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École Polytechnique de Louvain

Center for Operations Research and Econometrics

Coordination of Transmission

and Distribution System

Operations in Electricity Markets

Ilyès Mezghani

Doctoral Thesis

Supervisor:
Anthony Papavasiliou

(UCLouvain, Belgium)

Jury:
Mathieu Van Vyve (UCLouvain, Belgium)

François Glineur (UCLouvain, Belgium)

Burak Kocuk (Sabancı University, Turkey)

Hélène Le Cadre (VITO, Belgium)

President:
Mathieu Van Vyve (UCLouvain, Belgium)





PhD Organization

Ilyès Mezghani
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Professor, Université catholique de Louvain
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Abstract

The integration of renewable energy resources leads to an important change in
the way electricity markets are operated and organized. The common approach
to the optimization of electric power system operations has focused on the high-
voltage transmission network, while the distribution network is typically not
accounted for in detail. Nevertheless, renewable resources, like solar panels,
are now being integrated at a large scale in the distribution network. The
‘distribution’ nature of this network is then changing to a broader task: the
distribution network still serves power to residential consumers but should also
optimize the integration of renewable resources in the system.

Several aspects of this transformation motivate to this dissertation. The
contributions are organized in five chapters.

After an introduction of the context in chapter 1, chapter 2 addresses two
aspects of interest in power system operations. We first propose a method for
solving the alternating current optimal power flow problem, one of the most
crucial optimization problems arising in power systems. We rely on Gauss-
Newton theory to propose an iterative algorithm, with each iteration solving
one or several second-order cone problems. The suggested approach has been
extensively tested on MATPOWER instances and reaches competitive perfor-
mances relative to the state-of-the-art solver IPOPT. We also show the poten-
tial improvements that we can attain using warm-start. In the second part
of chapter 2, we focus on a stochastic version of the same optimal power flow
problem in order to model uncertainty, mainly originating from the renewable
resources. We derive a practical and data-driven method for attacking this
problem. In particular, detecting critical scenarios can significantly reduce the
scenario space. We illustrate this phenomenon on a 1,354-bus system where we
reduced the scenario space to 30 scenarios.

In chapter 3, we design five coordination schemes modeling the interac-
tions between transmission and distribution system operators. We specifically
analyze the real-time market where the decision process focuses on balancing
energy activations and we consider a transmission and distribution network. On
a simple example, we analyze the potential strengths and weaknesses of each
scheme and we further elaborate on four out of the five schemes in chapters 4
and 5.

In chapter 4, we develop a transmission and distribution market clearing
platform. The platform takes into account the complexity of the physics of
the networks and non-convex bid structures, and is able to return a (primal)
dispatch solution as well as prices (dual solution). An important feature that
such a framework should incorporate is decentralized decision-making. This
motivates the introduction of a residual supply function, which we include to
the market clearing platform in order to parallelize the computational effort
and preserve the privacy of the different entities. We assess the quality of



the implemented platform on national-scale instances of Italy and Denmark.
We show that our decentralized framework manages to return primal and dual
solutions in less than five minutes for the Danish test case (+3,000 bus test
system) while a centralized approach fails to meet this target.

Chapter 5 presents a game theoretical model of two decentralized coordi-
nation schemes. The different interpretations of the schemes motivate us to
consider two simultaneous non-cooperative games and one Stackelberg game.
By deriving the equilibria for the three games on an illustrative example, we
demonstrate the potential inefficiencies of each of the coordination schemes.
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Évidemment, merci Papa et Maman pour tout votre soutien et votre amour, je
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football et mathématiques – je vous laisse deviner le domaine de prédilection
de chacun. Mes études sont enfin finies et j’espère vous rendre fiers. Merci
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Chapter 1

Introduction

1.1 Motivation

The European Commission recently updated the terms of the European Green
Deal [Com19] for the European Union (EU). Aiming at achieving carbon neu-
trality by 2050, the EU decided to increase the 2030 goal to 55% greenhouse
gas emissions reductions from 1990 levels in December 2020 [Com20b] (the
original target for 2030 was 40% and was set in 2014). This intensification of
the objectives follows the willingness of the Commission to rapidly reduce the
greenhouse gas emissions of all the members of the EU, initiated by the Paris
Agreements and the original Green Deal.

One important source of carbon emissions is the production of energy, and
in particular electricity. The EU heavily targets shifting electricity production
to minimal greenhouse gas emission technologies, namely renewable energy
sources (RES). To this end, the EU sets a goal of achieving a share of 38-40%
from renewable resources in the European electricity mix by 2030. In 2018,
the share of renewable resources represented 18% of final energy consumption,
which indicates the considerable effort that is required until 2030 [Com20b].
Nevertheless, the energy sector, and particularly the electricity sector, is rapidly
changing: between 2010 and 2018, solar and wind capacity grew from 110 GW
to 261 GW, highly accelerated by European policy incentives and a cost decline
of wind and solar electricity by 75% [Com20b].

RES technologies include solar photovoltaics (PV), wind power, hydroelec-
tric energy and biomass. Electric vehicles and batteries are usually complemen-
tary to RES because they support the broader use of RES to prevent greenhouse
gas emissions. A significant share of RES is connected to distribution networks,
which implies changes in the paradigm for operating power systems. Electricity
networks and markets have commonly been organized in the past with a clear
distinction among two portions of the network:
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(i) Transmission network. This is the part of the network where large
generation units (responsible for most of the greenhouse gas emissions)
as well as industrial consumers are typically connected. The Transmis-
sion System Operator (TSO) is responsible for operating the transmission
system securely. In the absence of RES, the production of electricity typ-
ically only originates from the transmission system.

(ii) Distribution network. The Distribution System Operator (DSO) en-
sures the delivery of electricity to residential and commercial loads. In
the past, the distribution network has typically consumed power, and the
DSO has had a less proactive role in the optimal coordination of resources
in the system.

The proliferation of RES in the distribution network is shifting the paradigm
towards the coordination of both networks in the production and delivery of
electricity. Numerous aspects of the implications of this transformation need
to be accounted for carefully, including: (i) uncertainty and intermittency of
RES; (ii) complexity and detailed modeling of the distribution networks; (iii)
to what extent the role of the DSO should be broadened; (iv) coordination of
TSO and DSO operations; (v) determining electricity prices.

This dissertation explores different aspects of the evolution of electricity
markets, with an emphasis on organizing networks and markets that include
both transmission and distribution systems in the scope of European electric-
ity market design. Chapter 2 is divided into two parts. The first part focuses
on the consideration of methods for solving non-convex optimization problems,
which are applied to one of the most common problems in power systems, the
alternating current optimal power flow (AC-OPF). The focus on AC-OPF is
motivated by the physical characteristics of distribution networks, which re-
quires more detailed modeling than the linear approximations of power flow
that are employed in transmission network modeling. The other aspect treated
in this chapter concerns the uncertainty of RES. The second part of chapter 2
proposes a practical framework for solving a stochastic version of AC-OPF.
Chapter 3 discusses different coordination schemes for integrating the opera-
tions of DSOs and TSOs. Chapter 4 implements a real-time market clearing
platform that integrates both transmission and distribution networks. This
contribution aims at demonstrating a functional solution for clearing the mar-
ket in large-scale networks. The market clearing involves computing dispatch
decisions and consistent prices. Finally, chapter 5 aims at assessing several
TSO-DSO coordination schemes using game theory.

The present chapter provides the necessary background on transmission-
distribution (T&D) coordination in a European context (section 1.2), opti-
mization (section 1.3) and optimal power flow (section 1.4) before presenting
the structure of the dissertation (section 1.5).
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1.2 T&D Coordination in European Electricity
Markets

1.2.1 The Need for T&D Coordination

The deployment of renewable resources and flexible resources in medium and
low-voltage distribution systems has generated an interest by the academic
community and practitioners to design and implement “flexibility” platforms
[CNH+16] in recent years. The potential benefits of such platforms are nu-
merous. They can support an increased deployment of distributed renewable
supply (e.g. rooftop solar), safeguard the distribution network and postpone
distribution network expansion, and mobilize demand-side flexibility, which
in itself produces numerous short-term operational efficiencies and long-term
benefits in terms of generating robust investment signals for the market [JT07].

On a high level, such flexibility platforms aim at transposing the advanced
optimization functions that coordinate resources at the high-voltage grid down
to the medium (and eventually low) voltage network. The interest is in ac-
commodating distribution network constraints (voltage limits, reactive power
flows, power losses, thermal limits of lines, and so on) in the optimization of
system operation. This challenge necessarily increases the scale of the resulting
coordination problem since resources need to be accounted for at the scale of
individual distribution nodes.

The need for further TSO-DSO coordination is also stressed by the Eu-
ropean Commission and highlighted in regulations such as the Clean Energy
Package or the Network Codes. The former stresses the new important role
that the DSO has to play in the upcoming energy landscape and emphasizes its
“active role” in grid operation. For instance, Article 53.1 of the European elec-
tricity regulation states: “Distribution system operators shall cooperate with
transmission system operators in planning and operating their networks. In
particular, transmission and distribution system operators shall exchange all
necessary information and data regarding the performance of generation assets
and demand side response, the daily operation of their networks and the long-
term planning of network investments, with the view to ensure the cost-efficient,
secure and reliable development and operation of their networks” [Com17]. The
fact that market mechanisms are essential to ensure this coordination is also
highlighted by the regulation. A more extensive discussion of regulatory incen-
tives behind TSO-DSO coordination in the EU can be found in [LÁT19, Section
2].

1.2.2 Ongoing Initiatives

The research and academic community have responded forcefully to the chal-
lenge of increasing the coordination of transmission and distribution system
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operators. Within Europe, a number of related projects are ongoing or have
recently been completed:

(i) Enera [SM20] is a project funded by the German ministry of Economic Af-
fairs and Energy. The main objective of Enera is to operate an exchange-
based flexibility market for grid congestion management, thereby reduc-
ing the need for curtailment of renewable generation.

(ii) GOPACS [SM20] is owned and operated by the Dutch TSO (TenneT)
and four Dutch DSOs. GOPACS acts as an intermediary between the
needs of network operators and market platforms, concretely the Dutch
flexibility / market platform named ETPA.

(iii) NODES [SM20] has been launched in Norway (Norflex) and Germany.
Whereas in Norway the problem that is being addressed is downward flow
to loads, in Germany the desire is to reduce curtailment of wind. NODES
is currently operated on a continuous basis as an intraday market.

(iv) Piclo Flex [SM20] acts as a bulletin board, where DSOs post their cus-
tomized and localized needs for flexibility (essentially a volume, a loca-
tion, an up / down direction and a period, as well as certain technical
characteristics). Asset owners then respond to such “tenders”.

(v) The Cornwall local energy market [EGG17] is a local market project
developed in the Cornwall region in the UK. The Cornwall local energy
market allows both the TSO and the DSO to trade both reserve and
energy under a closed-gate auction mechanism which is conducted both
on a day-ahead and intra-day basis and that includes detailed network
constraints of the DSO.

(vi) Soteria is a local market that is being put in place by Fluvius (a Belgian
DSO) and Elia (the Belgian TSO). The market platform developed in the
Soteria project (ioenergy.eu/soteria) is aiming at unlocking more resi-
dential flexibility from the DSO grid to be used by the TSO for balancing,
while respecting DSO network constraints.

(vii) CoordiNet [MGASM+20] is an EU-funded project centered around TSO-
DSO cooperation which targets the development of multiple pilot markets
in Spain, Greece and Sweden. As an example, in the local market being
developed in Spain for the DSO from the perspective of local congestion
management, the DSO, who is the sole buyer in this platform, bids its
network constraints and flexibility needs in the market, which is organized
as a closed-gate auction in the day-ahead and intraday time frame.

(viii) SmartNet [MRS+17], another EU project, is the predecessor of Coordinet.
This project aims at integrated balancing and congestion management in

4
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real time, and investigates various TSO-DSO coordination mechanisms
for achieving this goal.

(ix) EU-SysFlex (eu-sysflex.com) is an H2020 project which aims at provid-
ing a long-term plan for integrating new technologies capable of furnishing
flexibility in the large-scale pan-European market.

(x) DOMINOES (dominoesproject.eu) is a European project which demon-
strates how DSOs can actively manage the network in order to handle
power balance in emerging future configurations such as microgrids, ultra-
distributed generation and energy independent communities.

(xi) Ecogrid [EGG17] is a Danish project which took place on Bornholm is-
land. The goal of the project was to test a regional balancing market
where DERs and flexible consumers are encouraged to participate by
adapting to fluctuations of electricity prices based on local congestion.

These projects cast a wide net of operational objectives. They are all cen-
tered around relatively short-term operational time scales (typically day-ahead,
intraday, or real time), and involve some extent of transmission and distribu-
tion system coordination. The variety of market designs that is proposed in
these projects is also relatively wide. In Table 1.1, we summarize the scale on
which these projects are conducted as well as their main focus.

1.2.3 European Electricity Markets

The diversity of projects that are referenced in the previous section indicates
a wide range of approaches to the same fundamental problem, which is one
of increasing the coordination of flexible resources in both the transmission as
well as distribution system. A fundamental question that is either explicitly
or implicitly motivating these flexibility projects is how the proposed market
design can be integrated to existing EU market design [Com20a]. In this section
we briefly overview the structure of the EU market, in order to better frame
the problem for the remainder of the dissertation.

The EU short-term market, like numerous international markets, is orga-
nized as a sequence of day-ahead and intraday forward markets followed by a
real-time balancing market. This sequence is represented in Figure 1.1:

• The reserve or balancing capacity market is operated before, simulta-
neously, or after the day-ahead energy market (depending on the specific
reserve product and the country in which it is traded). This market is
operated by the entities tasked with maintaining the secure operation of
the network, namely TSOs. The goal of the balancing capacity market
is to guarantee that sufficient overhead capacity is scheduled for the fol-
lowing day in order to ensure that the system can operate securely even

5
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Table 1.1: Ongoing European projects dealing with flexibility markets, RES integra-
tion and T&D coordination.

Project Scale
Main focus?

Flexibility market RES integration T&D coordination
Enera National: X X

Germany
GOPACS National: X X

Netherlands
NODES National: X

Norway, Germany
Piclo Flex National: X

UK
Cornwall Regional: X

Cornwall (UK)
Soteria National: X X

Belgium
CoordiNet European: X X

Spain, Greece, Sweden
SmartNet European: X

Italy, Spain, Denmark
Eu-SysFlex European X

DOMINOES European X X

Ecogrid Regional: X X
Bornholm (Denmark)

if imbalances or outages of system components (generators or transmis-
sion lines) occur in real time. Various balancing capacity products are
traded in the balancing capacity market, including (in order of their so-
called Full Activation Time, i.e. the speed by which they can respond to
system imbalances) frequency containment reserve, automatic frequency
restoration reserve, manual frequency restoration reserve, and replace-
ment reserve.

• The day-ahead market is a pan-European auction based on uniform
pricing principles which is operated by power exchanges, also referred to
as Nominated Electricity Market Operators (NEMOs). The day-ahead
market allows participants to place buy or sell bids up to a certain time
(around 12pm) the day before the dispatch. The market clears at once
for the entire 24 hours of the following day. The market is cleared in
the afternoon of the day before operations by the NEMOs in a common
pan-European market platform. The resulting market clearing deter-
mines energy prices and accordingly accepts or rejects the inserted bids
by attempting to match bids so as to maximize economic welfare.
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• The intraday market permits participants to adjust and refine their
position as real time approaches and more accurate system conditions are
revealed. The intraday market is also operated by NEMOs, and functions
as a continuous trading platform where buy and sell bids are matched as
they arrive to the platform. Bids are submitted for a resolution of 15
minutes. Trading in the intraday market concludes 30 minutes before
delivery time.

• The real-time market, also called balancing market is the last market
for trading energy before delivery. This market adjusts the net positions
of the participants by activating the reserves. It is handled by the TSO
who is in charge of securely operating the network. The balancing energy
market is connected to the balancing capacity market, in the sense that
those reserves which have been accepted successfully in the reserve market
for delivering a certain amount of capacity to the system operator are
required to bid at least that amount of energy in the balancing energy
market. It is in this sense that these resources offer reserve to the system:
if cleared for balancing capacity in the reserve market, they commit to
be available to provide balancing energy in real time. This is the market
mostly considered in this dissertation, in Chapters 3, 4 and 5. Despite
regional specificities, the EU balancing market is moving towards full
integration following EU legislation and a number of EU-wide integration
projects. In the foreseen integrated market, the balancing platforms will
be operated as uniform price auctions for energy, and it is with these
provisions in mind that we conduct our analysis in the present work.

Figure 1.1: Chronology of the European electricity markets.

Apart from describing the chronology of market operations, it is useful
to clarify the products that are traded in each market. Before proceeding,
we introduce some further terminology related to the EU market. Balancing
Service Providers (BSPs) in this thesis essentially refer to owners of reserve
assets, i.e. entities that can submit price-elastic bids in real time for buying or
selling energy in real time. Balancing Responsible Parties (BRPs) in this thesis
refer to price-inelastic buyers or sellers of real-time energy, i.e. entities that
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experience a real-time energy imbalance that the system operator is required
to balance out by mobilizing reserves in the system.

Having described the full range of products in the market, we now clarify
what products each market trades. The balancing energy market trades real-
time energy between BSPs and BRPs, as well as transmission capacity from
the system operator to market participants. This market is the focus of the
present work. Note that, as the balancing energy market clears every fifteen
minutes, the amount of time afforded for actually performing the matching of
bids and pricing is quite limited. This concern is explicitly accounted for in the
subsequent material. The intraday and day-ahead energy market execute the
exact same function as the balancing energy market, but in a forward setting,
i.e. so as to allow market agents to mitigate risk by trading energy in advance
of real time. The balancing capacity market trades reserve / balancing capacity
between BSPs and the TSO.

1.3 Preliminaries on Optimization

Optimization is a useful tool to model and solve problems appearing in power
networks and electricity markets. A continuous optimization problem consists
of minimizing a certain objective subject to a certain number of constraints
and is written as follows:

u∗ = min
x∈Rd

C(x) (1.1a)

s.t. fi(x) ≤ bi, ∀i = 1, . . . , N. (1.1b)

where x represents the decision variables of the problem, C is the objective
function (or cost function), u∗ is the optimal value, (fi)i=1,...,N are the con-
straint functions and (bi)i=1,...,N are the constraint bounds. In this section,

we assume that the objective is linear, i.e. C(x) =
d∑
j=1

(Cj,1xj + Cj,0), and

that (fi)i=1,...,N are continuous. Only certain classes of the general problem
(1.1) can be solved. If functions (fi)i=1,...,N are convex, problem (1.1) is a
convex optimization problem. Convex optimization problems have global opti-
mality guarantees and most of them are efficiently solved with powerful solvers.
Non-convex optimization problems are much harder to solve. We explore the
relevant classes of optimization problems for this dissertation in the next sub-
sections.
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1.3.1 Linear Programming

A linear program (LP) is the elementary optimization problem. Indeed, LPs
consider the constraint functions as linear:

fi(x) = α>i x+ βi, αi, βi ∈ Rd, ∀i = 1, . . . , N

where superscript > represents the scalar product on Rd. LPs are efficiently
solved nowadays and most of the solution methods rely on the simplex algo-
rithm [DOW+55] or interior point methods [LMS94].

1.3.2 Second Order Cone Programming

Another class of optimization problem which is efficiently solved by current
solvers is second order cone programs (SOCP). A second order cone constraint
function has the following form:

fi(x) = ||Aix+ ei||2 + α>i x+ βi, Ai ∈ Rai×d, ei ∈ Rd, ∀i = 1, . . . , N

where ||.||2 is the Euclidean norm. The format of second-order cone constraints
is particularly useful because it includes constraints such as:

y2 + z2 ≤ S ⇐⇒
∥∥∥∥( y

z

)∥∥∥∥
2

≤
√
S

{
y2 + z2 ≤ w1w2,
w1, w2 ≥ 0

⇐⇒


∥∥∥∥∥∥
 y

z
(w1 − w2)/2

∥∥∥∥∥∥
2

≤ (w1 + w2)/2

w1, w2 ≥ 0

where y, z, w1, w2 are variables and S is a parameter. These two types of con-
straints are particularly useful to model the physics of a power network. Most
commercial solvers (like CPLEX, Mosek or Gurobi) implement a variation of an
interior point method, namely homogeneous and self-dual algorithm [ART03],
to solve SOCPs.

1.3.3 Non-Convex Optimization

Non-convex optimization problems consider the case where there is no assump-
tion on (fi)i=1,...,N . Nevertheless, an efficient interior-point method, the in-
terior point line search filter method [WB06], have been implemented when
considering the case where (fi)i=1,...,N are twice continuously differentiable.
Interior point methods guarantee convergence to a local minimum or an infea-
sible point, which is unsatisfactory in general when solving (feasible) optimiza-
tion problems. Also, even if solvers are becoming more and more robust and
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fast [WB06], these methods require more computation time and face more nu-
merical instability than LPs or SOCPs. These issues can partially be resolved
if the solver is carefully initialized by an accurate approximate solution. To
solve this type of problems, we usually first focus on approximations or relax-
ations of the problem. The idea of approximations and relaxations also holds
for convex problems.

1.3.3.1 Approximations

Optimization problems allow for modeling practical problems and their appli-
cations come from transport, telecommunication, electricity markets, finance
etc. If problem (1.1) is too hard to tackle, practitioners might be in favor of
solving:

u∗approx = min
x∈Rd

C(x) (1.2a)

s.t. f̃i(x) ≤ bi, ∀i = 1, . . . , N. (1.2b)

where (f̃i)i=1,...,N are approximations of (fi)i=1,...,N that have an easier form
to handle (typically linear or second-order cone constraints). The quality of
the approximation will only depend on its accuracy compared to the original
problem. Nevertheless, in general, no link can be established between the
solution of (1.1) and (1.2).

1.3.3.2 Relaxations

Another way of approaching a difficult optimization problem is through relax-
ations. There are several ways of relaxing an optimization problem, but the
main idea is to consider a larger feasible space. The feasible space of (1.1) is:

F = {x ∈ Rd | ∀i = 1, . . . , N, fi(x) ≤ bi}

By considering F ⊆ Frelax, a relaxation of (1.1) is written as:

u∗relax = min
x∈Rd

C(x) (1.3a)

s.t. x ∈ Frelax (1.3b)

For example, if functions (fi)i=1,...,N are non-convex, one way of relaxing (1.1)
is replacing (1.1b) by:

f
i
(x) ≤ bi, ∀i = 1, . . . , N.

where f
i
(x) ≤ fi(x), ∀x ∈ Rd, ∀i = 1, . . . , N . (f

i
)i=1,...,N would typically be

chosen as linear, or at least convex.
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Solving a relaxation has the nice property of providing a lower bound of the
optimal value:

u∗relax ≤ u∗

In the next section, we will see how optimization problems allow for detailed
modeling of power networks. Since the classical alternating current optimal
power flow (AC-OPF) problem is non-convex, several approaches based on
approximations and relaxations enable attacking this difficult problem.

1.4 Preliminaries on Optimal Power Flow

In this section we discuss formulations of the Alternating Current Optimal
Power Flow (AC-OPF) that are employed in the dissertation, as well as a
direct current (DC) approximation, a trigonometric reformulation, a quadratic
relaxation and a second order cone programming (SOCP) relaxation.

1.4.1 The Power Flow Problem

The Power Flow (PF) equations emerge in power systems and allow repre-
senting the physical properties, such as Kirchhoff’s Law and Ohm’s Law, on a
power network. In a general setting, referred to as alternating current (AC),
the basic variables of the PF equations are (P,Q, v, θ): real power injection,
reactive power injection, voltage magnitude and voltage angle. Even if they
are not necessary for basic formulations of PF equations, we also introduce real
(resp. reactive) power flow fp (resp. fq) for modeling purposes. The set of
decision variables is then x = (P,Q, v, θ, fp, fq). We denote by N = (B,L) a
power network, where B is the set of buses and L is the set of directed lines (LR
being the set of reverse directed lines [CHVH15]). The parameter Y , defined as
Yik = Gik + jBik, ∀(i, k) ∈ L∪LR (j2 = −1), is the admittance matrix, which
relies on the conductance G and the susceptance B. The admittance matrix
reflects the properties of the network. The AC PF equations are then written
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as follows:

Pi =
∑
j∈δ(i)

fpij +Giv
2
i , ∀i ∈ B (1.4a)

Qi =
∑
j∈δ(i)

fqij −Biv
2
i , ∀i ∈ B (1.4b)

fpij = −Gijv2
i + vivj(Gij cos(θi − θj) +Bij sin(θi − θj)), ∀(i, j) ∈ L ∪ LR

(1.4c)

fqij = Bijv
2
i + vivj(Gij sin(θi − θj)−Bij cos(θi − θj)), ∀(i, j) ∈ L ∪ LR

(1.4d)

Here, δ(i) = {j ∈ B | (i, j) ∈ L∪LR} defines the set of buses directly connected
to bus i ∈ B. Equations (1.4) is a system of non-linear equations of 4|B|
variables and 2|B| equalities (by substituting (1.4c)–(1.4d) in (1.4a)–(1.4b)).
We usually solve the power flow equations by specifying the values of 2|B|
control variables. This is the power flow problem. The choice of the control
variables is based on the representation of an ordinary power network. We
distinguish different types of buses:

• PV buses (set PV): also called generator bus, this type of bus specifies
the real power generation P and the voltage magnitude v.

• PQ buses (set PQ): commonly called load bus, the PQ bus enforces real
and reactive power consumption P and Q.

• Slack bus (denoted Slack): this single bus is able to generate or consume
power. It typically imposes voltage magnitude to v = 1 and voltage angle
to θ = 0.

(P, v) for PV buses, (P,Q) for PQ buses and (v, θ) for the slack bus represent
the control variables when solving the PF problem and the rest of the variables
are seen as the state variables. This partition of the buses changes the system
(1.4) to a 2|B|-variables and 2|B|-equalities system of non-linear equations. The
PF problem has largely been studied [SA74, Sto74, SM79] and is solved using
the Newton-Raphson method for example [Sto74].

Another application of the power flow equations (1.4) does not differentiate
state and control variables. If we do not fix some of the free variables, then we
can optimize them in order to minimize a certain objective, which is typically
operating cost, but also respecting certain bounds on the control and state
variables (for example, generation capacity or flow limits). This gives rise to
the Optimal Power Flow (OPF) problem.
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1.4.2 Optimal Power Flow Formulations

1.4.2.1 Classic OPF Formulation

The classical AC-OPF problem, formulated originally by [Car62], aims at dis-
patching generating units on a network in order to satisfy demand, while re-
specting physical properties (Kirchhoff’s Law and Ohm’s Law) and thermal
and operational constraints. We assume that generators are dispatched with
an objective of minimizing active power generation costs. In this dissertation,
at a certain bus i ∈ B, we assume that the active power injection is the differ-
ence of the active power produced by generators connected to bus i (this set
is denoted Gi) and the active power demand Dp

i , assumed to be known and
fixed: Pi =

∑
g∈Gi

pg − Dp
i . The same assumption is made for reactive power.

The resulting classical AC-OPF problem is formulated as follows:

min
x

∑
g∈G

Cg(pg) (1.5a)

s.t.
∑
g∈Gi

pg −Dp
i =

∑
j∈δ(i)

fpij +Giv
2
i , ∀i ∈ B (1.5b)

∑
g∈Gi

qg −Dq
i =

∑
j∈δ(i)

fqij −Biv
2
i , ∀i ∈ B (1.5c)

fpij = −Gijv2
i + vivj(Gij cos(θi − θj) +Bij sin(θi − θj)), ∀(i, j) ∈ L ∪ LR

(1.5d)

fqij = Bijv
2
i + vivj(Gij sin(θi − θj)−Bij cos(θi − θj)), ∀(i, j) ∈ L ∪ LR

(1.5e)

vi ≤ vi ≤ vi, ∀i ∈ B (1.5f)

(fpij)
2 + (fqij)

2 ≤ S2
ij , f

p

ij
≤ fpij ≤ f

p

ij , f
q

ij
≤ fqij ≤ f

q

ij , ∀(i, j) ∈ L ∪ LR

(1.5g)

p2
g + q2

g ≤ pq2
g, pg ≤ pg ≤ pg, qg ≤ qg ≤ qg, ∀g ∈ G (1.5h)

Here, Cg(pg) = Cg,1pg + Cg,0, (Cg,1, Cg,0) ∈ R2, ∀g ∈ G is linear. Con-
straints (1.5b)–(1.5e) refer to the power flow equations. Constraints (1.5f)–
(1.5h) are the technical constraints that might be violated when only solving
PF. Constraint (1.5f) describes the voltage limits at each node. Constraints
(1.5g) refer to (i) apparent power line limits, (ii) real power limits, and (iii)
reactive power limits. In the same spirit, for each generator, constraints (1.5h)
impose apparent injection limits as well as lower and upper limits on real and
reactive injections. Even if all the constraints of (1.5g) and (1.5h) are not al-
ways considered when introducing AC-OPF [LL11,FL13,GLTL14,MH+19], we
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make formulation (1.5) as general as possible which is adapted to the SmartNet
instances that will be used in chapter 4.

In order to have a more concise formulation of the problem, we introduce
further notations. Constraints (1.5d)–(1.5g) relate to operational constraints
that are handled by the network operator and constraints (1.5h) refer to gener-
ation capacity constraints. For the sake of conciseness, we therefore introduce
the set of operational constraints OC, and the set of generation constraints GCg
which are defined as:

OC = {(v, θ, fp, fq) satisfying (1.5d)− (1.5g)}
GCg = {(pg, qg) satisfying (1.5h)} ∀g ∈ G

We will also use a compact notation for the power flow constraints (1.5b)–
(1.5c) by introducing functions Fi, i ∈ B as follows:

Fi(x) = 0, ∀i ∈ B ⇐⇒ x = (p, q, v, θ, fp, fq) satisfies (1.5b)− (1.5c).

The concise formulation of AC-OPF is then:

OPFAC : min
x

∑
g∈G

Cg(pg) (1.6a)

s.t. Fi(x) = 0, ∀i ∈ B (1.6b)

(v, θ, fp, fq) ∈ OC (1.6c)

(pg, qg) ∈ GCg, ∀g ∈ G (1.6d)

Problem (1.6) (and equivalently (1.5)) is a non-convex optimization problem
(due to constraints (1.5b)–(1.5e)) and relaxations and exact approaches have
largely been studied in the literature [MAEH99,MEHA99,FSR12,MH+19]. In
the thesis, we first introduce the classical DC approximation (subsection 1.4.2.2).
Based on [MH+19], relaxations of AC-OPF can be split into three categories:
linear relaxations, second-order cone relaxations and semi-definite relaxations.
If one were to summarize the relationships between these three categories, one
would say that linear relaxations are computationally easy to solve but pro-
vide less accurate solutions whereas semi-definite relaxations favor accuracy
over computational burden. Since second-order cone relaxations lie in between
these two categories and are particularly appealing on radial networks, we only
consider a second-order cone relaxation of AC-OPF in the thesis. Based on a re-
formulation of AC-OPF (subsection 1.4.2.3), we derive a non-convex quadratic
relaxation of AC-OPF (subsection 1.4.2.4) which extends to a second-order
cone relaxation (subsection 1.4.2.5).

1.4.2.2 Direct Current Approximation

The direct current (DC) approximation is the most commonly used approx-
imation of the problem. It is mostly used on transmission networks where
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the voltage level renders the accuracy of the approximation acceptable. The
underlying assumptions of this approximation are the following:

• Gij ≈ 0, ∀(i, j) ∈ L

• Angle differences are small: sin(θi − θj) ≈ (θi − θj), ∀(i, j) ∈ L.

• vi ≈ 1,∀i ∈ B

Using (1.5d) and (1.5e), these assumptions allow for ignoring reactive power.
The real power flow can then be expressed as:

fpij = Bij(θi − θj), ∀(i, j) ∈ L ∪ LR

This renders the approximation linear, as follows:

OPFDC : min
∑
g∈G

Cg(pg) (1.7a)

s.t. FDCi (x) = 0, ∀i ∈ B (1.7b)

(θ, fp) ∈ OCDC (1.7c)

pg ∈ GCDCg , ∀g ∈ G (1.7d)

Here, GCDC = {pg satisfying: p
g
≤ pg ≤ pg} and OCDC = {(θ, fp) satisfying:

fpij = Bij(θi − θj), f
p

ij
≤ fpij ≤ f

p

ij , ∀(i, j) ∈ L ∪ LR} are the relaxed set

of generation and operational constraints in the DC approximation. We also
make use of:

FDCi (x) = 0, ∀i ∈ B ⇐⇒ pi −Dp
i =

∑
j∈δ(i)

fpij , ∀i ∈ B.

1.4.2.3 The Trigonometric Reformulation

An alternative formulation of the general problem (1.5) is the trigonometric
formulation introduced in [ER99,Jab06,Jab07]. The trigonometric formulation
is introduced by defining the following variables:

cij = vivj cos(θi − θj), ∀(i, j) ∈ L ∪ LR (1.8a)

sij = −vivj sin(θi − θj), ∀(i, j) ∈ L ∪ LR (1.8b)

cii = v2
i , sii = 0, ∀i ∈ B (1.8c)

By using classical trigonometric relations, the set of constraints (1.8) could be
replaced by:

c2ij + s2
ij = ciicjj , ∀(i, j) ∈ L

tan(θi − θj) =
vivj sin(θi − θj)
vivj cos(θi − θj)

=
−sij
cij

, ∀(i, j) ∈ L
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Since angle differences usually lie in a 2π-interval, the use of tan() is limiting in
the sense that it is defined on R− {π2 + kπ, k ∈ Z} (Figure 1.2(a)). We would
rather write θi − θj as a function of cij and sij . Since the range of values of
arctan() is ] − π/2, π/2[ (Figure 1.2(b)), we would rather use atan2() ranging
in ]− π, π] [KDS16] (Figure 1.2(c)) and defined as:

atan2(x, y) = 2 arctan
y√

x2 + y2 + x
,∀x, y

(a) tan. (b) arctan. (c) arctan 2 (atan2).

Figure 1.2: Graphical comparison of tan, arctan and atan2 functions.

The set of constraints (1.8) is finally replaced by:

c2ij + s2
ij = ciicjj , ∀(i, j) ∈ L (1.9a)

θi − θj = atan2(sij , cij), ∀(i, j) ∈ L (1.9b)

The set of constraints (1.5b)-(1.5f) is then rewritten as:

∑
g∈Gi

pg −Dp
i =

∑
j∈δ(i)

fpij +Gicii, ∀i ∈ B (1.10a)

∑
g∈Gi

qg −Dq
i =

∑
j∈δ(i)

fqij −Bicii, ∀i ∈ B (1.10b)

fpij = −Gijcii +Gijcij −Bijsij , ∀(i, j) ∈ L ∪ LR (1.10c)

fqij = Bijcii −Gijsij −Bijcij , ∀(i, j) ∈ L ∪ LR (1.10d)

v2
i ≤ cii ≤ v2

i , ∀i ∈ B (1.10e)
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And the following trigonometric reformulation of the problem has then been
proposed originally in [Jab07]:

OPFAC-T : min
x

∑
g∈G

Cg(pg) (1.11a)

s.t. FAC-T
i (x) = 0, ∀i ∈ B (1.11b)

(c, s, θ, fp, fq) ∈ OCAC-T (1.11c)

(1.6d) (1.11d)

The decision variables are now x = (p, q, c, s, θ, fp, fq). And FAC-T andOCAC-T

are defined as:

FAC-T
i (x) = 0, ∀i ∈ B ⇐⇒ (1.10a)− (1.10b)

OCAC-T = {(c, s, θ, fp, fq) satisfies (1.9a)− (1.9b), (1.10c)− (1.10e), (1.5g)}

Problem (1.11) is an exact formulation of AC-OPF and is then equivalent
to OPFAC.

1.4.2.4 The Quadratic Relaxation

Introducing OPFAC-T allows for isolating θ variables in a single constraint
(1.9b). By ignoring (1.9b) and consequently the angles θ, the quadratic relax-
ation of OPF is introduced as:

OPFQ : min
x

∑
g∈G

Cg(pg) (1.12a)

s.t. FQi (x) = 0, ∀i ∈ B (1.12b)

(c, s, fp, fq) ∈ OCQ (1.12c)

(1.6d) (1.12d)

Here, FQ = FAC-T, (1.9b) is removed from OCAC-T to define OCQ and x =
(p, q, c, s, fp, fq). The relaxation (1.12) is exact when the network is radial
[ZT11]. Indeed, once (1.12) is solved, recovering angles using (1.9b) implies
solving a system of linear equations (with |B| variables and |B| − 1 equations).
Problem (1.12) is a non-convex quadratically constrained problem and serves
as a basis to introduce the second order cone relaxation of OPF.

1.4.2.5 Second Order Cone Relaxation

In formulation (1.12), the only non-convex quadratic constraints are (1.9a).
This equality can be relaxed to a second order cone constraint:

c2ij + s2
ij ≤ ciicjj , ∀(i, j) ∈ L (1.13)
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By slightly modifying OCQ to OCSOC (one just needs to replace (1.9a) by
(1.13)) and having FSOC = FQ, the SOCP relaxation of OPF is then formu-
lated as follows:

OPFSOC : min
x

∑
g∈G

Cg(pg) (1.14a)

s.t. FSOCi (x) = 0, ∀i ∈ B (1.14b)

(c, s, fp, fq) ∈ OCSOC (1.14c)

(1.6d) (1.14d)

This formulation has been introduced by [Jab06] and is particularly useful
on radial networks. Indeed, under certain assumptions [FL13, GLTL14], it is
possible to guarantee that constraint (1.13) is tight and that the relaxation is
exact. The idea of these assumptions is that it is possible to ensure exactness
if (i) the voltage limits are not binding [GLTL14] or (ii) an unlimited amount
of real and reactive power can be injected or withdrawn at each bus [FL13].
In practice, these assumptions are typically not met. Nevertheless, the SOCP
relaxation on radial networks has been observed to yield feasible dispatch so-
lutions in practice, even if the assumptions that guarantee exactness are not
fulfilled [BVC20]. In the thesis, we use the SOCP solution for attempting to
derive a feasible dispatch. Even if the dispatch is found to be infeasible, we
use the SOCP solution for warm-starting or to derive a lower bound on the
objective value.

1.4.2.6 Relations Between the OPF Formulations

The OPF formulations that we have introduced are connected as follows:

1. OPFAC and OPFAC-T are non convex problems and are equivalent.

2. OPFQ is a quadratic non-convex relaxation of OPFAC-T.

3. OPFSOC is a convex conic relaxation of OPFQ.

These relationships are known and presented in [KDS16, MH+19]. Note that
OPFDC is a linear approximation and cannot be compared to the other formu-
lations. These relationships are illustrated in Figure 1.3.

1.4.2.7 Computational Comparison

To illustrate the different levels of difficulty involved when trying to solve the
OPF problems introduced, we display the results of 4 OPF instances solved us-
ing PowerModels.jl [CBS+18a] on MATPOWER instances [ZMST10]. OPFDC

and OPFSOC are solved with Gurobi [GO19] and OPFAC with IPOPT [WB06].
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OPFAC ⇐⇒ OPFAC-T

OPFQ

OPFSOC

OPFDC

Figure 1.3: Schematic of the OPF formulations feasible spaces.

The results are shown in Table 1.2 accompanied with more information about
the test cases in Table 1.3. The gap reported in Table 1.2 in columns OPFDC

and OPFSOC shows the relative distance to the OPFAC objective value. It
should be highlighted that when solving OPFDC and OPFSOC a global mini-
mizer is obtained while solving OPFAC with IPOPT only returns a local mini-
mum guarantee. Note also that we launch 10 runs of IPOPT with 10 different
random initial vectors (p0, q0, v0, θ0) (warm-start option of the solver) and it
always leads to the same objective value for the four test cases of Table 1.2.
Since the run without warm-start requires less time to solve, we only report
this run in Table 1.2.

We clearly see how easy it is to solve the DC approximation and to a
lesser extent the SOCP relaxation. The scale of the problem also plays a role
in the efficiency to solve the formulations: for 13659pegase, OPFDC solves
more than 200 times faster than OPFAC, and OPFSOC almost 20 times faster.
In terms of objective, the objective values obtained for OPFDC and OPFSOC

are relatively close to OPFAC, and we remind that only the objective value
of OPFSOC is a lower bound of the objective value of OPFAC. The lower
bounding of OPFSOC and its computational performances stress the strength
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Table 1.2: Comparison of the OPF formulations

OPFDC OPFSOC OPFAC

Test Case Objective Gap Time Objective Gap Time Objective Time
1354pegase 7.306e4 -1.4% 0.10 s 7.401e4 -0.1% 2.13 s 7.407e4 6.91 s
2869pegase 1.324e5 -1.2% 0.25 s 1.339e5 -0.1% 7.35 s 1.340e5 29.95 s
9241pegase 3.124e5 -1.1% 1.99 s 3.104e5 -1.7% 36.20 s 3.159e5 131.61 s
13659pegase 3.818e5 -1.1% 2.63 s 3.803e5 -1.5% 28.77 s 3.861e5 648.24 s

Table 1.3: Number of variables and constraints of the test cases in OPFAC.

Test Case # Variables # Constraints
1354pegase 11,192 16,957
2869pegase 25,086 37,489
9241pegase 85,568 123,683
13659pegase 117,370 146,437

of this formulation. Nevertheless, operators are interested in a feasible optimal
solution of OPFAC and the question of recovering feasible dispatches from
approximations or relaxations is still a research question in itself and is out
of the scope of this dissertation.

In practice, the use of the DC approximation is relevant when considering
transmission networks where losses can commonly be ignored. The use of the
SOCP relaxation is of interest when this relaxation is exact [FL13] (typically
on radial distribution networks). Since solving OPFAC can be time-consuming,
the number of times this problem is solved should be kept small and if possible,
it should be solved on instances of relatively small scale when it is crucial to
keep the solve time short.

1.5 Contributions

This dissertation gathers previous and ongoing research on different topics re-
lated to the broad theme of transmission and distribution coordination in elec-
tric power systems.

Chapter 2 suggests an iterative Gauss-Newton algorithm for solving the
static version of AC-OPF and a data-driven approach aiming at identifying
critical scenarios to solve a stochastic version of AC-OPF. The content of this
chapter relies on the following works:

• Ilyès Mezghani, Quoc Tran-Dinh, Ion Necoara and Anthony Papavasil-
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iou. A Penalty Method Based on a Gauss-Newton Scheme for AC-OPF.
2021 IEEE Madrid PowerTech, IEEE, 2021. (Extended version on arXiv:
https://arxiv.org/abs/1905.08588)

• Ilyès Mezghani, Sidhant Misra and Deepjyoti Deka. Stochastic AC Op-
timal Power Flow: A Data-Driven Approach. Electric Power Systems
Research, 189:106567, 2020.

Chapter 3 disseminates the preliminary modeling and ideas of transmis-
sion and distribution coordination schemes proposed in the scope of Smart-
Net [MRS+17]. This study lead to the following publication:

• Anthony Papavasiliou and Ilyès Mezghani. Coordination Schemes for the
Integration of Transmission and Distribution System Operations. 2018
Power Systems Computation Conference (PSCC), IEEE, 2018.

Chapter 4 implements a market-clearing tool for integrated transmission
and distribution systems. This is ongoing research which lead to one conference
paper and a submitted journal paper:

• Ilyès Mezghani and Anthony Papavasiliou. A Mixed Integer Second Order
Cone Program for Transmission-Distribution System Co-Optimization.
2019 IEEE Milan PowerTech, IEEE, 2019.

• Submitted to IEEE Transactions on Power Systems. Ilyès Mezghani,
Nicolas Stevens and Anthony Papavasiliou. Hierarchical Coordination of
Transmission and Distribution System Operations. 2021.

Chapter 5 aims at assessing the strengths and weaknesses of certain coor-
dination schemes from a game-theoretical point of view. This work lead to one
journal paper and one conference paper:

• Hélène Le Cadre, Ilyès Mezghani, and Anthony Papavasiliou. A Game-
Theoretic Analysis of Transmission-Distribution System Operator Coor-
dination. European Journal of Operational Research, 274.1:317-339, 2019.

• Ilyès Mezghani, Anthony Papavasiliou, and Hélène Le Cadre. A General-
ized Nash Equilibrium Analysis of Electric Power Transmission-Distribution
Coordination. Proceedings of the Ninth International Conference on Fu-
ture Energy Systems, 2018.
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Introduction

1.A Optimal Power Flow Nomenclature

This section provides the main OPF nomenclature introduced in section 1.4
and used throughout the dissertation.

Sets

B Set of buses

T B Set of transmission buses

DB Set of distribution buses

PV Set of PV buses

PQ Set of PQ buses

{Slack} Slack bus (singleton)

L,LR Set of lines, set of reversed
lines

T L Set of transmission lines

DL Set of distribution lines

{(i′, j′)} Interconnection line (single-
ton)

G Set of generators (or BSPs)

Gi Set of generators connected
i ∈ B

T G Set of transmission genera-
tors

DG Set of distribution genera-
tors

T Set of time periods

OC Set of operational con-
straints

OCform Set of operational
constraints in for-
mulation form =
{AC-T,DC,Q, SOC}

IOC Set of operational con-
straints at the interconnec-
tion

GCg Set of generation constraints
for generator g ∈ G

GCDC
g Set of generation constraints

in the DC approximation for
generator g ∈ G

Parameters

Y Admittance matrix defined
for every line (i, j) ∈ L

Gij Conductance of line (i, j) ∈
L

Bij Susceptance of line (i, j) ∈ L
Dp
i Real power demand at bus

i ∈ B
Dq
i Reactive power demand at

bus i ∈ B
vi/vi Lower/Upper voltage limit

at bus i ∈ B
fp
l
/f

p

l Lower/Upper real power
limit on line l ∈ L

fq
l
/f

q

l Lower/Upper reactive power
limit on line l ∈ L

Sl Apparent power limit on line
l ∈ L

p
g
/pg Lower/Upper real power ca-

pacity of generator g ∈ G
q
g
/qg Lower/Upper reactive power

capacity of generator g ∈ G
pqg Apparent power capacity of

generator l ∈ G
Variables

Pi Real power injection at bus
i ∈ B

Qi Reactive power injection at
bus i ∈ B

pg Real power generation at
generator g ∈ G

qg Reactive power generation
at generator g ∈ G

vi Voltage magnitude at bus
i ∈ B

θi Voltage angle at bus i ∈ B
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fpl Real power flow on line l ∈
L ∪ LR

fql Reactive power flow on line

l ∈ L ∪ LR

cij ‘Cosine’ variable introduced
in the quadratic reformu-
lation cii = v2i , cij =
vivj cos(θi − θj), (i, j) ∈ L

sij ‘Sine’ variable introduced in
the quadratic reformulation
sii = 0, sij = −vivj sin(θi −
θj), (i, j) ∈ L

yg Binary variables associated
with power generation pg,
g ∈ G

λi Locational Marginal Price
(LMP) associated with
power balance constraints
at bus i ∈ B

λpi Real Locational Marginal
Price (LMP) associated with
real power balance con-
straints at bus i ∈ B

λqi Reactive Locational
Marginal Price (LMP) as-
sociated with reactive power
balance constraints at bus
i ∈ B

x Vector of primal variables

xT /xD Vector of primal transmis-
sion/distribution variables

Functions

Cg(.) Cost function of generator
g ∈ G

δ(.) Function returning the set of
neighbors of a bus δ(i) =
{j | (i, j) ∈ L ∪ LR}

Fi Concise notation function
for power balance con-
straints

F formi Concise notation func-
tion for power bal-
ance constraints in
formulation form =
{AC-T,DC,Q,SOC}

We extend the use of subscript t to designate sets, parameters, variables
or functions needed to be specified at a certain time-step t, specifically in the
context of multi-period OPF. We also designate vectors of variables using this
format: zZ , where z is a certain type of variable and Z a subset of the indices
on which the variable is defined. In the same way, zt would designate the
variable z for the time-period t.
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Chapter 2

Algorithms for
Deterministic and
Stochastic AC-OPF

2.1 Introduction

In this chapter, we aim at tackling two variants of the classical AC optimal
power flow problem. First (section 2.2), we propose a novel approach for solv-
ing AC-OPF. This iterative scheme is based on Gauss-Newton theory and nu-
merical results on several state-of-the art instances demonstrate competitive
performances compared to an interior point solver, IPOPT. In a second part
(section 2.3), we discuss a stochastic version of AC-OPF where the demand is
uncertain. In this setting, we perform a careful critical scenario identification in
order to solve a simplified version of the original problem. The method reveals
robust performance on three small test cases as well as one larger instance.

2.2 A Gauss-Newton Algorithm for Solving AC-
OPF

2.2.1 Related Work and Contributions

In recent years, there has been a great body of literature that has focused
on convex relaxations of the AC-OPF problem, including semidefinite pro-
gramming relaxations [LL11], conic relaxations [Jab08,KDS16], and quadratic
relaxations [CHVH15]. These works have established conditions under which
these relaxations are exact, and understanding cases in which this is not so
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[MHLD13]. Instead, our interest in the present work is to tackle directly
this problem as a non-convex optimization problem with non-linear equality
constraints. Such a formulation is sufficiently general to produce physically
implementable solutions in the context of realistic system operations.

The AC-OPF problem is usually formulated as a non-convex optimiza-
tion problem. It is well known that optimization problems with non-convex
constraints are difficult to solve. Classical techniques such as interior-point,
augmented Lagrangian, penalty, Gauss-Newton, and sequential quadratic pro-
gramming methods can only aim at finding a stationary point, which is a
candidate for a local minimum [NW06]. For an iterative method to identify
a stationary point that is a local minimum, but not a saddle-point, more so-
phisticated techniques are required, such as cubic regularization [NP06] or ran-
dom noise gradient [DPG+14]. However, these methods are often very dif-
ficult to implement and inefficient in large-scale problems with non-convex
constraints [NP06, DPG+14]. One of the most efficient and well-established
non-linear solvers for finding stationary points is IPOPT [WB06], which relies
on a primal-dual interior-point method combined with other advanced tech-
niques. We emphasize that this classical method is only guaranteed to con-
verge to a stationary point, and often requires a strategy such as line-search,
filter, or trust-region to achieve global convergence under certain restrictive as-
sumptions. Moreover, each iteration of IPOPT requires solving a non-convex
subproblem via linearization combined with a line-search or filter strategy.

Recently there has been a revived interest in the design and analysis of algo-
rithms for solving optimization problems involving non-convex constraints, in
particular in engineering and machine learning [BDL19,BP16,CGT14,CRS18,
TDGMD11]. The main trend is in solving large-scale problems by exploiting
special structures/properties of the problem model and data towards the de-
sign of simple schemes (e.g., solving a tractable convex subproblem at each
iteration), while producing reasonable approximate solutions efficiently [DP19,
LW16,Nes07].

Following this trend, we will focus on Gauss-Newton (GN) methods for
solving non-convex optimization problems. The idea of the GN method studied
in this work was proposed in [LW16] for minimizing a compositional model
of the form φ(F (x)), where F is convex and φ is possibly nonsmooth. The
main idea is to replace the continuous least-squares function φ(·) = 1

2‖ · ‖
2
2

in these methods by a given convex and Lipschitz continuous function φ(·)
(but possibly nonsmooth). Nesterov contributed a thorough investigation on
convergence guarantees of this method in [Nes07] when φ is a given norm. This
was extended to a more general model that can cover exact penalty methods
in a technical report [TDD11].

Our approach and contributions In this work, we consider an AC-OPF
problem over large-scale networks. We are interested in an approach that
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can tackle general meshed networks. We present how this problem can be
posed in the framework of non-convex optimization with a particular structure
on the constraints. Based on this structure we devise a provably convergent
Gauss-Newton (GN)-type algorithm for solving this non-convex problem. Our
algorithm converges globally to a stationary point of the problem from any
starting point. In addition, it is also different from standard GN methods in
the literature due to the use of a non-smooth penalty instead of a classical
quadratic penalty term. Hence, we refer to this algorithm as a global and
robust GN scheme. The main idea of our method is to keep the convex sub-
structure of the original problem unchanged and to convexify the non-convex
part by exploiting penalty theory and the GN framework. Hence, in contrast to
IPOPT, each iteration of our algorithm requires solving a convex subproblem,
which can efficiently be solved by many existing convex solvers.

The main contributions of the work are the following:

(i) We consider a quadratic reformulation of the AC-OPF problem, as in
[Jab08,ER99], and propose an exact penalty reformulation of the problem
in order to handle the non-convex equality constraints and a novel global
and robust GN algorithm for solving the corresponding problem.

(ii) For our optimization algorithm, we prove that its iterate sequence con-
verges globally (i.e. from any starting point) to a stationary point of the
underlying problem. We also estimate its best-known global sublinear
convergence rate.

(iii) We show that the newly developed algorithm can be implemented effi-
ciently on AC-OPF problems and test it on several numerical examples
from the well-known MATPOWER test cases [ZMST10, EDA18]. We
observe competitive performance to the well-established and widely-used
IPOPT solver.

Our algorithm is simple to implement and can be incorporated flexibly with
any available convex sub-solver that supports a warm start strategy in order
to gain efficiency.

Content The first part of the chapter is organized as follows. In Sec-
tion 2.2.2, we introduce our Gauss-Newton algorithm. In Section 2.2.3, we
present the AC-OPF problem, its quadratic reformulation and the application
of GN to AC-OPF, then illustrate through simulations the performance of our
algorithm in Section 2.2.4. Finally, Section 2.2.5 concludes the first part of the
chapter.
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2.2.2 A Gauss-Newton Algorithm for Non-Convex Opti-
mization

In this section, we rely on the following non-convex optimization problem:

min
x∈Rd

f(x) s.t. Ψ(x) = 0, x ∈ X . (2.1)

We present the main assumptions for (2.1), propose an exact penalty re-
formulation, and solve it using a Gauss-Newton-type algorithm. We further
characterize the global and local convergence rates of our algorithm.

2.2.2.1 Exact Penalty Approach for Non-Convex Programming

For the non-convex optimization problem (2.1), we assume that the objective
function f is convex and differentiable and X is a compact convex set. Note
that our method developed in the sequel can also be extended to non-smooth
convex function f or smooth non-convex function f whose gradient is Lipschitz
continuous, but we make this assumption for simplicity of presentation. Fur-
thermore, the non-convexity enters into the optimization problem through the
non-linear equality constraints Ψ(x) = 0 defined by Ψ : Rd → Rn. We assume
that Ψ is differentiable and its Jacobian Ψ′ is Lipschitz continuous, i.e. there
exists LΨ > 0 such that:

‖Ψ′(x)−Ψ′(x̂)‖ ≤ LΨ‖x− x̂‖ ∀x, x̂ ∈ X ,

where ‖ · ‖ is the `2-norm. Further, let NX denote the normal cone of the
convex set X :

NX (x) :=

{{
w ∈ Rd | w>(y − x) ≥ 0,∀y ∈ X

}
, if x ∈ X

∅, otherwise.

Since problem (2.1) is non-convex, our goal is to search for a stationary point
of this optimization problem that is a candidate for a local optimum in the
following sense.

Definition 2.2.1 ( [NW06], Theorem 12.9). A point (x∗,y∗) is said to be a
KKT point of (2.1) if it satisfies the following conditions:

−∇f(x∗)−Ψ′(x∗)y∗ ∈ NX (x∗), x∗ ∈ X , Ψ(x∗) = 0.

Here, x∗ is called a stationary point of (2.1), and y∗ is the corresponding
multiplier. Let S∗ denote the set of these stationary points.

Since X is compact, and Ψ and f are continuous, by the well-known Weierstrass
theorem, we have:

Proposition 2.2.1. If X ∩ {x | Ψ(x) = 0} 6= ∅, then (2.1) has global optimal
solutions.
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2.2.2.2 Exact Penalized Formulation

Associated with (2.1), we consider its exact penalty form [NW06, Chapt. 17.3]:

min
x∈X

{
F (x) := f(x) + β|Ψ(x)|1

}
, (2.2)

where β > 0 is a penalty parameter, and | · |1 is the `1-norm. Two reasons for
choosing an exact (non-smooth) penalty are as follows. First, for a certain finite
choice of the parameter β, a single minimization in x of (2.2) can yield an exact
solution of the original problem (2.1). Second, it does not square the condition
number of Ψ as in the case of quadratic penalty methods, thus making our
algorithm presented below more robust to ill-conditioning of the non-convex
constraints. Now, we summarize the relationship between stationary points
of (2.1) and of its penalty form (2.2). For this, let us define the directional
derivative:

DF (x∗)[d] := ∇f(x∗)>d+ βξ(x∗)>Ψ′(x∗)>d, (2.3)

where ξ(x∗) ∈ ∂|Ψ(x∗)|1 is one subgradient of | · |1 at Ψ(x∗)1, and ∂| · |1 de-
notes the subdifferential of | · |1, see [Nes07]. Recall that the necessary opti-
mality condition of (2.2) is

0 ∈ ∇f(x∗) + βΨ′(x∗)∂|Ψ(x∗)|1 +NX (x∗).

Then, this condition can be expressed equivalently as

DF (x∗)[d] ≥ 0, ∀d ∈ FX (x∗), (2.4)

where FX (x) is the set of feasible directions to X at x:

FX (x) :=
{
d ∈ Rd | d = t(y − x), ∀y ∈ X , t ≥ 0

}
.

Any point x∗ satisfying (2.4) is called a stationary point of the penalized prob-
lem (2.2). Stationary points are candidates for local minima, local maxima,
and saddle-points. If, in addition, x∗ is feasible to (2.1), then we say that
x∗ is a feasible stationary point. Otherwise, we say that x∗ is an infeasible
stationary point. Proposition 2.2.2 shows the relation between (2.1) and (2.2).

Proposition 2.2.2 ( [NW06], (Theorem 17.4.)). Suppose that x∗ is a feasible
stationary point of (2.2) for β sufficiently large. Then, x∗ is also stationary
point of the original problem (2.1).

Proposition 2.2.2 requires x∗ to be feasible for (2.1). When the feasible set
X∩{x | Ψ(x) = 0} 6= ∅ of (2.1) is nonempty and bounded, according to [DP94,
Proposition 2], if (2.1) satisfies the extended Mangarasian-Fromovitz constraint

1Any subgradient of the subdifferential would provide the same theoretical guarantee.
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qualification condition (see [DP94, Proposition 2] for concrete definition), then
there exists β∗ > 0 such that for any β > β∗, every global or local solution
of the penalized problem (2.2) is also a global or local optimal solution of
(2.1), respectively. By [DP94, Proposition 3], β needs to be chosen such that
β > β∗ := ‖y∗‖∞, where y∗ is any optimal Lagrange multiplier of (2.1). The
intuition of the claim ‘for β sufficiently large’ could be explained as follows:
assuming β = +∞, the only way to reach a minimizer of (2.2) is to have
Ψ(x) = 0 which is then a feasible point of (2.1). Now that β|Ψ(x)|1 = 0,
minimizing the objective of (2.2) leads to minimizing f(x), which is why it is
equivalent to solving (2.1).

2.2.2.3 Global Gauss-Newton Method

Our GN method aims at solving the penalized problem (2.2) using the following
convex subproblem:

min
x∈X

{
QL(x;xk) := f(x) + β|Ψ(xk) + Ψ′(xk)(x− xk)|1 + L

2 ‖x− x
k‖2
}

(2.5)

where xk is a given point in X for linearization, Ψ′(·) is the Jacobian of Ψ, and
L > 0 is a regularization parameter.

Note that our subproblem (2.5) differs from those used in classical penalty
methods [NW06], since we linearize the constraints and we also add a regular-
ization term. Thus, the objective function of (2.5) is strongly convex. Hence, if
X is nonempty and even if the problem is non-differentiable, this problem ad-
mits a unique optimal solution, and can be solved efficiently by several convex
methods and solvers. For instance, alternating direction methods of multipliers
(ADMM) [BPC+11] and primal-dual schemes [CP11] can be efficient for solv-
ing (2.5). Note that the convergence guarantees of ADMM and primal-dual
schemes often depends on the distance between the initial point xk,0 of the
algorithm and the exact optimal solution of x̄k+1 of (2.5), see, e.g, [CP11, The-
orem 2]. Hence, if we warm-start xk,0 at the previous approximate solution xk

obtained at the (k − 1)-th iteration, then the distance ‖x0 − x̄k+1‖ is small.
This allows the algorithm to converge faster to a desired approximate solution
xk+1 of (2.5) at the k-th iteration.

Let us define:
V L(xk) := argmin

x∈X

{
QL(x;xk)

}
. (2.6)

And the following quantities:

GL(xk) := L(xk − V L(xk)),
dL(xk) := V L(xk)− xk,
rL(xk) := ‖dL(xk)‖.

(2.7)

GL(·) can be considered as a gradient mapping of F in (2.2) [Nes07], and
dL(xk) is a search direction for Algorithm 1. The necessary and sufficient

30



2.2. A Gauss-Newton Algorithm for Solving AC-OPF

optimality condition for subproblem (2.5) becomes:[
∇f(V L(xk))−GL(xk) + βΨ′(xk)ξ(xk)

]>
(x̂− V L(xk)) ≥ 0, ∀x̂ ∈ X ,

(2.8)
where ξ(xk) ∈ ∂|Ψ(xk) + Ψ′(xk)(V L(xk)− xk)|1. Now, using the subproblem
(2.5) as a main component, we describe our GN scheme in Algorithm 1.

Algorithm 1 The Basic Gauss-Newton Algorithm

1: Initialization: Choose x0 ∈ X and a penalty parameter β > 0 sufficiently
large (ideally, β > ‖y∗‖∞, where y∗ is a dual optimal solution of (2.1)).

2: Choose a lower bound Lmin ∈ (0, βLΨ].

3: For k := 0 to kmax perform

4: Find Lk ∈ [Lmin, βLΨ] such that F (V Lk
(xk)) ≤ QLk

(V Lk
(xk);xk).

5: Update xk+1 := V Lk
(xk).

6: Update β if necessary.
7: End for

The global and local convergence analysis of Algorithm 1 is discussed in
Appendix 2.A.

The main step of Algorithm 1 is the solution of the convex subproblem (2.5)
at Step 4. As mentioned, this problem is strongly convex, and can be solved
by several methods that converge linearly. If we choose Lk ≡ L ≥ βLΨ, then
we do not need to perform a line-search on L at Step 4, and only need to solve
(2.5) once per iteration. However, LΨ may not be known or if it is known,
the global upper bound βLΨ may be too conservative, i.e. it does not take
into account the local structures of non-linear functions in (2.2). Therefore,
following the algorithm in [Nes07], we propose performing a line-search in order
to find an appropriate Lk. If we perform a line-search by doubling Lk at each
step starting from Lmin, (i.e., Lk → 2Lk), then after ik line-search steps, we
have Lk = 2ikLmin, and the number of line-search iterations ik is at most
blog2(βLΨ/Lmin)c + 1. A detailed discussion on tuning β and L are provided
in Appendix 2.B.

2.2.2.4 The Basic Gauss-Newton Algorithm versus IPOPT

We summarize in Table 2.1 the main differences between the GN scheme sug-
gested in this work and the classical interior point solver, IPOPT. To make
the comparison clearer, IPOPT is usually presented by writing an NLP in the
following format:

min
x∈Rd

f(x) s.t. Λ(x) = 0, x ≥ 0. (2.9)

where Λ is twice continuously differentiable.
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Table 2.1: Main differences between the proposed GN algorithm and IPOPT.

Aspect GN Algorithm IPOPT

Assumptions
on the non-
linear con-
straints

Ψ differentiable and Jacobian

Ψ′ Lipschitz continuous.

Λ twice continuously differen-

tiable.

Penalization It enters the scope of ‘penalty
methods’ and relies on pe-
nalizing the non-linear con-
straints using the `1-norm:

min
x∈Rd

f(x) + β|Ψ(x)|1

s.t. x ∈ X

It enters the scope of ‘barrier
methods’ and relies on a log-
arithmic penalization of the
variables (µ is a parameter2):

min
x∈Rd

f(x)− µ
d∑
i=1

ln(xi)

s.t. Λ(x) = 0

Iteration Consists of solving QCP (2.5).

This is efficiently solved by

the homogeneous and self-

dual algorithm which is imple-

mented in commercial solvers

like Mosek.

Consists of solving a barrier

problem, i.e. a system of

non-linear equations. Note

that a lot of strong features

of IPOPT are implemented to

accelerate the execution of one

iteration.

Global conver-
gence guaran-
tee

First order convergence guar-

antee to a stationary point

of (2.2).

Under mild assump-

tions [Wäc02], IPOPT

converges to a stationary

point of (2.9).

Our GN scheme and IPOPT are based on different approaches for solving
NLPs. Our GN scheme applies to more general problems but IPOPT offers
more accurate convergence guarantee (stationary point of the penalized prob-
lem (2.2) for GN as opposed to stationary point of the original nonconvex
problem for IPOPT) on the problem that is discussed here, namely AC-OPF.

2.2.3 Applying the GN Algorithm to AC-OPF

In this section, we present the OPF problem and its reformulation in a form
that obeys the structure presented in the previous section. We then perform
numerical experiments to validate the algorithm and compare it with IPOPT.

2µ is updated to tend to 0 when the algorithm converges. In the GN algorithm, β is fixed
to a large value and if updated, L increases within an iteration.
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2.2.3.1 Problem Settings

The starting point of our proposed GN method for solving problem OPFAC

(problem (1.6)) is the equivalent trigonometric reformulation of AC-OPF [ER99]
formulated as OPFAC-T (problem (1.11)).

In this reformulation, we have two non-convex equality constraints:

• Constraints (1.9a): Ψij
q (c, s) := c2ij + s2

ij − ciicjj = 0, ∀(i, j) ∈ L. We refer
to them as quadratic constraints.

• Constraints (1.9b): we slightly rewrite these constraints and cast them as
follows: Ψij

t (c, s,θ) := sin(θi − θj)cij + cos(θi − θj)sij = 0, ∀(i, j) ∈ L. We
refer to them as trigonometric constraints.

Since Ψ is the collection of (1.9a) and (1.9b), we show in the next lemma
that it is differentiable and that its Jacobian is Lipschitz continuous.

Lemma 2.2.1. For the AC-OPF problem, Ψ defined by (1.9a)–(1.9b), is smooth,
and its Jacobian Ψ′ is Lipschitz continuous with a Lipschitz constant LΨ, i.e.
‖Ψ′(x)−Ψ′(x̂)‖ ≤ LΨ‖x− x̂‖ for all x, x̂ ∈ X , where

LΨ := max
{

2,
(
1 + 2 max{v2

i | i ∈ B}
)1/2}

< +∞. (2.10)

Proof. From the definition of Ψ, it consists of two parts: quadratic forms in
(cij , sij) and trigonometric and linear forms in θij := θi − θj and (cij , sij),
respectively. We can write it as Ψ = [Ψq,Ψt]. Each function in Ψq has the
form c2ij + s2

ij − ciicjj , as shown by (1.9a), and each function in Ψt has the
form sin(θij)cij + cos(θij)sij , as shown in (1.9b). We can show that the second
derivative of each component of Ψq w.r.t. (cii, cjj , cij , sij) and of Ψt w.r.t.
(cij , sij , θij), respectively is

∇2Ψq(x) =


0 −1 0 0
−1 0 0 0
0 0 2 0
0 0 0 2

 , and

∇2Ψt(x) =

 0 0 cos(θij)
0 0 − sin(θij)

cos(θij) − sin(θij) −cij sin(θij)− sij cos(θij)

 .
The second derivative ∇2Ψq(x) is constant. Hence, the maximum eigenvalue
of ∇2Ψq(x) is λmax(∇2Ψq(x)) = 2. For any u := [u1, u2, u3] ∈ R3, and |.|
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denoting the absolute value, we can easily estimate that

u>∇2Ψt(x)u = u1u3[− sin(θij) + cos(θij)] + u2u3[cos(θij)
− sin(θij)] + [−cij sin(θij)− sij cos(θij)]u

2
3

≤ 1
2 (u2

1 + u2
3) + 1

2 (u2
2 + u2

3) + (|cij |+ |sij |)u2
3

≤ (1 + |cij |+ |sij |)(u2
1 + u2

2 + u2
3)

= (1 + |cij |+ |sij |)‖u‖2.

Therefore,

λmax

(
∇2Ψt(x)

)
= 1 + |cij |+ |sij | ≤ 1 + max {ci | i ∈ B}+ max {si | i ∈ B}

And from (1.10e), we have:

LΨ := max
{

2,
(
1 + 2 max{v2

i | i ∈ B}
)1/2}

< +∞,

which is (2.10).

Moreover, AC-OPF is written in the format of (2.1), where:

• x := (p, q, c, s,θ,fp,fq), f(x) :=
∑
g∈G

Cg(pg),

• Ψ(x) := (Ψij
q (c, s),Ψij

t (c, s,θ))

• and X := {x satisfies (1.10c), (1.10d), (1.10e), (1.5g), (1.6d)} is a convex set
gathering linear and second-order cone constraints.

We can now derive AC-OPF subproblems for GN. By using the following
equivalence,

min
z

|z|1 ⇐⇒ min
z,t

d∑
j=1

tj

s.t. z ∈ Z (⊆ Rd) s.t. zj ≤ tj
− zj ≤ tj
z ∈ Z, t ∈ Rd

we cast the objective of (2.5) as convex quadratic. We typically refer to an
SOCP as an optimization problem with second-order cone constraints and a
linear objective. As a consequence, the GN subproblem is a Quadratic Convex
Program (QCP). We are now in a position to apply GN to AC-OPF.
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2.2.3.2 A Practical Implementation of the GN Algorithm for OPF

In this section, the goal is to optimize the settings of the GN method. This will
allow us to derive a practical version of the GN algorithm, which we compare
to IPOPT.

Stopping criteria. We terminate Algorithm 1 in two occasions, which have
been validated through experimental results:

• If the maximum number of iterations kmax := 100 is reached.

• If the quadratic and trigonometric constraints are satisfied with a tolerance
of ε2, where ε2 := 1e−5. Concretely, we stop Algorithm 1 if:

max(‖Ψq(c
k, sk)‖∞, ‖Ψt(c

k, sk, θk)‖∞) ≤ ε2.

where ‖.‖∞ is the infinity norm. If the difference ‖xk+1−xk‖∞ < ε1 (ε1 := 1e−6

in the numerical experiment), then the last iterate might not be feasible for
(1.11). We then use the run-and-inspect strategy [CSY19]: (i) run until one
stopping criterion is reached, (ii) inspect if the solution obtained is feasible and
if not run GN one more time: the last iterate becomes the starting point of
GN and β is doubled.

SOCP relaxation for initialization. As mentioned previously, the quadratic
formulation is also used to derive the SOCP relaxation (1.14). In this relax-
ation, the angles θ are not modeled and the trigonometric constraints (1.9b)
are removed. Moreover, the non-convex constraints (1.9a) are relaxed to (1.13).
Solving this relaxation will provide a partial initial point (p0, q0, c0, s0) (and
θ0 = 0).

Parameter tuning strategies. Algorithm 1 presented above does not
require tuning the β and L parameters. In practice, tuning is crucial for im-
proving the performance of algorithms for constrained non-convex optimization,
including Algorithm 1. Several observations allow us to decrease the number of
iterations that are required for convergence: (i) according to Proposition 2.2.2,
large values of β ensure the equivalence between (2.1) and (2.2); (ii) quadratic
constraints and trigonometric constraints scale up differently; (iii) a careful
updating of L influences the number of times that subproblem (2.5) is solved.
These observations guide a detailed experimental investigation concerning the
choices of β and L parameters, which is discussed in Appendix 2.B.

Acceleration through warmstart. We observe that the subproblems
(2.5) are based on the same formulation, and only differ by slight changes
of certain parameters along the iterations. This motivates us to warm-start
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the subproblem (2.5) with a previous primal-dual iterate. In other words, we
initialize the solver for solving the subproblem (2.5) at the k-th iteration at the
solution xk−1 obtained from the previous iteration k − 1. Note that certain
solvers allow for initializing the dual values, so we also initialize the dual values
to the previous iterate.Warm-starting is indeed a key step in iterative methods,
including our GN scheme, and will be further analyzed in Section 2.2.4.2.

2.2.4 Numerical Experiments

In order to validate the proposed GN algorithm, our numerical experiments
are conducted in 2 steps: first, we launch simulations on several test cases of a
classical library (MATPOWER) and compare the GN algorithm with a state-
of-the-art non-convex solver (IPOPT); second, we show the potential benefit
of warm-start for our approach.

2.2.4.1 Illustration on MATPOWER Instances

We use the MATPOWER [ZMST10] library to have access to a wide range of
AC-OPF test systems that have been investigated in the literature. We test
our approach on instances whose size ranges between 1,354 and 25,000 nodes
(1354pegase has 11,192 variables and 27,911 constraints while ACTIVS25k has
186,021 variables and 431,222 constraints).

We benchmark our approach against IPOPT, a non-linear solver based on
the interior-point method. IPOPT is considered as the state-of-the-art solver
for this type of problem and serves as a benchmark in [CBS+18b, EDA18,
KFS18]. We make use of PowerModels.jl [CBS+18b], a Julia package that
can be used to solve AC-OPF instances of different libraries with different
formulations. In order to make a fair comparison, we initialize GN and IPOPT
using the SOCP solution.

The results of our analysis are presented in Table 2.2. In Table 2.2, for each
test case (first column), we report the objective value and the execution time
(in seconds). For GN, we also report the number of iterations. For IPOPT,
we report the solve time of the solver warm-started with the SOCP solution
and without warm-start (Basic). The last column provides the gap between
the GN solution and the IPOPT solution.

The first notable observation is that GN finds a stationary point (i.e. feasi-
ble) of the original AC-OPF problem for all 23 test cases. The stationary point
obtained by GN attains the same objective function value as the one returned
by IPOPT for most instances (a difference of 0.05% in the objective value may
be attributed to numerical precision) and the proposed method outperforms
IPOPT in some instances (e.g. 2737sop).

Our experiments further demonstrate that the GN method consistently re-
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Table 2.2: Comparison of the GN algorithm against IPOPT

Gauss-Newton IPOPT

Test Case # It Objective Time Objective
Time Time

Gap
(SOCP) (Base)

1354pegase 13 7.407e4 15.1 s 7.407e4 6.00 s 6.75 s 0.0 %
1888rte 14 5.981e4 25.9 s 5.980e4 59.0 s 53.7 s 0.0 %
1951rte 4 8.174e4 6.94 s 8.174e4 7.67 s 22.0 s 0.0 %
ACTIVSg2000 5 1.229e6 8.39 s 1.229e6 14.8 s 24.3 s 0.0 %
2383wp 19 1.868e6 51.0 s 1.868e6 21.6 s 19.2 s 0.0 %
2736sp 4 1.307e6 10.9 s 1.308e6 13.3 s 14.4 s -0.1 %
2737sop 3 7.767e5 7.77 s 7.778e5 9.98 s 12.2 s -0.1 %
2746wop 17 1.208e6 38.1 s 1.208e6 12.8 s 12.9 s 0.0 %
2746wp 3 1.631e6 6.89 s 1.632e6 16.0 s 14.2 s -0.1 %
2848rte 17 5.303e4 52.0 s 5.302e4 74.3 s 142 s 0.0 %
2868rte 4 7.980e4 9.11 s 7.979e4 29.3 s 63.1 s 0.0 %
2869pegase 12 1.340e5 41.9 s 1.340e5 15.5 s 35.8 s 0.0 %
3012wp 8 2.593e6 25.2 s 2.592e6 18.8 s 23.4 s 0.0 %
3120sp 13 2.142e6 41.2 s 2.143e6 19.2 s 22.2 s 0.0 %
3375wp 8 7.413e6 34.7 s 7.412e6 21.3 s 24.4 s 0.0 %
6468rte 19 8.685e4 187 s 8.683e4 103 s 139 s 0.0 %
6470rte 11 9.835e4 89.3 s 9.835e4 144 s 129 s 0.0 %
6495rte 12 1.063e5 180 s 1.063e5 52.4 s 121 s 0.0 %
6515rte 18 1.098e5 204 s 1.098e5 86.9 s 104 s 0.0 %
9241pegase 17 3.167e5 894 s 3.159e5 368 s 117 s 0.3 %
ACTIVSg10k 6 2.488e6 117 s 2.486e6 93.4 s 355 s 0.1 %
13659pegase 19 3.885e5 137 s 3.861e5 685 s 710 s 0.6 %
ACTIVSg25k 16 6.033e6 1,740 s 6.018e6 544 s 398 s 0.3 %

quires a small number of iterations3 (less than 20) in a wide range of instances.
This is critically important to further accelerate the performance of our method
if we appropriately exploit warm-start strategies and efficient solvers for the
strongly convex subproblems. In terms of computational time, the performance
is shared between the two approaches, and it appears like warm-starting IPOPT
with the SOCP solution decreases the execution time for most of the instances
but can sometimes have the opposite effects (for example 9241pegase). Nev-
ertheless, some instances reveal limitations of the GN algorithm, compared
to IPOPT (6495rte, 9241pegase and ACTIVSg25k for example): when the
solution of a subproblem becomes time-consuming because of the size of the
subproblem, GN might require a larger execution time. We use Gurobi for
solving subproblem (2.5), because it is one of the most stable QCP solvers that
are available.

3One iteration involves going through instructions 4, 5 and 6 of the loop 3-7 in Algorithm 1.
This means that one or several optimization problems might be solved in one iteration.
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Unfortunately, Gurobi (and IPMs for QCPs in general) does not support
warm-start4, which would have significantly decreased the computational time.
One alternative is to use an ADMM solver that supports warm-start. However,
ADMM solvers are not mature enough to test large-scale problems. Implement-
ing an efficient subsolver is out of the scope of this work, however we are able
to analyze the effect of warm start on these solvers which is the subject of the
next section.

2.2.4.2 The Effect of Warm-Start Strategies

We consider using OSQP [SBG+20] as an ADMM solver. Since OSQP is not as
mature as commercial solvers like Gurobi and IPOPT, we only consider small
test cases (39 epri and 118 ieee). The results are presented in Table 2.3.
From left to right, # It reports the number of GN iterations, # ADMM It
reports the total number of ADMM iterations performed during the GN exe-
cution, and Time reports the sum of OSQP solve times along the iterations in
seconds.

Table 2.3: Results with and without warm-start on 2 small instances using OSQP.

No warm-start With warm-start
Test Case # It # ADMM It Time # It # ADMM It Time
39 epri 4 114,735 4.65 s 4 56,988 2.15 s
118 ieee 4 162,251 29.2 s 4 65,832 11.6 s

For both cases, we observe that warm start divides the total number of
ADMM iterations as well as solve time by more than a factor of 2, and almost
by a factor of 3 for 118 ieee.

We also examine each GN iteration individually, and highlight the impact
of warm-start on the number of ADMM iterations in Figure 2.1. To help with
the understanding of Figure 2.1, the run of GN with ‘No Warm-start’ takes
100% (in blue) of the ADMM iterations and we measure the number of ADMM
iterations of ‘With Warm-start’ relative to ‘No Warm-start’. On the left graph,
2-2 represents the second subproblem that has to be solved at iteration 2 of
GN due to an update of L: thanks to warm-start, 75% of ADMM iterations
were saved for this particular subproblem. Note that we warm-start dual and
primal variables only after iteration 1. Warm-start decreases substantially the
number of ADMM iterations in two cases:

4Note that since there are still second order cone constraints in (2.5) (in set X ), it is not
possible to use an active-set algorithm [FKP+14] to exploit warm-start.
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(i) When L is updated. Indeed, updating L only results in slightly changing
the objective function. One expects the previous iterates to provide a
good warm-start. This is confirmed in Figure 2.1, where we observe that
the number of ADMM iterations is divided by at least a factor of 2 every
time L is updated.

(ii) When the last iterates are computed. Intuitively, one does not expect
iterates to change substantially when approaching the optimal solution.
This intuition is confirmed by Figure 2.1. For the particular case of the
last iterate, for 39 epri (resp. 118 ieee), the required number of ADMM
iterations is less than 20% (resp. 30%).

This investigation suggests that, with a mature ADMM solver, warm-starting
is a promising feature for improving the performance of GN on large test cases.

Figure 2.1: Evolution of the percentage of ADMM iterations along the iterations
for 39 epri (left) and 118 ieee (right). ‘No Warm-start’ always implies 100% and
the percentage of ADMM iterations ‘With Warm-start’ is measured relatively to ‘No
Warm-start’. GN iterations are shown on the x axis in an a−b format: a is the actual
GN iteration and b represents the bth subproblem that had to be solved at iteration
a because of an update of L.

2.2.5 Conclusion

We propose a novel Gauss-Newton algorithm for solving a general class of
optimization problems with non-convex constraints. We utilize an exact non-
smooth penalty reformulation of the original problem and suggest an iterative
scheme for solving this penalized problem which relies on the non squared
Gauss-Newton method. The subproblems of our proposed scheme are strongly
convex programs, which can be efficiently solved by numerous third-party con-
vex optimization solvers.

We apply our approach to solve AC-OPF, which is a fundamental and ubiq-
uitous problem in power systems engineering, and we propose numerous strate-
gies for tuning our GN scheme, initializing the algorithm, and warm-starting
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the resolution of the subproblems that are treated by our proposed method.
We perform extensive numerical experiments on a large set of instances from
the MATPOWER library, and demonstrate the competitive performance of
our method to IPOPT, which is a state of the art non-linear non-convex solver.
This analysis validates the theoretical analysis of our proposed GN scheme,
and proves its effectiveness in practical applications.

2.3 Stochastic AC OPF: A Data-Driven Approach

2.3.1 Introduction

Modern power systems are faced with significant uncertainty in power genera-
tion and demand. This is due to the increasing integration of renewable energy
resources like wind and solar, and growth of demand side participation and
distributed energy resources at the sub-transmission and distribution levels.
As a result, uncertainty management has become a critical component in the
operational planning stage, where generators and controllable elements must
be dispatched in a way that the system remains within its safety limits despite
uncertain fluctuations. In the literature, the issue is addressed by consider-
ing variants of the optimal power flow problem that incorporate the effect of
uncertainty. These formulations take the form of either a stochastic or robust
optimization problem, where a limit on some chosen measure of risk is explicitly
enforced.

All uncertainty-aware OPF formulations pose significant computational chal-
lenges, most of which can be traced back to the non-linear nature of the AC
power flow equations. The two primary challenges are (i) quantifying the effect
of uncertainty on the system – it is difficult to precisely express the variation of
the dependent physical quantities in the system such as voltage magnitudes and
line currents as a function of the uncertainty, and (ii) formulating a sufficiently
compact optimization that integrates the uncertainty quantification while still
being tractable. These challenges have been echoed in several recent publi-
cations on the topic [RA17, MRH+19], and several solution approaches have
been proposed. Broadly, we can classify these approaches into two types (i)
approximations to the AC power flow equations, and (ii) Monte Carlo methods.

Power flow approximations: These classes of approaches aim at simpli-
fying the task of uncertainty quantification by full or partial approximations
to the power flow equations. These include linear approximations of the power
flow such as the DC approximation [SJA09] and a first order Taylor expan-
sion [DBC17]. Using these approximations greatly improves tractability, in
particular for risk metrics that can be expressed as a convex program. Many
publications [RA17, LS17, MR18, VHM+17, MRH+19, DBS17] have attempted
to incorporate the AC power flow equations. In [RA17], only a partial lineariza-
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tion is considered, where the variables follow the full non-linear AC-PF while
the effect of uncertainty is expressed via linearization. The resulting method
is much more accurate than full linearization, but can lose fidelity when the
magnitude of the uncertainty is large. More recently, an approach based on
polynomial chaos expansion [MRH+19] has been proposed that is highly accu-
rate but computationally challenging. In summary, approaches based on power
flow approximation trade-off accuracy for scalability – the brief review men-
tioned above cites methods with high scalability - low accuracy to low scalability
- high accuracy.

Monte Carlo methods: These methods quantify the effect of uncertainty
on the system by solving the power flow equations for a large number of real-
izations drawn from the uncertainty distribution. When the number of sam-
ples used is sufficiently large, Monte Carlo provides excellent accuracy. The
primary challenge however lies in integrating Monte Carlo into an optimiza-
tion formulation without exploding the size of the problem and the associated
computational time. In this context, the most widely used approach is the
so-called scenario approach where an extended OPF problem is formulated
by incorporating a specified number of scenarios from the distribution, and
robustness to each scenario is enforced via constraints. Several theoretical
results [CC06, VMLA13] (primarily for convex formulations with chance con-
straints) provide guidelines on how many random samples should be used to
achieve the desired probability of constraint violation. The main drawback
of the approach is that random sampling based approaches, specifically for
non-linear and non-convex optimal power flow problems, quickly result in the
optimization problem becoming computationally intractable for practical cases.

Contribution: In this work, we adopt the scenario-based approach de-
scribed above. However instead of including scenarios collected randomly, we
use system knowledge and data-driven tools to drastically reduce the number
of scenarios required to solve the problem. This keeps the primary benefits
of the scenario approach – accurate uncertainty quantification, agnosticism
to uncertainty distribution, etc., while significantly boosting its scalability.
Our approach is an advanced iterative procedure similar to scenario genera-
tion algorithms common in problems such as power systems expansion plan-
ning [MSC+17]. The algorithm iteratively adds more scenarios to the scenario-
based OPF until a security criterion, assessed by a sufficient number of Monte
Carlo samples, is satisfied. Note that since the assessment of scenarios does
not involve solving the OPF, scalability is not compromised and the procedure
can heavily exploit availability of parallel computing capabilities. Following
the scenario assessment, what is added back to the OPF, in each iteration, is
a well-chosen subset of ‘modified’ scenarios. To determine the ‘modified’ sce-
narios, we first develop metrics for sub-selecting a very small portion of critical
scenarios based on constraint violation. Second, we use regularized linear re-
gression to identify the directions of uncertainty that are the most adversarial
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for each violated constraint. We then boost the chosen critical scenarios along
the directions identified and add them back to the OPF formulation for the
next iteration. We show through several case studies that this data-driven pro-
gram significantly reduces the scenario size requirements over vanilla random
sampling - with ∼ 30 scenarios we are able to find a secure solution to the
stochastic OPF for the large 1354-bus system. In summary, our contribution
in this work is a suite of data-driven tools to efficiently solve the stochastic
OPF problem with a scenario-based approach. The features used in our sce-
nario selection procedure can be tuned based on historical knowledge/expertise
available with an operator.

2.3.2 Problem Formulation

In this section, we provide details of modeling a power system subject to uncer-
tain power injections, the corresponding generation recourse policy and details
of the stochastic OPF formulation.

2.3.2.1 Power System Under Uncertainty

We consider a power network (B,L). Without loss of generality, for the re-
maining of this chapter, we assume (i) at most one generator at each location
(|Gi| = 1, i ∈ B), (ii) that the net power injections, Dp

i and Dq
i at each bus

i ∈ B, are subject to uncertainty. Consider an uncertainty realization ω in
the possibly unknown/non-parametric set Ω. The set of power flow equations
under uncertainty ω is slightly different from (1.5b)-(1.5e) and given by:

pi(ω)− (Dp
i + µpi (ω)) =

∑
(j=δ(i)

fpij(ω) +Gsiv
2
i (ω), ∀i ∈ B (2.11a)

qi(ω)− (Dq
i + µqi (ω)) =

∑
j=δ(i)

fqij(ω)−Bsi v2
i (ω), ∀i ∈ B (2.11b)

fpij(ω) = −Gijv2
i (ω) +Gijvi(ω)vj(ω) cos(θi(ω)− θj(ω))

+Bijvi(ω)vj(ω) sin(θi(ω)− θj(ω)) ∀(i, j) ∈ L ∪ LR (2.11c)

fqij(ω) = Bijv
2
i (ω) +Gijvi(ω)vj(ω) sin(θi(ω)− θj(ω))

−Bijvi(ω)vj(ω) cos(θi(ω)− θj(ω)) ∀(i, j) ∈ L ∪ LR (2.11d)

In (2.11), µpi (ω), µqi (ω) denotes the active and reactive power fluctuations at
bus i, under uncertainty ω. All other variables in the system are explicitly
expressed as a function of the uncertainty realization.

Recourse Model: For a non-zero realization of uncertainty, the generators
in the system must adjust their generation to maintain total power balance
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and feasibility. We use an affine policy representing the automatic gener-
ation control (AGC) that is representative of current power system opera-
tion [ROKA13]. Using affine policies is one of the most straightforward ways
to handle uncertainty in power systems and it offers several advantages such
as keeping the problem tractable and being easily implementable, among oth-
ers [ROKA13,BCH14,RMKA16].

pg(ω) = p0
g +

(∑
i∈B

µpi (ω)

)
αg, ∀g ∈ PV, ∀ω ∈ Ω (2.12a)

vg(ω) = v0
g , ∀g ∈ PV, ∀ω ∈ Ω (2.12b)

Equation (2.12a) shows the linear adjustment in the active power generation
of generator g from its nominal value of p0

g as a fraction of the total power mis-
match

∑
i∈B

µpi (ω) caused by the uncertainty, according to its participation factor

αg. In this work, we consider the participation factors to be given and fixed.
For simplicity, we assume αg = 1

|G| , although this specific choice is not rele-

vant for our method. Assuming that the participation factor is not a decision
variable of the problem is common practice [ROKA13]. Equation (2.12b) says
that the voltage magnitudes at PV buses are kept constant during operation,
and is in accordance with current practice.

2.3.2.2 Stochastic Optimal Power Flow Formulations

In this section, we present the stochastic optimal power flow problem in a
generic form. Since our solution approach involves a Monte Carlo in-the-loop
validation step, we have the flexibility to handle a variety of such formulations.
We state the set of inequality constraints in the OPF representing the standard
safety limits on line flows, phase angle difference at neighboring buses, and bus
injections and voltages that need to be enforced.

ΓOPF = {x = (p, q, v, θ, fp, fq) | (v, θ, fp, fq) ∈ OC and (pg, qg) ∈ GCg, ∀g ∈ G}
(2.13a)

In the above definition, ΓOPF denotes the set of all power flow solutions that
satisfy the safety limits given in (2.13).

Dependent and independent variables: For clarity of exposition, we first specify
which variables in the stochastic OPF are controllable/independent and which
variables are dependent. Suppose that the nominal values of generation p0

and voltages v0 at the PV buses have been determined. Assume that for
each realization of the uncertainty ω, the generators react according to the
recourse policy in (2.12). Then given ω, Equations (2.12), fully determine the
active power generation and voltage magnitude pi(ω), vi(ω) at all PV buses.
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The (known) functions µpi (ω), µqi (ω) fully determine all real and reactive power
injections pi(ω), qi(ω) at the PQ buses. Once these variables are specified, we
are in the standard Power Flow setting, and the set of equations in (2.11) fully
specify the value of the rest of the variables – qi(ω), θi(ω) at the PV buses, and
vi(ω), θi(ω) at the PQ buses, and all line flows fpij(ω), fpij(ω). We summarize
this functional mapping using the following notation:

(p(ω), q(ω), f(ω), v(ω), θ(ω)) = PF
(
p0, v0, ω;α

)
. (2.14)

A stochastic optimal power flow problem in generic form corresponds to finding
a set of nominal set point values for the active power generation p0 and volt-
age magnitude v0 such that a certain cost is minimized, and some stochastic
measure of power flow violation for a given uncertainty distribution is below a
required limit ε. This is made precise in the formulation below:

min
p0,v0

∑
g∈G

Cg(p
0
g) (2.15a)

s.t. SV = EPω

[
V
(

PF
(
p0
g, v

0, ω;α
)
,ΓOPF

)]
≤ ε. (2.15b)

Equation (2.15a) specifies the objective that minimizes the total nominal gen-
eration cost. This is for simplicity. It is possible to incorporate the cost of
reserves in a straightforward way. Equation (2.15b) enforces that some stochas-
tic violation measure is bounded. The stochastic violation measure SV is the
expectation of some violation measure V() with respect to Pω which denotes
the probability distribution of the uncertainty ω. The violation measure V() is
a function of the uncertainty dependent power flow variables (first argument)
and the feasibility/safety region (second argument), and is used to quantify how
far the uncertain power flow variables are from the feasible region. Note that
the generic formulation in (2.15) includes common cases, such as, Chance Con-
strained OPF (CCOPF) [BCH14]. Chance-constrained models in electricity
markets are starting to gain attention [CS18] and such constraints are increas-
ingly appearing in practice. A chance-constrained formulation enforces that
the probability of constraint violation is smaller than a specified value and
corresponds to:

V
(

PF
(
p0
g, v

0, ω;α
)
,ΓOPF

)
= 1

(
p(ω), q(ω), f(ω), v(ω), θ(ω) /∈ ΓOPF

)
, (2.16)

SV = Pω

(
p(ω), q(ω), f(ω), v(ω), θ(ω) /∈ ΓOPF

)
, (2.17)

where 1() denotes the indicator function.
Closed-form analytic expressions for the stochastic constraint in (2.15b) are

not easy to derive for the AC-PF model under general uncertainty distributions.
To overcome intractability, data driven scenario OPF can be formulated.
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2.3.2.3 Scenario OPF (S-OPF)

Scenario approach [CC06, VMLA13] collects a set ΩN of N random samples
for the uncertainty ω ∈ Ω. By definition, the base case ω = 0 is included in set
ΩN , and the user is assumed to have access to a scenario generation/sampling
process (from historical data or otherwise). We then solve an OPF problem
with hard feasibility constraints for each selected scenario as denoted below.

min
p0,v0

∑
g∈G

Cg(p
0
g) (2.18a)

s.t. ∀ωi ∈ ΩN , PF
(
p0
g, v

0, ωi;α
)
∈ ΓOPF (2.18b)

By ensuring feasibility for a large-enough and representative sample set ΩN ,
S-OPF can indirectly guarantee the stochastic violation constraint (2.15b).
Problem (2.18) provides a robust formulation if one were to consider ΩN as
the uncertainty set. A careful choice of the scenarios to be added to ΩN leads
to a solution of the stochastic version (2.15) on the original set Ω. This is
what is experimentally demonstrated in this chapter. Theoretical bounds on
the size of the sample set necessary to ensure SV() ≤ ε and related design of
box constraints exist for convex optimization problems [CC06, MGL14], but
are not generalizable to AC-OPF. As demonstrated later, the number of sam-
ples to ensure low stochastic violation quickly grows. This makes the standard
S-OPF in (2.18) computationally intractable for realistically sized test cases.
Existing scenario selection methods pick a sub-set of scenarios from the ones
available, randomly [CDT+15] or by minimizing an inter-distribution distance
such as Wasserstein metric [GKHR03]. Similarly, mixed-integer programs have
been proposed to pick a sub-set of scenarios inside chance-constrained optimiza-
tion [DGKR03]. However the number of selected scenarios necessary, or the
mixed-integer programs themselves, still involve a large computational require-
ment for AC- OPF. In this work, we take a different approach where system
knowledge and data-driven techniques are combined to design (not just select)
strategic scenarios that lead to a drastically more efficient scenario OPF.

2.3.3 Data-Driven Scenario OPF

The overarching goal of our approach is to determine an optimized scenario set
ΩN of far lesser cardinality, compared to random sampling, so that a tractable
scenario OPF solution with stochastic violations below prescribed threshold
can be be determined. We propose an algorithm called Data-Driven Scenario
OPF (DDS-OPF):

45



Algorithms for Deterministic and Stochastic AC-OPF

Algorithm 2 DDS-OPF

1: Initialization: Solve S-OPF (2.18) using rated loads Dp
i , D

q
i (|ΩN | = 1)

to get (p0, v0);
2: Monte Carlo: Sample a set of permissible scenarios S of size S according

to Pω. Solve the PF with recourse for each scenario;
3: Stopping criterion check: Check if the estimated stochastic violation

measure S̃V is below pre-selected threshold, S̃V = 1
S

S∑
i=1

V(∗, ωi) < τ . If

yes, exit;
4: Scenario construction: Use data-driven methods to design K < S sce-

narios to add to ΩN ;
5: Update: Compute new solution (p0, v0) for (2.18) with ΩN . Go to Step

Monte Carlo;
6: return p0, v0.

Note that we sample a new set S each time the Monte Carlo step is exe-
cuted. The threshold τ used in DDS-OPF is selected based on the properties
of the stochastic violation measure SV(), pre-fixed ε bound (see (2.15b)), and
the confidence requirement. Theoretical confidence bound on the solution for
selected τ is given in Section 2.3.3.3. All numerical experiments focus on the
case when SV() corresponds to the probability of constraint violation. For
that, the estimated stochastic violation measure S̃V simply corresponds to the
fraction of samples in S, for which the constraints are violated. Note that the
success of Algorithm 2 depends on the solvability of (2.18) in the Update step.
Indeed, if ΩN is too large, problem (2.18) becomes untractable. This is why
step Scenario construction is crucial to keep ΩN at a reasonable size and
this is the main focus of our discussion in the next paragraphs.

The rest of the section is focused on describing the critical Step 4 in DDS-
OPF. To guide intuition, we use computations on the pglib opf case73 ieee rts

test-case in the OPF Power Grid Library [BBC+19]. This case has 73 buses,
120 lines and 51 loads. We assume that Pω is a uniform distribution within
a box, i.e., for each load i ∈ B we have µpi (ω) ∼ U [−0.03Dp

i , 0.03Dp
i ] and

µqi (ω) ∼ U [−0.03Dq
i , 0.03Dq

i ], where U denotes the uniform distribution, and
Dp
i , D

q
i are the rated active and reactive demands.

Table 2.4 shows the performance of the vanilla scenario approach where
randomly drawn samples are included in the set ΩN

5. Note that a non-trivial
number of violations are still obtained despite 50 scenarios. This high sample
requirement prevents tractability for realistic test-cases. Note also that since
we rely on a box uniform distribution, we can compute the solution with 5
scenarios which are the central scenario and the four extreme scenarios (each

5The results are obtained for only one run of samples and explains how on this run having
20 scenarios performs better than 30 (same with 40 and 50).
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Table 2.4: Feasibility on 1, 000 out-of-sample scenarios for DDS-OPF with randomly
sampled ΩN with K = 10, for 73-bus test system.

|ΩN | − 1 1 10 20 30 40 50
P 1000
vio 100% 59.5% 25.0% 32.3% 8.00% 12.2%

Cost 1.904e5 1.948e5 1.948e5 1.948e5 1.948e5 1.948e5

corner of the box). For this scenario set, the infeasibility rate reaches 16.0%
which is still high.

To improve over random sampling, our proposed scenario construction in
Step 4 includes 2 key sub-steps:

(a) PF-aware scenario selection: We use prioritization metrics to down-select
dominant scenarios.

(b) Data-driven scenario enhancement : For scenarios selected in (a), we iden-
tify critical directions that maximize their effect on S-OPF, and modify
them (stretch or squeeze) along these directions before adding to ΩN .

A schematic representation of our overall approach is shown in Fig. 2.2. In
what follows, we describe in detail, the motivation and important features of
scenario construction sub-steps and use the 73-bus test system to demonstrate
improvements.

2.3.3.1 PF-Aware Scenario Selection

A random scenario, that is already feasible for the current solution (p0, v0),
is less likely to be effective for feasibility improvement than a scenario that
has multiple constraint violations during recourse. We use information about
constraint violations to sub-select a small number of dominant scenarios from
set S in Step 2 to add to the scenario set ΩN . Fortunately, the infeasible
scenarios and their corresponding constraint violations are already acquired
while validating the performance of (p0, v0) in Step 3.

Dominant scenario selection. We consider three different prioritization
criteria:

• Maximum violation (MV). Scenarios having the largest constraint viola-
tion, measured relative to bound value.

• Number of constraints (NC). Scenarios violating the maximum number
of constraints.
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Stopping Criteria

Check number/measure of 

stochastic violations  

Scenario enhancement 

Identify directions d for max 

constraint violation. Modify the  

K scenarios in along d

Initialization 

Get          from S-OPF  

with rated loads

Scenario selection

Pick K scenarios from to      

via constraint violation criteria

Update 

Get          from S-OPF with
Generate scenario-set    .

Solve PF-recourse for each 

scenario.

Monte Carlo

Stop 

Figure 2.2: Schematic of DDS-OPF. The scenario construction sub-steps are high-
lighted within the green box.

• Hybrid. Scenarios that have the highest weights = MVs

max
s′∈S

MVs′
+ NCs

max
s′∈S

NCs′
,

where MVs is the largest violation of a constraint, and NCs is the number
of constraints violated, by scenario s.

We avoid selecting a new scenario that violates the same set of constraints as
a previously selected (dominating) scenario. Such avoidance ensures that a
greater proportion of constraint violations are represented in ΩN .

Batch size selection. While the prioritization criteria rank the scenarios
according to their dominance, the number of samples K that are added back
to ΩN still needs to be decided and can have a significant impact on overall
efficiency. When K is too small the total number of iterations can be large since
we are adding very little information to the problem in each iteration. On the
other hand, when K is too large, the size of the resulting S-OPF can quickly
make it intractable and there is the risk of ‘oversatisfying’ the probabilistic
constraint (2.15b). These observations are confirmed in Figure 2.3 for the
73-bus system. Based on these observations, we decide that a batch size of
K = 5 provides the right trade-off across a variety of test cases (later confirmed
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in section 2.3.4). Note that the number of final scenarios is often less than
#iterations∗K+ 1, since in each iteration, only one of multiple scenarios that
violate the same set of constraints, is added to ΩN . In other words, if a given
set of constraints is violated by multiple samples, we only need to add one of
them to ΩN . This feature is analogous to observations in [NMRB18,DM19] on
a sparse set of active constraints in OPF.

Figure 2.3: Number of iterations and final size of ΩN when the algorithm has con-
verged for different choices for K, number of selected scenarios per iteration, for the
73-bus system. These are average numbers out of 10 runs of DDS-OPF.

Results for 73-bus case. We use dominant scenario selection in DDS-
OPF with S = 1000, K = 5 and τ = 0 and show the results in Table 2.5.
Compared to the results for the random sampling in Table 2.4, we have signif-

Table 2.5: Feasibility on 1, 000 out-of-sample scenarios for DDS-OPF with scenario
selection with K = 5, for 73-bus test system.

Policy # Iterations |ΩN | P 1000
vio

MV 5 20 0.1 %
NC 7 28 0 %
Hybrid 8 29 0 %

icantly improved performance for each of the three proposed criteria. Indeed,
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at most 29 scenarios are able to reduce the number of infeasible scenarios to
almost zero on out-of-sample testing6.

2.3.3.2 Data-Driven Scenario Enhancement

Note that while Section 2.3.3.1 allows us to select scenarios through prioriti-
zation metrics, we do not modify the generated scenarios. In this section, we
present data-driven enhancements to selected scenarios before adding them to
ΩN , that make our approach more efficient and amenable for large test-cases.
Based on preliminary tests on multiple cases, we observe that violations of a
given constraint are primarily caused by a small subset of load fluctuations.
Further, there are certain critical directions for these load fluctuations that
maximize violation. We now describe our method to identify this subset of
loads and the critical directions, and a procedure to enhance the selected sce-
narios along these critical directions to make them more effective in enforcing
feasibility.

Identifying critical components and directions. Our approach to crit-
ical component identification relies on regularized linear regression [WJ+08], as
described next. Consider selected scenario t = (µp(t), µq(t)) that we intend to
enhance. Let Ct be the set of constraints violated by t during recourse. For each
c ∈ Ct, let Sc (⊆ S) be the set of random samples that violate constraint c, and
define the relative violation usc for sample s = (µp(s), µq(s)). We approximate
a sparse linear map between the active and reactive load fluctuations in buses
B, and violation for constraint c ∈ Ct. The critical components and directions
are identified via the vector dc = {d0} ∪ {di, i ∈ B}, computed as follows:

dc = arg min
d

∑
s∈Sc

usc − (d0 +
∑
i∈B

r=(p,q)

driµ
r
i (s))


2

+ λ|d|1.

Here λ > 0 is a regularization coefficient used with the `1 norm to promote
sparse solutions. This is an unconstrained convex optimization problem that
can be easily solved, including in parallel for each selected scenario t and con-
straint c.

Scenario enhancement. Using the critical directions identified, we de-
scribe the scenario enhancement procedure for the special case when the un-
certainty is a uniform distribution over a box. There are variations possible

6We do not increase the number samples because we explain the main steps of our method-
ology on the 73-bus system before testing larger test systems.
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for other distributions, which we do not pursue in the work. The enhancement
operation for scenario t is given below:

∀i ∈ B, r = (p, q), if |dri | < τ2 then µri (t)← µri (t)

else µri (t)←
{
µri if dri > τ2.
µri if dri < −τ2.

where τ2 > 0 is a positive threshold.
Note that the enhancement step changes entries in scenario t to their maxi-

mum or minimum values, based on the sign of non-trivial entries in dc. This is
done as the signs in dc reflect positive or negative directions to maximize vio-
lation. In settings where the maximum values of µpi , µ

q
i are not known, one can

change it by a factor of the current entries (akin to a gradient based change).
In this work, we use τ2 = 1e−4 for our simulations. By increasing the threshold
τ2, the changes in t can be made more sparse.

Results for 73-bus case. In addition to scenario selection of Section 2.3.3.1,
we now use the scenario enhancement technique on the 73-bus test case. The
results are presented in Table 2.6. We observe that the addition of scenario
enhancement significantly reduces (more than 60%) the number of samples nec-
essary for convergence of DDS-OPF. The combined impact of scenario selection
and scenario enhancement steps over random sampling is evident from com-
parisons with Table 2.4. Using at most 11 optimized scenarios, our proposed
method is able to bring down infeasibility in out-of sample testing from 50%
to 0.

Table 2.6: Feasibility on 1, 000 out-of-sample scenarios for DDS-OPF with scenario
selection & scenario enhancement with K = 5, for 73-bus test system.

Policy # Iterations |ΩN | P 1000
vio

MV 1 6 0 %
NC 2 11 0 %
Hybrid 2 11 0 %

2.3.3.3 Monte-Carlo Step, Confidence Bounds, and Scaling

In this section, we provide a theoretical confidence bound on the quality of
the solution obtained from DDS-OPF based on the stopping criterion τ em-
ployed in step 3. The proof relies on an application of the Hoeffding inequal-
ity [WJ+08].

Theorem 2.3.1. Suppose that for all nominal power flow solutions in ΓOPF
and for all ω ∈ Ω, the violation measure satisfies |V()| ≤M . Then the solution
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(p0, v0) obtained from DDS-OPF with stopping criterion τ and sample size S
satisfies

Pω

(
SV < τ + αS−1/2

)
> 1− δ, where α =

√
2M2 log(1/δ).

Proof. Since V(∗, ω) is a random variable as a function of uncertainty realiza-
tion ω bounded byM (the dependence on other non-random quantities has been
suppressed for clarity). By using the Hoeffding inequality [WJ+08] for (2.15b),
we get for any t > 0,

Pω

(
SV > 1

S

S∑
i=1

V(∗, ωi) + t

)
≤ exp

(
−St2/2M2

)
.

The proof follows by using t = αS−1/2.

Theorem 2.3.1 shows how the stopping criterion translates to the quality
of the solution. A critical advantage of DDS-OPF is the Monte-Carlo-in-the-
loop step 2. This is different from the vanilla scenario approach, where the
random samples drawn from Pω are incorporated into S-OPF. In contrast, in
DDS-OPF the samples used in step 2 to evaluate the current solution p0, v0

are independent from the samples used in the prior iteration to obtain p0, v0

(step 5 or step 1 in the first iteration). This results in fast convergence rates
obtained via Theorem 2.3.1.

In all our experiments in Section 2.3.4, we choose S = 1000 and τ = 0
with SV = probability of violation. Since the probability is always smaller
than 1, we have M = 1. By applying Theorem 2.3.1, we can guarantee with
confidence 95%, that all solutions obtained in this work satisfy the joint chance
constraints with probability 99%. This reliability level is in line with standard
reliability targets envisioned in EU legislation and among European TSOs in
practice [otNsa18,DVSD+19].

The Monte-Carlo step involves solving a series of power flows. Since the
loading conditions resulting from uncertainty are still in the vicinity of the
nominal load, warm-start methods can be used to solve a large number of power
flows quickly. Further, this easily lends itself to parallelization, resulting in even
further reduction in computation time. As a result, most of the computational
complexity of DDS-OPF lies in solving the resulting S-OPF in Step 5.

2.3.4 Numerical Experiments

In this section, we benchmark the DDS-OPF by detailed numerical experi-
ments on a number of test cases in the IEEE PES PGLib-OPF benchmark
library. The code is accessible from the following link : https://github.com/
imezghani/StochasticACOPF.
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2.3. Stochastic AC OPF: A Data-Driven Approach

2.3.4.1 Test Cases and Experiment Setup

We consider four different test cases, 24 ieee, 73 ieee, 118 ieee and 1354 pegase.
The details of the test cases are shown in Table 2.7. For the first three (smaller)
test cases, we assume that all active and reactive loads have a uniform 3% fluc-
tuation around their nominal value. For the 1354 pegase test case, we assume
that the real and reactive powers of the 211 out of the 673 loads that are sit-
uated at end-buses fluctuate uniformly by 2% of their nominal value. These
buses often correspond to connections to distribution/sub-transmission, where
the consumers and distributed energy resources responsible for the uncertainty
are situated. The network is illustrated in Fig. 2.4. From Table 2.7, it is clear
that the recourse with the base-case solution can lead to infeasibility for an
extremely high number of load fluctuations (> 85%).

We remark here that the level of uncertainty chosen is quite large; increasing
the uncertainty further from the given values makes a large percentage of load-
ing conditions infeasible for the basic OPF, let alone the stochastic OPF. For
DDS-OPF, we choose S = 1000, K = 5 and τ = 0 with empirical probability
of violation S̃V.

Table 2.7: Test case details

Test case 24 ieee 73 ieee 118 ieee 1354 pegase

# Buses 24 73 118 1,354
# Generators 33 99 54 260
# Lines 38 120 186 1,991
# Loads 17 51 99 673
# Fluctuations 17 51 99 211
Base cost 6.34e4 1.90e5 9.72e4 1.26e6
Base P 1000

vio 87.5 % 100% 100% 100%

2.3.4.2 Performance Trends

Table 2.8 shows the results of applying DDS-OPF on the different test cases.

Scenario size. We see that DDS-OPF has excellent performance for all
test cases in terms of number of iterations (#It) and final number of samples
(|ΩN |). |ΩN | grows very slowly with network size, from 7 on the 24 bus system
to only 31 on the 1354 bus system. This demonstrates that DDS-OPF has
very favorable scaling properties, and can be scaled to even larger systems.

Cost. While the scenario enhancement procedure introduced in Section 2.3.3.2
helps quickly obtain a secure solution, worsening the scenarios can potentially
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Figure 2.4: Topology of test case 1354 pegase.

increase the cost. However, we see by comparing the cost between Table 2.7
and Table 2.8 that in all the cases the increase in cost from the deterministic
(and unsafe) solution is small with ∼ 2% for the 24 bus system to ∼ 0.2% for
the 1354 bus system. The larger, more realistic system, possesses more flexi-
bility to handle uncertainty in a more economic way, as expected.
Furthermore, by comparing the costs for the 73-bus system in Tables 2.4 and
2.8, it is clear that our algorithm achieves the same cost as the vanilla scenario
selection scheme, while significantly improving the feasibility of the solution.

Distance to the deterministic solution. The last two columns of Ta-
ble 2.8 report the 2−norm difference between the deterministic solution set-
points and the DDS-OPF solution set-points, first in terms of real power in-
jections7 and then voltage magnitudes. The quantities suggest that the solution
to the stochastic OPF lies in the vicinity of the solution of the deterministic
OPF. Nevertheless, this adjustment to the deterministic solution is critical and
can significantly improve the robustness of the solutions. Using the 1354 bus
system as an example, the reduction in maximum violation can be as much as
17% (see Table 2.9).

7The measure is in per unit: 1 p.u. = 100 MW
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Table 2.8: Overall performance trends of DDS-OPF

Test case Policy # It |ΩN | P 1000
vio Cost Dist P Dist V

24 ieee MV 3 7 0 % 6.502e4 2.5e−1 4.4e−3
73 ieee MV 1 6 0 % 1.948e5 5.4e−1 9.9e−3
118 ieee Hybrid 3 14 0 % 9.802e4 9.0e−1 3.7e−2
1354 pegase MV 6 31 0.1 % 1.263e6 1.4 5.1e−2

2.3.4.3 A Detailed Study on the 1354 pegase Test Case

We present detailed numerical experiments for different variants of DDS-OPF
on the 1354 bus system. Table 2.9 shows the results for different choices of
prioritization rule.

Effect of prioritization rule. With any prioritization rule, DDS-OPF
finds an excellent solution with a maximum of 31 scenarios in the final S-OPF,
NC being slightly less performant on this particular test case. All resulting
costs are similar, and within 0.2% of the base case cost.

Different stochastic violation measures. The Monte Carlo in-the-loop
method employed by DDS-OPF grants it the flexibility to handle a variety
of stochastic violation measures. Table 2.9 shows two such violation measure,
the probability of violation and maximum magnitude of violation in an out of
sample testing with 1000 samples. This translates into confidence guarantees
in the sense of Theorem 2.3.1. As an example by using Theorem 2.3.1, we
can guarantee that the solution obtained using MV for constraint selection,
satisfies a chance constraint with probability of violation < 1.1%. Similarly,
we can guarantee that in the face of uncertainty, the solution has a maximum
constraint violation of 3.26%. The second guarantee uses a very conservative
maximum violation bound of M = 10. Both the above statements carry a
confidence of 95%.

Table 2.9: Results of the iterative approach on 1354 pegase.

Policy # It |ΩN | P 1000
vio Max. Viol. Cost (×1e6)

Base - 1 100 % 17.3 % 1.2620
MV 6 31 0.1 % 0.06 % 1.2633
NC 6 31 2.3 % 0.34 % 1.2633
Hybrid 8 31 0.1 % 0.04 % 1.2634
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2.3.5 Conclusion and Future Directions

This work describes a principled iterative data-driven approach for stochas-
tic AC-OPF under general probabilistic constraints. The non-linear and non-
convex equations in AC-OPF make random sampling or scenario reduction
approaches impractical for large test cases, due to their large sample require-
ment. Our data-driven algorithm is able to overcome that by a novel 2-step
process for ‘dominant’ scenario design/construction that involves: (a) scenario
selection based on constraint violations, and (b) scenario enhancement by reg-
ularized linear regression. Through system-level intuition, theoretical bounds,
and finally numerical verification on multiple test cases, we demonstrate that
our data-driven algorithm is able to provide feasible solutions to stochastic AC-
OPF using far lower scenarios than conventional schemes. For example, our
method uses only 31 constructed samples to provide a feasible solution for the
1354 pegase test case, that satisfies chance constraints with < 1.1% violation
probability.

This work naturally leads to multiple extensions. First, we plan to paral-
lelize the steps (scenario enhancement, Monte Carlo checks) and include warm-
starts in our algorithm to reduce and distribute the computational effort. While
the current work operates on box-uncertainty sets for sampling and scenario
enhancement, efficient data-driven efforts for general (non-parametric) uncer-
tainty sets is another direction for exploration. Finally we plan to analyze
extensions of our approach to related and computationally challenging prob-
lems on resilient network design and stochastic unit commitment. For example,
the case of (N − 1) security constrained optimal power flow could be of inter-
est. Our framework could easily be adapted if one were to consider lines as
contingencies8 where the uncertainty would be due to the possible contingency
of a line instead of the realized demand.

8The case of possible failures of generators might be more difficult to handle since we use
an affine policy to make all generators react to possible disturbances.
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Appendix

2.A Gauss-Newton Algorithm Convergence Anal-
ysis

2.A.1 Global Convergence Analysis

We first summarize some properties of Algorithm 1 when the penalty parameter
β is fixed at a given positive value for all iterations.

Lemma 2.A.1. Let V L be defined by (2.6), and GL, dL, and rL be defined
by (2.7). Then the following statements hold:

(a) If V Lk
(xk) = xk, then xk is a stationary point of (2.2).

(b) The norm ‖GLk
(xk)‖ is nondecreasing in Lk, and rLk

(xk) is nonincreas-
ing in Lk. Moreover, we have

F (xk)−QLk
(V Lk

(xk);xk) ≥ Lk
2
r2
Lk

(xk). (2.19)

(c) If Ψ′(·) is Lipschitz continuous with the Lipschitz constant LΨ, then, for
any x ∈ X , we have

F (xk)− F (V Lk
(xk)) ≥ (2Lk−βLΨ)

2 r2
Lk

(xk) = (2Lk−βLΨ)
2L2

k
‖GLk

(xk)‖2.

DF (xk)[dLk
(xk)] ≤ −Lkr2

Lk
(xk) = − 1

Lk
‖GLk

(xk)‖2.
(2.20)

Proof. (a) Substituting V Lk
(xk) = xk into (2.8), we again obtain the optimal-

ity condition (2.4). This shows that xk is a stationary point of (2.2).
(b) Since the function q(t,x) := f(x)+β|Ψ(xk)+Ψ′(xk)(x−xk)|+ 1

2t‖x−
xk‖2 is convex in two variables x and t, we have that η(t) := minx∈X q(t,x)
is still convex. It is easy to show that η′(t) = − 1

2t2 ‖V 1/t(x
k) − xk‖2 =

− 1
2t2 ‖d1/t(x

k)‖2 = 1
2‖G1/t(x)‖2. Since η(t) is convex, η′(t) is nondecreas-

ing in t. This implies that ‖G1/t(x
k)‖ is nonincreasing in t. Thus ‖GL(xk)‖

is nondecreasing in L and rL(xk) := ‖dL(xk)‖ is nonincreasing in L. To prove
(2.19), note that the convexity of η implies that

F (xk) = η(0) ≥ η(t) + η′(t)(0− t) = η(t) +
1

2t
r2

1/t(x
k). (2.21)

On the other hand, QL(V L(xk);xk) = η(1/L). Substituting this relation into
(2.21), we obtain (2.19).
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(c) Let use define V k := V Lk
(xk). From the optimality condition (2.8), for

any x ∈ X , we have[
∇f(V k) + Lk(V k − xk) + βΨ′(xk)ξ(xk)

]>
(x− V k) ≥ 0,

where ξ(xk) ∈ ∂|Ψ(xk) + Ψ′(xk)(V k − xk)|. Substituting x = xk into this
condition, we have

∇f(V k)>(xk − V k) + βξ(xk)>Ψ′(xk)>(xk − V k) ≥ Lk‖V k − xk‖2. (2.22)

Since f is convex, we have:

f(xk) ≥ f(V k) +∇f(V k)>(xk − V k).

By exploiting the convexity of | · | at point Ψ(xk) + Ψ′(xk)(V k−xk), we have:

|Ψ(xk)| ≥ |Ψ(xk) + Ψ′(xk)(V k − xk)|+ ξ(xk)>Ψ′(xk)>(xk − V k).

Since Ψ′ is Lipschitz continuous, we also have

|Ψ(V k)| ≤ |Ψ(xk) + Ψ′(xk)(V k − xk)|+ |Ψ(V k)−Ψ(xk) + Ψ′(xk)(V k − xk)|
≤ |Ψ(xk) + Ψ′(xk)(V k − xk)|+ LΨ

2 ‖V k − xk‖2.

Combining these three bounds, we can show that

f(xk) + β|Ψ(xk)| ≥ f(V k) + β|Ψ(xk) + Ψ′(xk)(V k − xk)|+ Lk‖V k − xk‖2

≥ f(V k) + β|Ψ(V k)|+ Lk‖V k − xk‖2 − βLΨ

2 ‖V k − xk‖2,

which implies

F (xk) ≥ F (V k) + (2Lk−βLΨ)
2 ‖V k − xk‖2.

Since r2
Lk

(xk) = ‖V k − xk‖2 = 1
L2

k
‖GLk

(xk)‖2, we obtain the first inequality

of (2.20) from the last inequality. Moreover, from (2.3) we have

DF (xk)[dLk
(xk)] = ∇f(V k)>(V k − xk) + βξ(xk)>Ψ′(xk)>(V k − xk).

Using (2.22), we can show that DF (xk)[dLk
(xk)] ≤ −Lk‖V k −xk‖2, which is

the second inequality of (2.20).

The proof of Lemma 2.A.1(a) shows that if we can find xk such that
‖GLk

(xk)‖ ≤ ε, then xk is an approximate stationary point of (2.2) within
the accuracy ε. From statement (b), we can see that if the line-search condi-
tion F (V Lk

(xk)) ≤ QLk
(V Lk

(xk);xk) at Step 4 holds, then F (V Lk
(xk)) ≤

F (xk) − Lk

2 r
2
Lk

(xk). That is, the objective value F (xk) decreases at least by
Lk

2 r
2
Lk

(xk) after the k-th iteration. We first claim that Algorithm 1 is well-
defined.
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Lemma 2.A.2. Algorithm 1 is well-defined, i.e. step 4 terminates after a finite
number of iterations. That is, if L ≥ βLΨ, then F (V L(xk)) ≤ QL(V L(xk);xk).

Proof. Since Ψ′ is LΨ-Lipschitz continuous, for any xk and V L(xk), we have

|Ψ(V L(xk))| ≤ |Ψ(xk) + Ψ′(xk)(V L(xk)− xk)|
+‖Ψ(V L(xk))−Ψ(xk)−Ψ′(xk)(V L(xk)− xk)‖
≤ |Ψ(xk) + Ψ′(xk)(V L(xk)− xk)|+ LΨ

2 ‖V L(xk)− xk‖2.

Using the definition of QL(V ;x), we obtain

F (V L(xk)) ≤ QL(V L(xk)lxk)− L−βLΨ

2 ‖V L(xk)− xk‖2.

From this inequality, we can see that if L ≥ βLΨ, then:

F (V L(xk)) ≤ QL(V L(xk);xk)

Hence, Step 4 of Algorithm 1 terminates after a finite number of iterations.

Let LF (α) = {x ∈ X | F (x) ≤ α} be the level set of F at α. Now, we are
ready to state the following theorem on global convergence of Algorithm 1.

Theorem 2.A.1. Let
{
xk
}

be the sequence generated by Algorithm 1. Then{
xk
}
⊂ LF (F (x0)) and

min
0≤k≤K

‖GβLΨ(xk)‖2 ≤ 2(βLΨ)2

Lmin(K + 1)

[
F (x0)− F ?

]
, (2.23)

where F ? := infx∈X F (x) > −∞. Moreover, we also obtain

lim
k→∞

‖xk+1 − xk‖ = 0, and lim
k→∞

‖GβLΨ
(xk)‖ = 0, (2.24)

and the set of limit points Ŝ∗ of the sequence {xk}k≥0 is connected. If this
sequence is bounded (in particular, if LF (F (x0)) is bounded) then every limit
point is a stationary point of (2.2). Moreover, if the set of limit points Ŝ∗ is
finite, then the sequence

{
xk
}

converges to a stationary point x∗ ∈ S∗ of (2.2).
If, in addition, x∗ is feasible to (2.1) and β is sufficiently large, then x∗ is also
a stationary point of (2.1).

Proof. From Step 5 of Algorithm 1, we have xk+1 := V Lk
(xk) and

{
xk
}
⊂ X .

Using (2.20), it is easy to obtain −∞ < F ? ≤ F (xk+1) ≤ F (xk) ≤ · · · ≤ F (x0).
This shows that

{
xk
}
⊂ LF (F (x0)), and

{
F (xk)

}
is a decreasing sequence

and bounded. Hence, it has at least a convergent subsequence. Moreover, from
(2.20), we also have

F (xk+1) ≤ F (xk)− Lmin

2
r2
Lk

(xk) ≤ F (xk)− Lmin

2
r2
βLΨ

(xk). (2.25)
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Summing up the inequality (2.25) from k = 0 to k = K and using F (xk+1) ≥
F ?, we obtain

Lmin

2(βLΨ)2

K∑
k=0

‖GβLΨ
(xk)‖2 =

Lmin

2

K∑
k=0

r2
βLΨ

(xk)

≤ F (x0)− F (xk+1)

≤ F (x0)− F ?.

This implies

min
0≤k≤K

‖GβLΨ(xk)‖2 ≤ 2(βLΨ)2

Lmin(K + 1)

[
F (x0)− F ?

]
,

which leads to (2.23).
Similarly, for any N ≥ 0 one has

F (xk)− F (xk+N ) ≥ Lmin

2

k+N−1∑
i=k

r2
Lk

(xi) ≥ Lmin

2

k+N−1∑
i=k

r2
βLΨ

(xi). (2.26)

Note that the sequence
{
F (xk)

}
k≥0

has a convergent subsequence, thus passing

to the limit as k → ∞ in (2.26) we obtain the first limit of (2.24). Since
‖xk+1 − xk‖ = rLk

(xk) ≥ rβLΨ
(xk) = 1

βLΨ
‖GβLΨ

(xk)‖ due to Statement (b)

of Lemma 2.A.1, the first limit of (2.24) also implies the second one. If the
sequence

{
xk
}
k≥0

is bounded, by passing to the limit through a subsequence

and combining with Lemma 2.A.1, we easily prove that every limit point is a
stationary point of (2.2). If the set of limit points Ŝ∗ is finite, by applying the
result in [Ost16][Chapt. 28], we obtain the proof of the remaining conclusion.

Theorem 2.A.1 provides a global convergence result for Algorithm 1. More-
over, our algorithm requires solving convex subproblems at each iteration, thus
offering a great advantage over classical penalty-type schemes. Since the un-
derlying problem is non-convex, the iterates of our algorithm may get trapped
at points that may be infeasible for the original problem. That is, under the
stated conditions, the iterate sequence

{
xk
}

may converge to a local minimum
(stationary) point x∗ of (2.2). Since x∗ ∈ X , if Ψ(x∗) = 0, then x∗ is also a
local minimum (stationary) point of the original problem (2.1).

We can sometimes overcome this by combining the algorithm with a run-
and-inspect procedure [CSY19], whereby if x∗ violates Ψ(x) = 0, then we restart
the algorithm at a new starting point. More precisely, we add an inspect phase
to our existing algorithm that helps escape from non-feasible stationary points.
In the inspection phase, if Ψ(x∗) 6= 0 we sample a point around the current
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point and increase the parameter β. Since we do not know any optimal La-
grange multiplier y∗ of (2.1), we cannot guarantee that β > ‖y∗‖∞. However,
since it is expected that the multiplier yk of the subproblem (2.5) converges to
y∗, we can use yk to monitor the update of β by guaranteeing that β > |yk|∞.
We have seen that such strategy performs well on a set of realistic non-convex
AC-OPF problems. Nevertheless, we do not have theoretical guarantee for this
variant and leave this extension for future work.

2.A.2 Local Convergence Analysis

Let us study a special case of (2.2) where Algorithm 1 has a local quadratic
convergence rate. Our result relies on the following assumptions. First, for
simplicity of our analysis, we assume that β > 0 is fixed and Lk is also fixed
at Lk := L > 0 for k ≥ 0 in Algorithm 1. Next, let x∗ be a stationary point of
(2.2) such that

〈∇f(x∗),x− x∗〉+ β|Ψ′(x∗)(x− x∗)| ≥ ωmin‖x− x∗‖, ∀x ∈ N (x∗) ∩ X ,
(2.27)

where ωmin > 0 is a given constant independent of x and N (x∗) is a neigh-
borhood of x∗. The condition (2.27) is rather technical, but it holds in the
following case. Let us assume that the Jacobian Ψ′(x∗) of Ψ at x∗ satisfies the
following condition

‖Ψ′(x∗)(x− x∗‖ ≥ σmin(Ψ′(x∗))‖x− x∗‖ ∀ x ∈ N (x∗) ∩ X ,

where σmin(Ψ′(x∗) is the positive smallest singular value of Ψ′(x∗). This
condition is similar to the strong second-order sufficient optimality condition
[NW06], but only limited to the linear objective function. In this case, we have
|Ψ′(x∗)(x − x∗)| ≥ ‖Ψ′(x∗)(x − x∗)‖ ≥ σmin(Ψ′(x∗))‖x − x∗‖. Therefore, it
leads to

〈∇f(x∗),x− x∗〉+β|Ψ′(x∗)(x−x∗)| ≥ (βσmin(Ψ′(x∗))− ‖∇f(x∗)‖) ‖x−x∗‖.

For β > 0 sufficiently large such that β > ‖∇f(x∗)‖
σmin(Ψ′(x∗)) , we have ωmin :=

βσmin(Ψ′(x∗)) − ‖∇f(x∗)‖ > 0, and the condition (2.27) holds. Now, we
prove a local quadratic convergence of Algorithm 1 under assumption (2.27).

Note that a fast local convergence rate such as superlinear or quadratic is
usually expected in Gauss-Newton methods, see, e.g., [Kel99, Theorem 2.4.1.].
The following theorem shows that Algorithm 1 can also achieve a fast local
quadratic convergence rate under a more restrictive condition (2.27).

Theorem 2.A.2. Let {xk} be the sequence generated by Algorithm 1 such that
it converges to a feasible stationary point x∗ of (2.2). Assume further that x∗
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satisfies condition (2.27) for some ωmin > 0. Then, if xk ∈ LF (F (x0)) such
that ‖xk − x∗‖ ≤ 2ωmin

L+(
√
n+5)βLΨ

, then xk+1 ∈ LF (F (x0)) and

‖xk+1 − x∗‖ ≤
[

L+ (
√
n+ 3)βLΨ

2(ωmin − LΨ‖xk − x∗‖)

]
‖xk − x∗‖2. (2.28)

As a consequence, the sequence {xk} locally converges to x∗ at a quadratic rate.

Proof. Let d(x,y) := Ψ(y) − Ψ(x) − Ψ′(x)(y − x). First, by the Lipschitz

continuity of Ψ′(·), we have |d(x,y)| ≤
√
n‖d(x,y)‖ ≤

√
nLΨ

2 ‖y − x‖2. In this
case, from this estimate and (2.6), for any x,y ∈ LF (F (x0)), we can derive
that

QL(V L(x);x) := min
y∈X

{
QL(y;x)

}
= min

y∈X

{
f(y) + β|Ψ(x) + Ψ′(x)(y − x)|+ L

2
‖y − x‖2

}
= min

y∈X

{
f(y) + β|Ψ(y)− d(x,y)|+ L

2
‖y − x‖2

}
≤ min

y∈X

{
f(y) + β|Ψ(y))|+ β|d(x,y)|+ L

2
‖y − x‖2

}
≤ min

y∈X

{
f(y) + β|Ψ(y))|+ (L+

√
nβLΨ)

2
‖y − x‖2

}
≤ min

y∈X

{
F (y) +

(L+
√
nβLΨ)

2
‖y − x‖2

}
.

This estimate together with Ψ(x∗) = 0 and x = xk imply that

QL(xk+1;xk) ≡ QL(V L(xk);xk) ≤ F (x∗) +
(L+

√
nβLΨ)

2
‖xk − x∗‖2

= f? +
(L+

√
nβLΨ)

2
‖xk − x∗‖2.

Moreover, by µf -convexity of f , we have f(xk+1)−f? ≥ 〈∇f(x∗),xk+1 − x∗〉+
µf

2 ‖xk+1 − x∗‖2. Using these last two estimates and the definition of QL, we
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can show that

(L+
√
nβLΨ)

2
‖xk − x∗‖2

≥ f(xk+1)− f? + β|Ψ(xk) + Ψ′(xk)(xk+1 − xk)|+ L

2
‖xk+1 − xk‖2

≥ µf
2
‖xk+1 − x∗‖2 + 〈∇f(x∗),xk+1)− x∗〉+ β|Ψ′(xk)(xk+1 − x∗)

+ Ψ(xk)−Ψ(x∗)−Ψ′(x∗)(xk − x∗) + (Ψ′(xk)−Ψ′(x∗))(xk+1 − xk)|

≥ µf
2
‖xk+1 − x∗‖2 + 〈∇f(x∗),xk+1)− x∗〉+ β|Ψ′(x∗)(xk+1 − x∗)|

− βLΨ

2
‖xk − x∗‖2 − βLΨ‖xk − x∗‖‖xk+1 − xk‖.

Finally, using condition (2.27), we obtain from the last estimate that

(L+
√
nβLΨ)

2
‖xk − x∗‖2

≥ (ωmin − βLΨ‖xk − x∗‖) ‖xk+1 − x∗‖ −
3βLΨ

2
‖xk − x∗‖2.

Rearranging this inequality given that ‖xk − x∗‖ < ωmin

βLΨ
, we obtain (2.28).

From (2.28), we can see that if ‖xk − x∗‖ ≤ 2ωmin

L+(
√
n+5)βLΨ

, then ‖xk − x∗‖ <
ωmin

βLΨ
. Moreover, ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖. Hence, if xk ∈ LF (F (x0)), then

xk+1 ∈ LF (F (x0)). The last statement is a direct consequence of (2.28).

2.B Parameter Tuning of Algorithm 1

In order to explain how the parameters of the GN algorithm should be tuned,
we first express the subproblem at iteration k for the special case of AC-OPF.

Subproblem (2.6) in the context of AC-OPF. We define the following
functions in order to keep our notation compact:

Φq(c, s,dc,ds) =
∑

(i,j)∈L

∣∣Ψij
q (c, s) + Ψij

q

′
(c, s)(dc,ds)>

∣∣,
Φt(c, s,θ,dc,ds,dθ) =

∑
(i,j)∈L

∣∣Ψij
t (c, s,θ) + Ψij

t

′
(c, s,θ)(dc,ds,dθ)>

∣∣.
Note that we are facing two types of constraints (quadratic and trigonometric)
and that they may attain different relative scales for different instances, as we
have observed in our numerical experiments. We will define different penalty
terms depending on the type of constraint, which will increase the flexibility
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of our implementation, while respecting the theoretical assumptions. To this
end, we denote by βq (resp. βt) the β penalty parameter associated with
the quadratic (resp. trigonometric) constraints. The trigonometric constraints
depend on c, s and θ, whereas the quadratic ones only depend on c and s.
Therefore, we define two separate regularization parameters: Lcs and Lθ (we
drop the k index from now on for notational simplicity).

The GN subproblem at iteration k, corresponding to (2.5), is convex and
has the form:

Pksub : min
(y,d)

f(x) + βqΦq(c
k, sk,dc,ds) + βtΦt(c

k, sk,θk,dc,ds,dθ)

+
Lcs
2
‖(dc,ds)‖2 +

Lθ
2
‖dθ‖2

s.t. y = (p, q), d = (dc,ds,dθ)

(p, q, ck + dc, sk + ds,θk + dθ) ∈ X .

The optimal solution of Pksub, which we denote by (y?,d?), provides the next

iterate xk+1 = (p?, q?, ck + dc?, sk + ds?,θk + dθ?).

2.B.1 Joint Values of Parameters: βq = βt and Lcs = Lθ

In our first set of tests, we implement the basic variant of Algorithm 1 by
retaining the configuration of parameters from our theoretical results. Since
we only aim at validating the algorithm, we focus on the three instances that
have less than 2,000 nodes: 1354pegase, 1888rte, and 1951pegase.

For the penalty parameters, we first choose the same value β for both
quadratic and trigonometric constraints as β = βq = βt. We perform tests
with three choices of β, based on the number of lines in the test case: β =
|L|/100, |L|/10, or |L|. For the regularization parameter L, we also choose
the same value L = Lcs = Lθ. Note that all the experiments are initialized
from the SOCP solution. We consider three different strategies when applying
Algorithm 1:

• Fixed strategy : we fix L at the upper bound LΨ, which is computed in
(2.10).

• Bisection update: At each iteration k of Algorithm 1, we choose Lmin =
1 and initialize L := 1. If we do not satisfy the line-search condi-
tion F (VL(xk)) ≤ QL(VL(xk);xk), we apply a bisection in the interval
[Lmin, βLψ] until we satisfy this condition.

• Geometric-µ update: At each iteration k, we also choose Lmin = 1 and
initialize L := 1. We then update L ← µ · L for µ > 1 in order to
guarantee that F (VL(xk)) ≤ QL(VL(xk);xk). In our experiments, we
use µ := 2.
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The results of our first test are presented in Table 2.10. The three columns for
each strategy present the number of iterations, and the maximum violation of
the quadratic (resp. trigonometric) constraint for each strategy on the three
problem instances. In terms of number of iterations, we can observe that
fixing L results in a poor performance and tends to increase the number of
iterations as well as the final violation of the constraints. Given this poor
performance, we do not consider the Fixed strategy for the remainder of the
numerical experiments. Also, using β = |L| produces satisfactory results, and
increasing the value of β supports convergence, therefore we choose this order
of magnitude for the value of β.

Table 2.10: Performance results of the Gauss-Newton algorithm with different strate-
gies for β and L.

Fixed Bisection Geometric-2
Test Case β # It MVQ MVT # It MVQ MVT # It MVQ MVT
1354pegase |L|/100 100 6e−3 4e−6 100 6e−3 4e−6 100 7e−3 4e−6

|L|/10 91 2e−6 6e−9 3 5e−6 2e−7 3 5e−6 4e−6

|L| 78 2e−6 1e−8 3 8e−9 4e−9 3 6e−6 5e−6

1888rte |L|/100 100 1e−2 8e−8 21 1e−2 9e−8 100 7e−3 8e−7

|L|/10 100 8e−3 5e−8 11 7e−3 7e−8 100 5e−3 3e−8

|L| 100 8e−3 5e−8 15 5e−3 2e−8 100 3e−3 8e−8

1951rte |L|/100 86 4e−6 4e−9 10 2e−3 5e−8 39 3e−4 4e−8

|L|/10 66 6e−7 3e−8 4 2e−5 6e−8 3 8e−6 6e−6

|L| 61 1e−6 1e−7 4 5e−7 1e−7 3 3e−6 2e−6

Bisection and Geometric-2 exhibit a similar behavior: when the algorithm
converges to a feasible point, both choices achieve converge in tens of iterations,
depending on the test case and the choice of β. Nevertheless, when failing,
the maximum violation of the quadratic constraint (MVQ) never reaches the
desired tolerance of 1e−5. This behavior might suggest that we do not penalize
sufficiently the quadratic constraint. One should notice that the quadratic and
trigonometric constraints are linked: once the angles are fixed, c and s, which
are the variables that appear in the quadratic constraints, struggle to move
from their current value in order to satisfy the quadratic constraints. This
motivates us to consider two different values for β and L: βq for the quadratic
constraints and Lcs for the associated variables c and s; βt for the trigonometric
constraints and Lθ for the angle variables θ.

2.B.2 Adaptation and Enhancement of Algorithm 1 for
AC-OPF

Adapting Algorithm 1 with Individual Choices of Parameters: βq, βt
and Lcs, Lθ. Based on our observations, we choose different values for βq
and βt. Since we empirically observe that the quadratic constraints are harder
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to satisfy than the trigonometric constraints, we consider two alternatives:
βq = 2βt and βq = 5βt. Furthermore, we set Lcs,min = βq/βt and Lθ,min = 1.
Note that the choice of different values for these parameters does not affect
the theoretical guarantees of our algorithm, as long as they satisfy our given
conditions.

Also, since we have different values Lcs and Lθ, we must adapt the condition
under which Lcs and Lθ are updated. From the theory, L is updated (through
the Bisection or Geometric strategy) if the following condition is not met:

F (xk+1) ≤ QL(xk+1;xk)

⇔ βq
∑

(i,j)∈L

|Ψij
q (ck+1, sk+1)|+ βt

∑
(i,j)∈L

|Ψij
t (ck+1, sk+1,θk+1)|

≤ βqφq(ck, sk,dc∗,ds∗) + βtφt(c
k, sk,θk,dc∗,ds∗,dθ∗)

+
Lcs
2
‖(dc∗,ds∗)‖2 +

Lθ
2
‖(dθ∗)‖2

where xk+1 = xk + d∗.
We adapt this condition to the specific type of constraint. Concretely:

• If

βt
∑

(i,j)∈L

|Ψij
t (ck+1, sk+1,θk+1)|

≤ βtΦt(ck, sk,θk,dc∗,ds∗,dθ∗) +
Lcs
2
||(dc∗,ds∗)>||2 +

Lθ
2
||(dθ∗)||2

(2.29)
then update Lcs and Lθ.

• If (2.29) does not hold and

βq
∑

(i,j)∈L

|Ψij
q (ck+1, sk+1)| ≤ βqΦq(ck, sk,dc∗,ds∗) +

Lcs
2
||(dc,ds)>||2

(2.30)
then only update Lcs.

Refining the L updates. We emphasize that, in Algorithm 1, each time
that the values of Lcs and/or Lθ are updated, the subproblem Pksub is resolved.
Therefore, an effective strategy for updating these parameters can lead to sig-
nificant improvements in computational time. We mitigate this heavy compu-
tational requirement by introducing resolution techniques that are guided by
both our theoretical results and empirical observations. Concretely, we propose
the following two improvements to the practical implementation of the algo-
rithm, in order to limit the number of computationally expensive L updates:
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1. Keeping the value of L from one iteration to another is a better strategy
than having L := Lmin at the beginning of each iteration. The natural
justification for this is that we expect steps to decrease along the itera-
tions.

2. Checking conditions (2.29) and (2.30) can require a large number of L
updates. Instead, we propose a verification of whether the violation of
the constraints is decreasing before checking (2.29) and (2.30), which is a
less stringent requirement that still yields satisfactory results in terms of
constraint violations. Concretely, at iteration k, we compute the `1 and
`∞ norms of Ψq(c

k, sk) and Ψt(c
k, sk,θk). If these quantities decrease

from k − 1 to k, we move to iteration k + 1.

By applying these two approaches, we obtain the results that are presented
in Table 2.11. In Table 2.11, # It provides the number of GN iterations, # L-It
provides the number of additional subproblems solved because of an L-update
(then # It+# L-It gives the total number of subproblems solved) and Obj
records the objective value returned. From Table 2.11, we observe that this new
strategy leads to convergence for all three test cases. Even if Bisection seems to
require less iterations, it also provides higher objective values than Geometric-
2. Also, we do not observe notable differences between applying a factor of 2
or 5 on β, although a factor of 5 decreases slightly the number of iterations. In
our implementation, we employ the following settings: Geometric-2, βt = |L|
and βq = 5βt.

Table 2.11: Performance behavior of the Gauss-Newton algorithm with different val-
ues and strategies for βq, βt, Lcs, Lθ.

Bisection Geometric-2
Test Case βt βq # It # L-It Obj # It # L-It Obj
1354pegase |L| ×2 3 1 7.408e4 14 6 7.407e4

|L| ×5 4 1 7.408e4 13 4 7.407e4
1888rte |L| ×2 8 1 5.982e4 17 1 5.981e4

|L| ×5 11 1 5.982e4 14 3 5.981e4
1951rte |L| ×2 4 1 8.174e4 6 1 8.174e4

|L| ×5 4 0 8.174e4 4 0 8.174e4
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Chapter 3

Coordination Schemes for
the Integration of T&D
System Operations

3.1 Introduction

The mobilization of distributed resources is emerging as an increasingly im-
portant and challenging aspect of power system operations [PAK16]. This
paradigm shift towards the proactive management of distributed resources is
driven by a number of factors that are influencing the transition of the en-
ergy industry, including: (i) the large-scale integration of renewable resources
is placing ever-increasing needs on power system flexibility; (ii) residential and
commercial demand, which is connected to low-voltage grids, represents the
majority of demand-side flexibility [Gil14]; (iii) the proliferation of distributed
renewable supply and distributed storage requires an intelligent management
of distribution power flows in order to postpone or avoid costly distribution
network infrastructure upgrades; (iv) communication and control technology
appear to offer adequate technological solutions to the computation, commu-
nication and control requirements of this transition.

The integration of distributed resources in proactive power system opera-
tions poses two major challenges from a modeling and computational perspec-
tive: the number of resources is vast, and the physics of distribution networks
cannot be adequately represented through linearized power flow models. A
direct approach towards the integration of distributed resources involves in-
tegrated optimization whereby the transmission system and the distribution
system are optimized simultaneously was proposed recently by Caramanis et
al. [CNH+16], which exploits recent breakthroughs on conic relaxations of opti-
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mal power flow [FL13]. The distribution locational marginal price signals gen-
erated from this approach endogenize the value of losses, voltage constraints,
and complex power flow constraints. In such a scheme, the operations of the dis-
tribution system operator (DSO) are effectively absorbed by the transmission
system operator (TSO). Hierarchical approaches whereby the DSO reacts to a
locational marginal price at the TSO-DSO interface have also been suggested
in the literature [SV06, DPN+13, LWO14, VVL14, HWO+15]. Such hierarchi-
cal schemes may be required in order to achieve scalability in the mobilization
of distributed resources. However, the detailed description and modeling of
TSO-DSO coordination has yet to be clarified in the literature. A particularly
challenging aspect of TSO-DSO coordination is the extent to which system im-
balances can be resolved through the mobilization of distributed reserves while
respecting distribution system constraints, and which entity, the TSO or the
DSO, should be responsible for this decision.

The SmartNet consortium has proposed various coordination schemes for
TSO and DSO operations that aim at the scalable mobilization of distributed
resources [GRS16]. The focus of SmartNet is on the activation of reserve ca-
pacity. The contribution of this chapter is to propose models that can be used
for the quantitative evaluation of TSO-DSO coordination schemes. The models
presented in this chapter can be used for assessing the allocative efficiency, the
‘proximity’ of dispatch to physically compatible solutions and the price signals
generated by various TSO-DSO coordination schemes. This chapter also serves
as a basis for chapters 4 and 5. Table 3.1 gives an overview of the coordination
schemes and their use throughout the rest of the dissertation.

The remainder of the chapter is organized as follows. Section 3.2 presents
models for the SmartNet coordination schemes. Section 3.3 demonstrates the
proposed models on a small-scale test system. Section 3.4 concludes the chap-
ter.

3.2 Modeling TSO-DSO Coordination Schemes

The following models consider the activation of reserves for balancing a real-
time deviation in the net load of a transmission or distribution bus. It is
assumed that reserve capacity and a predetermined dispatch have been cleared
in earlier markets, and reserve activation bids are offered for upward activation
or downward activation in real time.

Five schemes will be considered: (i) Centralized Common TSO-DSO mar-
ket, (ii) Decentralized Common TSO-DSO market, (iii) Centralized Ancillary
Services Market, (iv) Local Ancillary Services Market, and (v) Shared Balanc-
ing Responsibility. Each of these schemes is described in detail, and for each
of the schemes a model is proposed in this section. The topology of the net-
works considered in this chapter consists of meshed transmission networks and
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Table 3.1: T&D Coordination schemes considered and their application in the disser-
tation.

Scheme Principle Explored further?
Centralized
Common
Market

Considers a single operator

handling the complete T&D

network. Unrealistic in prac-

tice but serves as a bench-

mark.

Serves as benchmark in chap-

ters 4 and 5.

Decentralized
Common
Market

Consists of maximizing the

global welfare while only shar-

ing interface/border informa-

tion between the TSO and

the DSO. The interface flow

is priced using a residual sup-

ply function by the DSO and

cleared by the TSO.

Implemented and detailed in

chapter 4 under the name

‘RSF Approach’.

Centralized
Ancillary Ser-
vices Market

Prevalent paradigm in which

the distribution imbalance is

aggregated at the transmis-

sion level to clear the whole-

sale market.

Leads to infeasible dispatch

because of the omission of

losses when aggregating. Not

further explored.

Local Ancil-
lary Services
Market

The DSO solves local imbal-

ances and provides the re-

maining capacity available to

the TSO. The interface flow is

decided by the TSO.

Not straightforward to model.

Leads to infeasible dispatch in

chapter 3 due to the difficulty

to anticipate losses. Two al-

ternatives studied in chapter 5

(TLA and LM) and assessed

using game theory.

Shared Bal-
ancing Re-
sponsibilities

No communication between

the TSO and the DSO. Each

operator in charge of its own

network. The interface flow is

fixed to a predetermined value

neither decided by the TSO

nor the DSO.

Feasible dispatches with po-

tentially excessive cost in cer-

tain configurations. Assessed

using game theory in chap-

ter 5.

radial distribution networks, as indicated in Figure 3.2. For simplicity, we will
write the models with one transmission network and one distribution network
(Figure 3.1). Extending these models to several distribution networks is trivial.
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Figure 3.1: Illustration of the T&D network structure considered in Chapters 3, 4
and 5.

3.2.1 Centralized Common TSO-DSO Market

This approach is based on Caramanis et al. [CNH+16]. Transmission and
distribution network resources are dispatched according to an integrated opti-
mization of the entire system. The goal of the system operator is to minimize
the cost of reserve activation.

The transmission network is represented through linearized DC power flow
approximation (similar to (1.7)):

FDCi (xT ) = 0, ∀i ∈ T B (3.1a)

(θ, fpT L) ∈ OCDC (3.1b)

pg ∈ GCDCg , ∀g ∈ T G (3.1c)

The distribution network is represented through a second-order cone pro-
gramming (SOCP) relaxation, which is tight for radial distribution networks
under mild assumptions [FL13,GLTL14]. The formulation is the same as (1.14).

FSOCi (xD) = 0, ∀i ∈ DB (3.2a)

(c, s, fpDL, f
q) ∈ OCSOC (3.2b)

(pg, qg) ∈ GCg, ∀g ∈ DG (3.2c)

In addition, transmission and distribution networks are linked through the
interconnection l′ = (i′, j′). We assume that this line is a transmission line only
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modeled by fpi′j′ (for simplicity we drop the angles θi′ , θj′). For ease of model-

ing, we will also assume that variable fpi′j′ is duplicated in the transmission and

in the distribution network. By defining IOC = {fpi′j′ |f
p

i′j′
≤ fpi′j′ ≤ f

p

i′j′}, the

interconnection constraints are the following:

fpi′j′ = fp,Ti′j′ (3.3a)

fpi′j′ = fp,Di′j′ (3.3b)

fpi′j′ ∈ IOC (3.3c)

The Centralized Common TSO-DSO aims at minimizing the reserve activa-
tion costs. Denoting by p̃g a predetermined dispatch and by rg ≥ 0 the reserve
capacity cleared for generator g ∈ G, the decision in real-time can be seen as an
adjustment ∆pg on the dispatch p̃g. In a balancing model, we then typically
have the following capacity constraints:

p̃g − rg ≤ p̃g + ∆pg ≤ p̃g + rg

By substituting p
g

= p̃g − rg, pg = p̃g + ∆pg, and pg = p̃g + rg, it is possible to

cast the balancing problem as an OPF problem as follows:

min
xT ,xD,fp

i′j′

∑
g∈G

Cg(pg) (3.4a)

s.t. (3.1), (3.2), (3.3) (3.4b)

xT = (pT G , f
p
T L, θ, f

p,T
i′j′ ),

xD = (pDG , q, c, s, f
p
DL, f

q, fp,Di′j′ )

3.2.2 Decentralized Common TSO-DSO Market

This market is modeled by using a residual supply function for real power at
the balancing market operated by the TSO. This residual supply function is
computed by the DSO, which operates its own local market while accounting
for its private distribution network constraints [ASL+17]. To be more specific,
the DSO computes the residual supply function TCi′j′(f

p
i′j′) by solving the

following problem for different values of fpi′j′ :

TCi′j′(f
p
i′j′) = min

xD

∑
g∈DG

Cg(pg) (3.5a)

s.t. (3.2), (3.3c) (3.5b)

(µi′j′) : fpi′j′ = fp,Di′j′ (3.5c)
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Note that this problem needs to be solved before the clearing of the TSO bal-
ancing market, and is therefore probably agnostic about the actual realization
of real-power imbalances in the distribution network. In addition, the commu-
nication of a detailed residual function TCi′j′(·) may be excessively onerous
in terms of computation and communication, therefore it is assumed that the
DSO only communicates a linearization of the residual function around a set
of predetermined points f̃pl :

TCi′j′(f
p) ' max

f̃p
l

(TCi′j′(f̃
p
l ) + µl · (fp − f̃pl )),

where µl ∈ ∂TCi′j′(f̃pl ) is a subgradient of TCi′j′ at the operating point f̃pl .
If the market clearing problem of the DSO is convex1, the function TCi′j′ can
be seen to be convex. In the case where the distribution network subproblem
is not convex (because of block orders and/or if one considers AC modeling),
the idea is to rely on the convex hull [GNB20] of the residual supply function.
In the scope of the thesis, the empirical testing of chapter 4 shows satisfying
results without having to carefully model the convex hull of the residual supply
function. The question of approximating a non-convex residual supply func-
tion is then left for future research. The requisite data that is needed for the
linearization of the function can be obtained by the DSO market clearing prob-
lem: TCi′j′(f

p
i′j′) is simply the objective function of the distribution network

subproblem (3.5), while µi can be obtained from the dual optimal multiplier
of constraint (3.5c), fixing the interface flow.

With the residual supply function (or its linear approximation) in place,
the TSO can then solve the following balancing problem:

min
xT ,fp

i′j′

∑
g∈T G

Cg(pg) + TCi′j′(f
p
i′j′) (3.6a)

s.t. (3.1), (3.3a), (3.3c) (3.6b)

The resulting real power flow at the interconnection is injected to or with-
drawn from the DSO system. The distribution network is then dispatched,
given the resulting real power flow at the interconnection. This coordination
scheme takes advantage of the fact that the only thing that the TSO and the
DSO need to agree on is the real power flow at the interface. This hierarchical
control should therefore deliver a near-optimal performance, with reasonable
communication requirements between TSO and DSO. Note that the financial
roles and responsibilities of each entity are also well defined. The DSO par-
ticipates in the TSO market through an energy bid, and receives a payment
from (or pays to) the TSO for its cleared quantity. The DSO then clears its

1This can be achieved if we use the SOCP relaxation of the distribution network subprob-
lem.
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local market, accounting for its local constraints, and using the previously col-
lected payment from the participation in the TSO auction in order to distribute
payments to its local market participants. A similar paradigm has been de-
scribed in a recent publication by Kristov [KMT16]. Note that this scheme
also faces several challenges: (i) the question of the precision of the approxi-
mation of TC() can largely influence the efficiency of the scheme, in particular
when considering a time-horizon; (ii) each point on which TC() is evaluated
implies solving a second-order cone program and the computational burden of
such a scheme can be problematic on realistic instances. Chapter 4 provides a
complete market-clearing platform embedding this coordination scheme.

3.2.3 Centralized Ancillary Services Market

In this approach, the TSO clears a market for ancillary services at the transmis-
sion level, using resources from the transmission and distribution system, but
without accounting for distribution network constraints. In order not to vio-
late distribution network constraints, resources need to be pre-qualified, in the
sense that distribution resources are not offered in the TSO market if they may
violate distribution network constraints. This pre-qualification process is not
modeled explicitly in this chapter, instead it is assumed that pre-qualification
has already been concluded.

The centralized ancillary services market model dispatches the system so as
to relieve the imbalance that has occurred by aggregating distributed resources
that offer reserve to their interface line. The TSO solves the following model:

min
xT ,pDG ,f

p

i′j′

∑
g∈G

Cg(pg) (3.7a)

s.t. (3.1), (3.3c) (3.7b)

fpi′j′ =
∑
g∈DG

pg −
∑
i∈DB

Dp
i (3.7c)

p
g
≤ pg ≤ pg, ∀g ∈ DG (3.7d)

Note that this coordination scheme ignores real power losses and shunt capac-
itance losses.

3.2.4 Local Ancillary Services Market

The local ancillary services market model activates resources depending on
where the imbalance occurs. For transmission-level imbalances, the dispatch is
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obtained as follows:

min
xT ,pDG ,f

p

i′j′

∑
g∈G

Cg(pg) (3.8a)

s.t. (3.1), (3.3c), (3.7c) (3.8b)

RLAST g ≤ pg ≤ RLAST g, ∀g ∈ DG (3.8c)

where RLAST g/RLAST g corresponds to the ancillary services capacity that is
available for transmission system balancing from generator g of the distribution
network.

For a distribution system imbalance, the dispatch is obtained by fixing the
amount of real power flow at the interconnection to the value obtained in (3.8),
denoted f̃pi′j′ :

min
xD,fp

i′j′

∑
g∈DG

Cg(pg) (3.9a)

s.t. (3.2) (3.9b)

fpi′j′ = f̃pi′j′ , (3.9c)

RLASDg ≤ pg ≤ RLASDg, ∀g ∈ DG (3.9d)

where RLASDg/RLASDg corresponds to the ancillary services capacity that
is available for distribution system balancing from the distribution network.

3.2.5 Shared Balancing Responsibility

The shared balancing responsibility requires that the TSO clear transmission-
level imbalances by using transmission-level resources only, and the DSO clear
distribution-level imbalances by using distribution-level resources only.

The TSO subproblem is modeled as

min
xT ,fp

i′j′

∑
g∈T G

Cg(pg) (3.10a)

s.t. (3.1) (3.10b)

fpi′j′ = f̃pi′j′ (3.10c)

Note that the objective function only involves transmission-level resources, and
the interface real power flow is fixed to the result of the forward market set-
point f̃pi′j′ , meaning that the TSO does not coordinate with the DSO.
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The DSO subproblem is modeled as

min
xD,fp

i′j′

∑
g∈DG

Cg(pg) (3.11a)

s.t. (3.2) (3.11b)

fpi′j′ = f̃pi′j′ (3.11c)

The objective function only involves distribution-level resources, and the inter-
face real power is fixed to the set-point of the forward market f̃pi′j′ , implying
no coordination between the DSO and the TSO.

Since the interface power flow is fixed to the result of the forward market,
the operations of the TSO are fully decoupled from those of the DSO. The
resulting balancing actions are feasible, provided the local imbalances do not
exceed the local reserves. However, the resulting balancing action may be more
costly than necessary, because the reserve resources cannot be pooled.

3.3 Numerical Illustration

This section tests the models presented in the previous sections on a small-
scale system, in order to illustrate their differences. The studied network is
presented in Fig. 3.2. The network consists of one transmission network and
three distribution networks: the transmission network contains three buses,
each of them connected to six distribution buses.

In summary2, the system consists of two thermal units at the transmission
level. The unit located in bus 1 has a marginal cost of 10 e/MWh, and a ca-
pacity of 390 MW. The unit located in bus 2 has a marginal cost of 20 e/MWh
and a capacity of 150 MW. There is an inelastic demand of 350 MW in loca-
tion 1. Each distribution tree has identical line characteristics and identical
resources are connected to each distribution tree. Except for the roots 10, 20
and 30, each distribution bus is connected to a distributed aggregated producer
of 85 MW and a distributed aggregated consumer of 80 MW. Aggregated flex-
ible consumers with bid quantities of 50 MW and valuations ranging from 0
e/MWh up to 19.1 e/MWh are connected to each distribution bus. Thus,
each of the three distribution trees can offer up to 250 MW of upward reserve
(if flexible demand is fully consuming), serves a price-inelastic demand of 400
MW, and zero-cost aggregated distributed production of 425 MW (which could
also offer reserve) is connected to each distribution tree.

The following discussion will concentrate on upward reserve activation, in
order to keep the analysis targeted. Consider the following commitment of
reserve capacity in the system, which is obtained a result of a forward reserve

2The full data of the model is available in the following link:
http://perso.uclouvain.be/anthony.papavasiliou/public html/Spider.dat.
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capacity auction3: (i) Generator 2 offers 149.1 MW, at an activation cost of
20 e/MWh; (ii) Consumer 15 offers 49.1 MW, at an activation cost of 19.1
e/MWh; (iii) consumer 25 offers 6.3 MW, at an activation cost of 15 e/MWh;
and (iv) consumer 34 offers 49.1 MW, at an activation cost of 19 e/MWh.

Consider an imbalance of -100 MW in bus 3, which is caused by an increase
of demand in bus 3 that equals +100 MW.

Figure 3.2: The network analyzed in the numerical illustration of section 3.3.

3.3.1 Centralized Common TSO-DSO Market

This coordination scheme resolves the imbalance by simultaneously accounting
for transmission and distribution constraints. The imbalance is resolved by
dispatching demand response to the following levels: (i) consumer 15 provides
49.1 MW of activated reserve4, and its consumption level is 0.9 MW; (ii) con-
sumer 25 offers 6.3 MW of activated reserve, its consumption level is 0.7 MW;
(iii) consumer 34 offers 40.2 MW of activated reserve, its consumption level is

3In the present example, the reserve commitment is based on a perfectly coordinated
reserve capacity auction, as described by Caramanis et al. [CNH+16].

4Activated reserve is measured as the difference between the production level in the co-
optimization reservation problem and the production after the imbalance appears and is
resolved with the co-optimization model.
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9.8 MW. The real-time price becomes 19.3 e/MWh uniformly across the entire
transmission network.

3.3.2 Decentralized Common TSO-DSO Market

The resolution of the DSO unperturbed model with three points of approxima-
tion of the residual supply function yields the function shown in Table 3.2. We
choose a rather low number of points in order to keep the example illustrative.
Note that the marginal cost function of the interface is increasing, as expected
when the DSO problem is convex, and as required for market clearing of the
TSO market. Note also that the residual supply function should be computed
by the DSO in an open-loop fashion, without repeated rounds of information
exchange, with the TSO: indeed, an iterative TSO-DSO framework is not in
line with current practices or potential future practices of power system oper-
ations [GRS16].

Table 3.2: Residual supply function marginal cost (in e/MWh) for the decentralized
common TSO-DSO market model.

Interface Point 1 Point 2 Point 3
1 7.4 18.8 19.2
2 15.0 15.0 15.1
3 7.7 17.7 19.8

The resulting dispatch of the TSO resources is identical to the one obtained
by the centralized common TSO-DSO model, with generator 1 producing 390
MW, generator 2 producing nothing, and the reserves required for balancing
sourced from the interfaces. The balancing price of the transmission market
is 19.7 e/MWh. It should be noted that the sourcing of the reserve shifts
slightly, relative to the sourcing obtained in the centralized common market
model. In the decentralized model, the interface flows balance the system with
the following injections (the negative sign indicates that the flow is from the
distribution pocket to the transmission system): fp1 = -20.49 MW, fp2 = -20.84
MW, and fp3 = -18.67 MW. In the centralized model, the injections are fp1 =
-22.80 MW, fp2 = -23.00 MW, and fp3 = -14.20 MW.

One therefore observes that the decentralized approach shifts sourcing of
reserve from pockets 1 and 2 to pocket 3. This can be attributed to the fact that
the true marginal cost of activating distributed resources is only approximate,
not exact, in the decentralized model. Notice, however, that the total amount
of real power reserve which is activated should be equal in both cases, because
in both cases the contribution of transmission-level resources to clearing the
imbalance is identical. By consequence, there is a slight loss in consumer benefit
and balancing prices at the transmission system are also slightly different from
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those of the centralized common market model. Note also that, by construction,
this market-clearing method will not violate system constraints.

3.3.3 Centralized Ancillary Services Market Model

This coordination scheme dispatches resources by ignoring the distribution net-
work constraints. In particular, the imbalance is resolved by dispatching dis-
tributed demand response resources to the following levels: (i) the consumption
level of consumer 15 is 13.5 MW; (ii) the consumption level of consumer 25 is
0.7 MW; and (iii) the consumption level of consumer 34 is 0.9 MW.

The real-time price becomes 19.1 e/MWh, uniformly across the entire
transmission network, which is slightly lower than that of the centralized com-
mon TSO-DSO market model, and is due to the underestimation of losses.
Note that there is no DLMP in this coordination scheme, instead distributed
resources receive the transmission-level price.

The dispatch is not feasible, because losses in the distribution network are
ignored. Solving a feasibility restoration problem, one finds that a positive
activation of 4.0 MW is necessary in location 15 in order to restore feasibility.
The results of the scheme on a toy example confirm the fact that it is not in
line with the future of electricity markets. Indeed, in a configuration where
distribution networks are becoming more and more important, ignoring the
complex physics of the distribution network should not be considered.

Note also that a significant amount of the balancing has shifted from con-
sumer 34 (in the centralized common TSO-DSO market model) to consumer
15 (in the centralized ancillary services model).

3.3.4 Local Ancillary Services Market Model

In this model the DSO clears a local market for reserve before a transmission-
level market is cleared. The local market commits half of the reserve capacity
for use by the local DSO, with the other half (the more expensive half, since
the DSO reserve market clears first) being made available to the TSO. Thus,
reserve capacity is allocated as follows. (i) The TSO can access reserves from
generator 2 up to 149.1 MW at an activation price of 20 e/MWh, reserves from
consumer 15 up to 24.55 MW at an activation price of 19.1 e/MWh, reserves
from consumer 25 up to 3.15 MW at an activation price of 15 e/MWh, and
reserves from consumer 34 up to 24.55 MW at an activation price of 19 e/MWh.
(ii) The DSO of feeder 1 can access reserves from consumer 15 up to 24.55 MW
at an activation price of 19.1 e/MWh. (iii) The DSO of feeder 2 can access
reserves from consumer 25 up to 3.15 MW at an activation price of 15 e/MWh.
(iv) The DSO of feeder 3 can access reserves from consumer 34 up to 24.55 MW
at an activation price of 19 e/MWh.
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The real-time price at the transmission level is 20.0 e/MWh. The reason
is that the distribution network reserves are activated up to their full capacity
(only half of the total distributed reserves are available to the TSO), and the
generator with marginal cost 20 e/MWh needs to be activated. This sets the
price of 20 e/MWh for balancing in the transmission network.

The imbalance is resolved by dispatching demand response resources and
transmission-level generation to the following levels: (i) generator 2 produces
39.7 MW, (ii) consumer 15 withdraws 25.4 MW, (iii) consumer 25 withdraws
3.8 MW, and consumer 34 withdraws 25.4 MW. The resulting dispatch vio-
lates physical constraints, and the resolution of a phase-I feasibility restoration
requires an excess production of 3.9 MW at location 34.

One notable feature of this model is that the same resource can be activated
in opposite directions, depending on the imbalance for which it is activated.
For example, if there is a positive transmission-level imbalance and a negative
distribution-level imbalance, a distributed resource may be activated upwards
by the TSO and downwards by the DSO.

As it stands, the local ancillary services market scheme demonstrates poor
performances even on a toy example. This is due to the fact that we define
in advance the distribution reserve capacity allocated to the transmission or
the distribution network. Since this decision can be highly dependent on the
market conditions, this assumption appears to be too restrictive. Based on this
observation, we consider two alternatives of this scheme in chapter 5: either
the TSO and the DSO activate simultaneously distribution resources (TSO
has limited access to DSO resources, section 5.4.2) or the DSO solves local
imbalances before giving the possibility to the TSO to activate the remaining
distribution reserve capacity (Local Markets, section 5.4.3).

3.3.5 Shared Balancing Responsibility Model

This model separates the dispatch in the transmission and the distribution
networks by fixing the linking variable of the two networks, which is the real
power flow at the interface. The value of the real power at the interface in
this numerical example is fixed to the value obtained from a forward reserve
capacity auction.

The real-time price at the transmission level is 20.0 e/MWh. The reason
is that the TSO has no access to distribution network reserves, and therefore
the generator with marginal cost 20.0 e/MWh needs to be activated. This
sets the price of 20.0 e/MWh for balancing in the transmission network. The
imbalance is resolved by dispatching generator 2 at 100.0 MW.

The resulting dispatch results in a feasible power flow. This can be under-
stood by the fact that the shared balancing responsibility model will not violate
feasibility at the transmission network, because it is consistently accounting for
real power (since there are no overlooked distribution network losses), and it
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will not violate feasibility at the distribution network since it does not simplify
the distribution network constraints. However, in general this feasibility will
come at a relatively high activation cost since resources of the transmission and
distribution networks are not pooled. This is evident in Table 3.3, where gen-
erator costs increase dramatically (outweighing additional consumer benefits),
and exceed the activation costs of any other coordination scheme.

The relative performance of the studied coordination schemes in terms of al-
locative efficiency, physical feasibility, and price, are summarized in Table5 3.3.

Table 3.3: Summary statistics of the different coordination schemes. The coordination
scheme initials stand for centralized common market (CCM), decentralized common
market (DCM), centralized ancillary services market (CAS), local ancillary services
market (LAS), and shared balancing responsibility (SBR).

Gen. Consumer Constraint Transm.
cost benefit violation price
[e] [e] [MW] [e/MWh]

CCM 3900.0 212.4 0.0 19.3
DCM 3900.0 202.2 0.0 19.7
CAS 3900.0 283.7 4.0 19.1
LAS 4693.3 1026.0 3.9 20.0
SBR 5900.0 2009.0 0.0 20.0

3.4 Conclusions

This chapter proposed models for quantifying five proposals of TSO-DSO co-
ordination which have recently been proposed by the SmartNet consortium.
The following conclusions can be drawn from the specific case study presented
in this chapter: (i) The Centralized Common Market model sets the first-best
standard in terms of allocative efficiency, however it is challenging to imple-
ment due to the large scale of the optimization problem and the communication
requirements. (ii) The Decentralized Common Market model strikes a balance
between efficiency and computational / communication tractability. This is
achieved by exploiting the fact that the TSO and DSO need only agree on the
amount of real power flowing over the T&D interface. (iii) The Local Ancillary
Services model is dominated by the Centralized Ancillary Services model in
terms of allocative efficiency. (iv) The Shared Balancing Responsibility model
will not violate physical constraints, however it appears to be the least efficient
solution.

5The degree of constraint violation is the minimum adjustment in real power injection /
withdrawal that would be needed to restore a feasible power flow. This is why constraint
violation is measured in MW.
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3.4. Conclusions

This chapter introduced the preliminary material and thoughts on what is
explored in chapters 4 and 5. We conduct a deep study and propose a frame-
work for applying Decentralized Common Market in chapter 4. In chapter 5,
we suggest two interpretations of the Local Ancillary Services model that al-
low for feasible dispatches, one as a non-cooperative simultaneous game and
another as a Stackelberg game. We model Shared Balancing Responsibilities
as a non-cooperative simultaneous game as well.
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Chapter 4

Coordination of T&D
System Operations in
Flexibility Markets with
Non-Convex Market Offers
and Alternating Current
Power Flows

4.1 Introduction

In this chapter, we aim at developing a practical framework for T&D balanc-
ing markets. To this end, we rely on the ideas developed in the coordination
scheme called ‘Decentralized Common TSO-DSO’ in Chapter 3 (section 3.2.2).
We extend the vision perceived in this coordination scheme and aim at validat-
ing the approach on realistic instances. Several specific features are desirable
for the foreseen T&D market-clearing real-time platform and are exposed in
section 4.2. We then identify the precise functioning of the market as well as
the role of each actor involved (section 4.3). We present the mixed integer
non-linear problem for which the platform should be able to deduce primal
decisions (section 4.4) but also prices (section 4.5) in a decentralized fashion.
The algorithmic details of the approaches are elaborated in section 4.6. We per-
form computations on realistic instances of the European markets (section 4.7)
before exposing conclusions in section 4.8.
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4.2 Desiderata of T&D Platforms

4.2.1 Physical Considerations

The platforms that are considered in the SmartNet test systems of Italy and
Denmark include two physical complications: (i) market bids at both the trans-
mission and distribution level can be non-convex, and (ii) the distribution net-
work model is based on a non-convex alternating current power flow.

Non-convex market offers at the distribution level can be understood as
a consequence of the disaggregated representation of resources in distribution
networks. A case in point are storage resources that may be either charging or
discharging. Since storage resources located in different nodes of the distribu-
tion grid need to be represented separately, the smoothing effect of aggregation
vanishes. Regardless of its origin, we consider the SmartNet data as a given
in our analysis, and this data included non-convex market offers at the level of
the distribution system.

Linear approximations of power flow are not adequate for representing a
number of relevant distribution network constraints, due to the lower voltage
level at which these systems operate. Ohmic losses are especially relevant, and
voltage limits can be often binding in cases of local oversupply. Reactive power
flows can contribute to the stress of lines. In SmartNet [MRS+17], convex
relaxations of the AC power flow equations were proposed in order to represent
distribution network constraints, and linear approximations were proposed for
meshed transmission networks. In the present work, we directly account for
the non-convexity of the AC power flow equations in the distribution network.

4.2.2 Scalability

Integrating transmission and distribution networks naturally leads to consider-
ing market clearing problems of very large scale. Caramanis et. al [CNH+16]
provide an indication: “In fact, whereas transmission bus locations number in
the thousands, associated distribution feeder line buses number in the hundreds
of thousands or millions.”.

The SmartNet test cases additionally incorporate multi-interval look-ahead
[HSZ+19]. The typical SmartNet test cases consider one-hour look-ahead, and
balancing market time units of 15 minutes, hence a four-stage look-ahead where
current period decisions are binding and future decisions are advisory. This
market clearing is performed in a rolling horizon.

The very large scale of the problem is compounded by the challenge that
a real-time / balancing dispatch and market clearing platform can only afford
a few minutes of run time at best. It is therefore clear that a viable solution
requires decentralization / decomposition. Compared to existing research that
decomposes the problem by considering convex approximations or relaxations
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[CNH+16, KCL+14], in our work we propose a decomposition of the problem
that is in line with the institutional organization of power system operations,
and is specifically targeted at accommodating the non-convexity of distribution
network power flows. We discuss our decentralization strategy in further detail
in the following section.

4.2.3 Privacy and Decentralization

The complexity and scale of the problem considered should already be sufficient
reasons to consider decentralized methods for computing market clearing solu-
tions. There are also institutional drivers for considering such decentralization.
Indeed, TSOs are sometimes reluctant of undertaking the responsibility for op-
timizing the management of assets at the level of distribution networks, since
the monitoring, optimization, control and settlement of these assets introduces
overwhelming complexity to TSO operations. On the other hand, DSOs may
also be reluctant of surrendering the control of assets to an entity that has no
visibility of their network constraints and may therefore overload distribution
network assets through the activation of flexible distribution resources.

We consider an effective communication protocol as one which allows net-
work operators to coordinate without sharing detailed information about their
local network, or the bids that are collected in their network. Such a commu-
nication protocol is compatible with various practices of bid filtering [PBDS20]
or pre-qualifications [MP19], but attempts to conduct these procedures with-
out excluding potentially high-welfare market matches. Such a protocol further
exploits the typically radial structure of distribution networks, and in particu-
lar the fact that a distribution sub-network is typically connected by a single
feeder to the upper-level high-voltage system. Note that, in this work, we are
not exploring whether or not it is possible for the TSO or the DSO to learn
information from the other’s network with the framework we develop. We only
assume that privacy is preserved since operators are willing to only exchange
border information.

4.2.4 Consistent Pricing

The challenges discussed so far are limited to the primal problem. Since we are
interested in developing a market clearing platform, we also focus on generating
price signals that are consistent with the dispatch instructions generated by our
platform.

Since our matching problem is non-convex, uniform market clearing prices
are not guaranteed to exist. This is due both to the non-convexity of the market
offers [GHP+07], as well as the non-convexity of the alternating current power
flow [GNB20].
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This problem is not new to electricity markets. Uplift payments are typ-
ically used for inducing agents to follow the dispatch schedule of the market.
Uplift payments prevent agents from “taking matters into their own hands” by
resorting to self-commitment or self-scheduling, which would limit the amount
of flexible assets that are available to the network operators. In practice, the
market clearing procedure is typically partitioned into two steps: (i) the pri-
mal / dispatch step matches market orders, and (ii) the dual / pricing step
produces prices that are as consistent as possible to the market matches. In
US markets this pass is performed once, and various methods for pricing in the
second step have been considered, including IP pricing [OSH+05], convex hull
pricing [GHP+07], approximations of convex hull pricing [HB16], and a vari-
ety of other possibilities [LA16]. In EU markets this primal/dual algortihm is
performed iteratively within a branch-and-cut algorithmic scheme [MVV15], in
order to accommodate additional specifications related to the management of
non-convex market offers — essentially, EU DA market avoids uplifts payments
by (i) constraining the problem in a way that ensures there will not be any
paradoxically accepted bids (cleared bids actually facing losses) and (ii) allow-
ing paradoxically rejected bids (a rejected bid that would have been profitable)
but not paying their opportunity costs of being out of the market. Ultimately,
this does not effectively reduce the uplifts to zero, but simply means increasing
the total “virtual uplift” by making sure that these will not result in effective
payments, due by the market operator, thanks to the market rules.

We are inspired by the decomposition of dispatch and pricing that is em-
ployed in practice. We use the amount of uplift payments, or lost opportunity
cost, as a metric of how close the price signal is to being consistent with the
dispatch instruction. In contrast to the aforementioned literature, the pro-
cedure that we propose aims at (i) coping with the non-convex alternating
current power flow model of distribution networks, while (ii) respecting the
decentralization of information that is discussed in section 4.3.2.

4.3 Overview of Market Design

The market platform that we propose aims at implementing a real-time market
for clearing energy while accounting for transmission and distribution network
constraints. In EU jargon, we implement an integrated real-time congestion
management and balancing platform. The market dispatches flexible resources
in real time so as to balance the system while ensuring that network constraints
are safeguarded. The platform produces locational marginal prices for energy
at the transmission level, and locational marginal prices for real and reactive
power at the distribution level. Reserve capacity [CNH+16] is considered as
being out of scope for the present work.

Figure 4.1 provides an illustration of the sequence of electricity markets, as
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well as the sequence of actions that we envision for the real-time market that
we implement in our work.

Figure 4.1: Sketch of the chronology of electricity markets with an emphasis on our
vision for the sequence of events in the real-time market platform.

4.3.1 Market Agents and Products

The market platform that we develop trades location-specific real power at
the transmission system, and location-specific real and reactive power at the
distribution system. We assume a single meshed transmission network that
is interconnected to a number of distribution networks, with each distribution
network interconnected to the transmission network via a unique feeder, which
we will also refer to as a transmission-distribution interface (T&D interface)
(see Figure 3.1). We consider the following agents in our market model.

Transmission System Operator (TSO). The TSO procures real power
from BSPs that are connected in the transmission network, as well as real power
from the DSO at the transmission-distribution interface (e.g. the medium-to-
high-voltage feeders). The TSO collects payments from BRPs for real power,
as well as payments from the DSO for the exchange of real power at the T&D
interface.

Distribution System Operator (DSO). The DSO is responsible for con-
gestion management at the level of the distribution network. We envision a
DSO that operates an active distribution system management system that is
capable of producing location-specific real and reactive power prices, that are
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paid to BSPs who are connected to the DSO network. The DSO collects pay-
ments for real and reactive energy from BRPs, and also pays the TSO for real
power exchaged at the T&D interface.

Balancing Service Provider (BSP). BSPs operate assets that can be
actively dispatched in order to resolve congestion and balance the system, i.e.
they are the owners of reserve assets. This is precisely what we refer to as
“flexibility”. In EU jargon, we specifically refer to BSPs as owners of automatic
frequency restoration reserve (aFRR) and manual frequency restoration reserve
(mFRR) assets. These correspond to reserve resources that can respond within
a few seconds to a few minutes. BSPs that are located in the transmission
network receive location-specific balancing energy payments from the TSO.
BSPs that are located in the distribution system receive payments for real or
reactive balancing power from the DSO. In terms of the mathematical models
that are presented in the sequel, we will identify BSPs as price-responsive
“generators”.

Balancing Responsible Party (BRP). Balancing responsible parties are
owners of non-flexible assets, i.e. assets that are not controllable and that
induce imbalances in real time. Distribution network BRPs face a location-
specific price for real power and reactive power, against which their imbalances
are settled. Transmission network BRPs face a location-specific price for real
power. In terms of the mathematical models that are presented in the sequel,
we will identify BRPs as price-inelastic “loads” at each bus of the network.

Aggregation-Disaggregation Service (ADS). The aggregation-disaggregation
service implements the decentralization of transmission and distribution sys-
tem operations by aggregating distribution system BSP offers, trading energy
at the T&D interface, and subsequently disaggregating the interface flow to
BSP activations within the distribution network (Figure 4.2). The flexibility
platform also determines the location-specific real and reactive prices of the
distribution network. In a centralized implementation, this flexibility platform
becomes obsolete. Instead, the TSO and DSO operations are integrated into a
single platform that produces dispatch signals and prices.

4.3.2 Practical Considerations

In this section, we point out certain important differences between the ideal
market design described in section 4.3.1 and the existing European market
design. A number of these differences can be bridged, others are rather funda-
mental and raise gaming aspects that extend beyond the scope of the present
work.
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Figure 4.2: The role of the Aggregation-Disaggregation Service (ADS) in the clearing
process.

In practice, TSOs are responsible for balancing and congestion manage-
ment. In most EU markets, balancing energy is settled at a zonal level. The
location-specific prices for real power that we propose in this work essentially
implement balancing energy at nodal resolution. The EU market design faces
a difficult challenge in this respect. (i) Implementing zonal flexibility mar-
kets will introduce increase-decrease (INC-DEC) gaming opportunities in these
markets [HS18]. (ii) Implementing nodal real-time markets (at least in the dis-
tribution level) will introduce an inconsistency with day-ahead zonal markets
that can also be exploited. These market design questions are beyond the scope
of the present work.

In practice, DSOs are solely responsible for congestion management, i.e. op-
erating the distribution system while ensuring that network constraints are re-
spected. In our model, DSOs assume a more active role. They aggregate offers
into residual supply functions that participate in the TSO-operated wholesale
market. They also disaggregate feeder-level real power injections to individual
BSP assets that are connected in the distribution network.

In European markets, BRPs are typically exposed to an imbalance price that
is not location-specific. Instead, in our analysis we assume that BRP positions
are settled at locational prices, and that BRP net positions are measurable
at nodal resolution (if not in real time, at least ex post for the purpose of
settlement).

One final relevant remark is that imbalance is typically monitored at the
level of a load frequency control (LFC) area. Thus, imbalances cannot be
disaggregated, in real time, at the level of distribution nodes. Thus, BRPs
can only be charged after the fact for the imbalances that they induce on the
network. In our model we assume imbalances that are measurable at nodal
resolution in real time.
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4.3.3 Residual Supply Functions

In order to bridge the gap between TSO-DSO coordination and decentralized
operations of the network operators, we propose in this chapter an Aggregation-
Disaggregation Service (ADS) which relies on Residual Supply Functions (RSFs)
[PM18, PBDS20]. In the convex case, RSFs correspond to a Benders decom-
position of the TSO-DSO coordination problem, and are thus distinct from
the dual decomposition methods set forth in [KCL+14, CNH+16]. We opt for
RSFs as being better aligned with the institutional operation of real-time EU
markets, as we discuss in the following.

Concretely, one RSF is defined for every T&D interface. It corresponds
to the gradient of the least cost at which a given amount of real power can
be exported from a distribution network to the T&D interface. An important
advantage of RSFs is their direct interpretation as bids in the balancing market
operated by the TSO, which mask the complexity of the underlying distribution
network. The ADS computes an RSF by collecting the market bids of all BSPs
that are connected to the distribution network of a given DSO, as well as the
relevant distribution network parameters from the DSO. The RSF can then
be bid into the wholesale market, and compete on equal footing with the BSP
offers of transmission-level BSPs. The clearing of the market implies a net
position for the DSO. This net position needs to be disaggregated to individual
BSPs at the distribution network by the disaggregation function of the ADS.

Note that this idea can be generalized to any hierarchical structure between
operators and for example coordination of national TSOs in the European
context [PBDS20].

Example of the use of the RSF by the ADS. The best way to un-
derstand the functioning of the RSF is with an example. Let us consider the
example in Figure 4.3 accompanied with Table 4.1 displaying generation ca-
pacities and costs.

Figure 4.3: Simple T&D example.

Note that we assume neither losses nor reactive power in the distribution
network for simplicity and that there is a 0.5 MW real power flow limit on the
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Table 4.1: Data of T&D example in Figure 4.3.

BSP Capacity Marginal Cost
BSP 1 3 MW 20 e/MWh
BSP 2 1 MW 15 e/MWh
BSP 3 1 MW 10 e/MWh

line connecting BSP 2 and BSP 3. The imbalances to cover are a 1 MW load
located on the single transmission bus and a 0.2 MW load at bus 3. These
imbalances can either be covered by the expensive transmission BSP (BSP 1)
or by the cheaper distributed renewable resources (BSP 2 and BSP 3).

In a centralized setting, the solution would be the following:

• BSP 1: activate 0 MW, clearing price 15e/MWh.

• BSP 2: activate 0.5 MW, clearing price 15e/MWh.

• BSP 3: activate 0.7 MW, clearing price 10e/MWh.

From the practical considerations reported in section 4.3.2, it is necessary to
consider a decentralized solution framework. The first task of the ADS is
to aggregate the distribution flexibility. This is easily done by considering
the distribution network as only one bus at the transmission level. This is
represented in Figure 4.4.

Figure 4.4: Aggregation from the ADS of the example in Figure 4.3.

The aggregation of the distribution network would need to capture the BRP
imbalances, BSP offers and physics of the distribution networks while sharing
a minimal amount of information with the TSO. The goal of the work is to
show how the RSF can guarantee this property. If the TSO does not take
into account the distribution network, the only possibility is to activate BSP
1 (Figure 4.5(a)). The role of the ADS is then to build the RSF by assuming
different levels of interface flows. In this example, considering for instance 0
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MW, 0.5 MW, 1 MW, 1.5 MW and 2 MW interface flow levels provides an exact
representation of the RSF. What the TSO is facing for covering the imbalance
is represented in Figure 4.5(b): the violet part of the curve is the RSF while
the blue part of the curve represents BSP 1.

(a) TSO with only transmission
information.

(b) TSO with ADS sharing the RSF.

Figure 4.5: On the example of the Figure 4.3, depending on the willingness to collab-
orate, the TSO faces the following options in (a) the ‘only transmission information’
case and (b) the case where the ADS shares the RSF.

In the transmission balancing market, the system imbalance is matched
against +1 MW of the RSF. The TSO is then buying 1 MW to the ADS at
the price indicated by the RSF of 15e/MWh. The primal/dispatch part of
the disaggregation function then runs, with an aim of finding the most efficient
way to evacuate 1 MW while respecting network constraints and distribution
imbalances (−0.2 MW at bus 3). The cheapest way for this to be achieved is
by activating BSP2 and BSP3 upward by 0.5 MW and 0.7 MW respectively.
The dual/pricing part of the disaggregation function then runs, with an aim at
determining prices that are coherent with the dispatch and the balancing price.
Concretely, we arrive at a price of 15 e/MWh at bus 2 and 10 e/MWh at bus
3. The interface price of 15 e/MWh is consistent with the partial activation of
BSP2, which is indifferent about any quantity of activation, since it is making
a zero-profit margin. This consistency pricing step is discussed in more details
in section 4.5.2 and matches Step 6 of Algorithm 6.

Aiming at precisely representing the financial interactions between the ac-
tors in a decentralized market clearing platform, the resulting settlement table
of the example is drawn in Table 4.2.

In Table 4.2, we report the financial position of the different transmission
and distribution actors, presented in the columns of the table. The settlement
is divided in 4 phases:
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Table 4.2: Settlement table of the example of Figure 4.3.

Transmission Distribution
Settlements BSP 1 BRP 1 TSO ADS BSP 2 BSP 3 BRP 3
TM-BSP 0 e - −15 e +15 e - - -
Quantity (MW) −1 +1

Price (e/MWh) 15 15

ADS Dis. - - - −14.5 e +7.5 e +7 e -
Quantity (MW) −1.2 +0.5 +0.7

Price (e/MWh) [10;15] 15 10

TM-BRP - −15 e +17 e - - - −2 e
Quantity (MW) −1 +1.2 −0.2

Price (e/MWh) 15 [10;15] 10

ADS Rebal. - - −2 e +2 e - - -
Quantity (MW) −0.2 +0.2

Price (e/MWh) 10 10

Total 0 e −15 e 0 e +2.5 e +7.5 e +7 e −2 e

1. Transmission market BSP (TM-BSP) settlement. This is the transmis-
sion market cleared by the TSO when taking into account transmission
BSP offers and the virtual distribution bid sent by the ADS, i.e. the RSF.

2. ADS disaggragation (ADS Dis.). The ADS determines the distribution
BSP activations in accordance with the interface power flow cleared in
the TM-BSP.

3. Transmission market BRP (TM-BRP) settlement. The TSO collects
transmission and distribution BRP payments with respect to the LMPs
cleared in the previous steps.

4. ADS Rebalancing (ADS Rebal.). The TSO reallocates the distribution
BRP payments received to compensate the ADS which is in charge of
managing the congestion in the distribution network with the DSO.

In the first phase, the TM-BSP, the TSO requests 1 MW to the ADS which
is bought at a price of 15e/MWh without activating transmission BSP offers.
The ADS then disaggregates the interface flow by requesting the activation of
BSP 2 and BSP 3 who are remunerated according to the locational marginal
prices (respectively 15e/MWh and 10e/MWh). Note that, in the same time,
the ADS covers for distribution BRP imbalance: here a 0.2 MW-load located
at bus 3, which pushes the ADS to request a total of 0.7 MW from BSP 3. The
next step consists in the BRP settlement in which the TSO collects payments
from transmission and distribution BRPs (BRP 1 and BRP 3) who are facing
locational prices (15e/MWh at bus 1, 15e/MWh at bus 3). Finally, the TSO
redistributes the payment received by the distributed BRPs (here BRP 3) to
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the ADS. The last row shows what each participant paid or got paid. As
expected, BSPs and BRPs are remunerated according to their consumption
and the locational marginal price cleared. The TSO and the ADS shares the
congestion rent which appears through price differences at each location. The
congestion rent is here fairly assigned: the TSO is not facing any price difference
in its network while the ADS has a congested line (the line connecting buses
2 and 3) and a price difference between these two buses. The ADS receives a
compensation of +2.5e (= (15− 10)× 0.5).

In practice, computing an exact representation of the RSF is not tractable
because of the complexity of the distribution networks. We show in this work
how approximations of the RSF provide satisfactory results. We also point out
that the RSF is only relevant for the decentralized version of our proposed mar-
ket clearing platform, which is described in section 4.6.4. The centralized ver-
sions of the market clearing platform that are described in sections 4.6.1, 4.6.2
and 4.6.3 do not rely on the RSF.

4.4 The Primal Market Clearing Problem

In this section we gradually build up the market clearing problem that we
aim at solving. We specifically focus on providing an accurate account of the
non-convexities of the primal problem.

4.4.1 Multi-Period Optimal Power Flow

We now extend the OPFAC introduced in Chapter 1 (problem (1.5)) on a time
horizon T = {1, . . . , tf}. In this setting, power balance constraints must be
satisfied at each time step. The set of operational constraints, OC, is also valid
at each time step and we assume that the parameters of the network do not
change from one time-step to another. Consequently, operational constraints
need to be met at each time-step and do not create time-coupling. On the
contrary, the set of generation constraints, GCg, is time-dependent (for example
generation capacity might change) and involves time-coupling. Indeed, when
considering multi-period OPF on a time horizon T = {1, . . . , tf}, GCg could also
include inter-temporal constraints, such as ramp constraints (among others):

RP g,t ≤ pg,t+1 − pg,t ≤ RP g,t, ∀g ∈ G, t ∈ T − {tf}.

In the multi-period context, we keep the same notation GCg for generator g ∈ G.

The multi-period OPF on a time-horizon T = {1, . . . , tf} is then formulated
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as follows:

min
x

∑
g∈G

∑
t∈T

Cg,t(pg,t) (4.1a)

s.t. Fi,t(xt) = 0, ∀i ∈ B, ∀t ∈ T (4.1b)

(v, θ, fpt , f
q
t ) ∈ OC, ∀t ∈ T (4.1c)

(pg, qg) ∈ GCg, ∀g ∈ G (4.1d)

In (4.1), the coupling constraints appear in (4.1d). Note that the multi-period
OPF can also be extended to the other formulations (quadratic AC-OPF,
quadratic relaxation, SOCP relaxation and DC approximation). The problem
remains a continuous non-convex optimization problem.

4.4.2 Non-Convex Offers

The bids that we consider in this chapter are based on the market product
specifications of the SmartNet EU project. They thus obey the structure of
the bids used in the single day-ahead European market coupling model. The
detailed description of the bid structure can be found in [LPG+19](Section 3).

To incorporate complex bids (like block bids, linked bids etc.), we introduce
dg ≥ 1 binary variables yg for each generator g. The set GCg is now extended
and can incorporate binary constraints:

(pg, qg, yg) ∈ GCg, ∀g ∈ G (4.2a)

yg ∈ {0, 1}dg , ∀g ∈ G (4.2b)

The set GCg can incorporate various features. These include linked bids, exclu-
sive acceptance, minimum acceptance duration, and so on. These bids there-
fore introduce binary variables and inter-temporal constraints. For more de-
tails concerning the bid structure and a precise mathematical formulation, the
reader is referred to appendix 4.A.

4.4.3 The Integrated T&D Real-Time Market Clearing
Primal Model

The topology of the networks considered in this chapter is presented in Fig-
ure 3.1. We display a single distribution network in the figure, whereas the
test systems in our case study include multiple distribution networks that are
connected to transmission network buses.

We denote by B = T B ∪ DB the set of buses which is the union of the set
of transmission buses and distribution buses. Similarly, the set of generators
G = T G ∪ DG is the union of the set of transmission generators and the set
of distribution generators, and L = T L ∪ {l′ = (i′, j′)} ∪ DL is the set of
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lines, which is the union of the transmission lines, interconnection line and
distribution lines.

The transmission network is meshed. We employ a DC approximation for
this network [SA74], following the SmartNet market clearing model. Non-
binding voltage constraints and lower importance of real power losses are com-
mon assumptions when considering transmission power systems [FSR12,PM18].
Like in Chapter 3, we assume that the interconnection is a lossless line and
only model the interconnection real power flow by using one variable fpl′ and

duplicate it in both transmission (fp,Tl′ ) and distribution networks (fp,Dl′ ). The
distribution network is assumed to be radial where the SOC relaxation is of-
ten exact in practice. Nevertheless, physically feasible dispatch decisions are
considered a requirement for our market clearing platform, therefore we will re-
quire that the AC power flow equations are satisfied in the distribution network.
Since the network is radial, we will make the use of the quadratic relaxation,
OPFQ, proven to be exact under radial topology assumption [ZT11]. Similar
requirements can be imposed for the transmission network, but are out of scope
for the present work. Note that such AC feasibility requirements for the trans-
mission network are not imposed on the SmartNet instances that are solved in
the case study (and corresponding data is not available for the test systems of
these case studies).

The formulation of the integrated T&D market clearing problem is as fol-
lows:

min
(x,y,fp

l′ )

∑
g∈G

∑
t∈T

Cg,t(pg,t) (4.3a)

s.t. FDCi,t (xTt ) = 0, (λi,t) ∀i ∈ T B,∀t ∈ T (4.3b)

(θt, f
p
T L,t) ∈ OC

DC , ∀t ∈ T (4.3c)

(pg, yg) ∈ GCDCg , ∀g ∈ T G (4.3d)

fpl′,t = fp,Tl′,t , ∀t ∈ T (4.3e)

fpl′,t = fp,Dl′,t , ∀t ∈ T (4.3f)

fpl′,t ∈ IOC, ∀t ∈ T (4.3g)

FQi,t(x
D
t ) = 0, (λi,t) ∀i ∈ DB,∀t ∈ T (4.3h)

(ct, st, f
p
DL,t, f

q
t ) ∈ OCQ, ∀t ∈ T (4.3i)

(pg, qg, yg) ∈ GCg, ∀g ∈ DG (4.3j)

yg ∈ {0, 1}dg , ∀g ∈ G (4.3k)

xT = (pT G , f
p
T L, θ, f

p,T
l′ ), xD = (pDG , q, c, s, f

p
T L, f

q, fp,Dl′ )

This problem is a mixed integer non-linear problem and its continuous relax-
ation is non-convex. Integrality comes from the introduction of binary vari-
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ables y. In addition to binary variables, non-convexities originate from con-
straint (4.3i) modeling power flow equations in the distribution network. Inter-
temporality appears in two constraints: (4.3d) and (4.3j). Note that, even if we
do not explicitly define them in problem (4.3), slack variables are introduced
and highly penalized to ensure feasibility of the problem. These slack variables
can be seen as production or load shedding and are common when modeling
OPF problems. These slack variables are also present in the problems we in-
troduce in section 4.6 which ensure feasibility of the of the approaches that we
develop. Solution methods for solving (4.3) are presented in section 4.6.

4.5 Pricing

The model that we present in section 4.4.3 constitutes the primal dispatch prob-
lem. Our goal is to develop a platform that, in addition to dispatch decisions,
also computes market clearing prices that can support a competitive equilib-
rium. Since the primal problem is non-convex (in both the network model as
well as the market orders), there is no guarantee that such uniform prices exist.
The approaches we developed largely rely on O’Neill pricing [OSH+05] and are
detailed in section 4.6. The general idea of O’Neill pricing is to (i) solve a certain
problem having binary and continuous variables; (ii) fix the binary variables
to their optimal value; (iii) solve the resulting continuous problem and deduce
prices as dual variables of the constraints of interest. Here the variables of inter-
est are transmission and distribution power balance constraints (4.3b)–(4.3h)
and prices are denoted λ (λp (resp. λq) associated with active (resp. reactive)
locational marginal price). The main objective of this work is to provide a
decentralized real-time market clearing framework capable of overcoming the
challenges mentioned in section 4.2. A discussion on finding out which pricing
scheme should be chosen is out of the scope of this work but such discussion is
definitely of importance in the T&D coordination and market-clearing analysis.

As a metric of the quality of our derived prices, we introduce lost opportu-
nity costs [SZZL15,HSZ+19], which we define precisely in the following.

4.5.1 Lost Opportunity Cost

Computing the lost opportunity cost (LOC) is a way of ensuring that the pri-
mal solution (dispatch variables) and the dual solution (prices) are consistent
and fair in the sense of aligning agents’ selfish profit-maximizing actions with
the market dispatch. We differentiate two types of LOC: one for the gener-
ators, and one for the network. Generators’ LOC would be called generator
side-payment in [GNB20] and the network LOC is called potential congestion
revenue shortfall. We detail the exact optimization problem that is solved for
computing the LOC in both cases. We assume that the market platform has
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produced dispatch solutions x̂, binary solutions ŷ, and market prices λ̂.

4.5.1.1 Generator / BSP

When facing the electricity price λ̂, the goal of the generator is to maximize
profit. Concretely, assuming that x̂, ŷ and λ̂ have been computed, the po-
tential profit of a generator g ∈ G can be computed by solving the following
optimization problem:

max
(pg,qg,yg)

Profitg(pg, qg, yg; λ̂) =
∑
t∈T

(
λ̂pB(g),tpg,t − Cg,t(pg,t) + λ̂qB(g),tqg,t

)
(4.4a)

s.t. (pg, qg, yg) ∈ GCg (4.4b)

yg ∈ {0, 1}dg (4.4c)

Note that, as we indicate in section 4.3.1, the generator faces a locational
marginal price for real and reactive power.

Here, B(g) is the bus where generator g is located. Denote the optimal
solution of problem (4.4) as (p̃g, q̃g, ỹg). Then the selfish profit of generator

g when facing price λ̂ is Profitg(p̃g, q̃g, ỹg; λ̂). This profit has to be compared
to the profit induced by the dispatch decisions sent by the market operator:
Profitg(p̂g, q̂g, ŷg; λ̂). The lost opportunity cost of generator g is then defined
as follows:

LOCg(p̂g, q̂g, ŷg, λ̂) = Profitg(p̃g, q̃g, ỹg; λ̂)− Profitg(p̂g, q̂g, ŷg; λ̂)

This value can be interpreted as how much the generator could have gained
by deviating from the dispatch instructions sent by the market operator. This
constitutes an opportunity cost for the generator, and is a measure of how
“inconsistent” the prices of the market clearing platform are, relative to the
dispatch instructions. Problem (4.4) can easily be adapted in case the generator
is connected to the transmission network and is not concerned with reactive
power injections.

4.5.1.2 Network Operator

The network operator decision variables are (c, s, fp, fq) when considering AC
lines (extending this concept to a T&D network is straightforward). In the
same spirit as for the generator, we can measure the lost opportunity cost
of the network operator by considering the potential arbitrage profit that the
network operator can achieve by trading real and reactive power in different
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parts of the network:

max
(c,s,fp,fq)

∑
t∈T

∑
i∈B

λ̂pi,t(−Gicii,t − ∑
j∈δ(i)

fpij,t) + λ̂qi,t(Bicii,t −
∑
j∈δ(i)

fqij,t)


(4.5a)

s.t. (ct, st, f
p
t , f

q
t ) ∈ OCQ, ∀t ∈ T (4.5b)

Since this problem is non-linear and non-convex as well as large scale, in our
numerical experiments we will compute the relaxed LOC which is based on the
SOC relaxation of the OPF. This allows us to upper bound the LOC in our
numerical experiments, which is relevant for our goal of assessing the quality
of the solution produced by our market clearing platform. The relaxed profit
maximization of the network operator can be expressed as follows:

max
(c,s,fp,fq)

∑
t∈T

∑
i∈B

λ̂pi,t(−Gicii − ∑
j∈δ(i)

fpij,t) + λ̂qi,t(Bicii −
∑
j∈δ(i)

fqij,t)


(4.6a)

s.t. (ct, st, f
p
t , f

q
t ) ∈ OCSOC , ∀t ∈ T (4.6b)

The solution of problem (4.6) is denoted as (c̃, s̃, f̃p, f̃q) and the objective value

of the problem as ProfitNO(c̃, s̃, f̃p, f̃q; λ̂). The LOC for the network operator
is then defined as follows:

LOCNO(ĉ, ŝ, f̂p, f̂q, λ̂) = ProfitNO(c̃, s̃, f̃p, f̃q; λ̂)− ProfitNO(ĉ, ŝ, f̂p, f̂q; λ̂)

While LOCg reflected the consistency of the price at each node with respect
to the dispatch instructions of the generators, LOCNO reflects the consistency
of the market prices between the nodes themselves: the network operator is
facing the market prices and is willing to maximize the value of the network
with respect to these prices. In his perspective, each“bilateral trad” between
two nodes will generate a congestion revenue but will also occupy spaces on
the grid, generating a lost opportunity cost linked to the other trades that it
prevents. The prices and dispatch would form an equilibrium with respect to
LOCNO if, given the prices, there is no opportunity of arbitrage left that could
increase the revenue out of the network.

In actual markets, this shortfall corresponds to potential financial exposure
of the network operator from selling financial transmission rights [GNB20].

The total market LOC can be computed as follows, and compared to the
depth of the market, which we quantity using the sum of generator revenues
and load payments that we call producer load payments (PLP). Concretely,
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given a market clearing solution (x̂, ŷ, λ̂), we define the following:

LOC(x̂, ŷ, λ̂) = LOCNO(ĉ, ŝ, f̂p, f̂q, λ̂) +
∑
g∈G

LOCg(p̂g, q̂g, ŷg, λ̂)

PLP(x̂, ŷ, λ̂) =
∑
g∈G

∑
t∈T

max(p̂g,t, 0)λ̂pB(g),t +
∑
i∈B

∑
t∈T

max(−Dp
i,t, 0)λ̂pi,t

+
∑
g∈DG

∑
t∈T

max(q̂g,t, 0)λ̂qB(g),t +
∑
i∈DB

∑
t∈T

max(−Dq
i,t, 0)λ̂qi,t

In the results section, we report the values LOC and PLP (section 4.7.2, ta-
ble 4.5). The LOC should be reported relative to the PLP.

4.5.2 Decentralized Computation of Dual Optimal Mul-
tipliers

As we explain in section 4.3.2, our interest is in preserving a decentralized
framework. This applies both for the computation of the primal solution, as
well as for the computation of market clearing prices. One aspect of pricing
in a decentralized fashion is ensuring price consistency, in our case between
the transmission and the distribution network. We comment on the decentral-
ized computation of prices (or dual optimal multipliers) using the example of
section 4.3.3 and Figure 4.3.

Example. Coming back to the example in Figure 4.3, let us first write a
simplified version of the centralized problem (DC OPF approximation in the
distribution network and we do not model angles for simplicity):

min 20p1 + 15p2 + 10p3

s.t. p1 − 1 = fp12 (λ1)

p2 = −fp12 + fp23 (λ2)

p3 − 0.2 = −fp23 (λ3)

0 ≤ p1 ≤ 3 (η−1 , η
+
1 )

0 ≤ p2 ≤ 1 (η−2 , η
+
2 )

0 ≤ p3 ≤ 1 (η−3 , η
+
3 )

− 0.5 ≤ fp23 ≤ 0.5 (γ−23, γ
+
23)
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The primal optimal decision p1 = 0, p2 = 0.5, p3 = 0.7, fp12 = −1, fp23 = −0.5
is easily obtained and the KKTs linking the dual variables are the following:

η+
1 = η−2 = η+

2 = η−3 = η+
3 = γ+

23 = 0

− 20 + λ1 + η−1 = 0

− 15 + λ2 = 0

− 10 + λ3 = 0

− λ1 + λ2 = 0

− λ2 + λ3 + γ−23 = 0

We then have 11 dual variables defined in a system of 11 linear equations which
leads to the following unique dual solution for this problem:

λ1 = 15, λ2 = 15, λ3 = 10

η−1 = 5, η+
1 = η−2 = η+

2 = η−3 = η+
3 = 0

γ−23 = 5, γ+
23 = 0

The λ vector provides the LMPs obtained in a centralized fashion and we also
need to compute it in a decentralized fashion.

In section 4.3.3, we showed how it is possible to obtain the primal optimal
solution if the RSF is correctly built. In particular, assuming that the interface
real power flow decision, fp12, is previously fixed to fp12 = −1, the transmission
problem to solve in order to obtain the transmission clearing decisions is the
following:

min 20p1 (4.7a)

s.t. p1 − 1 = fp12, (λ1) (4.7b)

0 ≤ p1 ≤ 3, (η−1 , η
+
1 ) (4.7c)

fp12 = −1 (µ12) (4.7d)

The primal solution of this problem is p̂1 = 0, f̂p12 = −1 and is in line with
the centralized solution. Consequently, we have the following KKT conditions
to deduce the dual variables:

η+
1 = 0

− 20 + λ1 + η−1 = 0, η−1 ≥ 0

− λ1 + µ12 = 0

This system of equations has 4 variables and 3 equality constraints which re-
sults in a non-unique dual solution. For example, solving problem (4.7) with a

commercial solver, such as Mosek, leads to λ′1 = 20, µ′12 = 20, η−1
′

= 0, η+
1

′
= 0.
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In particular, the price cleared at bus 1 (λ′1 = 20) is different from the central-
ized price (λ1 = 15) due to multiple dual optimal solutions of problem (4.7).

To overcome this potential issue, we suggest to solve a supplementary trans-
mission problem to compute the prices. We use an additional information on
the RSF: the price associated to the flow level f̂p12 = −1. From Figure 4.5,
this flow level has a marginal cost of µ̂12 = 15e/MWh for the transmission
network. To recover the LMP λ1, we solve the following problem:

min 20p1 − 15fp12 (4.8a)

s.t. p1 − 1 = fp12, (λ1) (4.8b)

0 ≤ p1 ≤ 3, (η−1 , η
+
1 ) (4.8c)

This problem has the same primal solution (even if it is not the case in general)
and the KKTs are then:

η+
1 = 0

− 20 + λ1 + η−1 = 0, η−1 ≥ 0

− λ1 + 15 = 0

The same LMPs as the ones obtained centrally are obtained in a decentralized
fashion. The same idea can be applied to the distribution problem to obtain
the distribution dispatch decisions and LMPs.

To highlight how crucial it is to recover consistent prices, we consider the
pricing solution we obtained from directly solving (4.7) and the one we obtained

from solving additionally (4.8) for the same primal optimal solution, (p̂, f̂p).

We assume that the distribution LMPs are the same (λ̂2 = λ′2 = 15 and

λ̂3 = λ′3 = 10), the only difference comes from the transmission price: λ̂1 = 15
and λ′1 = 20. If one were to compute the generator LOC, LOCg for each BSP g,

one would see that both pricing vectors λ̂ and λ′ incentize BSPs to participate
in the market because it leads to a zero lost opportunity cost. Let us compute
the network operator LOC, LOCNO, for both LMPs λ̂ and λ′ (we contract
ProfitNO to PNO here):

LOCNO(f̂p12, λ̂) = max
fp
12

−0.5≤fp
23≤0.5

(
−λ̂1f

p
12 + λ̂2(fp12 − f

p
23) + λ̂3f

p
23

)
− PNO(f̂p12, λ̂)

= max
fp
12

−0.5≤fp
23≤0.5

(−15fp12 + 15(fp12 − f
p
23) + 10fp23) + 5f̂p23

=

(
max

−0.5≤fp
23≤0.5

−5fp23

)
− 2.5 = 0
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LOCNO(f̂p12, λ
′) = max

fp
12

−0.5≤fp
23≤0.5

(−λ′1f
p
12 + λ′2(fp12 − f

p
23) + λ′3f

p
23)− PNO(f̂p12, λ

′)

= max
fp
12

−0.5≤fp
23≤0.5

(−20fp12 + 15(fp12 − f
p
23) + 10fp23) + 5f̂p12 + 5f̂p23

=

 max
fp
12

−0.5≤fp
23≤0.5

−5fp12 − 5fp23

− 7.5 = +∞

As expected, since the prices obtained by solving additionally (4.8) match the

ones computed centrally, LOCNO(f̂p12, λ̂) is 0. But, if one does not recover
consistent prices, it leads to an infinite LOC for the network operator. A
high LOC is the consequence of a wrong valuation of the electricity price at
certain locations. Consistent prices are necessary to signal coherent investment
decisions. Indeed, investments would typically target locations for which the
price of electricity is high in certain configurations. If the prices are wrongly
addressed, it may lead to undesirable signals.

These ideas form the basis of our reasoning in section 4.6.4 and Algo-
rithm 6.

4.6 Proposed Market Clearing Algorithms

We present three centralized configurations and compare them with one decen-
tralized configuration for producing market clearing matches and prices. We
motivate each of the approaches, and subsequently discuss in section 4.7 the
results that they produce on realistic instances of the integrated T&D market
clearing problem.

4.6.1 Approach 1: Relaxation

The idea of Approach 1 is to implement the most straightforward centralized
scheme so as to derive a relaxed solution of the problem as well as a lower
bound (LB) of the optimal solution. In order to achieve this requirement, we
first solve the complete problem by relaxing the AC power flow equations in
the distribution network and make use of the SOC relaxation. The problem to
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solve is the following mixed integer second order cone program (MISOCP):

min
(x,y,fp

l′ )

∑
g∈G

∑
t∈T

Cg,t(pg,t) (4.9a)

s.t. (4.3b)− (4.3g), (4.3j)− (4.3k) (4.9b)

FSOCi,t (xDt ) = 0, ∀i ∈ DB,∀t ∈ T (4.9c)

(ct, st, f
p
DL,t, f

q
t ) ∈ OCSOC , ∀t ∈ T (4.9d)

From this problem, we deduce the activation variables y, denoted ŷ. The
second and last step of this approach is to fix the binary variables ŷ and solve
the following SOCP:

min
(x,fp

l′ )

∑
g∈G

∑
t∈T

Cg,t(pg,t) (4.10a)

s.t. (4.3b)− (4.3c), (4.3e)− (4.3g), (4.9c)− (4.9d) (4.10b)

(pg, ŷg) ∈ GCDCg , ∀g ∈ T G (4.10c)

(pg, qg, ŷg) ∈ GCg, ∀g ∈ DG (4.10d)

We compute dispatch decisions x as well as LMPs λ from this problem. The
steps of the algorithm for this approach are summarized in Algorithm 3 and
Figure 4.6. The idea of calculating prices in this way is suggested in [OSH+05].

Algorithm 3 Algorithm of the Relaxation approach

1: Step 1: Solve (4.9) to obtain ŷ.

2: Step 2: Fix the y variables to ŷ and solve (4.10) to obtain x̂ and λ̂.

Solve the MIS-
OCP (4.9)

Solve the
SOCP (4.10)

ŷ

x̂ and λ̂

Fix y = ŷ

Figure 4.6: Flow chart of the Relaxation approach.
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4.6.2 Approach 2: Benchmark

Since the SOC relaxation may produce infeasible dispatch decisions, we consider
a benchmark where the binary decisions are still deduced from the relaxation,
whereas the dispatch decisions are computed using the AC-OPF equations.
After solving (4.9), we solve the following problem:

min
(x,fp

l′ )

∑
g∈G

∑
t∈T

Cg,t(pg,t) (4.11a)

s.t. (4.3b)− (4.3c), (4.3e)− (4.3i), (4.10c)− (4.10d) (4.11b)

Problem (4.11) is a continuous non-linear (non-convex) problem (NLP). In
practice, this class of problems can be solved using interior point (IP) methods
or penalty methods (see the first part of chapter 2). Nevertheless, scale might
be an obstacle too high to overcome because solving a large-scale NLP is still
a challenge in itself.

The steps of the approach are summarized in Algorithm 4 and Figure 4.7.

Algorithm 4 Algorithm of the Benchmark approach (Approach 2).

1: Step 1: Solve (4.9) and get ŷ.

2: Step 2: Fix the y variables to ŷ and solve (4.11) to get x̂ and λ̂.

Solve the MIS-
OCP (4.9)

Solve the
NLP (4.11)

ŷ

x̂ and λ̂

Fix y = ŷ

Figure 4.7: Flow chart of the Benchmark approach.

4.6.3 Approach 3: Hybrid Relaxation/Benchmark

To avoid solving large scale NLPs, as is the case in Approach 2, we consider
an alternative hybrid approach which combines the ideas of Approach 1 and
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Approach 2. In this Hybrid approach, the first two steps are the same as in the
Relaxation approach. A step is added in order to recover a feasible dispatch
in the distribution network in case the primal solution of the first two steps is
infeasible. This approach can drastically reduce the size of the NLPs to solve
in the case where several distribution networks are connected to the transmis-
sion network. Assuming that we fix the binary decisions ŷ, the transmission
decisions x̂T , as well as the interconnection flow f̂pl′ , the distribution problem
to solve after the first two steps are computed is the following:

min
(xD)

∑
g∈DG

∑
t∈T

Cg,t(pg,t) (4.12a)

s.t. f̂pl′,t = fp,Dl′,t , ∀t ∈ T (4.12b)

(4.3h)− (4.3i), (4.10d) (4.12c)

Since the SOC relaxation often provides solutions that may be close to AC
feasible solutions [BVC20], we rely on the LMPs λ̂ that are obtained when
solving (4.10), even if the dispatch solution xD may change in the last step
of the procedure. This is also motivated by the fact that we do not observe
significant differences in prices if one were to compute LMPs with the AC
equations. If the prices of (4.10) lead to large LOCs, recovering prices with an
AC model should definitely be considered.

The steps of the approach are summarized in Algorithm 5 and Figure 4.8.

Algorithm 5 Algorithm of the Hybrid approach (Approach 3).

1: Step 1: Solve (4.9) and get ŷ.

2: Step 2: Fix the y variables to ŷ and solve (4.10) to obtain x̂ and λ̂.
3: Step 3: If x̂D is not feasible, solve (4.12) and replace x̂D.

4.6.4 Approach 4: Residual Supply Function

In order to cope with the scale of the problem, we propose a decentralized ap-
proach based on distribution network Residual Supply Functions (RSF). This
is essentially a hierarchical approach that implements a proxy of a Benders de-
composition algorithm in the special case of a convex market clearing problem.
The overall spirit of the approach as well as how it should be implemented with
the different actors of the market is explained in the example of section 4.3.3.
The approach comprises of more steps than the previous approaches, in or-
der to preserve decentralization. We detail the different steps in the following
paragraphs.
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Solve the MIS-
OCP (4.9)

Solve the
SOCP (4.10)

ŷ

x̂ and λ̂

Solve the distribu-
tion NLP (4.12) corrected x̂D

Fix y = ŷ

If x̂D is not feasible

Figure 4.8: Flow chart of the Hybrid approach.

Computing the RSF. As explained in section 4.3.3, the idea of the RSF
is to evaluate the cost of exporting real power from the distribution network
at the level of the interface. To do so, we solve several distribution problems
for different levels of real power flow exports.

Note that, in principle, the RSF is T -dimensional. Indeed, the total cost of
export depends on the flow level for every time step of the considered horizon.
By contrast, real-time energy markets admit one-dimensional bids (a marginal
cost curve for each market time unit). In order to overcome this issue, we rely
on the fact that the interface flow may not vary drastically from one time step
to another. We therefore consider the projection of the total cost function at
the vector of equal exports for all time intervals, when computing the RSF.

Concretely, assume an RSF with N ≥ 2 points. We compute the N points
of the RSF for the following levels:

Eni′j′,t = Eni′j′ = −Si′j′ +
2(n− 1)Si′j′

N − 1
, ∀n ∈ {1, . . . , N},∀t ∈ T

where Si′j′ is the line limit of the interface. We see that the quantity defined
Eni′j′ is not indexed by time period.

Having decided at which points we discretize the RSF, we now describe how
we derive the associated value of the RSF, µ̃i′,j′,t, which is time dependent.
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Towards this end, we solve the following SOC problem:

P(Eni′j′) : min
∑
g∈DG

∑
t∈T

Cg,t(pg,t) (4.13a)

s.t. (4.3f)− (4.3g), (4.3j), (4.9c)− (4.9d) (4.13b)

fpi′j′,t = Eni′j′ , (µi′j′,t) ∀t ∈ T (4.13c)

yg ∈ [0, 1]dg , ∀g ∈ DG (4.13d)

This problem is solved using an interior point method, which provides a primal-
dual solution. Using a sensitivity argument, the RSF slope µ̃ni′j′,t is obtained
as the dual optimal value associated with constraint (4.13c) for real power
flow level Eni′j′ . Note that problem (4.13) relies on a relaxation of the OPF
constraints (use of the SOC relaxation) as well as a continuous relaxation of
the binary variables y. This is motivated by the fact that having only an
approximation of the RSF can provide satisfactory results in practice [PBDS20].
Note that we come up with a more effective way of choosing points on the RSF
and this will be illustrated in the results section 4.7.2.

Transmission system dispatch / commitment (primal). Once the
RSF is computed, it is explicitly bid into a transmission market clearing model.
The way it is bid in our work is through pricing the interconnection line. This
pricing is done in the previous step by the ADS and it is assumed that the
interconnection line is owned by the DSO. Equivalently, one could think of
a virtual BSP placed at the interconnection which bids in the transmission
market [PBDS20], [NS20]. To clear the transmission market model, we first
solve the following mixed integer linear program (MILP) using the valuation
of the interface flow that we compute when deriving the RSF:

min
∑
g∈T G

∑
t∈T

Cg,t(pg,t) +
∑
t∈T

N∑
n=1

µ̃ni′j′,tf
p,n
i′j′,t (4.14a)

s.t. (4.3b)− (4.3e), (4.3g) (4.14b)

fpi′j′,t =

N∑
n=1

fp,ni′j′,t, ∀t ∈ T (4.14c)

Eni′j′,t ≤ f
p,n
i′j′,t ≤ E

n
i′j′,t, ∀t ∈ T ,∀n ∈ {2, . . . , N}

(4.14d)

yg ∈ {0, 1}dg , ∀g ∈ T G (4.14e)

Note therefore that, in Approach 4, distribution system resources are not bid
explicitly into the wholesale market. They are rather aggregated into the RSF,
which is computed by the ADS (or DSO), since its derivation requires infor-
mation about the distribution network.
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From this problem, we deduce binary variables ŷg, g ∈ T G for transmission
system resources. After fixing the binary variables, we solve the following LP:

min
∑
g∈T G

∑
t∈T

Cg,t(pg,t) +
∑
t∈T

N∑
n=1

µ̃ni′j′,tf
p,n
i′j′,t (4.15a)

s.t. (4.3b)− (4.3c), (4.3e), (4.3g), (4.10c), (4.14d) (4.15b)

fpi′j′,t =

N∑
n=1

fp,ni′j′,t, (µi′j′,t) ∀t ∈ T (4.15c)

From this problem, we deduce dispatch decisions for the transmission net-
work x̂T (in particular f̂p,Tl′ = f̂pl′ = f̂p,Dl′ ), as well as interface prices µ̂.

Disaggregating interface flows to distribution network commitments
and dispatch (primal). Given a target export quantity, the DSO can dis-
aggregate this export level optimally to individual distribution system resources
by solving the following MISOCP:

min
∑
g∈DG

∑
t∈T

Cg,t(pg,t) (4.16a)

s.t. (4.3j), (4.9c)− (4.9d), (4.12b) (4.16b)

yg ∈ {0, 1}dg , g ∈ DG (4.16c)

This problem yields distribution binary variables ŷg, g ∈ DG and distri-
bution dispatch decisions x̂D. If the distribution dispatch decisions are not
physically implementable, problem (4.12) can be solved in order to ensure fea-
sibility.

Recovering coherent LMPs (dual). Given the solutions of the previous
problems, we arrive to a complete binary solution ŷ as well as a primal solution
x̂. The pricing step aims at deriving LMPs λ that are coherent with the pri-
mal market clearing solution. We refer to coherent prices as prices that keep
the LOC as low as possible. For this purpose, we use the idea exposed in sec-
tion 4.5.2. Adapting this idea to our context leads to the following transmission
network sub-problem, which is an LP:

min
∑
g∈T G

∑
t∈T

Cg,t(pg,t) +
∑
t∈T

µ̂ni′j′,tf
p
i′j′,t (4.17a)

s.t. (4.3b)− (4.3c), (4.3g), (4.10c) (4.17b)
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Correspondingly, in the distribution network we solve the following SOCP
(assuming that the SOCP prices will provide sufficiently accurate prices):

min
∑
g∈DG

∑
t∈T

Cg,t(pg,t)−
∑
t∈T

µ̂ni′j′,tf
p
i′j′,t (4.18a)

s.t. (4.3g), (4.9c)− (4.9d), (4.10d) (4.18b)

The LMPs λ are derived as the dual multipliers of constraints (4.3b) in the
transmission network, and (4.9c) in the distribution network.

The steps of the algorithm. The steps of the algorithm are summarized
in Algorithm 6 and Figure 4.9.

Algorithm 6 Algorithm of the RSF approach (Approach 4).

1: Step 1: Compute the RSF by solving (4.13) for N different flow levels.
2: Step 2: Solve the transmission system primal problem (4.14) and derive

the transmission binary decisions ŷg, g ∈ T G.
3: Step 3: Fix the transmission binary decisions and solve (4.15) in order to

derive the transmission dispatch decisions x̂T and the interface prices µ̂.
4: Step 4: Clear the distribution problem (4.16) in order to derive the dis-

tribution binary decisions ŷg, g ∈ DG and distribution dispatch decisions
x̂D.

5: Step 5: If x̂D is not feasible, solve (4.12) and update x̂D.

6: Step 6: Solve (4.17) and (4.18) in order to obtain LMPs λ̂.

4.6.5 Comparison of the Approaches

Parallelization In general, a transmission network is connected to numerous
distribution networks. In such a setting, the Hybrid and RSF approach can
be parallelized. Indeed, step 1 of Algorithm 5 can be parallelized by solving
(4.12) for each distribution network in parallel. Despite the fact that this step
can be performed in parallel, the overall performance of Algorithm 5 would not
improve significantly because most of the computational effort is put on the
first steps of the algorithm. Therefore, we will not consider a parallel version
of this approach.

On the contrary, a number of steps of the RSF approach (Algorithm 6) can
be executed in parallel. Step 1 of the RSF can be the parallelized at two points:
each distribution network can compute the RSF independently, and each of the
N flow levels can be computed as an independent problem. Using the natural
decomposability of the network, Steps 4, 5, and 6 can also be executed in
parallel.
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Step 1: Solve the
SOCP (4.13) for N
different flow levels

Step 2: Solve
the transmission

MILP (4.14)

Step 3: Solve
the transmis-
sion LP (4.15)

Step 4: Solve
the distribution
MISOCP (4.16)

Step 5: Solve
the NLP (4.12)

Step 6: Solve the
LP (4.17) and

the SOCP (4.18)

Discretized RSF

ŷg, g ∈ T G

x̂T , ẑ and µ̂

ŷg, g ∈ DG and x̂D

Corrected x̂D

λ̂

Sends RSF

Fix yg = ŷg, g ∈ T G

Fix zD = ẑ

If x̂D infeasible

Sends corrected x̂D If x̂D feasible

Figure 4.9: Flow chart of the RSF approach.

Relative Merits of Each Approach A list of strengths and weaknesses
of each approach is presented in Table 4.3.

4.7 Numerical Illustration

We first detail the data that we used for the numerical simulations (section 4.7.1.1)
and we experimentally explain the setting chosen for the RSF approach (sec-
tion 4.7.1.2 and section 4.7.1.3). In section 4.7.2, we compare the approaches
implemented in this chapter on four realistic test systems.
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Table 4.3: Comparison of the advantages and drawbacks of the proposed approaches.

Approach Advantages Drawbacks
Relaxation • Fastest way to derive a relatively accu-

rate relaxed solution.
• Centralized market clearing: one opera-

tor responsible for the complete network.

• Potentially infeasible distribution dis-
patch.

Benchmark • Ensures feasible dispatch.

• Local optimum guarantee (if solved).

• Centralized market clearing: one opera-
tor responsible for the complete network.

• Requires solving a large-scale NLP
(T&D network).

Hybrid • Ensures feasible dispatch.

• Parallelizable.

• Centralized market clearing: one opera-
tor responsible for the complete network.

RSF • Decentralized market clearing: TSO &
DSO only share interconnection infor-
mation.

• Highly parallelizable.

• Ensures feasible dispatch.

• Depends on the precision of the approx-
imated RSF.

• Heuristic solution approach.

• Primal solution can be far from optimal.

4.7.1 Data and Parametrization of the RSF Approach

4.7.1.1 Test Cases

The test cases that we consider are derived from data sets that were used in
the European project SmartNet (http://smartnet-project.eu/). For each
of the test cases that we present, we receive as input the topology of the T&D
network, the bids associated with the generators at each node, and a time
horizon of 3 or 4 time steps. Given that each market time unit of the European
balancing market corresponds to a 15-minute step, the horizon of the problem
corresponds to 45 minutes or 1 hour.

We consider networks from the Italian and Danish power systems. For
the Italian system, we consider three test cases: a medium-sized one, called
small it, and two other ones based on the same network topology, called
Italy1 and Italy2. For the Danish system, we consider only one test case
called Denmark. Instance small it is a medium-sized example, which serves
towards validating our approaches, while Italy1, Italy2 and Denmark are
more realistic instances. An overview of the Italian and Danish test systems is
provided in Table 4.4. Table 4.4 reports for each test case: the number of time-
steps, the number of transmission buses, the number of distribution buses, the
number of distribution networks, the number of bids, the transmission network
real power imbalance (TNRPI) in megawatt (MW), the distribution network
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RPI (DNRPI), the total RPI (TRPI), the transmission network real power
volume bid (TNRPVB), the distribution network RPVB (DNRPVB), the total
RPVB (TRPVB), the number of binary variables, the number of variables and
the number of constraints. RPI and RPVB are obtained as follows:

TNRPI =
∑
t∈T

∑
i∈T B

Dp
i,t, DNRPI =

∑
t∈T

∑
i∈DB

Dp
i,t, TRPI = TNRPI + DNRPI,

TNRPVB =

∑
t∈T

∑
g∈T G

min(0, p
g,t

);
∑
t∈T

∑
g∈T G

max(0, pg,t)

 ,
DNRPVB =

∑
t∈T

∑
g∈DG

min(0, p
g,t

);
∑
t∈T

∑
g∈DG

max(0, pg,t)

 ,
TRPVB =

∑
t∈T

∑
g∈G

min(0, p
g,t

);
∑
t∈T

∑
g∈G

max(0, pg,t)

 .

Table 4.4: Overview of the Italian and Danish test cases used in the numerical ex-
periments.

Test Case small it Italy1 Italy2 Denmark

|T | 4 3 3 4
|T B| 27 4,236 4,236 209
|DB| 175 1,822 1,822 2,981
# DNs 4 50 50 73
# Bids 1,667 12,318 26,578 25,923
TNRPI (MW) -88.98 +226.67 -1,170.16 -13.85
DNRPI (MW) +220.47 -526.77 -209.58 -138.95
TRPI (MW) +131.48 -300.10 -1,379.74 -152.80
TNRPVB (MW) [−3, 429 ; 24] [−50, 379 ; 69, 637] [−61, 459 ; 63, 388] [−12, 028 ; 13, 420]
DNRPVB (MW) [−449 ; 36] [−82 ; 47] [−443 ; 139] [−955 ; 353]
TRPVB (MW) [−3, 877 ; 60] [−50, 460 ; 69, 684] [−61, 902 ; 63, 527] [−12, 983 ; 13, 774]
# Binary 4,222 29,660 51,510 90,688
# Variables 25,342 244,052 298,226 391,040
# Constraints 26,401 248,864 310,272 429,931

4.7.1.2 Enhancing the Computation of the RSF

As explained in the first paragraph of section 4.6.4, the RSF is computed
by using equally spaced points in the interval imposed by the line limits of
each interface line. Since these limits are often large compared to the potential
values of the interface flow, taking equally spaced points might cause computing
the RSF on flow values that are far from being optimal. As an example,
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Figure 4.10 shows that the computation of the RSF on the import side (negative
x values) lacks of interest and one could assume that importing, in that case,
is costless. Ideally, one should detect where it is relevant to add points to
the RSF. Assuming that we decide to build the RSF with N points, what we
suggest is the following: (i) evaluate the RSF on N/2 equally spaced points
between lower and upper interface flow limits; (ii) detect the 3 consecutive
points with the highest price difference, and denote their flow values f0, f1, f2;
(iii) evaluate the RSF on N/2 equally spaced points between f0 and f2. By
applying this, we see how the precision of the blue curve improves compared
to the equally spaced points curve in magenta (Figures 4.10 and 4.11 and in
particular 4.11(b) compared to 4.10).

Figure 4.10: Example of the basic computation of the RSF.

To measure the impact of the precision of the RSF, we report the evolution
of the primal objective values as well as the LOCs for the medium-size example,
small it, for 10, 20 and 30 points on the RSF (Figure 4.12). The figures show
how the enhancement step increases the quality of the solution with the same
number of points on the RSF. Even if the enhancement makes the approach
less parallelizable (one needs to split the computation for the first N/2 points
before computing the remaining N/2 as opposed to directly compute N points),
we will use this enhancement when displaying the results in section 4.7.2.

4.7.1.3 Number of Points on the RSF

We conduct a sensitivity analysis on the number of points that should be con-
sidered when computing the RSF (Step 1 of Algortihm 6). To do so, we report
the objective value, the lost opportunity cost and the solve time for a differ-
ent number of points on the RSF for the test case Italy1 (Figure 4.13). The
general trend is as expected: the solution improves as the number of points
increases. Note however that the objective value and the LOC are not strictly

116



4.7. Numerical Illustration

(a) Step (i): Evaluate the RSF for -10 MW,
0 MW, 10MW, 20 MW. Step (ii): detect
the points of interest: 0, 10 and 20 MW.

(b) Step (iii): Evaluate the RSF for 4 ad-
ditional points between 0 and 20 MW.

Figure 4.11: Enhancing the RSF by intelligently choosing the points to compute.

(a) Comparison of the objective value. (b) Comparison of the LOC.

Figure 4.12: Evolution of the objective value and the LOC of the small it test case
as a function of the number of points on the RSF by using two different point selection
strategies: Basic vs. Enhanced.

decreasing as a function of the number of points: indeed, this is due to the
discretization of the RSF that can be favorable even if fewer points are used.
It should also be noted that considering 400 points for this particular test case
leads to a costly computation (+4,000 seconds for this run). Even if the ap-
proach is parallelizable, the additional computational cost of having 400 points
appears to be vain compared to the solutions with 300 or 350 points. For
this reason, in the simulations, we decide to adopt 300 points on the RSF for
Italy1, Italy2 and Denmark which are of the same scale. Since small it is
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(a) Objective value. (b) LOC. (c) Solve time.

Figure 4.13: Assessment of the RSF approach as a function of the number of points
considered in Step 1 of Algortihm 6.

of smaller scale, we consider only 100 points for this test case.

4.7.2 Simulations

Computational setting. The clearing algorithms are implemented in Julia
(version 1.1.1) using JuMP on a MacBook Pro 2016, with a 2.9 GHz Dual-Core
Intel Core i5 processors. LPs, SOCPs, MILPs, MISOCPs, are solved using
Mosek (version 9); NLPs are solved using IPOPT (version 3.13.2).

Tolerance. We set the feasibility tolerance of the solvers to ε = 1e−6. When
showing the results, the only constraint that might be violated is (1.9a) because
it is relaxed as (1.13) in Approach 1 (Relaxation). The maximum constraint
violation is then reported in Table 4.5 in column Max. Viol..

Numerical results. Each approach is tested on each test case. The results
are presented in Table 4.5. From left to right, the columns display the name
of the test case, the approach used, the objective value of the primal problem,
the absolute gap to the lower bound (obtained using the Relaxation approach),
the maximum violation of a constraint of the primal solution, the PLP, the
LOC, and the solve time in seconds. When reporting the RSF approach, we
accompany it with the number of points chosen to compute the RSF (100 for
small it, 300 for the other test systems).

The results on the medium-sized example, small it, demonstrate that all
the approaches provide similar results in terms of objective value. For the
largest instances (Italy1, Italy2 and Denmark), the objective values of the
Relaxation and Hybrid approaches confirm the quality of the SOCP relaxation
of the AC-OPF on radial networks. Note, however, that for the Danish test
system, even if the Relaxation solution is almost feasible (MV = 2−6), both
Hybrid and RSF provide solutions for which the objective is significantly differ-
ent. We further note that the solve time for all the approaches is significant for
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Table 4.5: Results of the different approaches on the set of SmartNet test cases.

Test case Approach Objective Gap (e) Max. Viol. PLP (e) LOC (e) Time (s)

small it Relaxation −7.872e+3 - 1e−6 3.559e+5 0.59 5.39
Benchmark −7.870e+3 2.25 1e−9 3.559e+5 0.16 17.03
Hybrid −7.872e+3 0.01 3e−7 3.559e+5 0.53 10.17
RSF-100 −7.864e+3 8.09 2e−7 3.561e+5 109.88 85.90

Italy1 Relaxation 1.644e+3 - 2e−4 2.195e+6 14.66 85.54
Benchmark - - - - - -
Hybrid 1.648e+3 3.79 5e−7 2.195e+6 14.30 89.23
RSF-300 1.781e+3 136.52 9e−7 2.219e+6 86.37 662.5

Italy2 Relaxation 7.998e+3 - 1e−4 2.825e+6 29.68 160.7
Benchmark - - - - - -
Hybrid 8.001e+3 2.57 4e−7 2.825e+6 32.25 166.9
RSF-300 8.147e+3 149.22 1e−6 2.852e+6 166.01 823.2

Denmark Relaxation −1.023e+4 - 2e−6 1.633e+5 30.30 362.6
Benchmark - - - - - -
Hybrid −9.951e+3 274.92 8e−7 1.633e+5 33.41 375.4
RSF-300 −9.518e+3 707.97 9e−7 1.670e+5 592.57 1,340

the Danish test case (more than 5 minutes). Executing the RSF sequentially
also leads to time-consuming computations. Fig. 4.14 presents how paralleliza-
tion can decrease substantially the execution time of the RSF approach. In
particular, using 16 processors ensures execution times of less than 5 minutes
for the three largest test cases. On the contrary, it is not possible to parallelize
centralized schemes. This underlines the potential weaknesses of considering
centralized schemes in addition to not preserving privacy.

Insofar as the RSF approach is concerned, the optimality guarantee worsens
and could be improved with the number of points chosen. When analyzing the
solution of the RSF approach compared to the Benchmark approach, we notice
that in the Italian test cases (Italy1 and Italy2) the RSF approach underes-
timates what can be withdrawn from the distribution network. In addition to
underestimating what the distribution network could cover in terms of power
balance, one of the assumptions on which we rely is partially wrong: indeed,
assuming that real power flows at the interface are not changing from one time-
step to another can lead to bad approximations of the RSF. Consequently, some
decisions look drastically different. Nevertheless, the adaptability of the RSF
can lead to consider building the RSF around a predetermined dispatch instead
of assuming the discretization between the two bounds of the line limits. This
is not explored in this work.

That being said, the differences between objective values of methods ensur-
ing a feasible dispatch (Hybrid and RSF) are quite small. Moreover, compared
to the trading volume of the market (an estimation is for example PLP), these
differences could even be assumed negligible as well as the LOC which is always
larger when using the RSF approach than the centralized approaches.

To sum up, the RSF approach provides slightly suboptimal solutions while
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Figure 4.14: Evolution of the solve time of the RSF approach with respect to the
number of processors on the Italian and Danish test cases.

maintaining privacy of the different actors and relies on decomposability which
allows for heavy parallelization of the framework. This validation of the RSF
approach is not only shown on a medium-sized example, small it, but also
on three national-scale realistic instances of the problem (Italy1, Italy2,
Denmark).

4.7.3 Settlements in the Danish Case Study

Moreover, the RSF approach we develop implements a simple market design
aiming at fairly remunerating each actor participating in the market. Practi-
cally, we draw a settlement table to show how the approach is able to define
the cash flows and remunerations of each participant. We illustrate the insights
of such settlement tables on the Danish test system (Table 4.6).

Table 4.6: Settlement table of the Denmark test case.

Transmission Distribution
Settlements BSPT BRPT TSO ADS BSPD BRPD
TM-BSP +11, 371 e - −8, 311 e −3, 061 e - -
ADS Dis. - - - −568 e +568 e -
TM-BRP - −803, 062 e +808, 713 e - - −5, 651 e
ADS Rebal. - - −5, 651 e +5, 651 e - -

Total −11, 371 e −803, 062 e +794, 751 e +2, 022 e +568 e −5, 651 e

In Table 4.6, we aggregate the transmission (resp. distribution) BSPs
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(BSPT resp. BRPD), BRPs (BRPT resp. BRPD) and the total remunerations
or payments are reported (over the 4 time-steps of the test case) in the same
way as the example of section 4.3.3. In this test case, the power is mostly flow-
ing from the transmission network to the different distribution networks: the
ADS is buying power from the transmission network for a total cost of 3,061e.
The ADS compensates the distribution BSPs when disaggregating. The TSO
is collecting payments from BRPs in both transmission and distribution before
reallocating the BRPD payments to the ADS. In total, the TSO and the ADS
are collecting congestion revenue, the TSO’s revenue being significantly more
important.

Even if the number of buses is more important in the distribution network in
this test case, we observe that most of the power is consumed and produced in
the transmission network (Table 4.7), which explains the scale of the revenues
and costs.

Table 4.7: Power produced and consumed in the Denmark test case.

Transmission Distribution
Power injected Power withdrawn Power injected Power withdrawn

19,756 MW -19,561 MW 550 MW -723 MW

To understand why the TSO is collecting an important congestion revenue,
we draw a box plot representation of the transmission and distribution LMPs
computed for one time-step (t = 891) on the Denmark test case in Figure 4.15.
When comparing the LMPs of both networks, we notice that even if the lower,
middle and upper quartiles are of the same scale, the spread of the transmis-
sion LMPs is more important. This observation stresses the potential signifi-
cant differences between prices at certain locations. Note also some negative
transmission prices: 208 MW withdrawn for t = 89 have negative valuations,
i.e. some consumers are paid to consume power instead of paying which leads
to negative prices in certain locations where only this type of bid has been
accepted. The disparity in locational pricing implicitly shows how congested
the transmission network is.

4.8 Conclusions & Perspectives

In this chapter, we develop and implement a decentralized market clearing T&D
platform capable of respecting several technical requirements. The platform
offers several advantages:

(i) it preserves the privacy of the TSO and the DSOs by a careful exchange
of only border information at the interface.

1In this test case, T = {89, 90, 91, 92}.
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Figure 4.15: A box plot representation of the LMPs in the Danish test case for t = 89.

(ii) dispatch decisions are AC feasible in the distribution network, which is
relevant due to distribution system flexibility and renewable supply.

(iii) in addition to primal decisions, the LMPs cleared in a straightforward
way provide satisfactory results and incentivize the use of flexibility and
signal investments in specific locations.

(iv) the RSF approach is highly parallelizable and respects the time-limit
imposed by short-term markets.

(v) by comparing the RSF approach to three other centralized approaches,
impossible to apply in practice, we show the slight suboptimality of the
RSF approach.

(vi) intensive testing on large-scale systems shows the applicability of the RSF
approach in a realistic setting.

These aspects stress the benefit of the prototyped platform implemented in this
chapter.

Even if the platform is already promising, improvements are already worth
considering. For example, the selection of points of interest on the RSF could
largely be improved through market experience and historical data. To validate
this work, broader experiments on different topologies should be tested. Also,
the LMPs were cleared using IP pricing [OSH+05] and a comparison of different
price clearing techniques are of interest to enhance the quality of the framework.
Extending [GNB20] by considering large-scale test systems to assess the pricing
techniques could definitely be studied in the future. The RSF approach could
also be applied towards hierarchical balancing in markets with zonal pricing
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[PBDS20]. The goal is to explore the analysis of that chapter to a realistic
model of the Nordic system.

123



Coordination of T&D System Operations in Flexibility Markets with
Non-Convex Market Offers and Alternating Current Power Flows

Appendix

4.A Details on the Bid Structure

The market clearing model presented in this chapter is inspired by the products
that are available in the Central Western European (CWE) day-ahead energy
market. To do so, bids are modeled through market orders as suggested by
EUPHEMIA2. The first unit that we will use in order to define a complete bid
is the segment bid. A segment bid (or S-bid) is characterized by a minimum
and maximum quantity of real power and a certain marginal cost. Note that
we allow consumption and production bids, so we have no assumptions on the
signs of the minimum and maximum quantity. A Q-bid links several segment
bids. We make explicit the relationships between segment bids when defining
bid constraints. We also link Q-bids over time and we refer to such bids as
Qt-bids. A bid is associated with a certain BSP g, at a certain moment t.

Then, a segment bid (g, t, qt, q, s) is defined by the following 5 fields [MRS+17]:

1. a BSP g ∈ G, located at a certain bus i ∈ B,

2. a time-step t ∈ T ,

3. a Qt field (or Qt-bid) qt ∈ QtB,

4. a Q field (or Q-bid) q ∈ QB, and

5. a segment (or S-bid) s ∈ SB.

This segment bid is associated to the Q-bid (g, t, qt, q) which is associated
to the Qt-bid (g, t, qt). To make the explanations more concrete, the reader can
refer to the example on Figure 4.16. Each bid can be rejected, partially accepted
or totally accepted by an operator maximizing the welfare (or minimizing the
total activation cost) over the transmission and distribution network. Each
S-bid sb is associated with a cost csb(xsb) = asb(Psbxsb)

2 + bsbPsbxsb + csb (it
is the general form but in the dissertation, this cost is linear). Here, xsb is the
fraction of acceptance of the bid and Psb is the difference between the maximum
and minimum quantity of the bid.

Bids are associated with specific attributes that provide a rich set of options
for distributed resources to represent complex operating constraints for their
assets. The constraints we consider in the dissertation to expand GC are the

2https://www.nordpoolgroup.com/globalassets/download-center/single-day-ahead-
coupling/euphemia-public-description.pdf
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Figure 4.16: Example of a bid. g = 7 stands for the BSP, t = 3 for the time-step,
qt = 4 for the Qt-field, q = 2 for the Q-field. There are 3 S-bids (7,3,4,2,1), (7,3,4,2,2),
(7,3,4,2,3) associated to the Q-bid (7,3,4,2). The Q-bid (7,3,4,2) is part of the Qt-bid
(7,3,4).

following:

pg,t =
∑

sb=(g,t,qt,q,s)

Psbxsb, ∀g ∈ G, t ∈ T (4.19)

xsbssb ≤ xsb ≤ ssbxsb, ∀sb ∈ SB (4.20)

s(g,t,qt,q,s) ≤ q(g,t,qt,q), ∀(g, t, qt, q, s) ∈ SB (4.21)

q(g,t,qt,q) ≤ qt(g,t,qt), ∀(g, t, qt, q) ∈ QB, (g, t, qt) ∈ QtB (4.22)

qt(g,t,qt) ≤
∑

qb=(g,t,qt,q)

qqb, ∀(g, t, qt) ∈ QtB (4.23)

q(g,t,qt,q) − q(g,t−1,qt,q) − α(g,t,qt,q)

+ ω(g,tq,t,q) = 0, ∀(g, t, qt, q), (g, t− 1, qt, q) ∈ QB (4.24)

αqb + ωqb ≤ 1, ∀qb ∈ QB (4.25)

q(g,t,qt,q) ≥ α(g,τ,qt,q),∀((g, t, qt, q), (g, τ, qt, q)) ∈MDP (4.26)∑
qb∈exqb

qqb ≤ 1, ∀exqb ∈ ExQB (4.27)

∑
qtb∈exqtb

qtqtb ≤ 1, ∀exqtb ∈ ExQtB (4.28)

RP g,t ≤ pg,t+1 − pg,t ≤ RP g,t, ∀g ∈ G, t ∈ T − {tf} (4.29)

0 ≤ xsb ≤ 1, sb ∈ SB (4.30)

s ∈ {0, 1}|SB|, q ∈ {0, 1}|QB|, qt ∈ {0, 1}|QtB|, α, ω ∈ {0, 1}|QB| (4.31)

(4.19) describes how bids impact the net injection of real power. (4.20) defines
the activation of a segment bid. (4.21) imposes that a segment-bid is activated
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only if the associated Q-bid is also activated. The same holds with a Q-bid
and the associated Qt-bid in (4.22). (4.23) ensures that a Qt-bid is activated if
at least one of the associated Q-bids is also activated. (4.24) defines that two
consecutive Q-bids of a Qt-bid are linked: the Q-bid at t can only be activated if
the one at t−1 has also been activated. Constraint (4.25) imposes the fact that
a bid cannot be starting and ending at the same time. (4.26) is ensuring that
if a bid is activated, it remains active for a minimum amount of time. (4.27),
(4.28) indicate that certain Q-bids or Qt-bids should be activated only if others
are not (i.e. an exclusive choice has to be made). (4.29) are ramp constraints
on real power outputs. (4.30) and (4.31) denote that x should be fractional as
opposed to the other bid-related variables which are binary variables.

The collection of these constraints are implemented in the T&D market-
clearing platform of the chapter.
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Chapter 5

A Game-Theoretical
Analysis of T&D
Coordination Schemes

5.1 Introduction

The current paradigm of power system operations mostly focuses on the trans-
mission network. Given the vast amount of unexploited flexible resources that
are connected to the distribution network, the existing power system paradigm
puts an important part of the system aside.

The transmission network is the only part of the electricity supply chain
that is currently optimized. The flexibility in the distribution network is mainly
originating from active residential and commercial demand-side management,
which we will need to exploit effectively in the coming decades if we wish to
maintain the quality of service that we currently enjoy [CH11]. However, the
distribution network is, in itself, a system of massive scale which presents a
host of operational challenges. The amount of renewable resources that are
located in the distribution network, mainly in the form of solar panels, has
been growing and becoming an increasingly important component of the electric
power supply chain. Due to distribution constraints and the unpredictability
of renewable resources, a certain amount of this renewable power needs to be
consumed locally [fSG14]. Coordination of operations in electricity markets
has also been discussed in [SOAS10,KZ13,YH17].

In this chapter, we use the concept of Generalized Nash Equilibrium (GNE)
to model certain TSO-DSO coordination schemes introduced in chapter 3. Us-
ing GNEs to model interactions and designs in electricity markets is common
practice, specifically for TSO coordination [SOAS10], market design [EN09,
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LCJWA20] or competition between generators [JYS99, Hob01]. Even if they
are appealing from a modeling point of view, Generalized Nash Equilibrium
Problems (GNEPs) are difficult problems to tackle (see section 5.3 for more
details).

Part of this work draws inspiration from [SOAS10], where the authors focus
on the counter-trading of re-dispatching resources between two Transmission
System Operators (TSOs), in the context of congestion management. The au-
thors investigate whether there should exist a separate market for transmission
capacity by resorting to GNE, due to the influence of each TSO’s action on the
other TSO’s decisions. The authors rely on GNE and not simply Nash Equi-
librium (NE) because of the coupling constraints arising at interconnections
between TSOs. This modeling is particularly interesting because it gives the
opportunity to highlight potential asymmetric valuations of border flows. In
this setting, it is possible to span multiple equilibria and discuss their efficiency
as well as assess the quality the coordination schemes considered.

We transpose the framework of [SOAS10] to the context of TSO-DSO co-
ordination, where the activation of distribution system reserves by the TSO
has an impact on the feasible actions of DSOs. We specifically focus on two
coordination schemes inspired by the EU SmartNet project on TSO-DSO coor-
dination [GPS18,MRS+17]. The coordination schemes have been introduced in
Chapter 3 and the two coordination schemes considered are Shared Balancing
Responsibilities (SBR) and Local Ancillary Services (LAS) Markets. In the
remainder of the chapter, we interpret SBR as a Generalized Nash Equilibrium
Problem (GNEP). We envision two different alternatives for LAS. Indeed, we
develop one alternative which relies on a non-cooperative simultaneous game,
where the TSO has limited access (TLA) to DSO resources. The other interpre-
tation for this scheme relies on a hierarchical configuration, in which we assume
that the DSO solves its local imbalance first before the TSO clears the rest of
the market. This assumption (on DSO solving local imbalance) contradicts the
interpretation of chapter 4 and most of common practices in current European
markets but we still envision such a scheme since the role of the DSO is evolv-
ing. We name this scheme Local Markets (LM). Such a sequential interaction
involves a hierarchical interaction that can be represented as a Stackelberg
game (leader-follower model) under the assumption that the leader, the DSO,
anticipates the rational reaction of the follower, the TSO [DD12,LC19]. In this
case, the leader incorporates explicitly in its optimization problem the rational
reaction function of the follower. The closed form expression of the latter is ob-
tained by solving first the follower’s optimization problem at the lower level of
the Stackelberg game, considering as fixed the decision variables of the leader.
The leader, at the upper level, then incorporates the follower’s rational reaction
function, expressed as a function of the leader’s decision variables only, directly
in its optimization problem, thereby proceeding backwards.

The focus of our chapter is (i) to model various TSO-DSO coordination

128



5.2. General Assumptions and Market Structure

schemes which have been proposed in the SmartNet project as non-cooperative
games or Stackelberg games, (ii) to interpret the solutions, and (iii) to compare
the relative strengths and weaknesses of the different schemes and in particular
possible allocation inefficiencies.

The remainder of the chapter is organized as follows: we briefly remind the
context of TSO-DSO coordination in section 5.2. We provide an introduction
to game theoretical concepts used in this chapter in section 5.3. We present
the models of the TSO-DSO coordination schemes in section 5.4. The different
schemes are illustrated through numerical results presented on a toy example
in section 5.5. Section 5.6 concludes the chapter.

5.2 General Assumptions and Market Structure

5.2.1 Topology of the Network

In this chapter, we follow the same assumptions as in the previous chapters. We
consider a meshed transmission network, on which we apply the DC approxima-
tion of the power flow equations, connected to several distribution networks.
The distribution networks are radial and we apply the SOCP relaxation on
these networks. We do not consider recovering AC feasible dispatches in this
chapter. The model presented will be considering only one distribution net-
work connected to the transmission network for simplicity (Figure 3.1). We
consider a power network N = (B,L) where B = T B ∪ DB is the set of buses
(transmission and distribution) and L = T L∪ {(i′, j′)} ∪DL is the set of lines
(transmission, interconnection and distribution). The centralized optimization
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problem to solve is then:

min
∑
g∈G

Cg(pg) (5.1a)

s.t.
∑
g∈G(i)

pg −Dp
i =

∑
j=δ(i)

fp,Tij , ∀i ∈ T B (5.1b)

fp,Tij = Bij(θi − θj), ∀(i, j) ∈ T L ∪ T LR (5.1c)

(pT G , f
p,T
T L , θ) ∈ C

T (5.1d)∑
g∈G(i)

pg −Dp
i =

∑
j=δ(i)

fp,Dij +Gicii, ∀i ∈ DB (5.1e)

∑
g∈G(i)

qg −Dq
i =

∑
j=δ(i)

fqij −Bicii, ∀i ∈ DB (5.1f)

fp,Dij = −Gijcii +Gijcij −Bijsij , ∀(i, j) ∈ DL ∪ DLR (5.1g)

fqij = Bijcii −Gijsij −Bijcij , ∀(i, j) ∈ DL ∪ DLR (5.1h)

(pDG , q, f
p,T
DL , f

q, c, s) ∈ CD (5.1i)

fp,Ti′j′ = fp,Di′j′ (5.1j)

− Si′j′ ≤ fp,Ti′j′ ≤ Si′j′ (5.1k)

− Si′j′ ≤ fp,Di′j′ ≤ Si′j′ (5.1l)

The transmission constraints are the real power balance constraints (5.1b), the
real power flow definition (5.1c) and an aggregated version of the other classical
inequality constraints (5.1d) (generation capacity, line capacity etc.). The dis-
tribution constraints follow the same spirit: (5.1e)–(5.1f) represent the power
balance constraints, (5.1g)–(5.1h) show the flow definitions and the engineering
constraints are cast in (5.1i). The interconnection real power flow is duplicated

using fp,Ti′j′ for the transmission network and fp,Di′j′ for the distribution network.
Constraint (5.1j) ensures the equality of the duplicated variable. Interconnec-
tion flow has a specific capacity in constraints (5.1k) (5.1l).

5.2.2 Market Structure

In this work, we focus on the interaction of a TSO with a group of DSOs in
the real-time market, where reserves are activated in order to balance potential
load disturbances. The decisions of each operator can be seen as adjustments
on a predetermined dispatch.

We also assume that adjusting power generation in the distribution net-
work is cheaper than in the transmission network. Indeed, the transmission
network includes power plants with non-negligible fuel costs, and adjusting
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power generation in these resources might be more costly. We assume that ad-
justing generation in the distribution network can be achieved through demand
response or local renewable resources, which we considered to be cheap adjust-
ment actions for the sake of developing the discussion in the present chapter.
However, losses cannot be neglected in the distribution network, and even if
the marginal activation cost of a distribution system reserve is cheaper, the
flow of power in the distribution network might increase the cost of activation.
Currently, the use of distributed resources is limited and uncoordinated oper-
ations can then lead to highly inefficient outcomes in terms of welfare. These
assumptions and the schemes that we propose in this chapter are in line with
what can be found at the EU level in [GPS18].

In a decentralized market structure, each DSO resolves local grid issues at
the lowest possible cost. The role of the TSO, which ignores distribution system
constraints in order to allow for scalability of operations, can vary according to
the type of coordination scheme that we consider. In this chapter, we consider
three different configurations:

(i) The TSO and the DSO only rely on the resources connected on their own
network (shared balancing responsibilities).

(ii) The TSO has partial access to distribution system resources (TSO has
limited access to DSO resources).

(iii) The DSO anticipates the local imbalances, and makes the remaining dis-
tributed generation capacity available to the TSO (local markets).

These schemes are compared to the centralized optimal solution, which is the
benchmark and provides the most efficient solution.

5.3 Preliminaries on Game Theory

In this chapter, we model two schemes as non-cooperative simultaneous games
(SBR and TLA) and the last one as a Stackelberg game (Local Markets). In
this section, we introduce the basic concepts that will be used to derive the
schemes.

5.3.1 Generalized Nash Equilibrium

Nash equilibrium problems (NEPs) [Nas51] arise in non-cooperative simulta-
neous games involving a set of players: in NEPs, the decisions of a player only
affect the utility function of the other players. This notion is extended if, in
addition, players have coupling constraints and the set of decisions of a player
depends on the other players’ decisions: this extension is referred to General-
ized Nash Equilibrium Problems (GNEPs) [AD54]. In this work, we employ
GNEPs in order to model TSO-DSO coordination.
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5.3.1.1 Formulation of a GNEP

A Generalized Nash Equilibrium problem (GNEP) consists of a game among
N players. Without loss of generality and for the sake of simplifying the expo-
sition, we will only consider the case where N = 2. Player i controls variables
yi, i = 1, 2. y is the vector of all the variables: y := (y1, y2)>. The cost
function of player i is denoted as πi and can depend on the decisions of other
players.

To optimize its strategy, each player minimizes its costs assuming that the
strategy of the other player is fixed. This can be stated by the two following
mathematical programs:
For i ∈ {1, 2}, j ∈ {1, 2}, i 6= j,

Si(yj) : min
yi

πi(yi, yj) (5.2a)

s.t. Yi(yi) ≥ 0 (5.2b)

(βi) Bi(yi) +Bj(yj) ≥ 0 (5.2c)

Si(yj) is the set of optimal solutions of the problem of player i depending on
the decisions of player j. In (5.2a), each player is minimizing its cost. Each
player has to obey individual private constraints (5.2b). Constraint (5.2c) is a
global coupling constraint. βi is the dual value associated to constraint (5.2c)
for player i = 1, 2. We assume that (5.2) is convex which leads to a jointly
convex GNEP. A solution of the GNEP, called generalized Nash equilibrium
(or simply equilibrium), is a vector y∗ := (y∗1 , y

∗
2)> such that y∗1 ∈ S1(y∗2) and

y∗2 ∈ S2(y∗1). A specific equilibrium, namely a variational equilibrium (VE),
is such that β1 = β2. Note that a VE does not always exist but the parallel
between Variational Inequalities and GNEPs forms the basis of most solution
concepts we introduce in the next section.

Remark. We could also consider that a player might not share truthfully its
information with the other player. When dealing with asymmetric information,
two configurations might arise:

(i) A player might have constraints involving their decisions and the decisions
of the other player. These constraints are coupling but unknown for the
other player. It naturally introduces private coupling constraints in the
GNEP.

(ii) The players manipulate their report of information (the parameters of
the coupling constraints). This is regarded as strategic sharing of infor-
mation.

We do not explore asymmetric sharing of information in this chapter. Even
if the assumption can be limiting in practice, the analysis of the schemes un-
der this assumption is already of interest, especially in a GNEP setting. An
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extension of this work considering a biased share of information (related to
strategic sharing of information) between the TSO and the DSO is explored
in [LCMP19].

5.3.1.2 Solution concepts

Proving existence, uniqueness or convergence of an algorithm to an equilibrium
is a challenging task in the context of GNEP [FK10a]. Several methods have
been proposed to solve GNEPs and their efficacy often depends on a special
structure of the problem. Since GNEPs are naturally defined in a decentral-
ized fashion, we first introduce decentralized methods. The most practical
approaches rely on Jacobi iterative algorithms [PSFW08] or Gauss-Seidel-type
algorithms [FK10a]. The main concept of these approaches relies on (i) con-
sidering the decisions of one player as fixed in order to deduce the decisions of
the other and (ii) repeat this process until converging to an equilibrium. Clas-
sical optimization algorithms relying on similar concepts have recently been
adapted to the case of GNEP such as penalty methods [FK10b] or augmented
Lagrangian methods [KS16] and are particularly useful when focusing on VEs.
Decentralized frameworks might be limiting if one aims at spanning a set of
equilibria which is the case in our work.

Other methods consider a centralized paradigm. Most of them are based
on the Nikaido-Isoda function [NI+55] and Variational Inequalities. We decide
to use one of them based on the theory developed by Nabetani, Tseng and
Fukushima [NTF11] (we abbreviate this as NTF in the rest of the chapter).
We motivate our choice by (i) the intuitiveness of the method, (ii) its direct
application in our setting: a solution of the NTF problem is a GNE since
we only consider global coupling equality constraints (the details are provided
next, section 5.3.1.3), (iii) the fact that it is possible to span several equilibria
for a particular simultaneous non-cooperative game.

The reader is referred to [FK10a] for more details about centralized and
decentralized solution concepts for GNEPs.

5.3.1.3 The NTF method

Since the scope of the chapter focuses on agents coordinating to minimize
their costs, there is typically a way to obtain a central socially optimal solution.
Based on the formulation (5.2), the social cost (SC) is obtained by solving the
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following constrained optimization problem:

min
y1,y2

π1(y1, y2) + π2(y1, y2) (5.3a)

s.t. Y1(y1) ≥ 0 (5.3b)

Y2(y2) ≥ 0 (5.3c)

B1(y1) +B2(y2) ≥ 0 (5.3d)

If a solution of (5.3) is an equilibrium for the game setting chosen, a solution of
(5.3) is a VE since both players have the same valuation of constraint (5.3d).

This special type of GNE is characterized by its link with Variational In-
equalities [Ros65, Har91, FK10a, NTF11, LCJWA20]. VEs are not the only
GNEs that can be computed. But solving a closely similar problem to (5.3)
could be of interest to span equilibria. One way of computing variational
equilibria and equilibrium candidates to the GNEP formulated in (5.2) is pro-
posed by Nabetani, Tseng and Fukushima [NTF11] . The method relies on
introducing parameters (γ1, γ2) and solving the following standard constrained
optimization problem:

SNTF(γ1, γ2) : min
y1,y2

π1(y1, y2) + π2(y1, y2) + γ1B1(y1) + γ2B2(y2) (5.4a)

s.t. Y1(y1) ≥ 0 (5.4b)

Y2(y2) ≥ 0 (5.4c)

B1(y1) +B2(y2) ≥ 0 (5.4d)

Finding a solution y∗ of (5.4) is equivalent to finding y∗ such that:

〈Π(y∗, γ), y∗ − y〉≥ 0, ∀y ∈ F (5.5)

where:

Π(y, γ) = ∇y(π1(y1, y2) + π2(y1, y2) + γ1B1(y1) + γ2B2(y2))

F = {y satisfying (5.4b)− (5.4d)}

Problem (5.5) is a variational inequality problem which is parametrized by γ.
We now explain the link between the variational inequality problem and the
GNEP. To understand the intuition behind the use of the NTF to solve the
GNEP, let us first focus on the case where γ1 = γ2 = 0. In this case, (5.4) is
(5.3), for which β1 = β2. Assigning the same price is not necessary in general.
Indeed, players 1 and 2 might assign different dual values to constraint (5.4d)
depending on their own valuation of the global coupling constraint. By solving
(5.4) for different values of γ1 and γ2, we are exploring potential solutions with
different valuations of the coupling constraint by player 1 and player 2. This
difference in valuation can also be interpreted as the influence of the player’s
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market power. This is why the NTF method is referred to ‘a price-directed
parametrized variational inequality’ in [NTF11].

In [NTF11], the authors prove that:

SGNEP ⊆
⋃

(γ1,γ2)∈W

SNTF(γ1, γ2)

where W = {(γ1, γ2) ∈ R2
+ | γ1 × γ2 = 0}. In other words, it is possible to

span the whole set of equilibria by testing all the possible values of γ1 and γ2 in
W. One should still check that the solutions obtained from problem (5.4) are
actually equilibria (based on the definition of an equilibrium). Note also that
from Theorem 3.3 in [NTF11], equality holds between the set of equilibria and
the set of unions of NTF solutions if the shared constraints (5.4d) are equality
constraints. Since we only consider global coupling equality constraints in the
schemes of this work, the set of NTF solutions and GNEs are equal [NTF11].
No additional check is needed after solving (5.4) in our specific setting and no
additional method is necessary to compute other equilibria.

In sections 5.4.1 and 5.4.2, we will proceed in casting the Shared Balancing
Responsibility scheme and the TSO Limited Access scheme as GNEPs.

5.3.2 Stackelberg Games

Stackelberg games allow for modeling non-cooperative games with hierarchy in
the agents’ decision processes. Indeed, a Stackelberg game involves one or sev-
eral leaders and one or several followers. We assume one leader and one follower
in our case. In this configuration, the leader acts first before the follower reacts
rationally to the signal sent by the leader. This hierarchical structure leads
to modeling Stackelberg games as Bilevel Problems (BPs) [DKPVK15,DD12].
Denoting by yL (resp. yF ) the set of decisions of the leader (resp. follower),
the BP associated with a Stackelberg game is written as follows:

min
yL,yF (yL)

πL(yL) (5.6a)

s.t. YL(yL) ≥ 0 (5.6b)

BL(yL, yF (yL)) ≥ 0 (5.6c)

yF (yL) = arg min
yF

πF (yF )

s.t. YF (yF ) ≥ 0

BF (yL, yF ) ≥ 0

(5.6d)

Problem (5.6) shows how the lower level problem is embedded in the upper level
problem. The lower level problem is parametrized by the upper level decision
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yL. The rational reaction function is usually introduced and is defined as:

Φ(yL) = min
yF

πF (yF )

s.t. YF (yF ) ≥ 0

BF (yL, yF ) ≥ 0

Based on the use of the rational reaction function Φ, solving (5.6) is equivalent
to solving the following problem:

min
yL,yF (yL)

πL(yL) (5.7a)

s.t. YL(yL) ≥ 0 (5.7b)

BL(yL, yF (yL)) ≥ 0 (5.7c)

Φ(yL) ≥ πF (yF ) (5.7d)

In general Φ() is non smooth which makes solving BPs challenging. As it is
suggested in [DD12], when solving BPs, we usually rely on solving the math-
ematical programming with complementarity constraints (MPCC, also called
mathematical programming with equilibrium constraints) problem associated
with (5.6). The MPCC reformulation of (5.6) consists of writing the KKT con-
ditions of the lower level problem at the upper level level and solve the upper
level problem with (i) upper level primal variables and constraints (ii) primal
and dual variables of the lower level problem (iii) KKT conditions of the lower
level. MPCCs can be tackled by solvers such as Knitro [BNW06] or using the
algorithm proposed in [YAO08]. Equivalence between BP and its MPCC refor-
mulation is only true if the lower level problem satisfies Slater’s condition for
every possible value of yL [DD12]. Since this condition is not trivial to verify
in general, there is no guarantee that solving the MPCC provides solutions of
(5.6). However, it is common practice to solve the MPCC and study if these
solutions are equilibria for the original Stackelberg game.

We model the Local Markets (LM) scheme in section 5.4.3 as a Stackel-
berg game. We will illustrate the rational reaction approach and the MPCC
approach in our numerical example.

5.3.3 Efficiency Loss and Price of Anarchy

To assess the quality and efficiency of the equilibria computed in section 5.5, we
introduce the notion of Efficiency Loss (EL) defined for an equilibrium solution
ŷ as follows:

EL(ŷ) =
π(ŷ)

SC∗

where π(ŷ) = π1(ŷ1) + π1(ŷ2) (or π(ŷ) = πL(ŷL) + πF (ŷF )) is the overall cost
of equilibrium ŷ and SC∗ is the cost of the socially optimal solution (in the
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scope of GNE and NTF introduced previously, it would be the cost of problem
SNTF (0, 0) defined in (5.4)).

The notion of EL is naturally extended to evaluate a scheme by introducing
the Price of Anarchy (PoA). Assuming that a certain coordination scheme CS
modeled as a non-cooperative game leads to a set of equilibria Y CS , the Price
of Anarchy is defined as follows:

PoA(CS) = max
y∈Y CS

EL(y)

In other words, the PoA is the ‘worst’ EL value taken by an equilibrium of a
certain coordination scheme CS. The PoA takes value in [1,+∞[ and a cen-
tralized efficient scheme is such that PoA = 1. Since the coordination schemes
considered are decentralized, the PoA provides a measure of the efficiency loss
incurred by the choice of a particular decentralized scheme. In practice, span-
ning the whole set of equilibria Y CS or identifying the ‘worst’ equilibrium is
difficult. In the numerical experiments of section 5.5, we report the PoA by
identifying the worst equilibrium among the ones that we compute.

These measures will allow us to compare the equilibria and coordination
schemes that we consider in this chapter.

5.4 Mathematical Formulations of the Coordi-
nation Schemes

In this section, we provide the game formulation of each scheme based on the
centralized formulation of the T&D problem (5.2) and we rely on the game
theory concepts detailed in section 5.3.

5.4.1 Shared Balancing Responsibilities

Each operator decouples the operations of its own network from the operations
of the networks of other operators. We formulate this problem as a GNEP. As
mentioned previously, the TSO is interacting with the DSO in a simultaneous
game.

Considering xT = (pT G , f
p,T , θ) as the decisions of the TSO and xD =

(pDG , q, f
p,D, fq, c, s) as the decisions of the DSO, since the interface constraint

(5.1j) will be shared by both players, each problem is parametric on the deci-
sions of the other problem; we then introduce SBRTSO (resp. SBRDSO) which
represents the optimal value of the TSO (resp. DSO) problem depending on
the DSO (resp. TSO) decisions. The associated problems are the following:

SBRTSO(xD) := min
xT

∑
g∈T G

Cg(pg) (5.8a)

s.t. (5.1b)− (5.1d), (5.1j), (5.1k) (5.8b)
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SBRDSO(xT ) := min
xD

∑
g∈DG

Cg(pg) (5.9a)

s.t. (5.1e)− (5.1i), (5.1j), (5.1l) (5.9b)

Remark. We show that a VE is an equilibrium for SBR. The details of
the proof can be found in [MPLC18].

5.4.2 TSO Has Limited Access to DSO Resources

In this scheme, we allow the TSO to activate resources in the DSO’s net-
work. These resources bid in a transmission-level reserve activation market, in
which the TSO does not account for DSO’s network constraints. The TSO can
then activate a certain amount of real power at distributed generator g ∈ DG,
through the decision variable pTg , g ∈ DG. The TSO has a gaming oppor-
tunity in the sense that the TSO may choose to activate resources from the
distribution network if it minimizes the overall transmission cost.

The DSO can also activate distributed resources, through the variable pDg , g ∈
DG. The DSO is then responsible for operating the distribution network and
takes into account transmission and distribution activation decisions in the
distribution network. Nevertheless, since losses are non negligible in the dis-
tribution network, the DSO has to quantify how much power is flowing to the
transmission network. Figure 5.1 illustrates this configuration. To that end,
we introduce the variable ηi′j′ . Thus, the variable ηi′j′ can be seen as a state
variable capturing the losses incurred when the TSO is activating a certain
amount of real power in the distribution network.

In this scheme, we then introduce the following constraints:

fp,Ti′j′ =
∑
g∈DG

pTg + ηi′j′ (5.10a)

fp,Di′j′ =
∑
g∈DG

pTg + ηi′j′ (5.10b)

pg = pTg + pDg , ∀g ∈ DG (5.10c)

Constraint (5.10a) (resp. (5.10b)) appears in the TSO (resp. DSO) prob-
lem. Variable ηi′j′ models the losses faced by the TSO when activating a certain
amount of real power in the distribution network. Variable ηi′j′ is a state vari-
able of the DSO which depends on the physics of the distribution network.
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TN
The TSO activates 10 MW from DN :∑
g∈DG

pTg = 10 MW.

DN

Due to losses, out of the 10 MW re-
quested by the TSO, only 8 MW are
available at the transmission level
(ηi′j′ = −2 MW).

Figure 5.1: Illustration of how ηi′j′ is evaluated.

Constraint (5.10c) defines the generator injection in the distribution network
as the sum of the decisions of the TSO and the DSO.

The two problems defining the GNEP are then:

TLATSO(yDSO) := min
yTSO=(xT ,pT )

∑
g∈T G

Cg(pg) +
∑
g∈DG

Cg(p
T
g ) (5.11a)

s.t. (5.1b)− (5.1d), (5.1j), (5.1k), (5.10a) (5.11b)

TLADSO(yTSO) := min
yDSO=(xD,pD,ηi′j′ )

∑
g∈DG

Cg(p
D
g ) (5.12a)

s.t. (5.1e)− (5.1i), (5.1j), (5.1l), (5.10b), (5.10c)
(5.12b)

In particular, note that the TSO has the possibility to activate distribution
resources but the DSO is responsible for making sure that it respects gener-
ation limits (equation (5.1i) includes constraints such as generation capacity
constraints p

g
≤ pg = pTg + pDg ≤ pg).

5.4.3 Local Markets

In this coordination scheme, we assume that there is a separate local market,
operated by the DSO. Resources from the DSO grid can only be offered to
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the TSO after the DSO has selected resources needed to solve local imbal-
ances within their periphery. The TSO is responsible for the operation of its
own balancing market, where both resources from the transmission grid and
resources from the distribution grid can participate. In practice, it can be a
way to avoid the waste of power into the distribution grid, as well as helping in
congestion management, and can be coupled with flexibility mechanisms like
demand response. Contrary to the SBR and TLA introduced previously that
we interpret as a non-cooperative game (implying that they both play at the
same time), under the local markets coordination scheme that we describe in
this section, the DSO is assumed to play first anticipating the rational reaction
of the TSO, which reacts secondly to the signal sent by the DSO. We are then
in a position of considering this scheme as a Stackelberg game where the DSO
acts as the leader and the TSO is the follower, which means that the DSO
clears its distribution market before the TSO clears the transmission market,
taking into account transmission and distribution generation / consumption.
With several distribution networks connected to the transmission network, the
notion of Stackelberg equilibrium naturally extends to a multi-leader and single
follower format. From section 5.3.2, we model this Stackelberg game as a BP
as follows:

min
(xT (xD),xD)

∑
g∈DG

Cg(pg) (5.13a)

s.t. (5.1e)− (5.1i), (5.1j), (5.1l) (5.13b)

xT (xD) = arg min
xT

∑
g∈T G

Cg(pg)

s.t. (5.1b)− (5.1d), (5.1j), (5.1k)

(5.13c)

The lower level problem (5.13c) depends on the duplicate interface flow decision

of the distribution fp,Di′j′ .

5.5 Numerical Illustrations

5.5.1 A 2-bus Example

We consider the 2-bus example in Figure 5.2. We only consider real power flow
here. The transmission bus gathers a 150 MW load and a generator g1 with
a capacity of 200 MW and a marginal cost of 20e. The line connecting the
transmission and distribution buses has a capacity of 80 MW. The distribution
bus consists of a 100 MW load and 2 generators: g2, with a capacity of 50 MW
and a marginal cost of 10e, and g3, with a 100 MW capacity and a 25emarginal
cost. Distribution generation is usually cheaper than transmission generation,
but losses might sometimes significantly increase the cost of generation in the
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distribution and that is why we consider one cheap generator and another one
more expensive.

Figure 5.2: The toy example considered for testing the different coordination schemes.

The centralized optimization problem associated with the 2-bus example is
written as follows:

min 20pg1
+ 10pg2

+ 25pg3
(5.14a)

s.t. pg1
− 150 = fT (5.14b)

0 ≤ pg1
≤ 300 (5.14c)

pg2 + pg3 − 100 = −fD (5.14d)

0 ≤ pg2 ≤ 50 (5.14e)

0 ≤ pg3 ≤ 100 (5.14f)

fT = fD (5.14g)

− 80 ≤ fT ≤ 80 (5.14h)

− 80 ≤ fD ≤ 80 (5.14i)

The equilibria obtained are displayed in Figure 5.3 (as a function of the
operators’ costs) and Figure 5.4 (as a function of the generation decisions).
Note that some points are equilibria for one or several schemes as shown in
the legend of Figures 5.3 and 5.4. Note also that we report the EL of each
equilibrium in Figure 5.3. We discuss the computation of the equilibria and
their efficiency next.

5.5.1.1 Centralized Solution

The centralized solution of the 2-bus example clears the market as follows: the
cheapest distribution generator produces at its maximum capacity (pg2

= 50)
and the rest is left to the transmission generator (pg1

= 200) to compensate the
transmission imbalance of 150 MW and 50 MW are flowing at the interconnec-
tion to the distribution network to satisfy the 100 MW distribution load. This
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Figure 5.3: Equilibria spanned for the 2-bus example as a function of the operators’
costs. We also report the EL of each equilirbium.

Figure 5.4: Equilibria spanned for the 2-bus example as a function of the generation
decisions. The cyan area shows the feasibility set of the problem.

dispatch leads to a total cost of 4500e and is represented in red in Figures 5.3
and 5.4 as the minimizing social cost (SC) solution. Note that the SC solution
is unique and is the only VE for this example.

142



5.5. Numerical Illustrations

5.5.1.2 SBR Equilibria

We write the NTF optimization problem associated with the SBR problems
(5.8) and (5.9) as:

NTFSBR(γT , γD) : min 20pg1
+ 10pg2

+ 25pg3
+ γT f

T − γDfD

s.t. (5.14b)− (5.14i)
(5.15)

From [NTF11], it is sufficient to study values inW = {(γT , γD) ∈ R2
+ | γT γD =

0}. We then have to look into three different cases:

1. γT = γD = 0. This case is straightforward and (5.15) is equivalent to
(5.14) represented in red in Figures 5.3 and 5.4.

2. γT > 0, γD = 0. In this case, one interpretation of the objective function
is that we are implicitly ‘penalizing the exports from the transmission
network’. When substituting fT in the objective by its expression in
(5.14b), the marginal cost of pg1

becomes 20+γT . If this marginal cost is
lower than the marginal cost of pg3

, the deduced equilibrium is SC (red).
This condition is met when γT ≤ 5. If γT > 5, the transmission exports
become more expensive than generator g3 and the equilibrium solution is
pg1 = 100, pg2 = 50, pg3 = 100 (violet point).

3. γT = 0, γD > 0. Now we are ‘penalizing the distribution exports’. The
same reasoning can be conducted and we deduce the SC equilibrium if
γD ≤ 10. If γD > 10, we deduce another equilibrium, where one aims
at minimizing distribution exports pg1

= 230, pg2
= 20, pg3

= 0 (green
point).

The interpretation of the SBR scheme is fairly straightforward. Depending
on the valuation of the interface flow, if this flow does not correspond to the
optimal flow it will result in sub-optimal dispatch. The specific choice of flow
at the interface will determine the extent of efficiency losses of the SBR scheme.

5.5.1.3 TLA Equilibria

We write the NTF optimization problem associated with the TLA problems
(5.11) and (5.12) as:

NTFTLA(γT , γD) : min 20pg1
+ 10pg2

+ 25pg3
+ γT f

T − γDfD

s.t. (5.14b)− (5.14i)

pg2
= pTg2

+ pDg2

pg3
= pTg3

+ pDg3

fT = pTg2
+ pTg3

fD = pTg2
+ pTg3

(5.16)
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Using the same reasoning as SBR, we have to look into three different cases:

1. γT = γD = 0. This case is straightforward and (5.16) is equivalent to
(5.14) represented in red in Figures 5.3 and 5.4.

2. γT > 0, γD = 0. In this case, we are implicitly penalizing the exports
from the transmission network as well as the use of distribution re-
sources by the TSO. Again, if γT > 5, the transmission exports be-
come more expensive than generator g3 and the equilibrium solution is
pg1

= 100, pDg2
= 50, pTg2

= 0, pDg3
= 100, pTg3

= 0 (violet point).

3. γT = 0, γD > 0. Now we are penalizing the distribution exports but also
encouraging transmission activations in the distribution network. The
same reasoning can be conducted and we deduce the SC equilibrium if
γD ≤ 10. If γD > 10, we deduce a different equilibrium, where the TSO
covers all the costs of activations pg1

= 230, pDg2
= 0, pTg2

= 20, pDg3
=

0, pTg3
= 0 (blue point1).

5.5.1.4 LM Equilibrium

First, let us write the TSO’s lower level problem, which is parametric of the
decisions of the DSO, and the KKT conditions of the problem:

min 20pg1
20 + λ− ρ− + ρ+ = 0

s.t. pg1 − 150 = fT (λ) − λ− φ− + φ+ = 0

0 ≤ pg1
≤ 300 (ρ−, ρ+) pg1

− 150 = fT

fT = fD (µ) fT = fD

− 80 ≤ fT ≤ 80 (φ−, φ+) pg1
≥ 0 ⊥ ρ− ≥ 0

pg1 ≤ 300 ⊥ ρ+ ≥ 0

fT ≥ −80 ⊥ φ− ≥ 0

fT ≤ 80 ⊥ φ+ ≥ 0

In this case, we can easily deduce a rational reaction function, and the MPCC
would also result in the problem to solve. We can express TSO’s decisions as
a function of the DSO’s decisions as follows:

fT = fD

pg1
= 150 + fD

1This point is not displayed on Figure 5.4 because of the duplication of the variable p in
the distribution network. However, in terms of pure activation, the blue point would be the
same one as the green point on Figure 5.4
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The upper level is then written as:

min 10pg2
+ 25pg3

s.t. pg2
+ pg3

− 100 = −fD

0 ≤ pg2
≤ 50

0 ≤ pg3
≤ 100

− 80 ≤ fD ≤ 80

fT = fD

pg1 = 150 + fD

The solution of this Stackelberg game is unique and displayed in green in
Figure 5.3. The solution is slightly suboptimal in this case (total activation
cost: 4800e, EL = 1.07). Indeed, the transmission bus is activating more
power (pg1

= 230 MW) to compensate the lighter activation from generator
2 (pg2

= 20 MW). These decisions lead to congesting the interface line. This
solution can be interpreted as the fact the DSO is anticipating a higher pene-
tration of transmission generation in the distribution network. By doing so, the
TSO is reacting to compensate the imbalance in the distribution network. Even
if appealing from the theoretical point of view, the scheme does not capture
the impact of the transmission resources. This conclusion is also drawn and
further explained in [LCMP19]. The original goal being to fully use RES in the
distribution network, one idea could have been to penalize the interconnection
flow in the DSO problem in order to fully activate resources in the distribution
network. However, this would lead to activating the expensive generation unit
in the distribution network.

Remark. Another idea would have been to consider errors in the rational
reaction of the TSO. In a way, it could capture the fact that the TSO might
not react rationally to the signal sent by the DSO. We do not further explore
‘bounded rationality ’ in this chapter and decide to stay in the classical scope
of game theory with profit maximizing rational agents. However, preliminary
study in a bounded rational setting is conducted in [LCMP19].

Remark. One outcome of the results of this scheme is that one way to
make a sequential framework profitable for the TSO and the DSO could be
to appropriately valuate the interface flow. It is what has been explored in
chapter 4.

This preliminary study shows that each scheme can generate some inefficien-
cies, with LM exhibiting superior performance than the other schemes because
it provides a unique equilibrium (PoA(LM) = 1.07) which is slightly inefficient,
but more efficient than the worst equilibria of SBR and TLA (PoA(SBR) =
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PoA(TLA) = 1.07). In order to further elaborate on the comparison of TLA
and SBR, we aim at extending these results on a more representative example.

5.5.2 Extending the 2-bus Results

We also show equilibria of SBR and TLA on the test case represented in Fig-
ure 3.2. We expand equilibria using the NTF method. The results are shown
in Figures 5.5 and 5.6. Again, the SC solution is unique and is the only VE.
We span as many equilibria as possible to identify all the potential outcomes
of each scheme.

Figure 5.5: Equilibria for SBR and TLA as a function of the operators’ cost.

Figure 5.5 generalizes Figure 5.2: indeed, except for the SC solution, the
points drawn in Figure 5.2 expand as a group of points where the equilibria
have different interpretations that are discussed next.

Figure 5.6 ranks the EL of each equilibrium obtained. It is interesting to see
that the EL ranges from 1 to 2.1, which demonstrates the potential inefficiency
of some equilibria, especially for SBR.

5.5.2.1 SBR Equilibria

The interpretation of the SBR scheme is fairly straightforward. Once the flow
of real power is fixed at the T&D interface, if this flow does not correspond to
the optimal flow it will result in a sub-optimal dispatch. By fixing the interface
flow, the SBR scheme decouples the problems of the agents and therefore results
in an equilibrium, unless the value of the interface flow cannot be supported by
a physically feasible dispatch at any of the sub-networks. The specific choice

146



5.5. Numerical Illustrations

Figure 5.6: EL of the equilibria spanned for SBR and TLA. The equilibria are ranked
from smallest to largest EL.

of flow at the interface will determine the extent of efficiency losses of the SBR
scheme. Figure 5.6 shows how SBR can lead to inefficient equilibria, in partic-
ular, from Figure 5.6, PoA(SBR) = 2.07. The SBR scheme could eventually
be improved if we were to consider a third player in charge of efficiently deter-
mining the power flow at the interface or through a intensive and careful use
of historical data to settle the interface flow.

5.5.2.2 TLA Equilibria

For this coordination scheme, the equilibria to the left of the welfare solution
are identical to the corresponding equilibria of SBR. This is the case in which
the TSO does not activate distribution resources and let this responsibility to
the DSO. The interpretation of the right-hand side cluster of equilibria is more
delicate. These are equilibria for which the TSO finds it worthwhile to activate
such a large quantity of distribution network reserves, that these reserves are
sufficient for both covering the distribution network disturbances, while also
supporting the transmission network disturbances, even if part of the power is
foregone as resistive losses on the DSO network (with equilibrium points further
to the right corresponding to increasing real power losses on the DSO network).
This turns out to be an equilibrium because (i) clearly for the DSOs there is
no reason to deviate, since the TSO is paying for reserves that cover the DSOs’
imbalance, while (ii) even when covering the DSOs imbalance and facing dis-
tribution system losses, the TSO still finds it preferable to activate distributed
resources due to the fact that the transmission system reserve activation is a
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more expensive alternative.

5.6 Conclusion

This chapter is focused on the modeling of TSO-DSO coordination schemes as
non-cooperative games. A centralized dispatch of the entire system is challeng-
ing due to the large size of the network in general. Decentralized models, where
the computational effort would be separated and the privacy of information of
each operator would be preserved, may be more viable in practice. We employ
GNE in order to quantify the efficiency losses of two alternative TSO-DSO co-
ordination schemes and analyze the results on a small-scale example as well as
a third scheme that introduced sequentiality. We unveil a multiplicity of equi-
libria for each scheme and unveil a free-riding effect in the TLA coordination
scheme, whereby for some equilibria the DSO imbalances are entirely covered
by the TSO. LM provided a suboptimal dispatch because of some unwanted
effect of the anticipation of the DSO because the DSO sees the interface flow
as a free resource.
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Conclusions

As mentioned in the introduction, five aspects of the reorganization of elec-
tricity markets are explored in this dissertation: (i) the uncertainty of RES,
(ii) the complexity of distribution networks, (iii) the increasing importance of
the role of the DSO, (iv) TSO-DSO coordination, and (v) the computation of
consistent electricity prices.

In chapter 2, we focus on developing algorithms to solve the well-known
optimal power flow problem. We exclusively considered the AC version of the
problem (because it is necessary in distribution networks) and first looked at
a deterministic version before proposing a framework for the stochastic vari-
ant. For the deterministic AC-OPF, we suggest a Gauss-Newton algorithm
which relies on an `1-penalization of the complicating constraints. We pro-
vide theoretical guarantees for the algorithm to converge. We also explain the
parametrization of the method and demonstrate comparable performances with
Ipopt on a set of state-of-the-art instances (MATPOWER). The Gauss-Newton
scheme could also improve in performance with more stable ADMM solvers.
In the stochastic version of the problem, we assume that the demand is uncer-
tain, which is more realistic in practice due to RES proliferation and flexibility
mechanisms (like demand response). The suggested method, which solves a
chance constrained form of AC-OPF, rapidly computes a solution that is en-
hanced iteratively by intelligently working with a reduced scenario set. The
data-driven approach is validated on a 1354-bus system where only 30 critical
scenarios were necessary to compute a sufficiently robust solution.

Chapter 3 exposes the preliminary content on TSO-DSO coordination. With
a more involved DSO, we derive five coordination schemes which transpose dif-
ferent paradigms for a future market organization. The schemes incorporate
one transmission network, with a DC-OPF model, and one or several radial
distribution networks on which the second-order cone relaxation of OPF is ap-
plied. A simple numerical experiment allows us to already stress advantages
and drawbacks of each of the schemes.

In chapter 4, we focus on the scheme ‘Decentralized Common Market’ in
depth. This chapter aims at developing a practical platform in line with the
future vision of how transmission and distribution should be operated in Eu-
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rope. The platform, based on the idea of constructing Residual Supply Func-
tions (RSFs), offers several compelling features: (i) the distribution networks
are precisely modeled using AC power flow models, (ii) complex bid structure
(such as block bids) is considered, (iii) the platform preserves operators’ pri-
vacy by only sharing minimal border information (iv) dispatch decisions but
also prices are returned by the envisioned clearing platform, and (v) the frame-
work is largely parrallelizable. The platform is tested and validated on national
test systems of Italy and Denmark, which scale to thousands of buses and tens
of thousands of bids.

Other coordination schemes are further explored from a game theoretical
point of view in chapter 5, namely ‘Shared Balancing Responsibilities’ and ‘Lo-
cal Ancillary Services Market’. The schemes are modeled as non-cooperative
simultaneous or sequential games and the generalized Nash equilibria com-
puted stress the efficiency of the considered schemes. Two illustrative examples
demonstrate the different market situations in which the schemes might lead
to.
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[PAK16] Ignacio Pérez-Arriaga and Christopher Knittel. Utility of the
Future. Technical report, MIT Energy Initiative, December
2016.

[PBDS20] Anthony Papavasiliou, Mette Bjørndal, Gerard Doorman, and
Nicolas Stevens. Hierarchical Balancing in Zonal Markets. In
2020 17th International Conference on the European Energy
Market (EEM), pages 1–6. IEEE, 2020.

[PM18] Anthony Papavasiliou and Ilyes Mezghani. Coordination
Schemes for the Integration of Transmission and Distribution
System Operations. In 2018 Power Systems Computation Con-
ference (PSCC), pages 1–7. IEEE, 2018.

[PSFW08] Jong-Shi Pang, Gesualdo Scutari, Francisco Facchinei, and
Chaoxiong Wang. Distributed Power Allocation with Rate
Constraints in Gaussian Parallel Interference Channels. IEEE
Transactions on Information Theory, 54(8):3471–3489, 2008.
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