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Institut Montefiore





Abstract

The increasing integration of intermittent renewable production requires more flexible as-
sets in power systems. There are two potential paths in order to increase the remuneration
of these flexible assets. The first one is to improve trading strategies in existing markets.
The second one is to introduce new market mechanisms. This thesis studies both aspects
by developing trading strategies for the Continuous Intraday Market, and by analyzing dif-
ferent options for implementing a “scarcity pricing mechanism” in the European electricity
market design.

The contributions of the dissertation are organized in three chapters. Chapter 2
presents a method for trading the production of a storage unit in the Continuous In-
traday Market. We model this problem in the Markov Decision Process framework. We
present an approach based on Policy Function Approximation for tackling the problem.
We provide relevant parameters for defining our policy, and demonstrate the effectiveness
of our approach by comparing it to a method commonly employed in the industry on
real historical data. In chapter 3, we are interested in the problem of a renewable unit
covering its position in the Continuous Intraday Market. As a starting point for tackling
this problem, we characterize an optimal policy for trading a fixed quantity in a simplified
version of the Continuous Intraday Market. We use this analytical solution as a basis for
developing a Value Function Approximation algorithm and an alternative Stochastic Dual
Dynamic Programming algorithm that can trade under a more realistic set of assumptions.
Chapter 4 proposes a methodology for analysing different market design options for imple-
menting scarcity pricing in the European markets. The methodology relies on analytical
insights that can be derived under an assumption of price-taking behavior. These insights
are validated by a simulation model which represents the European balancing market as
a Markov Decision Process. Our results highlight the benefit of introducing a market in
the European market design for trading balancing capacity in real time.
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Chapter 1

Introduction

1.1 Motivation

In order to reduce CO2 emissions, the European Commission launched, in 2007, the Re-
newable Energy and Climate Change Package which targets sourcing 20% of EU energy
consumption by renewable resources by 2020 [EC08]. Thanks to this plan, the integration
of renewable energy, in Europe, has increased from 13:2% in 2010 to 18% in 2019 [Eur].
This increase is foreseen to continue with the adoption of the Climate and Energy Pack-
age [EC]. This integration of renewable resources has drastically impacted electricity
markets. The random availability of renewable supply creates the need for correcting
system dispatch closer to real time when the forecast of renewable supply becomes more
precise. An interesting option for such corrections is to trade in the Continuous Intraday
Market (CIM).

Renewable energy integration may explain the recent increase of liquidity in this mar-
ket. Speci�cally, traded volumes in the German CIM have increased from 10 TWh in 2010
to 41 TWh in 2016 [MO18]. This market is therefore becoming an interesting option for
(i) fast-moving assets, such as batteries or pumped hydro storage, that can extract value
from their 
exibility; (ii) renewable units that can cover their forecast errors.

Another impact of the penetration of renewable resources is the development of new
market designs (scarcity pricing [Hog13], 
exible ramping products [CAI11]) that can bet-
ter remunerate 
exible assets. The need for a better remuneration stems from the following
discrepancy. On the one hand, 
exible assets are needed now more than ever in order to
cope with the variability of renewable production. On the other hand, the pro�tability
of these units is limited in recent years. This has been observed in [PS17], where the
authors realize a simulation of the Belgian electricity market between January 2013 and
September 2014. From their simulation, they observe that combined cycle gas turbine
(CCGT) units, which represent the majority of 
exible assets in Belgium at present, are
not pro�table enough to cover their investment cost. This is con�rmed by Fig. 1.1 which
is sourced from the yearly market monitoring report of the Belgian regulator [CREb]. This
�gure illustrates the evolution of the estimated (according to the regulator) pro�tability
of a CCGT unit in the Belgian market 1. It can be observed that the pro�tability in recent

1This estimation is based on an assumed trading strategy that trades 30% of the unit in the forward
market (if the price is higher than the marginal cost of the unit). Then, in the short term, (i) if the price
is higher than the marginal cost of the unit, the remaining energy of the unit capacity is sold, and (ii) if
the price is lower than the marginal cost of the unit, the capacity o�ered in the forward market is bought
back [CREb].
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years is lower than the one that was achieved before 2012.
One of the reasons for this decreased pro�tability may be related to the change in the

merit order curve resulting from the increased penetration of renewable units, as illustrated
in Fig. 1.2. Renewable units, which have a near-zero marginal cost because they do not
require burning fuels, shift the merit order curve to the right. This places 
exible assets,
which are often characterized by a high marginal cost, out of the market [Pap].

Figure 1.1: Annual pro�tability of a CCGT unit of 400 MW in Belgium with an e�ciency of 50%
and a yearly �xed cost of 7:5 million euros. The production is o�ered in the forward market, as
well as in short-term markets [CREb].

Figure 1.2: Merit order curve with low renewable infeed (left) and high renewable infeed (right)
[PS].

This lack of pro�tability, which is observed in models, has been con�rmed in practice by
the fact that, in 2014, the closure of some CCGT units was announced [CREc]. As a short-
term plan, in order to keep these units running, Belgium has been implementing a strategic
reserve [ELIg]. The idea of this mechanism is tokeep power plants that have announced
their plan to close available during winter months[HDV16]. This mechanism will soon

2
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be replaced by a capacity remuneration mechanism [ELIf], which aims at remunerating
market participants for their installed capacity.

Another option that has been investigated by the Belgian regulator in order to improve
the pro�tability of CCGT units is to introduce a scarcity pricing mechanism in Belgium.
The idea of this mechanism is to apply an adder to real-time prices which represents the
scarcity in the system (the less real-time reserve the system has, the greater the adder is).
In order to study scarcity pricing, the Belgian regulator has assigned a number of studies
to the Center for Operations Research and Econometrics of UCLouvain. One important
conclusion of the early studies is that, if we want the mechanism to be e�cient (improve
signi�cantly the pro�tability of CCGT units), we need the e�ect to not be limited only to
real-time markets (which corresponds only to a small fraction of the market) but also to
impact forward markets [PSB18]. This e�ect is referred to asback-propagation .

Motivated by these challenges, this dissertation focuses on intraday and balancing
markets as means of enhancing the value of 
exible assets. (i)Intraday markets . The
focus in this part of the work is in developing trading strategies at high frequency for the
CIM that outperform methods traditionally used in the industry. We mainly focus on
three elements when developing our trading strategies: (a) We account for the impact of
the trading frequency. Most methods developed in the literature consider at best hourly
trading, which does not represent accurately the evolution of the CIM. The reason being
that, as shown later in Table 2.1, if we trade at an hourly frequency, we only observe
a fourth of the o�ers that are placed in the market, because the three other fourths
of the o�ers have appeared and disappeared before we reach a decision. (b) We aim
for methods that are capable of reaching decisions rapidly, since interesting o�ers can
disappear at any moment in the CIM. (c) In order to develop an approach that can be
useful for practitioners, we also aim at developing trading strategies that are based on
insights that originate from analytical solutions and from detailed market analysis. (ii)
Balancing markets. Our goal in this part of the work is to compare the performance
of di�erent market designs in order to introduce scarcity pricing in the Belgian electricity
market. More speci�cally, we are interested in testing the ability of di�erent options of
EU balancing market designs to back-propagate the value of reserve capacity to the day-
ahead reserve market. This is an important characteristic of a market design, because this
back-propagation contributes towards producing a stable price signal for investment.

The remainder of this chapter is devoted to the presentation of notions that will be
used through this dissertation. Section 1.2 present the concept of 
exibility. Section 1.3
provides an overview of electricity market operations in Europe. Section 1.4 introduces
the basis of the methodology employed in this dissertation.

1.2 Flexibility

In this section, we provide the background for understanding the concept of 
exibility
in electricity markets. We de�ne 
exible assets as the ones that can participate in the
CIM or balancing energy market. This means that 
exible resources are able to update
their output at short notice. The relevant timelines that we consider in this work are
the following: 30 minutes intervene between the closure of the CIM and product delivery,
3 minutes is the maximum amount of time between the activation noti�cation and the
activation start in the balancing market [ELIc].

As an example, 
exible assets include storage units, combined cycle gas turbines, or

3
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demand response units.
Another way to understand the concept of 
exibility is based on option theory. There

is a long literature about the use of option theory for estimating the value of power
plants [DO03,DJS99]. The intuition is that owning a power plant provides the opportunity
but not the obligation to burn fuel in order to produce electricity at any point in time
during the lifetime of a power plant. If the owner decides to produce electricity, its payo�
is equal to the spark spread (the electricity price minus the fuel cost multiplied by the
heat rate). Therefore, the owner of the power plant will only operate its power plant if
the spark spread is positive [DO03]. On the other side, a spark spread call option is an
option the payo� of which is equal to the spark spread if it is positive or zero else [DJS99].
Therefore, it can be observed that the payo� of the power plant owner is exactly the same
as the one that would be obtained from a spark spread call option. Finally, the value of
the power plant can be computed as the sum of the spark spread call option payo�s over
its lifetime.

The increased penetration of renewable units will in
uence the expected value of 
ex-
ible power plants in two ways: (i) The fact that renewable units push 
exible assets with
high marginal costs out of the market may decrease the electricity price. This would de-
crease the value of the option, and therefore the expected value of owning the power plant.
(ii) The increased volatility in the electricity price will increase the value of the option,
because it increases the probability of the call option to be exercised. Therefore, this will
increase the expected value of the power plant.

Nevertheless, this intuition based on option theory lacks two important factors: (i)
Computing properly how much energy a generator can produce and how much it costs to
operate it requires the modeling of important complicating features. These include ramp
constraints, non-constant marginal cost, start up costs that are dependent on the time at
which the power plant has been stopped, and so on. Thus, a market simulation model is a
more accurate option for quantifying the value of power generating units [PS17]. (ii) It is
too simplistic to treat investment decisions on the basis of expected pro�t alone, because
investors are risk averse. Increased volatility will also discourage investments, because risk-
averse investors are not willing to build power plants just based on infrequent spikes on
which they might recover their investment costs. As explained in section 1.3.6 , scarcity
pricing is also a remedy to this risk aversion problem because, under tight conditions
without load shedding, the mechanism would cause moderate but frequent price spikes of
medium height. This strongly decreases the risk faced by investors, because, if the power
plant is not available (e.g. forced outage) during a price spike, the investor knows that
other opportunities are likely to occur for recovering the investment cost of the plant.

1.3 Overview of Electricity Markets

In this section, we provide basic background on the operation of electricity markets. We
commence by presenting the positioning of each market in a timeline. We then describe
each market brie
y. In Fig. 1.3, we present the timing of the di�erent short-term electricity
markets in the central European power exchange. We use indicative values from the
German and Belgian market. Short-term market operations commence with the balancing
capacity market at 10AM the day before electricity delivery (D-1) [ELIa]. The day-ahead
auction follows, with gate closure taking place at 12 noon, on D-1 [EPEf]. Subsequently,
the intraday auction gate closure is at 3PM on D-1 [EPEf]. Following the conclusion of
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the intraday auction, the continuous intraday market (which is a separateprocess from the
intraday auction) commences at 3 PM for hourly products and at 4 PM for quarter-hourly
products [MO18]. The CIM closes 30 minutes before delivery2. The balancing energy
market gate closure is 45 minutes before delivery [ELIh]. Finally, imbalances are cleared
at the imbalance price [TEN].

Figure 1.3: The sequence of operations in a typical central European short-term electricity market.

1.3.1 Day-ahead Auction

The day-ahead auction is a central operation of European electricity markets. The day-
ahead auction is characterized by high liquidity. The total quantity traded in the day-
ahead market was 234 TWh in Germany in 2016 compared to 36 TWh in the continuous
intraday market and 5 TWh in the intraday auction [EPEd]. Many di�erent products can
be traded in the day-ahead auction (block orders, linked blocks, exclusive blocks) [EPEg].
This allows traders to represent with a fair degree of accuracy the operational constraints
of their power plants. This market is an auction, with traders submitting bids to the
market. The market operator collects these bids, clears the market and announces the
cleared bids and the uniform price for each delivery hour.

1.3.2 Intraday Auction

As in the case of the day-ahead auction, the intraday auction allows for a large variety
of products to be traded. The granularity of the products in the intraday auction is 15
minutes, compared to the 1-hour granularity of the day-ahead market. This is interesting
for traders, because it allows them to trade at the granularity that corresponds to the
settlement of electricity in real time [EPEa] and [EPEe]. This is especially useful for solar
units, the production of which can vary substantially within the time span of a single hour
in the morning or evening. The bidding and clearing process of the intraday auction is
similar to that of the day-ahead auction.

1.3.3 Continuous Intraday Market

This market is very important for renewable units because they face considerable supply
uncertainty, and therefore stand to gain by adjusting their position dynamically in the
CIM, as more accurate forecast information arrives for their real-time supply. This mar-
ket is therefore becoming an interesting option for fast-moving assets that can valorize
their 
exibility by covering the uncertainty that stems from renewable production. The

2This is an indicative value for our dataset, which covers 2015 and 2016. It has been changed to 5
minutes in 2017 [KKP20]
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operation of this market is drastically di�erent compared to the one of the day-ahead and
intraday auction because it is not cleared at one moment in time. Instead, it is a con-
tinuous process. At any moment of operation of the CIM, there is an order book which
collects all the available bids. These bids have 4 characteristics: (i) a delivery time, which
is the moment at which the power should be injected to or withdrawn from the grid; (ii)
a type (sell/buy): a sell (resp. buy) bid corresponds to an o�er from a counter-party to
sell (resp. buy) power; (iii) a price (in e /MWh); and (iv) a quantity (in MWh). At any
moment, a trader can place a new bid that is added to the order book, or accept a bid
that is already present in the order book.

1.3.4 Balancing Markets

The balancing of the system in the European market design is somewhat decentralized
relative to other designs that are encountered, such as the US Standard Market Design.
Concretely, the balancing of the system in the European design is, to a certain extent,
\outsourced" to market participants. The entities that are responsible for keeping their
portfolios balanced in real-time are the Balancing Responsible Parties (BRPs), supported
by the transmission system operator (TSO) who is responsible for handling any residual
imbalances. BRPs are essentially portfolio owners that are responsible for ensuring that
their production or consumption follows the schedule that is derived from their trades
in the day-ahead auction, intraday auction and continuous intraday market, as well as
any other forward markets. Nevertheless, it is possible that BRPs fail to fully balance
their portfolio. This creates an imbalance between production and consumption which
can cause technical problems3. In order to mitigate this imbalance, the TSO activates
balancing capacity4. This balancing capacity is o�ered by balancing service providers
(BSP) as follows: the capacity is committed in the balancing capacity market, and is
activated in the balancing energy market5. Each BSP must be attributed to at least one
BRP portfolio, as foreseen in article 18(4).d of the European Balancing Guideline [Eur17].

1.3.4.1 Balancing Capacity Market

In the balancing capacity market, the BSPs can o�er a certain capacity of their assets for
the purpose of resolving real-time imbalances. This means that, if BSPs place succesful
bids in balancing capacity auctions, they are required to keep this capacity available in
real time in case it is requested by the TSO. In order to keep this capacity unused, BSPs
receive a payment no matter if they are activated in real time or not [ELIh].

1.3.4.2 Balancing Energy Market

The balancing energy market remunerates BSPs if they are activated in real time. There
are two options for bidding in the balancing energy market. According to the �rst option,
BSPs that are cleared in the balancing capacity market for a quantityq are required to bid

3 If the imbalance is too large, the electrical frequency will move too far from the reference frequency.
This can cause power plants to shut down and therefore lead to a blackout.

4Notice that di�erent balancing capacity products exist. They di�er by the amount of time in which
they should be available after noti�cation by the TSO. In this thesis, we consider only one generic balancing
capacity product. Nevertheless, the case with several balancing capacity products has also been considered
in [PSB18].

5Balancing capacity and balancing energy are the European equivalent of day-ahead reserve and real-
time energy in the US, respectively. In this thesis, we use the European and US terms equivalently.
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this quantity q in the balancing energy market, but can choose the associated price [ELIh]
at which they can be activated. Otherwise, if a BSP has not been cleared in the balancing
capacity market and has leftover 
exibility in its portfolio, it can submit an o�er to the
TSO for the quantity that it wishes to make available and the associated price. These are
referred to asfree bids. Thus, what distinguishes free bids from BSPs that are cleared in
the balancing capacity market is that the former are not obliged to bid any capacity in
the balancing energy market, whereas the latter are required to bid at least the balancing
capacity that they have successfully sold in the balancing capacity market. The TSO
collects all free bids, aggregates them with the aforementioned balancing energy bids, and
activates them in real time according to their merit order6, as shown in �gure 1.4 [ELId].
In this �gure, the blocks correspond to the bids submitted by all the BSPs (the block
height is the bid price and the block width is the quantity of the bid). These bids are
ranked from the cheapest to the most expensive one. The red line represents the system
imbalance which is the quantity that the TSO needs to activate to restore the system
balance. The o�ers in blue are the ones that would be activated by the TSO. The price of
the bid that is partially accepted 7 is the balancing price that will paid to all the activated
BSPs8.

Figure 1.4: Illustration of a merit order curve.

1.3.5 Imbalance Settlement

In real time, the TSO observes the system-wide imbalance and activates balancing energy
in order to address this imbalance. BRPs are settled for their real-time energy deviations
at a so-called imbalance price. The settlement rules (BRP obligation and payments) faced
by BRPs typically di�er among di�erent European countries, and the resulting incentives
for BRPs to deviate from balancing their portfolio vary according to these di�erent pricing
rules. In Belgium, the imbalance price is computed as the price of the marginal balancing
capacity that is activated, to which a term � is added in case of large system imbalance.

6The bids are activated from the cheapest to the most expensive one.
7 In case the volume activated by the TSO happens to activate partially an indivisible bid, the TSO will

select the next acceptable bid [ELIc].
8Although certain European national balancing markets currently rely on pay-as-bid settlements, the

new European balancing platforms (\MARI" initiative and \PICASSO" initiative) that are being put in
place will be trading at a uniform balancing price.
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The rationale of the alpha parameter [ELI19] is the following: "The alpha parameter
o�ers an additional incentive that is applicable in the event of a structural imbalance in
the Belgian control area."

1.3.6 Scarcity Pricing based on an Operating Reserve Demand Curve

The aim of scarcity pricing is to align the remuneration of 
exible assets that can o�er
reserve services to the system with the actual value of the services that they provide. The
lack of pro�tability that 
exible assets face is related to the missing money problem, that
has been exacerbated by the introduction of renewable units in electricity markets [CREa].

The missing money problem arises in electricity markets in the presence of price caps.
Price caps have been put in place in electricity markets in order to cope with market
power issues. However, due to price caps, electricity prices may not rise su�ciently high
for certain power plants to recover their investment costs. Although lifting price caps
would, under ideal conditions, largely address the missing money problem, this option
faces practical obstacles. Under tight system conditions, it is di�cult for regulators to
di�erentiate between legitimate price increases that are due to exhausted capacity and the
exercise of market power [CREa]. Moreover, it is not desirable for producers to rely on
very few price spikes that are di�cult to predict, in order to recover their investment cost.

The idea of scarcity pricing based on Operating Reserve Demand Curves (ORDC) is
to produce equilibrium prices for real-time balancing capacity that correspond to the level
of stress in the system. These prices also a�ect the equilibrium price of real-time energy.
The evolution of these ORDC prices as a function of the available reserve in real time is
illustrated in Fig. 1.5. It can be observed that ORDC prices are low if the amount of
reserve available in the system is high, and become higher when the system is tighter. The
ORDC proposed by Hogan connects the equilibrum price to the loss of load probability in
the system [Hog05,Hog13], and can be expressed mathematically as follows:

� R (R) = max(( V OLL � MC ) � LOLP( R); 0) (1.1)

where:

ˆ V OLL is the value of lost load. For the implementation of scarcity pricing in Bel-
gium, it is foreseen that the current bidding limit for the balancing energy market
will be used (13500e /MWh). This choice is based on a simulation of the Belgium
market [CP21]. In this simulation, two di�erent values have been employed (8300
e /MWh and 13500 e /MWh). In order to decide between the two options, the au-
thors propose to compare the total system cost for the 2 di�erent options and choose
the one with the smallest total cost. This total system cost includes: (i) fuel cost;
(ii) �xed cost; (iii) activation cost; and (iv) shortage cost.

ˆ MC is a proxy of the marginal cost of the marginal unit in the system. This can
be estimated as the price of the real-time energy market. In the current design
proposed in Belgium, it would be the marginal incremental price MIP (highest price
for upward activated reserve)9.

9The situation will become more complex with the introduction of the European platforms MARI and
PICASSO.
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ˆ R is the amount of upward reserve available in the given time period when reserve
is being activated. This can either be based on data that is metered in real time, or
on the o�ers that are placed by market participants in the balancing energy market.

ˆ LOLP (R) is the loss of load probability as a function of reserve capacityR in the
system. This loss of load probability represents the probability of load shedding given
the amount of reserve that is available in real time. The loss of load probability is
estimated using a Gaussian distribution. Di�erent Gaussian distributions are used
depending on the season and on the moment of the day. The mean and standard
deviation of LOLP (R) can be derived from historical system imbalance data.

An appealing aspect of scarcity prices based on ORDCs is that these scarcity prices
become non-zero when the system is tight but there is no load shedding. This is exactly
their intended function. When the loss of load probability becomes non-zero frequently
(the system is tight and needs investment in extra capacity), the adder will cause moderate
but frequent spikes in the electricity price which will provide a signal for investing in new
capacity. This is perceived as a less risky investment environment than one which relies
on rare occurrences of load shedding where the price of energy reachesV OLL 10.

Figure 1.5: Illustration of scarcity pricing [CP21].

1.4 Reinforcement Learning

As we discuss in previous sections, both the continuous intraday market and the balanc-
ing market are useful for coping with the uncertainty of renewable supply. Therefore,
the problem faced by owners of 
exible assets in these markets falls under the scope of
multistage optimization under uncertainty, because asset owners need to arrive to deci-
sions while accounting for the fact that recourse actions can be adopted in an uncertain
future. There are two main ways to approach this type of problem that are considered
in this thesis: (i) Stochastic Programming; and (ii) Reinforcement Learning. For trading
in the CIM, our method of choice is Reinforcement Learning because we are interested in

10 A scarcity pricing mechanism helps in sending a price signal which is less risky for investors. Never-
theless, our work does not tackle the risk faced by investors due to regulatory uncertainty.
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developing trading strategies at a high frequency. Trading at 1-second frequency would
be impossible for a stochastic programming approach, because it would require solving
a multistage program with several million stages. In order to compare di�erent market
designs, there are also two main approaches to the problem that can be considered (i)
stochastic equilibrium methods, and (ii) multi-agent Reinforcement Learning. We opt for
multi-agent Reinforcement Learning in our analysis. The reason is that, as explained in
section 4.1.2, stochastic equilibrium methods are not able to model some of the features
that are under consideration in the balancing market design debate.

The basic idea of Reinforcement Learning (RL) is that an agent can learn how to
interact with an environment in order to achieve a goal. An agent in the context of
RL is able to sense the state of the environment (state), take decisions that in
uence
the environment (action), and quantify how well it is performing with respect to its goal
(reward).

1.4.1 Markov Decision Processes

RL problems can be formalized mathematically using the framework of Markov Deci-
sion Processes (MDPs). We commence this section by de�ning MDPs. Subsequently, we
present important notions related to the solution of MDPs. The detailed MDP formula-
tions for the problems that are the focus of this work are presented in sections 2.3, 3.2.2
and 4.2.2.

In the MDP framework, an agent interacts with the environment for a certain number11

of discrete time steps: 0; 1; � � � ; T � 1; T. These interactions at each time step are illustrated
in Fig. 1.6. The agent takes an actionA t . Based on this action and the previous stateSt ,
the environment returns a scalar rewardRt+1 and a new stateSt+1 . Therefore, in order
to model a problem in the MDP framework, we de�ne the following for every time step t:

ˆ a state spaceS which is the collection of all the information that is required in order
for the agent to reach a decision.

ˆ an action spaceA which contains all the feasible actions of the agent.

ˆ a reward function R:

R a
s

:= E[Rt jSt � 1 = s; At � 1 = a] (1.2)

This represents the expected reward that is obtained if the agent chooses actiona
in state s.

ˆ a transition function P:

Pa
ss0

:= Pr[ St = s0jSt � 1 = s; At � 1 = a] (1.3)

This provides the probability of reaching state s0 if the agent chooses actiona in
state s. This transition function is assumed to respect the Markov property:

Pr(St jSt � 1; A t � 1) = Pr( St jSt � 1; A t � 1; � � � ; S1; A1)

which means that the future evolution of the environment only depends on the
current state and action, and not on past states and actions.

11 In this thesis, we only consider problems with a �nite horizon. This implies that the agent interacts
with the environment for a �xed number of time steps [SB18]. Therefore, we only describe the MDP
framework and the solution methods adapted to �nite horizon problems. The precise horizons for the
di�erent problems we consider are described in sections 2.3, 3.2.2 and 4.2.2.
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Figure 1.6: Description of the interaction between the agent and the environment in the Reinforce-
ment Learning paradigm12.

In order to complete the characterization of an MDP, we de�ne the objective of the
agent and what it aims at optimizing:

ˆ The objective of the agent is to maximize the expectation of the returnGt . This
return is de�ned as the sum of rewards until the end of an episode:

Gt = Rt + Rt+1 + � � � RT

ˆ In order to maximize the expected return Gt , the agent optimizes over a set of
decision rules that are followed in any state. This set of rules is referred to as a
policy. A policy � (ajs) = Pr( A t = ajSt = s) is a function which is a distribution
over actions for every state of the MDP13.

For a given initial state s0, the MDP problem can therefore be expressed as:

max
� 2 �

E� [G0js0] ; (1.4)

Here, E� refers to the expectation given that an agent follows policy� .
In order to verify that a policy is optimal, we can use the Bellman optimality equation.

This equation relies on the concept of a value function.

Intuition of value functions. The idea of a value function is to inform the agent about
the prospect of �nding itself in a given state. Concretely, the value function of a state
s under policy � , denoted asv� (s), is de�ned as the expected return that the agent can
obtain if it applies policy � starting in state s. It can be be expressed as:

v� (s) = E� [Gt jSt = s] (1.5)

Similarly, it is also possible to de�ne the action-value function of state s and action a
under policy � : q� (s; a). This is the expected return that the agent achieves if it applies
action a starting in state s, and then applies policy � . It can be expressed as:

q� (s; a) = E� [Gt jSt = s; At = a]

12 This graph is inspired from the one presented in [SB18].
13 This is the standard de�nition of an MDP. In chapter 2 and 3, we employ non-deterministic policies

for learning, in order to ensure su�cient exploration. Exploration refers to the notion that every potential
actions should be attempted regularly, in order to check whether the decision-maker can improve on what
is currently perceived as the best possible action. Nevertheless, we apply a deterministic policy when we
are testing our derived policy out-of-sample.
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Value function computation for a given policy. In order to compute the value
function associated to a given policy, we can use the Bellman equation. The idea of the
Bellman equation is to split the return between the direct reward and the return of the
next state, as shown in Eq. (1.6). By applying the de�nition in Eq. (1.2), (1.3) and (1.5),
we obtain Eq. (1.7). This shows that the Bellman equation is a set of linear equations.
This means that, in order to evaluate a policy, we simply need to solve the following linear
system:

v� (s) = E� [Rt+1 + Gt+1 jSt = s] (1.6)

=
X

a2 A

� (ajs)

 

R a
s +

X

s02 S

Pa
ss0v� (s0)

!

(1.7)

Similarly, the Bellman equation can also be written for the action-value function:

q� (s; a) = E� [Rt+1 + Gt+1 jSt = s; At = a] (1.8)

= R a
s +

X

s02 S

Pa
ss0

X

a02 A

� (a0js0)q� (s0; a0) (1.9)

Bellman optimality equation. The Bellman optimality equation is the application of
the Bellman equation (1.7) for the optimal policy. It can be written as:

v� (s) = max
a

E[Rt+1 + v� (St+1 )jSt = s; At = a] (1.10)

and similarly for the action-value function:

q� (s; a) = E[Rt+1 + max
a0

q� (St+1 ; a0)jSt = s; At = a] (1.11)

These equations state that the value of a state under an optimal policy must be equal
to the expected return assuming the best action in that state. Unfortunately, due to the
max operator, Eqs. (1.10) and (1.11) are systems of non-linear equations. It is for this
reason that iterative methods have been developed in order to �nd optimal or high-quality
policies. We will present some of these methods in the following section.

1.4.2 Methods for Solving MDPs

We organize this section by �rst covering early methods that were developed in the liter-
ature and discussing their limitations. We then introduce more recent methods that are
applicable for our problems.

Policy iteration One of the early methods that have been proposed for solving MDPs
is policy iteration. This algorithm can be decomposed into two steps that are applied in
alternating order:

ˆ Evaluate the policy : To this aim, we need to solve the Bellman equation. This
can be accomplished by solving the linear system (1.7).
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ˆ Improve the policy: It has been proven [SB18] that by choosing the optimal
action after one step of look-ahead (1.13) according tov� , we obtain � 0 which is a
better policy than � .

� 0(s) := argmaxaq� (s; a) (1.12)

= argmaxaE[Rt+1 + v� (St+1 jSt = s; At = a)] (1.13)

Note that, when the policy stops changing, we are guaranteed to have converged to
the optimal solution, because Eq. (1.13) becomes identical to the Bellman optimality
equation (1.10).

The limitation with this method is that it relies on knowledge of the transition function
as well as the reward function. For many problems, this assumption is too strong, instead
we may be limited to access to samples of the transition and reward function.

Tabular methods When we can only access samples of the transition and reward
function, we can resort to tabular methods. The idea of these methods is to compute
a table that stores an estimation of the action-value function for all pairs of states and
actions. Using this idea, the policy � can be optimized using the following algorithm
[SB18]:

Initialize:

�  an arbitrary policy

Q(s; a)  an arbitrary action-value function

N (s; a)  0

Repeat forever:

(a) Generate an episode using� : S0; A0; R1; � � � ; ST � 1; AT � 1; RT

G  0

Loop for each step of the episode; t = T � 1; T � 2; � � � ; 0 :

G  G + Rt+1

(b) N (St ; A t )  N (St ; A t ) + 1

Q(St ; A t )  Q(St ; A t ) +
1

N (St ; A t )
(G � Q(St ; A t ))

(c) A �  argmaxaQ(St ; a) (1.14)

For all a 2 A :

� (ajSt )  

(
1 � � + �

jAj if a = A �

�
jAj if a 6= A �

This algorithm can be decomposed into three steps. The �rst step is to run an episode
following policy � . The second step is to update the value function based on the results
obtained from that episode. The action-value function Q(s; a) is equal to the average of
all the returns that are collected after selecting action a in state s. The third step is
to update the policy based on the value function. In this update, a high probability is
assigned to the action that is perceived as the best and a small probability is assigned to
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all other actions. This is known as an� -greedy policy and is used in order to ensure that
all actions are tested regularly.

The limitation of tabular methods is that it requires the state and action space to
be relatively low-dimensional. Indeed, if the state/action spaces are high-dimensional or
continuous, the number of states/actions can become intractable. If the number of states
becomes too large, the number of times each state is visited becomes smaller, and therefore
the estimates of the value function become less reliable. If the number of actions becomes
too large, the algorithm becomes ine�cient. This stems from (1.14), which requires �nding
the best action associated to an action-value function. If there are too many actions to
choose from, this operation cannot be performed e�ciently.

1.4.3 Approximation Methods

There are two main ideas in the literature in order to cope with high-dimensional state/action
spaces. The �rst one is value function approximation. This methodology solves the prob-
lem of large state spaces but not the one of large action spaces. The second one is policy
function approximation which can handle both large action and state spaces. After pre-
senting these two methodologies, we describe some weaknesses that need to be considered
when using these methods.

Value function approximation The idea of value function approximation is similar
to that of tabular methods. The main di�erence resides in the estimation of the action-
value function. Instead of recording the action-value function for every state-action pair
Q(s; a), the idea of value function approximation is to parametrize q� (s; a) as q̂(s; a; w),
wherew is a set of parameters that need to be optimized. This change does not a�ect the
�rst and third step of the algorithm for tabular methods. In the second step, the same
idea is followed, which is to improve the estimation of the action-value function. This can
be achieved by minimizing the error between the prediction from the action-value function
q̂(St ; A t ; wt ) and the return from the episode Gt . This error can be expressed as:

L = ( Gt � q̂(St ; A t ; wt ))
2 :

We minimize this loss function using one step of a stochastic gradient algorithm. This
yields the following update for w:

wt+1 = wt �
1
2

� t r [Gt � q̂(St ; A t ; wt )]
2

= wt + � t [Gt � q̂(St ; A t ; wt )] r q̂(St ; A t ; wt ):

This method can solve problems with very large state spaces. Nevertheless, the method
can still be ine�cient for problems with large action spaces because the algorithm requires
�nding the action associated with the best action-value function (line (1.14) of the algo-
rithm).

Policy function approximation The idea of policy function approximation is to di-
rectly compute the policy without considering a value function. Speci�cally, policy func-
tion approximation parametrizes the policy � � (ajs) with respect to a parameter vector � ,
and optimizes over this � :

� � (ajs) = P[A t = ajSt = s; � ]:
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An algorithm that can be employed in order to optimize the parameter � is the RE-
INFORCE algorithm:

ˆ Initialize �

ˆ for each episodef S0; A0; R1; � � � ; ST � 1; AT � 1; RT g � � � (ajs)
for t = 1 : T-1 do

� = � + 
 t r � log(� � (ajs))Gt (1.15)

end
end

The REINFORCE algorithm adapts the parameter vector � so as to maximize expected
rewards from a certain policy, based on repeated episodes of the decision process. When
an episode is �nished, we update� using Eq. (1.15). It has been proven in [Wil92] that
the REINFORCE algorithm is e�ectively a stochastic gradient algorithm. It is therefore
guaranteed to converge under standard stochastic approximation conditions for decreasing
step-sizes
 t . A variance-reducing adaptation to the REINFORCE algorithm is to subtract
a baseline from the return Gt , as illustrated in Eq. (1.16).

� = � + 
 t r � log(� � (ajs))( Gt � b(s)) (1.16)

In this equation, the b(s) term is a baseline payo�. It can be any function of the state
s, but not the action a. The presence of this baseline does not in
uence the expected
value of the update, nevertheless it can reduce its variance [SB18]. A classical choice for
this function is an estimate of the value function that can be obtained using the method
presented in section 1.4.3. As we explain later, estimating a value function for our problem
is a di�cult task. Therefore, we use an alternative method described in section 2.6.2.

There are two potential sources of challenges related to methods that rely on function
approximation:

ˆ By using function approximation, we consider only a small subset of potential poli-
cies. This implies that we likely arrive to a policy that may be sub-optimal. There
is no guarantee on how close our obtained policy is compared to the optimal one.

ˆ There is no guarantee that the problem of optimizing the parameters of the policy
is a convex problem. Therefore, we can only guarantee a local optimum and not a
global one.

Deep Reinforcement Learning Deep Reinforcement Learning corresponds to the use
of approximation methods for which the function approximation relies on a deep neural
network. The advantage of Deep Reinforcement Learning is that it does not require any
knowledge of a good parametrization. Moreover, neural networks can represent a much
wider span of functions than tailor-made function approximation. The disadvantages are
that (i) There are many more parameters, which implies that the optimization problem
is more complicated. (ii) The results are more di�cult to interpret, because the neural
network essentially behaves like a black box. In this thesis, we have opted not to rely on
deep Reinforcement Learning because the trading problems that we consider have never
been studied using Reinforcement Learning and therefore it is meaningful to gain insights
from simple parametrizations.
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1.5 Contributions

The main contributions of this dissertation are organized into three chapters, which are
summarized in the following.

1.5.1 Chapter 2

In chapter 2, we develop trading strategies for a storage unit in the CIM. We start by mod-
eling the trading problem faced by the storage unit owner in the Markov Decision Process
framework. After that, we present an approach based on policy function approximation
for tackling the problem. This approach parametrizes the policy using 2 thresholds, one
below which we buy power and one above which we sell power. We introduce and justify
a collection of factors that can be used for adapting our trading thresholds to system con-
ditions. We demonstrate the e�ectiveness of our approach by comparing it to the rolling
intrinsic policy on real historical data. Our proposed approach outperforms the rolling
intrinsic policy, which is commonly employed in practice for storage units, by increasing
pro�tability by 17 :8% on out-of-sample testing for a storage with perfect round-trip e�-
ciency and by 13:6% for a storage unit with a round-trip e�ciency of 81%. Finally, we
analyse the results in order to explain the performance di�erence between our approach
and rolling intrinsic. This chapter is based on the following publications:

ˆ G. Bertrand and A. Papavasiliou, \An Analysis of Threshold Policies for Trading
in Continuous Intraday Electricity Markets," 2018 15th International Conference on
the European Energy Market (EEM), Lodz, 2018.

ˆ G. Bertrand and A. Papavasiliou, \Reinforcement-Learning Based Threshold Policies
for Continuous Intraday Electricity Market Trading," IEEE PES General Meeting,
Atlanta, 2019.

ˆ G. Bertrand and A. Papavasiliou, \Adaptive Trading in Continuous Intraday Elec-
tricity Markets for a Storage Unit," IEEE Transactions on Power Systems, vol. 35,
no. 3, pp. 2339 - 2350, May 2020.

1.5.2 Chapter 3

In chapter 3, we provide the �rst step in the direction of developing trading strategies
for a renewable unit in the CIM. As a starting point, we consider selling a �xed quantity
of power in an idealized version of the CIM. We start by modeling this problem in the
MDP framework. Then, we derive the optimal trading strategy for this problem through
backward induction. We use this analytical solution as a basis for developing value function
approximation algorithm 14 and an alternative Stochastic Dual Dynamic Programming that
can trade under a more realistic set of assumptions. We test the performance of these two
algorithms against our idealized CIM model and demonstrate that they both arrive to the
optimal policy in a 10-step example. This chapter is based on the following publication:

14 It would be possible to apply policy function approximation as in chapter 2 to solve the problem of
chapter 3. Nevertheless, we decide to use value function approximation because we are not only interested
in comparing the obtained pro�t with the one of a Stochastic Dual Dynamic Programming algorithm but
also the value function obtained by both methods. Notice that the reverse argument is not true, the value
function approximation method used in this chapter would not be suitable for the problem of chapter 2
because, as explained in section 1.4.3, it cannot handle a large action space.
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ˆ G. Bertrand and A. Papavasiliou, \Optimal Trading of a Fixed Quantity of Power
in an Illiquid Continuous Intraday Market", Powertech 2021.

1.5.3 Chapter 4

The European design is characterized by a missing market for real-time reserve capac-
ity. This missing market undermines the valuation of reserve capacity, and the back-
propagation of price signals to forward reserve markets that can support investment in
reserves. The goal of chapter 4 is to develop a methodology that exposes the implica-
tions of this missing market. The methodology relies on analytical insights that can be
derived under an assumption of price-taking behavior. These insights are validated by a
simulation model which represents the European balancing market as a Markov Decision
Process. The simulation model is used for validating the analytical insights and testing the
ability of various balancing market design options to back-propagate the real-time value
of reserve to forward reserve markets. This chapter is based on the following publications:

ˆ A. Papavasiliou, G. Bertrand, A. Marien and J. Cartuyvels \Implementation of
Scarcity Pricing without Co-Optimization in European Energy-Only Balancing Mar-
kets\ Utilities Policy (under review).

ˆ A. Papavasiliou, and G. Bertrand \Market Design Options for Scarcity Pricing in
European Balancing Markets,\ IEEE Transactions on Power Systems.

ˆ A. Papavasiliou, Y. Smeers, and G. Bertrand, \An extended analysis on the remuner-
ation of capacity under scarcity conditions,\Economics of Energy and Environmental
Policy, vol. 7, no. 2, 2018.
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Chapter 2

Optimizing Trading Strategies in
the Continuous Intraday Market
for a Storage Unit using
Reinforcement Learning

2.1 Introduction

An important consequence of the integration of renewable resources in electricity markets
is the need for correcting system dispatch closer to real time. An interesting option for
such corrections is to trade in the CIM because it is the last market that operates before
real-time market clearing, as shown in section 1.3. This explains the recent increase of
liquidity in this market. Speci�cally, traded volumes in the German CIM have increased
from 10 TWh in 2010 to 41 TWh in 2016 [MO18]. This market is therefore becoming an
interesting option for fast-moving assets, such as batteries or pumped hydro storage, to
extract value from their 
exibility.

2.1.1 Literature Review

Several papers analyze the optimization of bidding strategies in di�erent electricity mar-
kets. In [MS06], the authors consider trading in the day-ahead market and covering their
position in imbalance for a wind power producer. This work has been extended in [CHR13]
in which the authors also consider bidding in the intraday market. In [LSB18], the authors
develop a trading strategy for a wind power producer who trades in the day-ahead market,
followed by settlement in the real-time market. The authors account for the impact of
the dependence between the wind production error and the real-time price on the trading
strategy of the wind farm.

A certain body of the literature focuses speci�cally on storage units. The operation of
storage units in the context of a US-style centralized unit commitment has been studied in
the literature using unit commitment models such as in [OF15] and [KSW13]. Neverthe-
less, these models are out of scope in an EU context, where resource owners self-commit
and self-schedule individual resources at the nomination stage which follows the clearing
of the portfolio-based day-ahead market. In the EU context, the authors in [BJF14] fo-
cus on the interaction of trading strategies in the day-ahead market and the balancing
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market, while the interaction between day-ahead and intraday auctions has been analysed
in [Bra16].

The strategies developed for these markets cannot be applied directly to the CIM due
to the continuous format of this market, which di�ers from the day-ahead auction or the
intraday auction. Indeed, in auctions the producer has one chance to submit bids. Instead,
in the CIM, the producer is a�orded a certain amount of time in order to observe the o�ers
submitted by other participants. Moreover, in the CIM, buy and sell prices for the same
delivery time may evolve over the horizon of trading. Due to these particularities, the
CIM has received separate treatment in the literature. The speci�c literature about the
CIM can be classi�ed into the three following categories.

(i) The �rst category of papers focuses on modeling the price evolution in the CIM.
This includes literature that focuses on the explanatory variables for the evolution of
the price [KP17], [Zie17], and on the factors that in
uence the liquidity and the bid-ask
spread [Bal18]. In [Kie17] the authors develop a Hawkes process for modeling the arrival
of orders. A model for the simulation of the CIM based on data from the European Power
Exchange is proposed in [MO18].

(ii) The second category of papers focuses on optimal trading strategies, and assumes
that the intraday prices follow a given parametric model. Trading for a pumped hydro
storage facility is presented in [BH16] and [ESFK18]. The �rst paper discusses the opti-
mization problem of pumped hydro storage trading, where it is assumed that traders can
access a forward curve. The second paper studies the problem of trading in the CIM and
in the balancing market. Other papers consider solving for other assets. In [GM15], the
authors consider trading in the CIM for balancing the forecast error of renewable energy.
The authors assume that the intraday price follows a geometric Brownian motion. This is
a classical assumption in �nance [DO03]. Nevertheless, a geometric Brownian motion may
not be appropriate to model electricity prices, since it assumes that the price is always
positive, which is not guaranteed in electricity markets. A trading strategy for a thermal
power plant is developed in [RAP16] for two di�erent price models. The �rst price model
is an additive Brownian motion which is further in
uenced by the most recent trades of
the producers. In the second price model, the authors add the possibility of jumps in
the price process. These jumps represent the situation in which renewable forecasts are
inaccurate and are updated. The jump arrivals are assumed to follow a Poisson process.
These jumps can either assume a �xed positive value� + with probability p+ or a �xed
negative value� � with probability 1 � p+ .

(iii) The third strand of literature focuses on developing trading strategies, without
placing assumptions on the parametric distribution of the data. The authors in [SEM15]
propose a heuristic trading method for wind power producers. In early work, the thesis
author considers, in [BP18], the problem of virtual trading between the CIM and the im-
balance settlement (taking a position in the CIM and closing it as an imbalance). The
problem is modeled as a one-stage MDP, which is solved using policy function approxi-
mation. Related to MDP, in [BEPC18] the authors have modelled the problem of trading
for a storage unit in the CIM using MDP. In order to solve this MDP, they rely on value
function approximation. They prove that their strategy is e�cient in-sample. The same
authors extend their results out-of-sample in [BET+ 19]. Their strategy increases prof-
itability compared to rolling intrinsic by 1 :5% out-of-sample.
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2.1.2 Contributions

The contributions of our work are the following: (i) We cast the intraday market trading
problem for a storage unit in the MDP framework. (ii) We employ policy function ap-
proximation in order to arrive at a computationally tractable problem formulation. More
precisely, we use a threshold policy according to which we seek a sell threshold above which
we accept to sell power, and a buy threshold below which we accept to buy power. (iii)
We propose a parametrization of the trading thresholds that accounts for several e�ects
(e.g. the time before market closure, the delivery hour, the price in the intraday auction),
in order to arrive at a policy that outperforms a benchmark policy referred to as rolling
intrinsic . (iv) We analyse the results at higher trading frequency than the one considered
in [BEPC18]: whereas in [BEPC18] the results are derived using a 5 minute frequency
on a horizon of 2 hours, in the present publication we consider a horizon of 1 day with
a frequency of 5 minutes for learning and 1 second for testing out of sample. Moreover,
we demonstrate through experiments the important role of frequency on the training and
evaluation of trading strategies.

2.1.3 Chapter Organization

Section 2.2 describes the assumptions that we place on the problem and how we simulate
the continuous intraday market. Section 2.3 explains how to model the trading problem
faced by a storage unit using the MDP framework. In section 2.4, we introduce the idea
of a threshold policy, in order to arrive to a tractable problem for optimizing over policies.
Section 2.5 presents the factors that we propose in order to adapt the threshold policy. In
section 2.6, we present a test case which demonstrates the e�ectiveness of our approach
on German market data, and we analyze how our proposed policy fares relative to rolling
intrinsic. Finally, in section 2.7 we conclude the chapter and propose directions for further
research.

2.2 Continuous Intraday Market Simulation

In our work, we consider trading only in the continuous intraday market. We are interested
in the development of trading strategies for a storage asset owner. A storage unit is an
especially interesting asset to consider in the context of intraday trading, since it o�ers
the possibility to procure power from relatively cheap sell bids, store the power, and sell
it back to subsequent buy bids that place a greater valuation on the procured power. We
consider the following simpli�cations in our work:

1. The trading strategies that we develop are balanced. This implies that, at the closing
time of the continuous intraday market, the position of the storage unit should
be feasible. We thus adhere to German regulation [TEN], which requires that the
producer only be in imbalance if this imbalance is caused by an unpredictable event1

(forecast error, outages). Practically, this implies that if we do not have any energy
stored in our reservoir, we cannot sell power and cover it in the imbalance market.

1Note that US market operations di�er in this respect due to central dispatch, which allows the system
operator to actively manage resources in real time in order to increase trading surplus, as opposed to
requiring them to remain in balance at all costs.
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2. We only accept bids that are already present in the market, as opposed to also
placing bids in the market. Adding the option of placing bids would complexify
our Markov Decision Process in 2 ways: (i) we would have to add to our state all
the bids that we have placed on the market at previous time steps. (ii) We would
need to extend our action space in order to decide on suppressing the bids that
we have placed at previous time steps. We have estimated an upper bound on the
additional pro�t that could be obtained by also placing bids. The computation of
this upper bound is illustrated in Fig. 2.1. The intuition is that (i) when we sell
power by accepting bids, the best price that we can obtain is the highest buy bid
on the market (in red), while (ii) when we sell power by placing bids, the best price
that we can hope for is the lowest sell bid (in blue). Indeed, if we would place a
bid at a higher price, the lowest sell bid would be accepted before our bid. Thus,
the di�erence between the pro�t obtained while we accept bids and the pro�t that
we could obtain by placing bids is the bid-ask-spread (the di�erence between the
lowest sell bid and the highest buy bid). Therefore, we estimate the upper bound on
the extra pro�t as the sum, over all delivery periods and time steps, of the product
between the bid-ask-spread and the quantity that we trade. We obtain a potential
additional pro�t of 27% at an hourly frequency and 69% at a 1-minute frequency.
Nevertheless, we expect this upper bound on the potential gains of placing bids in the
market to be loose, because there is no guarantee that another trader would accept
our o�er. If our o�er is not matched, it may create a missed opportunity because
the price might become less interesting in the future. Moreover, the looseness of the
bound is expected to increase with trading frequency, because the number of trades
increases with frequency.

Figure 2.1: Comparison between the best price for selling power that can be achieved when ac-
cepting bids versus when placing bids.

3. In practice, CIM bids are categorized into more complex products, referred to as
continuous bids, all-or-none bids (bids that cannot be partially accepted), block bids
(bids that link several delivery periods), iceberg bids (bids for which the volume
is split into several sub-bids that become available when the previous sub-bid has
been accepted), and so on [MO18]. For our case study, we assume that all the data
that we have access to corresponds to continuous bids or iceberg bids (a complete
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description of how we handle the data is available in 2.8.4). This implies that we can
accept fractions of bids. There are two reasons for adopting this simpli�cation: (i)
The information about the type of bids (continuous, integer, block) is not disclosed
in the German market data set that we use for our case study. (ii) Practitioners
have indicated to us that the impact of this restriction is minor, because most of the
bids are continuous bids. To a certain extent, the more complex products have been
inherited from the products that are available in the day-ahead market. A major
reason for the existence of these complex products in the day-ahead market is in
order to provide the option for a producer to account for complex unit commitment
constraints. This interest is more limited in the CIM, because the commitment
variables have to be decided several hours before delivery, through the so-called
nomination procedure.

4. We only consider hourly products in our work, as opposed to also considering quar-
terly products that refer to delivery within a speci�c 15-minute interval.

5. We assume that our producer is risk-neutral. The reason for this is that the daily
average pro�t obtained for our storage unit is around 6400e , whereas the pro�t
for the worst day is approximately � 500 e . Typical energy companies have the
�nancial ability to absorb this potential loss for several days without any problem.
Therefore, the company can only focus on maximizing its long-term pro�t, which
will be obtained by being risk neutral on a daily basis.

6. We assume that, no matter which bid we accept in the market, we do not in
uence
the bids that the other actors will place later in the market. This simpli�cation has
been adopted in order to simplify the problem, and is completely in line with the state
of the art on the topic of intraday trading in electricity markets [BH16,SEM15]. The
only way to assess the validity of this assumption would be to run the policy in the
actual market and observe the reaction of other traders to our strategy. Nevertheless,
we can gain certain insights by comparing the size of our assumed asset compared
to the market size. To this aim, we compare, in appendix 2.8.1, the quantity that
we exchange for di�erent delivery hours with the total exchanged quantity in the
German CIM.

Using these simplifying assumptions, we describe how we simulate the evolution of
the order book. To this aim, we consider 4 types of events (the complete procedure for
obtaining these events based on the available market data is explained in section 2.8.4):

1. Open : the appearance of a trade

2. Cancel : the disappearance of a trade

3. Acceptance : the acceptance of a certain quantity of a bid

4. Trading : the moment when we decide which bids we accept.

The simulation of the market can now be described as follows. At the beginning of the
simulation, we rank all the events, which are included in the setEvent , chronologically.
We then iterate on this set: for each new eventj , we classify it in one of the 4 categories
and we update the order book as described in the following procedure.
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L = []

for j 2 Event

if j 2 Open

Add bid j to L

elseif j 2 Close

Remove bid j from L

elseif j 2 Acceptance

Reduce partially accepted quantity from bid j

elseif j 2 Trading

Launch the trading algorithm

Remove the bids that we have accepted fromL

end

end

2.3 Modelling the Intraday Trading Problem Using the
MDP Framework

Having de�ned how to simulate the market, we can now analyse the trading problem. The
decision problem is to decide, at di�erent moments of the Continuous Intraday Market,
which bids should be accepted in order to maximize the future expected pro�t of our
storage unit. We consider a 1-day horizon, which is motivated by the observation that
electricity prices are typically low during the night hours. Therefore, a storage unit has
an interest in entering a new day with an empty reservoir and �lling the reservoir up
with cheap power that is available during the night hours. This makes it meaningful to
decouple consecutive days, because the storage unit typically has an interest in having an
empty reservoir at midnight.

In the rest of the chapter, we refer to a general storage unit. This storage unit is
characterized by a certain charging and discharging e�ciency. These settings create the
basis for representing a battery, a simpli�ed model of a pumped storage hydro unit, or
certain types of demand response. The main trade-o� for our decision problem is the
following: Do we want to trade power at the current price and lock in the pro�t? Or is it
worth waiting for a potential future bid, the price of which would be more advantageous,
despite the risk that the current favorable bids may disappear?This problem enters the
scope of Reinforcement Learning described in section 1.4, and as explained in section 1.4.1,
a common way to model this class of problems is the Markov Decision Process framework.

2.3.1 State Variables

In order to reach a decision at time stept, we require 3 ingredients in our stateSt : (i) The
o�ers available in the continuous intraday market at time step t. This data is available in
the market order book. (ii) A variable vt � 1;d; 8d 2 D which indicates the capacity that
would be stored in the storage unit at delivery hour d if we were only executing the trades
decided at time step t � 1 or earlier. This value can be easily computed based on the
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results of all the trades that we have realized in the past. (iii) Exogenous data that we
anticipate should in
uence our decision. Some examples of these exogenous parameters
include the remaining time before market closure, and the price of the intraday auction.
The full list of these parameters, and the way in which we use them, is discussed in section
2.5.

2.3.2 Action Variables

In order to model our action spaceA t , we require one action variableat;d for each delivery
time d. This action indicates how much we wish to sell at time stept. In theory, this
variable can be continuous. But, in order to reduce the size of the action space, we
discretize this variable into 2n + 1 potential actions:

at;d 2 f� qn ; � � � ; � q1; 0; q1; � � � qng

2.3.3 Reward

The total reward obtained from the CIM at time step t is equal to the sum of the rewards
obtained for every delivery hour:

Rt =
X

d2 D

rev(at;d );

where the reward for delivery hour d at time step t is computed as the integral of the
demand curvept;d from 0 to at;d :

rev(at;d ) =
Z at;d

0
pt;d (z)dz:

2.3.4 State Transition Function

For this intraday trading problem, we do not have access to the transition function (since
we do not place any assumptions on the evolution of intraday prices). As explained in
section 1.4.2, this prohibits us from using methods such as policy iteration. Nevertheless,
we are perfectly within the scope of Reinforcement learning, because tabular methods (see
section 1.4.2) and function approximation methods (see section 1.4.3) do not require any
knowledge of the transition function to be applied. Note that the round-trip e�ciency of
a storage unit is part of this transition function, which we do not model explicitly.

2.4 Threshold Policy

As we have to simultaneously reach decisions for the 24 delivery periods, our state and
action spaces are intractable for tabular methods and value function approximation meth-
ods. Therefore, we rely on policy function approximation. More precisely, we focus on a
policy which is parametrized by buy and sell price thresholds. The threshold policy that
we investigate in this chapter accepts sell bids if their price is below a buy threshold, and
accepts buy bids if their price is above a sell threshold. Our focus on threshold policies is
justi�ed by several factors: (i) Optimal inter-temporal arbitrage in a deterministic setting
is achieved by a threshold policy if the reservoir limit constraint is not binding, as proven
in appendix 2.8.2. (ii) Threshold policies have also beenproven to be optimal in a number
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of papers in the literature regarding speci�c instances of stochastic optimal control prob-
lems with uncertain prices [Mor59,Kin69,Gol85]. (iii) The idea of using a threshold policy
in order to trade for a storage unit has already been proposed in other settings [PM16b].

We apply a stochastic2 threshold policy, in order to ensure that su�cient exploration
takes place during the learning stage of the algorithm. Concretely, we propose drawing
the sell and buy thresholds from a Gaussian distribution. Therefore, we de�ne our policy
parameter, � , as � = ( � X ; � X ; � Y ; � Y ),where the buy threshold for delivery hour d, X d,
is drawn according to a normal distribution with parameters3 (� X ; exp(� X )), and the
sell threshold for delivery hour d, Yd, is drawn according to a normal distribution with
parameters (� Y ; exp(� Y )). We draw one threshold per delivery hour d. Therefore, the
distribution of actions over all future delivery hours can be decomposed as the product of
the distribution for each delivery hour. Mathematically, this can be expressed4 as:

� � (ajs) =
Y

d2 D

� d
� (adjs) (2.1)

In order to illustrate how the stochastic threshold is implemented, we consider the
example of Fig. 2.2. at delivery hour d. (i) The green decreasing function corresponds
to the buy bids that are available in the order book for delivery hour d. This data is
available in the order book at the time we are deciding on whether or not to accept a
bid. The demand curve is associated with the lower x-axis. (ii) The bell curve represents
the probability density function of the threshold. This curve can be computed based on
the current vector parameter � . The bell curve is associated with the upper x-axis. With
these two elements, we illustrate how we use the threshold policy in order to arrive at
decisions. Consider, for instance, the actionSell 10 MWh: if the sell threshold that we
draw is between the price associated to a sell quantity of 15 MWh and the price associated
to a sell quantity of 5 MWh, we sell 10 MWh. The probability of this action corresponds
to the red surface � d

� (10js). This probability can also be computed mathematically, as
illustrated below:

� d
� (10js) , Pr(ad = 10)

= Pr( p(15) � Yd � p(5))

= Pr( Yd � p(5)) � Pr(Yd � p(15))

= �( p(5); � Y ; exp(� Y )) � �( p(15); � Y ; exp(� Y ))

where �( �; �; � ) indicates the cumulative distribution function of the normal distribution
with mean � and standard deviation � . In order to apply the REINFORCE algorithm,
we also need to compute the policy derivatives for the di�erent actions. These derivatives
can be computed analytically as illustrated below for the derivative of the probability of
the action Sell 10 MWh with respect to � Y :

2Notice that our threshold is only stochastic in the learning phase. When we test the performance
out-of-sample, we apply deterministically the thresholds that have been learned in the training phase.

3We use exp(� X ) and not � X directly in order to ensure that the standard deviation remains positive.
4 In order to simplify notation, we present the situation for which the actions for the di�erent delivery

hours are independent of each other. If this is not the case, a similar formula using the conditional
distributions can be used.
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@�d� (10js)
@�Y

=
@�( p(5); � Y ; exp(� Y ))

@�Y
�

@�( p(15); � Y ; exp(� Y ))
@�Y

= � � (p(5); � Y ; exp(� Y )) + � (p(15); � Y ; exp(� Y ))

where � (�; �; � ) denotes the probability density function of the normal distribution with
mean � and standard deviation � .

Figure 2.2: Threshold policy for the hydro problem if we consider four possible actions: sell 0, 10,
20 or 30 MWh. The bell curve indicates the probability density function of the sell threshold. The
two purple segments and the two red segments of the bell curve indicate the probability of each of
the four actions. The green decreasing function corresponds to the buy bids that are available in
the order book.

2.5 Factors Driving the Optimal Threshold

In the previous section, we have developed a basic threshold policy for trading in the
CIM. This simple threshold policy does not achieve satisfactory performance in practice,
because it is not su�cient to maintain the same threshold for every time step of every
day. This suggests that the threshold should be further dependent on certain factors that
are pertinent towards an adaptive trading strategy. In this section, we propose a number
of such factors and explain the reason for which we consider them. Then, we explain how
the REINFORCE algorithm can be adapted in order to incorporate these factors.

2.5.1 Delivery Time

The need for using di�erent thresholds depending of the delivery hour is illustrated in Fig.
2.3. This graph represents theCIM price (which we de�ne as the center of the bid-ask
spread) for the 24 di�erent delivery hours. The red dot represents the price of buying
energy at the 6th hour, while the green dot is the price of buying energy at the 17th hour.
These two prices are equal, however the buying decision should be di�erent. Indeed, the
price corresponding to the red dot is not interesting, because the same amount of power
could have been procured and stored at the reservoir at a lower price at hour 4. On the
contrary, the price corresponding to the green dot is interesting, because it corresponds
to a local minimum price. Thus, in hour 17 we can buy power, in order to sell that power
back at a later delivery time.
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Figure 2.3: The delivery time of an order impacts its threshold: buying power at 30e /MWh is
not worthwhile in hour 6, but it is worthwhile in hour 17.

Having argued that it is necessary to employ di�erent thresholds for di�erent delivery
times, our idea is to de�ne regimes for which the threshold mean should be the same.
We will de�ne these regimes based on the intraday auction price curve, which conveys a
signi�cant amount of information about the CIM price.

We present an example of these regimes based on the intraday auction price curve, for
one precise day of our dataset, in Fig. 2.4. The justi�cation of why we use the intraday
auction in order to compute the regimes is provided in appendix 2.8.5.1. These graphs
illustrate that the buy threshold switches at the maximum of the price curve, since any
power that we buy between two maxima can be sold at the second maximum. Similarly,
the sell threshold switches at the minimum of the price curve, because any power that we
sell between two minima can be bought at the �rst minimum5. On average, there are 1:53
regimes per day.

The introduction of regimes impacts the parameter vector � . Since we introduce dif-
ferent thresholds for the di�erent regimes, � X and � Y are now indexed by the regimek,
and are thus denoted as� k

X and � k
Y . In the remainder of this section, we will express

these threshold means6 � k
X and � k

Y as a function of 10 parameters7, which we denote as
(� s

1,� b
1,� s

2,� b
2,� s

3,� b
3,� s

4,� b
4,� s

5,� b
5). We will then show how the REINFORCE algorithm can

be used in order to learn the values of the parameter vector� .

2.5.2 Intraday Auction Curve

Our motivation for using the intraday auction curve as a feature for determining thresholds
is illustrated in Fig. 2.5, where we present theCIM price for two di�erent trading days.
From this graph it is clear that it is not possible to set a single threshold which would

5This reasoning is slightly simpli�ed. The full explanation on how the regimes are computed can be
found in appendix 2.8.5.2.

6 In contrast to the mean, we do not make the standard deviation dependent on exogenous parameters.
This is due to the fact that the standard deviation is only used in order to ensure su�cient exploration in
the learning phase.

7The �nal thresholds � k
X and � k

Y are dependent on the regime, however the � parameters are not.
Therefore, the number of regimes does not a�ect the number of parameters that need to be learned.
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Figure 2.4: Buy regime (left), and sell regime (right) based on the intraday auction price.

perform well for both days, because the average level of the curves is di�erent. In order
to set an appropriate base level for the thresholds, we use the intraday auction price. The
idea is that the price of previous markets can provide an indication about the state of the
market, and thus support the forecast of the price for subsequent market-clearing stages.
This observation has been inspired by (i) reference [SZ19], in which the authors use future
prices in order to forecast the day-ahead market prices; (ii) reference [MRRFJC16], where
the authors use the day-ahead market prices and past intraday prices in order to forecast
the next intraday prices in the Spanish market8; (iii) reference [KEF15], in which the
authors use the last balancing price in order to forecast the next balancing price; and (iv)
reference [BJF14], where the authors observe a strong correlation between the day-ahead
market and the balancing market.

Figure 2.5: Continuous intraday market price for two di�erent days. The curves correspond to
di�erent average values, therefore di�erent thresholds need to be applied for an e�ective threshold
strategy.

Motivated by this observation, we propose an adaptation of the thresholds as follows:

� k
X  pmin ;k + � s

1(pmax;k � pmin ;k )

� k
Y  pmax;k � � b

1(pmax;k � pmin ;k )

wherepmin ;k is the minimum of the kth buy regime of the intraday auction curve, pmax;k is

the maximum of the kth sell regime of the intraday auction curve, and� s=b
1 are the weights

8Note that, in Spain, there is no continuous intraday market but rather 6 sequential auctions.
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