
of the CIM. Finally, in chapter 4, we analyse market design options for the introduction
of a scarcity pricing mechanism in Belgium. We develop an analytical framework in order
to analyse the behaviour of a fringe agent under different balancing market variants. In
order to validate these analytical results, we use a multi-agent Reinforcement Learning
simulation. In the following, we first present a summary of our conclusions and then
discuss a list of areas for future work that have been inspired by the present research.

5.1 A Summary of Conclusions

5.1.1 Case Study on a storage unit trading in the CIM

(a) Performance of our threshold policy: Our proposed approach outperforms the
rolling intrinsic policy, which is commonly employed in practice for storage units,
by increasing profitability by 17.8% on out-of-sample testing for a storage unit with
perfect round-trip efficiency and by 13.6% for a storage unit with a round-trip effi-
ciency of 81%. Moreover, our policy is consistently performing better than rolling
intrinsic by generating higher profit on 77.4% of the days with perfect round-trip
efficiency and 64.6% with a round-trip efficiency of 81%.

(b) Trading frequency: The frequency at which we trade has a strong impact on
the profit. When trading at a one-second frequency, our method performs 19.2%
better than at a 1-hour frequency. We observe that, at high frequency, two factors
contribute to the profit: (i) significant arbitrage possibilities of the storage unit
that are predictable, and (ii) smaller arbitrages that cannot be anticipated. We
demonstrate that our method is efficient in capturing both of these gains, whereas
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rolling intrinsic is effective at capturing small arbitrages but inefficient at capturing
the large predictable arbitrages. This is driven by the fact that rolling intrinsic sells
its flexibility whenever a profitable trade arrives, in a short-sighted fashion.

5.1.2 Case Study on the trading of a fixed quantity in the CIM

(a) Computation of an analytical solution: We propose a simplified model for the
CIM. We compute analytically the optimal policy and the optimal value function
for trading a fixed quantity of power in this simplified version of the CIM.

(b) Comparison of Value Function Approximation and Stochastic Dual Dy-
namic Programming: We demonstrate that both our value function approxima-
tion and SDDP are able to recover the optimal value function and the optimal policy
on a 10-step example. Therefore, both of these methods can be considered for im-
plementation on the real CIM.

5.1.3 Case Study on the market design of a scarcity pricing mechanism
in Belgium

(a) Real-time market for reserve: Our analysis validates the ability of a real-time
market for balancing capacity [PSd19] to back-propagate the value of balancing
capacity to day-ahead markets, while also preserving the incentive of agents to make
their balancing resources available in the balancing market.

(b) Alternatives without a real-time market for reserve: Our analysis illustrates
that the alternative approaches are not able to back-propagate adequately the value
of balancing capacity to day-ahead markets. Moreover, we show that any obtained
back-propagation is at the expense of having agents bidding in the balancing market
at their marginal cost.

(c) Non-zero day-ahead balancing capacity prices in the current design: Our
results are not incompatible with the observation of non-zero reserve prices for bal-
ancing capacity in practice. Indeed, our conclusion is that there is a weak back-
propagation of scarcity to the day-ahead balancing capacity market (and not that
the day-ahead reserve price should always be equal to 0 e/MWh). One of the ex-
planations for these non-zero prices relates to the technical constraints of the power
plants that are not modelled in our example. Specifically, power plants have mini-
mum production levels1 and start-up costs. Another explanation could be the fact
that financial penalties are applied if a BSP is not able to deliver the promised re-
serve. Therefore, a BSP may always ask for a compensation for the risk of being
exposed to these penalties. A last explanation could be non-competitive behaviour
due to the fact that there are few participants in the balancing capacity markets.

5.2 Future Areas of Research

(a) Value of coordination with earlier markets: In chapter 2, we consider trading
exclusively in the CIM. An important extension would be to compute the value

1The minimum production constraint might force the agent to operate its power plant while the day-
ahead price is below its marginal cost, in order to be able to provide reserve. In order to compensate this
loss, the BSP can ask for a non-zero price in the balancing capacity market.
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of coordinating trading strategies between early markets (day-ahead and intraday
auction, day-ahead reserve markets) and the CIM. Day-ahead reserve markets seem
to be especially appropriate candidates because they also correspond to a promising
revenue stream for flexible assets such as a storage unit.

(b) Muti-reservoir problem: In chapter 2, we consider only one reservoir. It would
be interesting to extend our results to several connected reservoirs, as in [BJF14].

(c) Test our trading strategy for a wind unit in the real CIM: In chapter 3,
we only compare the performance of SDDP and VFA for trading a fixed quantity of
power on a simplified version of the CIM. It is an important extension to assess the
performance of both of these methods in the real CIM. This includes analysing in
detail the relevant exogenous parameters that can influence the evolution of the CIM
price and how to include such parameters in the value function parametrization. This
step would allow us to realize a full-blown test case and draw definitive conclusions,
as in chapter 2.

(d) Market power in scarcity pricing: In chapter 4, we present the results of our
multi-agent simulation, where we relax the assumption of perfect competition. It
would be interesting to verify if our simulation converges to an equilibrium. Towards
this aim, we could develop an analytical framework, as for the perfect competition
case. An alternative approach would be to check, after convergence for each agent,
whether the policy of each agent is optimal when holding the policy of the other
agents fixed and equal to their values at convergence [YQLS19].

(e) Multiple reserve products: In chapter 4, we consider the case of a single reserve
product. In reality, there are three reserve products2 in Belgium: (i) automatic fre-
quency restoration reserve (a reserve that reacts automatically, following a controller,
to frequency deviations on a 4-second basis), (ii) manual frequency restoration re-
serve for scheduled activation (reserve that is activated manually for a delivery period
of 15 minutes and that can only be activated at the beginning of the interval), and
(iii) manual frequency restoration reserve for direct activation (reserve that can be
activated at any moment of the delivery interval and that should remain activated
during its activation interval and the following one). The presence of multiple reserve
products implies different scarcity adders. It is important to define precisely which
scarcity adder applies to each reserve product, and to energy, in order to ensure
correct incentives for BSPs.

(f) Approximation of the co-optimization of energy and reserve: The formula
of the scarcity adder, presented in chapter 4, is an approximation of a co-optimization
of energy and reserve in real time. An interesting question would be to analyze in
which situations the approximation is exact and in which situations the approxima-
tion produces a different result compared to an explicit co-optimization.

(g) Introduction of scarcity pricing in adequacy studies: This is an important
research topic because Belgium is currently implementing a capacity remuneration
mechanism. The rationale for this implementation is based on adequacy studies that
demonstrate that the profit of new power plants would be insufficient to incentivize

2We ignore frequency containment reserves, which are out of scope.
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investments. Nevertheless, these adequacy studies do not account for the impact
of a scarcity pricing mechanism on the profitability of power plants3. A potential
way for including scarcity pricing in adequacy studies would be to consider the idea
used in the simulator of [CP21]. Specifically, rather than solving one day-ahead unit
commitment model, the TSO could solve several sequential optimization models
(day-ahead, intraday, pre-real-time, real-time) in order to better approximate the
real-time operations of the system.

(h) European balancing platforms: European balancing markets are becoming inte-
grated with the upcoming introduction of the MARI (for manual frequency restora-
tion reserve) and Picasso (for automatic frequency restoration reserve) platforms.
The idea is that the offers of the BSPs from different countries will compete in cen-
tralized European platforms, in order to reduce the cost of procurement. In this
context, it is important to assess the impact, on neighbouring countries, of a unilat-
eral implementation of scarcity pricing in Belgium. Specifically, we need to ensure
that the introduction of a scarcity pricing mechanism in Belgium does not distort
competition between Belgian BSPs and BSPs from neighbouring countries.

3Notice that this is expressly intended in articles 20(3) and 23(5) of regulation 2019/943 [Eur19].
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