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Abstract—The recent integration of renewable resources in
electricity markets has increased the need for producers to
correct their trading position close to real time in order to avoid
volatile real-time prices. The last market to close before delivery
is the Continuous Intraday Market. Therefore, this market is an
interesting outlet for renewable units that aim at covering their
forecast errors. As a starting point for tackling this problem, we
characterize an optimal policy for trading a fixed quantity in a
simplified market model. We use this analytical solution as a basis
for developing an Approximate Dynamic Programming algorithm
and an alternative Stochastic Dual Dynamic Programming that
can trade under a more realistic set of assumptions.

Index Terms—Stochastic optimal control, continuous intraday
market, approximate dynamic programming, stochastic dual
dynamic programming

I. INTRODUCTION

The Continuous Intraday Market (CIM) has received in-
creasing attention in recent literature [1]. This can be explained
by the growing activity that has been observed in the CIM in
recent years. For example, the traded quantity in the German
CIM has risen from 10 TWh in 2010 to 41 TWh in 2016
[2]. This is a significant increase, even if this market remains
less liquid than the day-ahead market (234 TWh exchanged in
Germany in 2016 [3]).

Renewable assets face considerable supply uncertainty, and
therefore stand to gain by adjusting their position dynamically
in the CIM, as more accurate forecast information arrives
for their real-time supply. Moreover, trading later in the day
also increases opportunities for profitable trades, since bid-
ask spreads in CIMs are empirically observed to decrease
as we approach real time. These benefits need to be traded
off against the fact that the CIM is typically less liquid than
earlier forward (e.g. day-ahead) markets. Therefore, there is a
counter-balancing interest for a renewable supplier to sell its
power earlier, in order to avoid “pushing” the price against
its profits by unloading large quantities of supply in a thin
market.

In this work we set the foundation for capturing the latter
tradeoff (thin markets), and leave matters associated to the
uncertainty of supply and the increasing information that is
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revealed closer to real time for future work, but set in place the
algorithmic framework for this extension. Concretely, we focus
on developing an optimal trading strategy for selling a fixed
quantity of power in an idealized CIM for which we have a
model of the price evolution. Our motivation is to set the basis
for approximate dynamic programming (ADP) algorithms that
can be used for trading the production of a renewable unit in
the real CIM without any assumption on the price evolution
model.

Our analytical work draws similarities to early work on
optimal control by [4]. In this paper, the authors develop
an optimal trading strategy in order to trade a fixed quantity
within a certain deadline subject to independent random prices.
They prove that the optimal strategy is characterized by a
threshold beyond which the producer should trade the required
quantity. This work has been extended by [5] and [6], where
the authors consider that the trader (i) has the option to store
the good for a given holding cost, and (ii) faces a deterministic
demand at each time period. They prove that the optimal policy
still follows a threshold strategy.

In more recent work in the context of electricity markets
[7], the authors derive an optimal strategy for a thermal unit
trading in the CIM, while assuming that the price follows an
additive Brownian motion. In [8], the authors also present the
solution for trading a fixed quantity. The difference with our
work is that [7] does not account for any bid-ask spread and
[8] only considers the case of a constant bid-ask spread. On
the contrary, in our work, we solve the problem using a non
constant spread in order to reflect the empirical observation
that the CIM remains relatively illiquid, despite its growth.

The results of [4], [5] and [6] have recently been used in [9].
In this paper, the authors use policy function approximation in
order to optimize the trading strategies of a storage unit in the
CIM. For this purpose, the authors define a parametrization for
their policy which relies on the insights of [4], [5] and [6], by
specifically developing threshold policies and relying on policy
function approximation. By analogy, in the present work we
develop a value function approximation for the context of a
renewable supplier with uncertain supply.

Our contributions can be summarized as follows: (i) We cast
the problem of unloading a fixed quantity of power in a CIM,
as a Markov Decision Process (MDP). (ii) We characterize
the optimal policy as well as the optimal value function for



this MDP. (iii) We use this optimal value function to develop
basis functions for an ADP algorithm. (iv) We use the MDP
framework to also develop an SDDP algorithm, that can be
used as a benchmark for the ADP algorithm. We validate
our algorithms by demonstrating that they both arrive to the
optimal analytical solution of a 10-period example.

II. OVERVIEW OF EUROPEAN CONTINUOUS INTRADAY
MARKETS

In this section, we describe the CIM operations of a typ-
ical EU market, using the German market as a prototypical
example. For a presentation of the positioning of the CIM in
German electricity market operations, the reader can refer to
[9]. In the German CIM, buy and sell bids can arrive at any
moment and can be ‘locked in’ by market participants who
find the bids favourable. Each of these bids is associated with
a delivery hour, a type (buy/sell), a price [in Eur/MWh] a
quantity [in MWh]. This means that, at any moment of the
CIM, a producer observes a collection of bids. This collection
of bids is called an order book. This order book can be further
split into 24 “hourly” order books', one for each delivery hour.
We present such an order book in Fig. 1. The order book
consists of two parts: (i) the buy side, which contains all the
bids of traders which want to buy power from us (in blue),
and (ii) the sell side, which contains all the bids of traders
which want to sell power to us (in red). In the next section,
we explain how we simplify the representation of the order
book in order to derive an analytical solution to the optimal
trading problem.
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Fig. 1. Example of an order book.

III. CONTINUOUS INTRADAY MARKET MODEL

In order to derive an optimal trading strategy, we decompose
the order book into three components that are presented in
Fig. 2: (i) a bid-ask spread, which is the price difference
between the most favorable sell and buy bids that have yet
to be matched (illustrated on the left panel); (ii) the center of
the bid-ask spread, which is the average price between the best
sell bid and the best buy bid (illustrated on the left panel); and
(iii) a linear price impact (illustrated on the right panel). We
exploit the linearity in the derivation of the optimal trading
policy.

'In the remainder of the paper, we only consider “hourly” order books.
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Fig. 2. Illustration of the different components of the orderbook.

This decomposition of the order book at time step ¢ can
also be expressed mathematically as:

Pi(qr) = pe — Ay — 2rq: (1)

where (i) p;(g:) is the marginal price at which we sell quantity
qy; (ii) p; is the center of the bid ask spread; (iii) A; is half
the bid-ask spread; (iv) 2 - r is the slope of the linear impact;
and ¢, is the quantity that we sell. The term 2 - r - ¢; therefore
represents the impact of the producer on the price.
We assume the following about the parameters in Eq. (1):
o p; follows a stochastic evolution, according to the fol-
lowing model:

Pi+1 =Pt + € )

where ¢; can follow any distribution respecting E[e;] = 0,
where the expectation is conditional on the information
available in time ¢.

o The parameter 7 is assumed to be deterministic. In order
to estimate it, we use confidential data from the German
CIM for 2015 — 2016 which has been sourced from the
European Power Exchange (EPEX). We use the following
strategy, which is initially proposed in [8]. We record the
state of the market in different instances. For each of these
instances 4, we compute the marginal price p*‘(¢’) that
we would obtain if we were selling different quantities
of power ¢’. For each of these quantities, we compute
the average price obtained from the different instances:

{0\ ! p3i<qj)
p(q)—z 7

where I is the number of instances. These averages are
presented on the left panel of Fig. 3. Finally, we use a
linear regression to obtain the slope of the red line which
is equal to the price impact coefficient 2r. Estimating the
value against the 200 first days of 2015 yields a value of
r = 0.0095.

e A; is assumed to be deterministic. As for r, we record
the state of the market in different instances, although we
now separate the instances in different batches, depending
on how much time before delivery the instance has
been captured. For each of these batches, we compute
the average spread. The results of this computation are
presented on the right panel of Fig. 3. One important
insight from this graph is that, as we arrive closer to



delivery, the bid-ask-spread decreases. This indicates that
it can be favorable to wait for market closure to trade
power.
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Fig. 3. Estimation of r (left), and expected bid-ask-spread (right).

IV. ANALYTICAL SOLUTIONS
A. Assumptions

In the analytical derivations of this section, we consider
trading a fixed quantity of power. We assume the following:

o We discretize time. This appproach is similar to the one
proposed in [9] and [10].

o From one time step to the next one, the order book
evolves as described in section III. Notice that we do
not make any assumption on the precise distribution of
the center of the bid-ask spread. Indeed, as shown in Eq.
(7), we only need to characterize the expectation of ¢;.

e In order to simplify the analysis, we assume that the
closer we are to market closure, the smaller the bid-ask
spread is. This is consistent with the results that we obtain
from the right panel of Fig. 3.

e« We cannot be in imbalance at the end of the CIM.
This assumption originates from the German regulation
which discourages resources from being in imbalance on
purpose [11].

o By considering every delivery period independently, we
ignore time coupling effects. These have been considered
in previous work by the authors in the context of storage
units [9].

B. Modelling the problem as an MDP

We model our problem using the MDP framework. To this
aim, we need to define the state space, the action space, the
reward function, as well as the state transition function.

1) State space: Our state space contains two variables: (i)
st, the quantity that still needs to be traded at time step ¢ (for
a trader in the CIM, it would correspond to the difference
between the quantity that it had to trade initially and the
quantity that it has already traded), and (ii) p;, the center of
the bid-ask-spread at time step t.

2) Action space: Our action space consists of ¢q;, the
quantity that we sell at time step ¢.

3) Reward: The reward at time step t is the earnings
obtained from selling ¢; in the order book pf(q). It is
expressed as:

reota) = | " pi ()

qt
= / (pt — Ay — 2rz)dz
0

=peqe — Deqr — thg

4) State transition function: The transition function links
the state variables at time step ¢ + 1 with the one at time step
t:

St+1 = St — Q¢ 3)
Dt+1 =Pt + € 4

Eq. (3) describes the evolution of the quantity that still needs
to be traded. Eq. (4) corresponds to the price evolution model
of Eq. (2).

C. Optimal trading policy

In this section, we derive the optimal decision at each
time step, as well as the optimal value function for the case
in which we have a positive’ quantity to sell s, > 0. We
prove by induction, starting at the last time step 7', that the
value function and the optimal decision at time step t are
characterized by the formula in Table I, where:

O = Timiea 8= (T=DA
¢ Vi 2(T—i+1)r >

X, = (T_t)At_Zi=t+l A (T*tJFl)At—l*Z?:t Ai
° t — [ 2r ’ 27 [

1) Time step T: As explained in section IV-A, at the
last time step we have to cover our position. Therefore, the
decision is g = s, and the associated value function is given
by:

Vi (sT,pr) = prsr — Apsy —rsy (%)

2) First step of the induction: We first derive the optimal

solution if we are one time step before delivery. The value
function is given by:

max

PT—197—1 — Ar_197-1
0<gr-1<s7-1

V;—1(5T—1,PT—1) =

~rara?+ [ Vit (srspr) fpr)dpr

oo

= max 1q7—1 — Ar_1g7—1 — 1(q7—_1)?
0cg X PTo1qT1 7-197—1 — 7(q7-1)
oo
+/ (prsr — Arsr —rs7) f(pr)dpr (6)
— 00
= max  pri1qr—1 — Ar_1qr—1 — r(gr-1)?

0<gqr-1<sT-1
2
+ ]E[pT]ST — ATST — s

= max
0<qr-1<sT-1

+ (pr—1 + Eler—1])(s7—1 — q7-1) — Ar(S7-1 — q1-1)
—r(qr—1)* +2rs7_1q7—1 — 185 _4 @)

=  max  Ag(gr—1—s7-1) — Ar_1q7-1
0<gr-1<s7-1

— 2r(qr—1)* 4+ pr-157—1 + 2rST_197—1 — TS5 _4

pr_1qr—1 — Ar_1qr—1 — r(gr_1)?

2The case with s; < 0 can be computed similarly.



TABLE I
SUMMARY OF THE VALUE FUNCTION AND OPTIMAL DECISION FOR STEP ¢.

Range of quantity s; to be traded Xr Xit1

R+\(XT U UXig1)

Optimal quantity to trade gf 0 .- 0

Z?:wd A —(T—t)A

St
T—t+1 +

Value function V;*(s¢, pt) Vi (st,pt)

Vqtftjq(stypt)

2(T—t+1)r
2

T—1 (T—z’+_1)r Cc2

T s s
ptSt — (Ei:t Ai) T,iﬁrl - m + Zi:t T—i i

For Eq. (6), we use the definition of the value function
(Eq. (5)). In Eq. (7), we use the fact that E[pr| = pr_1 +
E[er—1] and the transition function of s; defined in Eq. (3).
As this objective function is quadratic, we can compute the
maximum if we would be ignoring the constraints. To this aim,
we compute the point at which the gradient vanishes:

0=Ap—Ap_1 —4drgp_q +2rsr—q
4Tq}_1 = AT — AT—l + QTST_l
. sp_1  Ap—Ap_y
Ir-1 = 2 + 4r
There are three cases to consider for this maximum:
o The maximum is feasible, 0 < ¢7._; < sp_;: This
condition is equivalent to Ar—i=Ar

“BT < sy In this
case, we have the optimal decision. The associated value

function is given by the following expression, in which

Ar—Ap_
we fix Cp_y = =5 ="

ST_
Vi_1(s7—1,pr—1) = Ap(— T2 Ly Cr_1)

S Sp_
— Ap_q( T2 L+ Cp_y) —2n( T2 L+ Cpy)?

ST—1

+Cp_1) — r32T71

+ pr_1sr—1 + 2rsp—1(

ST ST
=Ar(— T2 ! +Cr_1) — Ap_4( T2 Ly ory)

-
2 2
= 587-1 — 2rC7_y + pr—1S7-1

2
= —&s — AT*ls I

B T—1 B T-1 5°T-1 Pr—15r-1
+Cr_1(Ar — Ar_1 —2rCr_1)
AT,]_ T 2
ST—1 — §ST71

T2 T T T

+ pr_1sr—1+2rC}_,

e ¢r_; < 0: This condition is equivalent to sp_; <
%. In this case, we observe that the derivative
is always negative, because (i) Ar — Ap_1 + 2rsp_4
is negative, and (ii) —4rgr—_1 is negative for gr—1 > 0.
Therefore, it is optimal to have ¢7_; = 0. This case
represents the situation in which the spread at the last
time step is significantly smaller than the one at time
step T'— 1 (Ar_1 >> Ar). Therefore, it is optimal to
trade the entire remaining quantity at the last time step.
The associated value function is given by:

* 2
Vi_1(s7—1,pr—1) = pr—157—1 — A7ST_1 — TS8T_4

e gr_1 > sp_1: This solution can never occur because,
as assumed in section IV-A, A+ < Ap_;.

In conclusion, we have a different value function formula
and optimal decision deEending of the value that stiAll neecis to
be traded (for s7—; < === and for s7_; > =F=5—%).
This is summarized in Table II.

3) General step of the induction: In order to conclude the
proof, we need to prove that, if the value function and the
optimal solution verify the format of Table I at time step
t, it will also be the case at time step ¢ — 1. The proof
for this argument is provided in the electronic supplement?.
In the electronic supplement, we also present an example of
the analytical solution using the true parameters estimated in
section III.

D. Insights from the analytical solution

In this section, we present the insights that we gain from
the analytical solution.
a) Optimal quantity to trade: The optimal quantity to
trade at time step ¢ (there are still 7' — ¢ 4 1 chances to trade)
is given by:

St ZiT:t-i-l A; - (T - t)At
T—t+1 2(T—t—|—1)7“

If we would consider only the first term, it would imply that
we trade T%H_l of the capacity available. The second term is
a correction for the difference in spread between the different
time steps. This term is negative, which means that we always
trade at most Tfigﬂ We can analyse two extreme cases (i)
r — 0: This means that the second term is very negative. In
this situation, the optimal decision is to always trade O until
the last time step. This results from the fact that the price
impact is negligible, and therefore we can trade all the power
when the spread is the lowest. (ii) The spread is constant:
This means that the second term is equal to 0. In this case, it
is optimal to trade the same quantity at each time step. This
can be interpreted as follows: As the spread is constant, there
is no reason to prefer one time step over another and therefore
we simply aim at minimizing our impact on the price.

b) Intuition about the value function: The optimal value
function is presented in Table I. From this table, we observe
that for different ranges of power to sell, s;, we have different
expressions for the value function. These different ranges
represent different time steps over which we are required to
trade. For instance, (i) X7 represents the case for which we
have a small quantity of power to sell. In this case, we can
ignore the price impact and trade all the power at the last
time step where the bid-ask-spread is the lowest. (ii)) X7_1

3The electronic supplement is available at the following link: https://sites.
google.com/site/gillesbertrandresearch/publications/app-powertech-2021
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TABLE II
SUMMARY OF THE VALUE FUNCTION AND OPTIMAL DECISION FOR STEP T — 1.

Ar_1—-A7r [

Range of quantity s7_; to be traded [0, o7 o ; 00|
Optimal quantity to trade qJ._, 0 ST{l + 21 iﬁTﬁl
- . * A Ap_
Value function V7_,(s7—1,pr—-1) | (P7—1 — AT —rsT_1)sT-1 (PT71 —-SF - === gST71> sr—1+2rC2_,

represents the case for which we have more power to sell. In
this situation, we would be affected more significantly by the
price impact, and we therefore split sell between the two last
time steps.

c) Mathematical format of the value function: As ex-
plained before, the value function is a piecewise function. For
each of these pieces, the value function can be decomposed as
(1) a quadratic function in sy, and (ii) a bilinear term in p;s;.
We exploit this observation in the algorithmic section.

V. ALGORITHMIC APPROACHES

We now use the modeling setup and the insights of the
analytical solution as a basis for an ADP and SDDP algorithm.

A. Approximate dynamic programming

Finding the optimal solution to an MDP is equivalent to
finding the action-value function which verifies the Bellman
optimality equation [12]:

q*(s,a) = E[Ry41 + n;a/uxq*(StJrha’ﬂSt =s,4; = d]

where (i) E[R;;1] is the expected reward obtained after
applying action « in state s, and (ii) max, ¢*(Sy+1,a’) is the
value function associated to the best possible action in state
St+1.

In our problem, we face continuous state and action spaces.
In order to make the problem tractable for ADP, we discretize
the action space. This discretization of the action space is
needed because the ADP algorithm requires finding the action
associated with the best action-value function.

In order to develop an ADP algorithm, we parametrize the
action-value function ¢*(s,a) as §(s,a;w), where w is a set
of parameters that we need to optimize.

In order to determine basis functions for the value function,
we exploit the insights from the analytical solution. By defini-
tion of the action-value function Q;(s¢, s, q:) [12], we know
that:

Qi(86,1t, @) = pear — Deqe — 7(qe)® + Vi1 (8¢ — qe, o)

where V| (s¢ —q;,p¢) is the optimal value function described
in section IV-C. The parametrization of this action-value
function can therefore be split into two parts:

(j((st,pt)a(h;w) = fO(staptvqt;wO)
T
+ ) filse = qupiw;) - 1
j=1

In this expression:

o fo contains the parameters for the payoff obtained at time
step ¢ which can be parametrized as:

fo(St,Pta qt; wo) = Wo,0 * (Pt - At) - qt + wo,1 'qt2'

o f; is the basis function that represents V;*(s; — qi, pt)-
As we know that this function is piecewise quadratic in
st — q; and has a bilinear term in p;(s; — g¢), we can
parametrize it as:

fi(st = qu,pewj) = wjo +wja- (8¢ — qr)
+wjg - (5t —q)* +wjz - pe(se — qe)-

e 1, is an indicator function which evaluates to 1 if f;
should be used and 0 otherwise. Based on Table I, there
are two cases in which f; should be used (i) ¢t < j and
st —q: € X;, and (ii) t = j and s; — ¢ € RT\(X7 U
U Xj +1)-

Having defined basis functions, the intuition of the algo-
rithm is to optimize the w parameter in order to minimize
the error between the prediction from our value function
G(S¢, A¢;wy) and the obtained outcome from the episode G;.
This error can be written as:

L= (Gy — (S, A;wy))”.

We minimize this loss function using a stochastic gradient
algorithm. Concretely, we run episodes of our trading problem
following an e—greedy policy derived from our action-value
function ¢(S;, A¢; w). When the episode is finished, we update
w using the following update:

Wep1 = wi + ¢ [Gy — G(St, A; we)] VG(Se, Ags wy).

As we use a parametrization derived from the optimal value
function, we know that a particular set of weights w gives
the optimal value function (computed analytically). Moreover,
as the parametrization is linear in w, we are guaranteed to
obtain the best possible parametrized policy [13]. This means
that this algorithm is guaranteed to converge to the optimal
value function when applied on the simplified market model.
Nevertheless, the problem of trading in the real-market will
typically not respect the model of section 3 and, therefore,
this guarantee will no longer hold.

B. Stochastic Dual Dynamic Programming

SDDP is a method for solving a specific class of multi-
stage stochastic convex programs. For a complete description
of the algorithm, the reader can refer to [14]. In order to
use SDDP, we need to define the subproblem faced at every



stage. This subproblem, referred to as the Nested L-Shaped
Decomposition Subproblem (NLDS), is defined for every time
step ¢t and node k of the uncertainty model. In our case, the
NLDS is expressed as:

max  (per — Ar —7¢)q5 — (Per + A +7¢0) gl
q;>0,¢2>0

s b
St =8t-1—q +q

There are two specificities compared to the classical
problems solved using SDDP. (i) Our objective function is
quadratic in ¢} and ¢?. These terms can be linearized using
a first-order Taylor approximation [15]. (ii) The uncertain
parameter p; j, appears in the objective function and follows
an auto-regressive process, based on our model for the price
evolution (Eq. (2)). This is not suitable for classical implemen-
tations of SDDP [16] because the value function is convex in
s; and concave in p; Therefore, we use the modified version
of the algorithm that is presented in [16] and implemented in
toolbox [17]. As explained in [16], this algorithm is guaranteed
to converge almost surely to the optimal solution.

VI. CASE STUDY

In this section, we compare the numerical results obtained
by the analytical solution, ADP and SDDP for a problem with
10 time steps. We present, on the left panel of Fig. 4, the error
in the value function computed by ADP and SDDP compared
to the value function from the analytical solution. We observe
that these differences are very small (around 1 euro) compared
to the magnitude of the value function (around 1000 euros).
We also present on the right panel of Fig. 4, the evolution of
the quantity s; that still needs to be traded for each time time
step. We observe that the decisions that are reached by SDDP
and ADP are very close to the ones obtained by the analytical
solution. This confirms that both methods are able to solve
this simplified problem and can therefore be considered for
the real CIM trading problem.
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VII. CONCLUSION AND PERSPECTIVES

In this paper, we model the problem of selling a fixed
quantity of power in a simplified model of the CIM using
the MDP framework. We derive the optimal trading strategy
for this problem through backward induction. We use the
optimal value function to develop basis functions for an ADP

algorithm. We then develop ADP and SDDP algorithms for
testing against our idealized CIM model and demonstrate that
they both arrive to the optimal policy on a 10-step example. In
future work, we aim at enriching this algorithmic framework
with renewable supply uncertainty, in order to also tackle
the risk-information trade-off faced by a renewable supplier
trading in the CIM. We are also interested in relaxing the
assumption that we have access to a model for the price
evolution.
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