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Abstract

The increasing decentralization of power production in electricity networks (linked
to the increasing share of distributed renewable resources, such as solar panels)
sets up new challenges and, among them, the need for coordination between the
transmission system operator and the distribution system operator. The potential
of this coordination offers not only the opportunity to optimize the grid balance at
a broader level, but also the opportunity to optimize the choice of the prices more
globally, which is the subject of this work.

While basing our model on an second order cone (SOC) relaxation of the optimal
power flow (OPF) problem, a specific dual function optimization method is studied
(namely, the "level method") for the purpose of the computation of one of the
pricing scheme (namely, the convex hull price) and different pricing approaches
for real and reactive power are then analyzed on an actual, country-scale dataset
(provided by SmartNet).

Our analysis reveals that the level method should be disregarded when the size
of the dual space is large but that the convex hull price is still of interest since an
approximate of it can give a lower uplift than other pricing schemes. More broadly,
on the analyzed scenarii, the uplifts required are negligible compared to the profits
generated.
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Chapter 1

Literature review

1.1 Motivation: The T&D coordination problem
In a conventional centralized electric grid, the transmission network (TN) "trans-
mits" the high-voltage power from power plants to the distribution network (DN)
that "distributes" it to the consumers. Nowadays, with the increasing share of
distributed renewable resources, such as solar panels, we are moving towards a
decentralized network where the power is generated in the distribution network
as well. However, so far, the loads of the distribution system are aggregated at
a transmission node and the optimization of the grid balance takes place at the
transmission level.

Using the power coming from the distribution network to the benefit of both the
transmission network operator (TSO) and the distribution network operator (DSO),
would help to achieve the renewable energy integration targets set worldwide by
policy makers. However, in order to achieve a reliable and safe energy supply while
maximizing the account on renewable energy (which is by nature uncertain), a
strong TSO-DSO coordination is needed. This subject gets currently more and
more attention from the academic world and practitioners [2], [7], [14].

Coordination schemes won’t be investigated in this work, instead we will con-
sider a TSO-DSO operator (that we will call the "network operator") managing
the whole network. Even though this scenario is unlikely to happen, it provides a
benchmark for further investigations.

In this work we will focus on the pricing of electricity. Although this subject
has received a lot of attention, both from the practitioners and from the academic
world, long before the willingness to better coordinate TSO and DSO appeared (e.g.
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OPF problem and simplifications CHAPTER 1. LITERATURE REVIEW

[3], [9], [16]), the potential of this coordination offers, not only the opportunity to
optimize the grid balance at a broader level, but also the opportunity to optimize
the choice of the prices more globally. This last point is the core of the present
document.

This work has three goals:

• To briefly expose the mathematical problem of grid management, the state of
the art pricing schemes and promising dual function optimization methods.

• To study a specific dual function optimization method (namely, the "level
method") for the purpose of the computation of one of the pricing scheme
(namely, the convex hull price).

• To analyze different pricing schemes for real and reactive power on an actual,
country-scale dataset.

The first objective will be addressed in this first chapter. The second chapter
will introduce the specific model we are working with. Finally, the third and fourth
chapters will tackle respectively the second and third items of the goal list.

1.2 OPF problem and simplifications
In this section, we will start by covering the problem this work seeks to tackle -the
optimal power flow problem (OPF)- and we will discuss the need for a simplification
of this problem. Then we will introduce and derive the choices that have been
made in this thesis, namely a linearization in the case of the transmission network
and a second-order cone convexification in the case of the distribution network.
This section will stay close to the excellent summary given by J. Taylor in [20].

1.2.1 The Optimal Power Flow problem
An electrical grid is basically a graph of nodes and lines, where nodes can take
or inject power and lines allow power to flow between nodes. While managing an
electrical grid, finding the best dispatch of power between producers and consumers
while respecting the network constraints is known as the Optimal Power Flow
(OPF) problem.

A first question that arises is "What does best mean?". Several answers exist.
Classically the objective can be to minimize the operating costs, to minimize the
losses over the network or to maximize the social welfare (see figure 1.1) which
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will be our choice in this work.

Let us now introduce it mathematically.
If we consider a set of generators G and a set of loads L, we can characterize the
generators by an integrable increasing marginal cost function:

MCg : R −→ R ∀g ∈ G

and the loads by an integrable decreasing marginal benefit function:

MBl : R −→ R ∀l ∈ L.

Let pg be the production of generator g and dl be the demand of load l, we
obtain the following expression of the welfare:

∑
l∈L

∫ dl

0
MBl(x)dx−

∑
g∈G

∫ pg

0
MCg(x)dx.

A second logical question is "How challenging is it to respect the network
constraints?". The principles of the physics of electricity are accurately described
by the famous Kirchhoff voltage and current laws. However, these laws create
non-linearities and nonconvexity, making the OPF problem rather challenging to
solve. Approximations of this problem are then needed in practice and the rest of
this section will clarify that point.

Basic formulation

Complex voltage is classically used to formulate the OPF problem and, in what
follows, vi denotes the complex voltage at node i. If a pair of nodes (i,j) is linked
by a line, the real and reactive power flows between this pair is pij and qij. Let ppi
denotes the real power produced at node i and pdi denotes the real power demand
at node i, the same notation is used for reactive power as well with respectively qpi
and qdi .
A complex impedance is defined on each line Zij = Rij + iXij and an admittance
(which is the inverse) is also defined Yij = Gij + iBij. Every line has also a power
capacity Sij.

3
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Figure 1.1: Graphical illustration of social welfare, the lines represent the aggrega-
tion of the MC/MB functions (from [5]).

The model expresses itself as

max
p,q,v

welfare(p, q, v) (1.1)

subject to pij + iqij = vi(v∗i − v∗j )Y ∗ij (1.2)∑
j

pij = ppi − pdi (1.3)
∑
j

qij = qpi − qdi (1.4)

p
p/d
i ≤ p

p/d
i ≤ p

p/d
i (1.5)

q
p/d
i ≤ q

p/d
i ≤ q

p/d
i (1.6)

p2
ij + q2

ij ≤ S2
ij (1.7)

vi ≤ |vi| ≤ vi (1.8)

(1.2) is the relationship between power flow and voltage. (1.3)-(1.4) express the
net powers into or out of node i as the sum of power on the lines connected to i.
(1.5)-(1.6) correspond to box constraints on the generation output/demand input
range. (1.7) expresses the limit on apparent power (which is a quadratic convex
constraint). (1.8) expresses the voltage magnitudes limits at each node.
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Because of constraint (1.2), this model is a quadratically constrained nonconvex
problem (QCP) meaning it is NP-hard (i.e. there exists no efficient algorithm
for exactly solving it), which is why (together with their usually large size) OPF
problems are particularly difficult to solve. It should also be noted that the model
presented here does not provide a perfect modelization of the physical process.
Dynamics, harmonics and transformer tap positions are for instance omitted. How-
ever, since we are already dealing with an NP-hard problem, going further in
the modelization refining process would be unrealistic in the view of obtaining
exploitable solutions.

The rest of this section is dedicated at finding a solvable simplification of this
"basic formulation".

1.2.2 Simplification for the transmission network
Starting from the Kirchhoff’s current and voltage laws and expressing them in
terms of polar coordinates (where v = |v|eiθ) we obtain

pij = Gij|vi|2 − |vi||vj|(Gij cos(θi − θj)−Bij sin(θi − θj)) (1.9)
qij = Bij|vi|2 − |vi||vj|(Gij sin(θi − θj)−Bij cos(θi − θj)) (1.10)

Thanks to the four following approximations we can obtain the linearized power
flow:

1. gij = 0 : Line conductance is negligible.

2. |vi| = 1 : All voltage magnitudes are close to 1 per unit.

3. sin(θi − θj) = θi − θj : Voltage angle differences are small.

4. Reactive power is negligible in comparison with real power. All reactive
power variables and constraints can therefore be neglected.

These approximations can be justified by the "the minor role of losses, the
reduced significance of reactive power flows, the less significant role of voltage
constraints, and a number of other technical factors" [14]. More information on
that matter can be found in [1].
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Linearized power flow Under these assumptions, we obtain

pij = Bij(θi − θj)∑
j

pij = ppi − pdi

p
p/d
i ≤ p

p/d
i ≤ p

p/d
i

|pij| ≤ Sij

(1.11)

which is the linearized power flow (also referred as "DC OPF" for the link that
can be made with the Ohm’s law).

1.2.3 Simplification for the distribution network
For a long time the kind of approximations presented above was the only way
to convexify the problem. However when looking at the distribution network,
neglecting the losses and the couplings between real and reactive power is not
acceptable anymore. Instead of relying on approximations, we will have to use
another tool called the relaxation of constraints, which basically "lifts" constraints
to make the problem easier to solve. Of course, we do not want to create unfeasible
solutions which will be a concern throughout this document.

As explained, relaxation of constraints makes possible to "jump" from nonconvex
QCP to more gentle optimization classes -such as semidefinite programming (SDP)
or second order cone programming (SOCP)- while taking into account the non-
linearity of power flows. Thanks to the emergence of interior point methods since
the mid-80’s, solving theses classes of problems in a reasonable amount of time is
now possible. Different relaxed models have been proposed over the years and the
purpose of this work is certainly not to present them all, the interested reader can
refer himself to [20] for a very complete treatment of that matter. In the following
of this section, only the choice that has been made for this work will be presented.
It is a SOC relaxation called the branch flow model which has been widely used
(e.g. among others [6], [11] and [14]). Specifically, in [14] the branch flow model is
tested against other relaxed models for the same first dataset that will be analyzed
(the vanilla case presented in chapter 2) and other SmartNet-related datasets that
will not be investigated in this document. The results were encouraging so pursuing
in this direction seemed promising.
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The branch flow model

The branch flow model for radial (acyclic) network was presented for the first time
in 1989 by M. Baran and F. Wu [12]. Since it will be a corner stone for the rest of
this work, its complete derivation is presented here.

Starting from the complex power loss from node i to node j:

|Iij|2 Zij = pij + qij
|vi|2

Zij

Replacing |Iij|2 and |vi|2 by csq and vsq for the sake of conciseness, we obtain:

csq Zij = pij + qij
vsq

Zij

The convention followed is that the departing power is positive and the arriving
one is negative, assuming Rij and Xij > 0, the line losses are positive and equal to
pij + pji and qij + qji. Hence, we obtain:

p2
ij + q2

ij = csq vsq (1.12)
pij + pji = Rij csq (1.13)
qij + qji = Xij csq (1.14)

The voltage at node j is given by Ohm’s law:

vj = vi − Iij Zij (1.15)

Equations (1.12)-(1.15) together with power conservation and line limits offer an
exact description of power flow, equivalent to (1.2)-(1.8).

Convexification From equation 1.15, taking the squared complex magnitude:

vsqj = |vi − Iij Zij|2 (1.16)
= vsqi − 2Re{vsq∗i Iij zij}+ |Iij|2 |Zij|2 (1.17)
= vsqi − 2(Rij pij +Xij qij) + (R2

ij +X2
ij) csqij (1.18)

The last source of nonconvexity arises from (1.12). Switching from an equality
to the inequality "≤" changes it into an hyperbolic constraint which is among the
variety of the second order cone (SOC) constraints.
Obviously, in order to obtain physically meaningful solutions, we want this con-
straint to be tight. Even though it can sound optimistic, experimental and
theoretical results suggest that, in the case of radial networks, this relaxation leads
to high quality results [6], [14]. This element will be part of our observations when
discussing the results in chapter 4.
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SOCP relaxation of OPF Ultimately, the model obtained expresses itself in
the following form (taking back the notations from the "basic formulation"):

max
p,q,v

welfare(p, q, v) (1.19)

subject to p2
ij + q2

ij ≤ csq vsq (1.20)
pij + pji = RijI

2
ij (1.21)

qij + qji = XijI
2
ij (1.22)

v2
j = v2

i − 2(Rijpij +Xijqij) + (R2
ij +X2

ij)I2
ij (1.23)∑

j

pij = ppi − pdi (1.24)
∑
j

qij = qpi − qdi (1.25)

p
p/d
i ≤ p

p/d
i ≤ p

p/d
i (1.26)

q
p/d
i ≤ q

p/d
i ≤ q

p/d
i (1.27)

p2
ij + q2

ij ≤ S2
ij (1.28)

vi ≤ |vi| ≤ vi (1.29)

1.3 Electricity pricing
The goal of this section is to address the difficulties that electricity pricing raises
and to present the methods already proposed to solve these issues.

Electrical energy is traded in an electricity market which is a "centralized plat-
form where participants can exchange electricity transparently according to the price
they are willing to pay or receive, and according to the capacity of the electrical net-
work" [5]. The main advantage of this market is its capability to break monopolies
and open the producers and retailers of electricity to competition but, to do so, it
requires electricity prices to balance transactions.
In fact, two different electricity markets live side by side: the day-ahead market
(where participants can buy or sell electricity for the next 24 hours in a closed
auction) and the intra-day market (where participants can continuously bid and
where, when a deal is feasible, it is executed). In the present work, only the
day-ahead market will be considered.

8
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Before jumping into the details of the computation of the price, the question
of "where" should be asked. Indeed, as already mentioned, the electrical network
is composed of nodes and lines and the way to model the power over the lines
has been extensively described in the previous sections. One way of considering
the pricing states that each node can be associated to a different price (this is
called "nodal pricing" or "locational marginal pricing") and this approach will be
followed in the present work.

However, it should be noted that, in Europe, each country wishes to have a
uniform price over its territory; even though their territories contain more than one
node. Nodes are then aggregated at a national level, the prices are computed and
a re-dispatch of the electricity is performed to ensure that the lines’ constraints are
respected.

1.3.1 Pricing in the convex case
In order to simplify the discussion here, let us introduce a simpler model than the
OPF model (1.2)-(1.8) called the economic dispatch model (1.30). Indeed, the
network’s constraints are not needed to highlight the concepts presented here.
This section is inspired by [17].

In this model, we neglect the reactive power, and we keep the notations intro-
duced before, namely: G and L sets of generators and loads,MCg : R −→ R, ∀g ∈ G
and MBl : R −→ R, ∀l ∈ L integrable increasing/decreasing marginal cost/benefit
function and pg/dl the production/consumption of an agent. The under-brackets
variables represents the dual variables of the constraints.

max
pgdl

∑
l∈L

∫ dl

0
MBl(x)dx−

∑
g∈G

∫ pg

0
MCg(x)dx

subject to
∑
g∈G

pg −
∑
l∈L

dl ≥ 0 : (λ)

pg ≤ pg : (µg) ∀g
dl ≤ dl : (µl) ∀l
pg ≥ 0 ∀g
dl ≥ 0 ∀l

(1.30)

Since all the constraints are linear and the objective is convex, the problem
is convex. The constraint associated to the dual variable λ is called the power
balance constraint or the market clearing constraint since it makes the link

9
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between production and demand and ensure the equality. Hence, using duality
theory, the dual variable λ represents a variation of the total cost of the system when
the demand is perturbed. The Karush Kuhn Tucker conditions (KKT conditions)
are the classical mathematical tool used for analyzing dual variables. Applied to
(1.30) these conditions become:

0 ≤ µg ⊥ pg − pg ≥ 0 (1.31)
0 ≤ µl ⊥ dl − dl ≥ 0 (1.32)
0 ≤ pg ⊥ µg − λ+MCg(pg) ≥ 0 (1.33)
0 ≤ dl ⊥ µl + λ−MBl(dl) ≥ 0 (1.34)
0 ≤ λ ⊥

∑
g∈G

pg −
∑
l∈L

dl ≥ 0 (1.35)

Proposition 1.3.1. Given an optimal solution of the economic dispatch problem,
there exists a threshold λ such that:

1. If a generator is operating strictly within its dispatch interval (0 < pg < pg),
then MCg(pg) = λ. If a load is consuming strictly within its dispatch interval
(0 < dl < dl), then MBl(dl) = λ.

2. If a generator is producing zero, then MCg(pg) ≥ λ. If a load is consuming
zero, then MBl(dl) ≤ λ.

3. If a generator is producing at peak capacity, then MCg(pg) ≤ λ. If a load is
consuming at peak capacity, then MBl(dl) ≥ λ.

Proof. The results comes from the KKT conditions of the problem. For instance,
suppose that a generator g produces between 0 and pg. From (1.31), we have that
µg = 0 and from (1.33) we have that λ = MCg(pg) + µg = MCg(pg). The other
statements follow the same logic.

This is economically called marginal pricing which means that the production
cost of the plant which is at the margin of production is chosen as the price.

1.3.2 Pricing with nonconvexities
As chapter 2 will show for our specific case, the economic dispatch model is in
general nonconvex. The nonconvexities can arise from different sources but a
classical source used in example 1 is the addition of fixed costs, in fact, adding fixed
costs as well as other nonconvexity sources will often require the use of discrete
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Figure 1.2: Aggregate cost illustration - no fixed costs (from [16]).

variables.

The nonconvexity of the model is a bad news since it means that strong duality
does not hold any longer. Hence, the challenge to define a totally new pricing rule is
faced. Before presenting the potential new pricing rules, an example is introduced
to give the reader a bit of intuition on the challenges faced. This example was
firstly presented by P. Gribik in [16].

Example 1: A two plants example.
Consider two generation units with the parameters presented in the table below.

Plants
q(MW) A B

Fixed Cost (e) 0 6000
Var Cost 1 (e/MWh) 100 65 40
Var Cost 2 (e/MWh) 100 110 90

At first, we do not consider the fixed costs. On figure 1.3 one can see the
evolution of the marginal price (i.e. the variable cost) of the MWh as a function of
the load. For the first 100MW, the cheapest plant is B at 40e/MWh, then A is the
cheapest for the 100 following MW and so on. Following the discussion in section
1.3.1, for any level of load, one can easily find on this figure the marginal prices
that will become the market clearing prices (i.e. a price such that the producers
have the incentives to commit and to produce such that the market clears). One

11
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Figure 1.3: Marginal cost illustration - no fixed costs (from [16]).

Figure 1.4: Aggregate cost illustration - with fixed costs (from [16]).
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Figure 1.5: Marginal cost illustration - with fixed costs (from [16]).

should note that the prices are increasing with the load, which seems natural.

Now let us add the fixed costs. Figure 1.5 looks now quite different from figure
1.3, the marginal cost does not constantly increase with the load anymore but
increases then decreases then increases again. The existence of a market clearing
price is not guaranteed anymore when the convexity is lost and the question of
"how to create an efficient price nevertheless?" rises.

Different approaches have been developed to answer this question and the
contribution of this work is to study their behavior on a real, country-scale, T&D
network example (see chapters 3 and 4). For now on, they will be presented from a
theoretical point of view1.

Problem (1.36) formulates the economic dispatch problem in a very schematic
way while separating the continuous variables (x) from the discrete ones (u). Note
that u∗ denotes the optimal commitment.

Schematic problem
max
x,u

w(x, u)

s.t. g(x) = y

u ∈ {0, 1}
(1.36)

1This summary of the existing approaches is inspired by a workshop given by W. Hogan at
UCLA in January 2016 [9].
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Figure 1.6: Marginal cost illustration - Restricted approach (from [16]).

Restricted Model

Proposed in 2005 by O’Neil [3], the idea is here to fix the unit commitment variables
(at an optimal solution). With those variables fixed, the model is now convex and
it is possible to determine the marginal prices. Problem 1.37 sketches it out and
figure 1.6 illustrates this method.

max
x,u

w(x, u)

s.t. g(x) = y

u = u∗

(1.37)

Dispatchable Model

In this scheme, even if we know that the problem is not convex, we make it convex
by relaxing the discrete constraints. The marginal prices associated to this relaxed,
continuous and convex problem are then taken. Figures 1.7 and 1.8 and problem
1.38 illustrate this method.

It should be noted that this method is actually already in use in some parts of
the USA by PJM Interconnection LCC, which is an American TSO that operates
over multiple states [10].

max
x,u

w(x, u)

s.t. g(x) = y

0 ≤ u ≤ 1
(1.38)
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Figure 1.7: Aggregate cost illustration - dispatchable approach (from [16]).

Figure 1.8: Marginal cost illustration - dispatchable approach (from [16]).
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Figure 1.9: Aggregate cost illustration - CHP approach (from [16]).

Figure 1.10: Marginal cost illustration - CHP approach (from [16]).

Convex hull pricing

Proposed by Hogan, and described in [16], the idea of convex hull pricing (CHP) is
to determine the prices from the convex hull of the objective function (see figure
1.9). Or, equivalently, to determine them from the Lagrangian relaxation of the
market clearing constraints (the dual variables associated are then the prices we
are looking for).

As for the dispatchable approach, the CHP is also already used in the USA.
The Midcontinent Independent System Operator already uses the CHP and it
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is under consideration by PJM Interconnection LCC2.

Mathematically, from 1.30, while relaxing the market clearing constraint, we
find the Lagrangian function:

L(pg, dl, λ) =
∑
l∈L

∫ dl

0
MBl(x)dx−

∑
g∈G

∫ pg

0
MCg(x)dx+ λ(

∑
g∈G

pg −
∑
l∈L

dl) (1.39)

While fixing the Lagrangian multiplier λ to a certain value, we obtain the
Lagrangian dual function:

g(λ) = max
pg ,dl

L(pg, dl, λ) (1.40)

Proposition 1.3.2. g(λ) is convex following λ.

Proof. Let us fix p∗g and d∗l as the optimal reaction to αλ1 +(1−α)λ2, with α ∈ [0, 1]
and ∀λ1,2 ∈ R. We obtain:

L(αλ1 + (1− α)λ2, p
∗
g, d
∗
l )

=
∑
l∈L

∫ d∗
l

0
MBl(x)dx−

∑
g∈G

∫ p∗
g

0
MCg(x)dx+ (αλ1 + (1− α)λ2)(

∑
g∈G

p∗g −
∑
l∈L

d∗l )

= α

∑
l∈L

∫ d∗
l

0
MBl(x)dx−

∑
g∈G

∫ p∗
g

0
MCg(x)dx+ λ1(

∑
g∈G

p∗g −
∑
l∈L

d∗l )


+ (1− α)
∑
l∈L

∫ d∗
l

0
MBl(x)dx−

∑
g∈G

∫ p∗
g

0
MCg(x)dx+ λ2(

∑
g∈G

p∗g −
∑
l∈L

d∗l )


≤ α

max
pg ,dl

∑
l∈L

∫ dl

0
MBl(x)dx−

∑
g∈G

∫ pg

0
MCg(x)dx+ λ1(

∑
g∈G

pg −
∑
l∈L

dl)


(1− α)
max
pg ,dl

∑
l∈L

∫ dl

0
MBl(x)dx−

∑
g∈G

∫ pg

0
MCg(x)dx+ λ2(

∑
g∈G

pg −
∑
l∈L

dl)


= αL(λ1, p
∗
g, d
∗
l ) + (1− α)L(λ2, p

∗
g, d
∗
l )

By convex theory, we know that any local minimum of a convex function is a
global minimum of this function. We have that g(λ) is defined ∀λ ∈ R since λ is

2More information can be found at [18]
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not present in the constraint of the relaxed economic dispatch model.
Hence, there exists at least one global minimum, but the convex hull price might
not be unique.

The following results are central and justify all the efforts made to compute the
CHP. A formal proof of these statements can be found in [16].

Proposition 1.3.3. Convex hull price minimizes the uplift payments.

Proposition 1.3.4. For convex problems, convex hull pricing is equivalent to
marginal pricing.

Proposition 1.3.3 introduces the concept of uplift payment. Since this concept is
a cornerstone of our analysis, the next paragraph will describe it in more in details.

Uplift/side payments

Starting from a proposed market clearing price p, the revenues generated from
fulfilling a demand l will be pl and the costs of meeting this demand will be C(l).
The profits will then have the following form:

π(p, l) = pl − C(l).

From a generator point of view, given a price p in a competitive market, their
own interest would be to maximize their profits by solving:

π∗ = max
k
{pk − C(k)}.

When the solution is k∗ = l, then p is a profit-maximization solution and no uplift
payment is needed.

However, if it is not the case then "in order to support the solution, the uplift
payment would have to make the market participants indifferent between the proposed
solution and the unconstrained profit" [16]. This leads us to the definition of uplift:

Uplift(p, l) = π∗(p)− π(p, l),

which is the difference between the optimal profit given a proposed price and the
constrained profit at this price.

The computation of the uplift for any pricing scheme is summarized in figure
1.11 and figure 1.12 offers a comparison of the three presented approaches in terms
of uplift payment.
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Figure 1.11: Uplift payment mechanism for a given pricing scheme. x represents
the continuous variables and u the binary variables.

Figure 1.12: Uplift comparison between approaches (from [16]).

Uplift payments might seem not fully transparent which is why, in Europe for
instance, most of the countries are reluctant to use the approaches presented above.
How electricity is actually priced in Europe is briefly explained in the following
section.

Since the uplift payments are a big political concern, assessing how much uplift
each of these methods creates is essential. This will be one of our major goal in
chapter 4.
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The European case

Since 2014, for most of European countries3 the pricing method used is an algorithm
called EUPHEMIA. This algorithm offers the advantage to avoid uplift payment and
to provide a uniform price for every country (which is required as highlighted in
the introduction of this section), but those properties come at a cost.
Without entering into the details of this algorithm, to achieve these properties, the
maximization of the welfare is subject to extra constraints, leading to potentially
less welfare. Hence, the interest in new pricing schemes and the need of assessing
the impact that the uplift would have on the extra welfare (the last point is beyond
the scope of this work).

1.4 Dual function optimization
As explained in the latter section, the convex hull pricing (CHP) can be computed
in two ways: a primal approach and a dual approach. The primal approach requires
the explicit construction of the convex hull of the aggregate cost function, which
has proven to be difficult in practice. Hence, in this work, we will focus on the
computation of the dual approach, which is simpler to formulate, but harder to
solve. In that view, the aim of this section is to give a theoretical summary of the
first order oracle methods used here to solve dual function optimization. In chapter
3, we will show how they can be applied to our specific problem.

We will present two methods:

• The subgradient method: a classical and very popular easy to implement
method.

• The level method: a probably less famous method but which has given
encouraging results for computing the CHP [19].

Figure 1.13 sketches the global idea behind these methods. Note that applying
the level method to the Italian scenario to observe its properties on a real, country-
scale dataset is one of the goals of this thesis, as presented in section 1.1.

Let us consider the following, very general, minimization problem.
325 European countries including: Austria, Belgium, Czech Republic, Croatia, Denmark,

Estonia, Finland, France, Germany, Hungary, Italy, Ireland, Latvia, Lithuania, Luxembourg, the
Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and UK.
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Figure 1.13: General scheme used to solve the dual optimization problem.

max
x

f(x)

subject to gi(x) ≤ 0, i = 1..m
x ∈ Q ⊆ Rn

(1.41)

Where Q is a closed, non-empty, convex set and gi(x), i = 1,..,m are convex
functions, potentially nonsmooth (i.e. nondifferentiable). We can express the dual
function h(ν) as

h(ν) = max
x∈Q

{
f(x)− νTg(x)

}
(1.42)

where ν are the Lagrangian multipliers. "Relaxing" the constraints makes the
problem easier to evaluate.

1.4.1 Subgradient method
Let us start with the definition of the subgradient.

Definition 1.4.1. A vector π is called the subgradient of h at ν ∈ dom(h) (i.e.
π ∈ ∂h(ν)), if for any ν0 ∈ dom(h), we have

h(ν) ≥ h(ν0) + 〈π, ν − ν0〉
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The subgradient method is the classical and simplest method used to solve
nonsmooth optimization problems. It is a recursive algorithm where each new guess
is computed with

u(k+1) = u(k) + αkπ
(k),

with

• u(k) the kth iterate

• π(k) any subgradient of h at u(k)

• αk the kth step size

It should be stressed that the subgradient method is not a descent method.
So, as we have no guarantee that the next iterate will be better than the previous
one and the method can oscillate, we will keep track of the best iterate so far. The
theoretical convergence rate of this method until the optimum is sub-linear but
the method is not affected by the variable space size.

Step size

We will mainly use the Polyak step. The Polyak step is optimal when the solution
is known in advance. It expresses itself as

αk = h(ν(k))− h∗
||π(k)||22

,

with h∗ = h(ν∗) the optimal solution. A proof of this result can be found in [4].
In practice, the optimal solution will of course not be known in advance, but

an estimate of the solution can be used.

1.4.2 Level method
As proved in [15], the subgradient method is the theoretical optimal method for
solving (1.41) when the size of the variable space is large. In practice, however,this
result does not necessarily mean much since we can classically hope that the real
performance of a method will be much better than the theoretical one coming from
a worst case scenario.

Specifically, this is not true for the subgradient method which will not converge
faster than in theory because of its very strict scheme. The idea of developing more
flexible schemes (that could then be more efficient in practice) has lead to various
new algorithms, among which the level method which has, as said above, already
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shown to be suited for this kind of optimization.

The notion of model is central is these new algorithms (note that the index k
denote the kth iterate).

Definition 1.4.2. Let Q be the initial domain of the problem, let P = {νk}∞0 be a
sequence in Q and let πk be a subgradient of h at νk. Then

ĥ(ν, k) = min
0≤i≤k

[h(νi) + 〈πi, ν − νi〉]

denotes a model of h(ν).

Theorem 1.4.1. Let ĥ(ν, k) be the model function such as defined at 1.4.2. Then
∀k, we have

h(ν) ≥ ĥ(ν, k).

Thus, we have that each iterate of the model function ĥ(ν, k) gives a lower
approximate of our Lagrangian function h(ν).

From the model function we can define the following problem:

min
ν∈Q,θ

θ

such that h(νi) + 〈πi, ν − νi〉 ≤ θ i = 1...k

Model minimization

The improvement of the level method (in comparison with other model based
methods) is its ability to update the prices more carefully.
We let LB = θ and UB = h(ν∗k) (which denotes the smallest value of h already
found) and we define ĥ(ν, k) ≤ αUB+(1−α)LB to be the level set, which contains
"better prices" than the current one with respect to the model function. The new
price νk+1 is then determined by the projection of νk onto this level set. The
projection is expressed as a quadratic programming problem in the following way:

min
ν∈Q
||ν − νk||22

such that, lk(α) ≥ ĥ(νi) + 〈πi, π − νi〉 ∀i = 1...k
where lk(α) = αUBk + (1− α)LBk, ∀k and α ∈ [0, 1].

Projection problem
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It should be stressed that both the projection problem and the model minimiza-
tion can be solved efficiently by a simplex-type or by an interior point method. Y.
Nesterov also proves in [15] that a level set of a convex function is convex and a
that a projection on a convex set exists and is unique.

It should be stressed that a big advantage of the level method over the subgra-
dient method is its ability to assess the quality of the current solution thanks to
the computation of a lower and upper bound at each iteration.

Convergence properties

As a last comment on the level method, the theoretical estimated efficiency of the
method (i.e. the smallest possible number of iteration before that UBi − LBi ≤ ε
in worst case scenario) is proportional to the squared diameter4 of the variable
space. This could of course lead to trouble when applying this method onto a real
large examples (and as showed in section 3, it will); but once more, a theoretical
upper limit could be deeply pessimistic.

There are also other reasons to be optimistic about this method. First of all,
we can never know the true convergence rate of a specific problem before having
tested it thoroughly. Secondly, it is sometimes possible to speed-up a method when
insights about the function are known, which will be the case here since different
approaches will be tested. Last but not least, in the problem we are concerned
about here, we do not need a full convergence of the algorithm; we only need to
obtain a "sufficiently good" solution.

The level method can be summarized as follow:
4The diameter of a set is defined as the upper limit of the distance between two arbitrary

points of the set.
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Algorithm 1: Level method
Initialization: Choose a point ν0 ∈ Q, accuracy ε > 0, a level coefficient
α ∈ [0, 1] and an iteration limit iterLimit.
Set k := 0
while k < iterLimit do

solve (1.42) and return πk.
if (h(νk) < UB)
then UB := h(νk)

solve "Model minimization" and return θk.
LB := θk
if (UB − LB < ε)
then BREAK

l := αUB + (1− α)LB
solve "Projection" and return νk+1
k := k+1

end
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Chapter 2

Model

This chapter presents the complete model we implemented. We start by considering
the general topology of the network and the structure of the bids, and we finish
with the model itself.

2.1 The SmartNet problem
The experiments exposed in chapters 3 and 4 have been performed on the Italian
network thanks to data provided by SmartNet. SmartNet is a project funded by
the EU that aims at "providing architectures for optimized interaction between
TSOs and DSOs in managing the exchange of information for monitoring and
for the acquisition of ancillary services (reserve and balancing, voltage regulation,
congestion management) both at national level and in a cross-border context" [21].

2.2 Case studies
The datasets we will deal with contain a classical national transmission and
distribution network with a transmission network (TN) connecting several radial
(acyclic) distribution networks (DNs) (figure 2.2 gives schematic view of it). The
topology of the network, the physical parameters of the line and the bids at each
node are known.
There are two case studies we will exploit. The first one will be called the vanilla
case and is in fact a toy example created from the second one: the real case. Their

Figure 2.1: The SmartNet logo
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Figure 2.2: Schematic transmission & distribution network.

main characteristics are given in table 2.1. A formal definition of the bids is given
in section 2.2.1. The time step is the time interval between two clearings of the
market, it will have an impact on the inter-temporal constraints described below.
In our case, this time step is 15 minutes.

Case study Vanilla case Real case
# T. nodes 27 3,648
# D. nodes 175 2,410
# DNs 4 638
# Time steps 4 3
# Unit bids 1,667 12,318

Table 2.1: Case studies overview.

2.2.1 Bids description
The products used in this work and presented here are inspired from the Central
Western European (CWE) day-ahead energy market. It should be stressed that,
even though the reactive power will be priced, there exists no bid for reactive
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Figure 2.3: Different types of bids considered (shown only for p, q > 0) (from [1])

power. All the following is then only applicable for real power.
There are 3 types of bids:

• Non-curtailable unit bid : This is the simplest bid one can imagine. A price
and a quantity and the operator can either accept or refuse the bid completely.

• STEP curtailable unit bid : This kind of bid is described by a single price
and two quantities q0 and q1. Every quantity choice between q0 and q1 can
be chosen by the operator.

• Piecewise linear curtailable unit bid : This is an extension of the step cur-
tailable bid where the price can vary linearly with the quantity.

Unit bids (that will be referred as segment bids for the rest of this document)
can be linked in a Q bid and Q bids can be linked over time in a Qt bid. How the
bids are linked to each other is made specific in the constraints below. Figure 2.3
summarizes and graphically illustrates the whole set of possible bids.

Convention It can be noted that no assumption about the signs of the bids is
done here. Hence, the terms buyers and sellers can be confusing since the bids can
be negative in terms of price and in terms of quantity as well.
In a classical supply-demand market, a generator would bid with price, quantity > 0
and the opposite for a consumer. Nevertheless, in this less classical electricity
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Figure 2.4: Accepted quantity illustration (from [5])

market, all different combinations are possible. For instance, a sunny and windy day
may cause the network to contain more energy than predicted. In such situation,
generators can be in a position where they bid a positive quantity at a negative
price (they want to pay to inject energy).
The convention followed by SmartNet brings clarity about this signs issue: a bidder
with price > 0 wants to receive money, a bidder with price < 0 want to pay money,
a quantity > 0 is offered and a quantity < 0 is asked. The terms buyer and seller
are sometimes aggregated in the generic term of prosumer.

Accepted quantity Every bid can be either accepted completely, partially or
rejected, the variable expressing these choices is x. xsb = 0 means that the segment
bid "sb" has been rejected and all the other value up to one mean that "sb" has
been accepted in a certain proportion or totally. Figure 2.4 illustrates this quantity.

2.3 Detailed model

2.3.1 Constraints
Direct current power flow for transmission

As explained in section 1.2.2, the TN is modeled using a linearized power flow often
referred as "DC OPF". Using the notations presented in the list of notation at the
beginning of this document, we obtain the following constraints.
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pn +
∑

l=(m,n)
fpl −

∑
l=(n,m)

fpl = ∆Pn ,∀n ∈ TN (2.1)

fpl = Bl(θn − θm) ,∀l = (n,m) ∈ LT (2.2)
θhub = 0 (2.3)

−Sl ≤ fpl ≤ Sl ,∀l ∈ LT (2.4)
fql = 0 ,∀l ∈ LT (2.5)

(2.1) represents the power balance in TN, (2.2) is the susceptance-based repre-
sentation of flows, (2.3) makes the previous constraint consistent by stating that
the phase angle is zero at a hub node and (2.4)-(2.5) are the line limits and the
definition of reactive flow in TN (i.e. reactive flow are neglected in TN).

SOCP power flow for distribution

As explained in section 1.2.3, the DN is modeled using a second order cone relaxation
of the branch flow model.

pn +
∑
j∈Cn

(fpjn − csqjn ∗Rjn)− fpnAn = ∆Pn ,∀n ∈ DN (2.6)

qn +
∑
j∈Cn

(fqjn − csqjn ∗Xjn)− fqnAn = ∆Qn ,∀n ∈ DN (2.7)

(fpl)2 + (fql)2 ≤ S2
l ,∀l ∈ LD (2.8)

(fpl)2 + (fql)2 ≤ csql ∗ vsqn ,∀l = (n,m) ∈ LD (2.9)
vsqn − vsqAn = 2(Rlfpl +Xlfql)− csql(R2

l +X2
l ) ,∀l = (An, n) ∈ LD (2.10)

0 ≤ V n
min ≤ vsqn ≤ V n

max ,∀n ∈ DN (2.11)
csqi ≥ 0 ,∀i ∈ LD (2.12)

(2.6)-(2.7) represents the power balance in DN (it is a simplified version of the
power balance since the shunt conductance is negligible in the SmartNet dataset),
(2.8) limits the apparent power, (2.9) is the SOC relaxation, (2.10) is a constraint on
voltage differences and (2.11)-(2.12) are definitions of voltage and current squared.
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Bid constraints

Each constraint will be shortly described just after presenting them. A more precise
description can be found in the SmartNet documentation [1].

p2
sb + q2

sb ≤ (xsb ∗ Psb)2, ∀sb ∈ SB (2.13)
pi =

∑
sb=(i,q,s)

Psbxsb, ∀i ∈ N (2.14)

xsbssb ≤ xsb ≤ ssbxsb, ∀sb ∈ SB (2.15)
s(i,q,s) ≤ q(i,q), ∀(i, q, s) ∈ SB (2.16)

q(i,qt,q) ≤ qt(i,qt), ∀(i, qt, q) ∈ QB, (i, qt) ∈ QtB (2.17)
qt(i,qt) ≤

∑
qb=(t,qt,q)

qqb, ∀(qt, i) ∈ QtB (2.18)
∑

qb∈exqb
qqb ≤ 1, ∀exqb ∈ ExQB (2.19)

∑
qtb∈exqtb

qtqtb ≤ 1, ∀exqtb ∈ ExQtB (2.20)

qi,qt,q,t − qi,qt,q,t−1 + αi,qt,q,t − ωi,qt,q,t = 0, (2.21)
αi,qt,q,t + ωi,qt,q,t ≤ 1, (2.22)

qi,t,qt,q ≥ αi,τ,qt,q, ∀((i, t, qt, q), (i, τ, qt, q)) ∈MDP
(2.23)

RP i,t ≤ pi,t+1 − pi,t ≤ RP i,t, ∀i ∈ N, t ∈ T\{tfinal} (2.24)
0 ≤ xsb ≤ 1, sb ∈ SB (2.25)

α ∈ {0, 1}|QB|

ω ∈ {0, 1}|QB|

s ∈ {0, 1}|SB|

q ∈ {0, 1}|QB|

qt ∈ {0, 1}|QtB| (2.26)

(2.13) represents the complex injection limit, (2.14) describes the link between
bids acceptance and real power injection, (2.15) defines how segment bids can be
activated, (2.16) makes sure than a segment bid is activated only if the linked Q bid
is also activated, (2.17) makes sure than a Q bid is activated only if the linked Qt
bid is activated,(2.18 the Qt bid is activated only if at least one the associated Q
bids is activated, (2.19)-(2.20) indicate that certain Q/Qt bids should be activated
only if others are not, (2.21) expresses how Q bids are linked, (2.22) denotes the
fact that a Q bid cannot end and start at the same moment, (2.23) imposes that a
Q bid remains activated for a certain time if activated, (2.24) is a ramp constraint
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on the real power output, (2.25) imposes x to be fractional and (2.26) α, ω, s, q
and qt are binary variables.

We are now able to clarify the sources of nonconvexity assumed until now,
they illustrate the lack of flexibility of thermal power plants.

• Minimum stable level: To start a power plant, a minimum range of operation
is needed. The first part of equation 2.15 models this phenomenon.

• Minimum duration time: When a power plant is switched on, it should remain
on for a certain amount of time (equation 2.23).

• Ramp constraint: The increase (decrease) of power output is bounded to a
limited amount (equation 2.24).

• Exclusive choice: Certain bids can only be accepted if others are not (equa-
tions 2.19-2.20).

2.3.2 Objective function
The welfare function was already presented in chapter 1 and is the objective
function of both the problems of welfare maximization and of pricing (see figure
1.11). ∑

sb∈SB
(xsbPsb priceLow + x2

sbPsb(priceHigh− priceLow)
2 ) (2.27)

The quadratic term comes from the "piecewise linear curtailable bids" presented
previously (this term disappear otherwise since priceLow = priceHigh).

The second objective function is the profit function and appears in the Profit
maximization problem of figure 1.11. Note that this function is in fact the La-
grangian relaxation of the welfare with respect to the power balance constraints
(2.1)-(2.6)-(2.7). Note that (2.1)-(2.6) have been mixed to be suited for both the
transmission and the distribution networks.
Since the binding constraints between the agents have been removed and each one
of these agents is now free to maximize his own profit given the prices λP/Q.
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∑
sb∈SB

(
xsbPsb priceLow + x2

sbPsb(priceHigh− priceLow)
2

)

−
∑
n∈N

λPn

−pn − ∑
l=(m,n)

(fpmn − csqmn Rmn) +
∑

l=(n,m)
fpl + ∆Pn


−

∑
n∈DN

λQn

−qn − ∑
j∈Cn

(fqjn − csqjn Xjn) + fqnAn + ∆Qn

 (2.28)
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Chapter 3

Convex hull pricing

This section aims at clarifying how the CHP can be computed using the methods
developed in section 1.4 and at testing these techniques on the case studies described
in section 2.

As a reminder, the dual problem we want to solve is the following:

min
λ
g(λ) =



max
pg ,dl

∑
l∈L

∫ dl

0
MBl(x)dx−

∑
g∈G

∫ pg

0
MCg(x)dx+ λ(

∑
g∈G

pg −
∑
l∈L

dl)

subject to: pg ≤ pg ∀g
dl ≤ dl ∀l
pg ≥ 0 ∀g
dl ≥ 0 ∀l


(3.1)

where the inner part is the selfish profit maximization.

3.1 Computation in practice
The presence of binary variables induces abrupt "switches" in the optimal dispatch
decisions, hence, 3.1 will be a nonsmooth (i.e. nondifferentiable) function to
optimize. Section 1.4 summarized 2 methods used to solve this difficult class of
problems. These methods rely on the call to a first order oracle providing the value
of the function and the value of the subgradients for a certain set of prices.
It should be noted that this call will be expensive since it requires to solve a mixed
integer program.
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3.1.1 Subgradient method
One of the advantages already highlighted of the subgradient method is its simplicity
of implementation. The computation of the subgradients will be done according to
the following proposition (a proof can be found in [8]).

Proposition 3.1.1. Let (p∗g,d∗l ) be the optimal reactions to a price λ. Then
(∑g∈G p

∗
g −

∑
l∈L d

∗
l ) is a subgradient of g in λ.

The choice of the step size will be made clear for each case study but the choice
of the starting point will always be the dispatchable prices. The real advantage of
this method for us, is its property of not being influenced by the size of the
variable space.

3.1.2 Level method
As explained in section 1.4, the level method was developed with the idea of relying
on a more flexible scheme than the strict one of the subgradient method.

Different "tricks" can be used to accelerate the convergence of the level method:

• Price box: instead of letting λ ∈ R, we can restrict the prices in a certain
range. We choose the following price range: [−500; 3000], it should be noted
that the same box has been taken for the real and the reactive prices.

• Starting price: Rather than starting with arbitrary prices, we can help the
algorithm by giving it "good" first prices (computed with the dispatchable
method for instance).

• Good level: Since this method works by projecting the prices on a level set
generated by a level, helping the algorithm by giving him a "good" level from
the start seems promising. If the final level is not known, we can at least
approximate it.

3.2 Experimental results

3.2.1 Vanilla case study
The results of the CHP computation performed on the vanilla case study presented
in chapter 2 reveal different things. Before summarizing them, let us make clear
what the goal here is.

We want to compute (an approximate of) the convex hull price in the most
efficient way. In this view, we will compare the relative dual gap (P−W

|P| ) made by
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Figure 3.1: Duality gap P−W
|P| when computing the CHP with the "classical" level

method on the vanilla case.

each method, starting from a good starting point (e.g. the dispatchable prices).
P is the selfish profit maximization and W is the maximum welfare (from weak
duality, we will always have P≥W).

Since the duality gap and the uplift payments are linked (P. Gribik offers a
comprehensive treatment of that matter in [16]) and since we know, from proposi-
tion 1.3.3, that the CHP minimizes these payments, the CHP must also minimizes
the duality gap. Hence, in the following figures, a smaller duality gap that the
one we started from means less uplift payments and prices closer to the CHP.

Figures 3.1-3.3 allow us to come to the following conclusions (the term "beat"
is used as "deliver a smaller uplift"):

1. The "classical" level method (i.e. the unoptimized level method, without the
tricks presented above) fails to beat the dispatchable prices after 20 iterations.
In fact, the steps are far "too big" and the algorithm looses all the benefits
from starting at a good point (see figure 3.1).

2. The "ameliorated" level method (i.e. optimized one, with the tricks presented
above), also fails to beat the dispatchable prices after 20 iterations but remains
around the initial solution (see figure 3.2).

3. The subgradient method beats the dispatchable prices. The Polyak step size
or a classical constant small step size achieve globally the same (with an
advantage for Polyak), see figure 3.3.

4. The duality gap is near to zero, meaning that the problem is near-convex.

The promising results we talk about when introducing the level method do not
seem to be confirmed by the vanilla case study (in fact, the vanilla case study is
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Figure 3.2: Duality gap P−W
|P| when computing the CHP with the "ameliorated"

level and the subgradient methods on the vanilla case.

Figure 3.3: Duality gap P−W
|P| when computing the CHP with the subgradient

method on the vanilla case.
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Figure 3.4: Duality gap P−W
|P| for 20 iterations of the "ameliorated" level method

on the real case.

already a significantly larger set than the one used in [19]). To assess whether
hoping that the level method could be useful in the larger test case, trying to root
source the cause of the problem would be useful.

It appears that the level method seems to suffer from size of the dual space.
Nesterov in [15] proves that the theoretical estimated efficiency of the method (i.e.
the smallest possible number of iteration before that UBi − LBi ≤ ε in worst case
scenario) is proportional to the squared diameter of the dual variable space (see
1.4.2).
In this example, with the prices in [−500; 3000]1616,1 we have diam([−500; 3000]1616) =
3500 ∗

√
1616 ≈ 140, 000.

Nesterov notes that in real life scenarios the convergence is usually much faster
and that ε = 10−4 − 10−5 is obtained after 3n− 4n iterations (with n the size of
the dual space). This result implies that, even being optimistic, for the vanilla
case study, meeting a 10−4 precision would require roughly 5000 iterations. On
a classical computer (Intel Core i5-7300HQ CPU), each iteration takes around
20 seconds, meaning that with the level method, more than one day of
computation could be needed to meet the criterion.

3.2.2 Real case study
Our first observation will be to confirm the fact that level method does not seem
suited for this kind of optimization. Here our dual space is even larger than in the
vanilla case and converging in a reasonable amount of time does not seem realistic
(see figure 3.4).

1We have 2 prices to compute at each node (real and reactive), 4 time steps and 202 nodes.
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Figure 3.5: Comparison of the duality gap P−W
|P| for the real case study.

However, the subgradient method continues to offer satisfaction. Figure 3.5
illustrates this by showing that after roughly 50 iterations the subgradient method
retrieve the gap of the dispatchable solution and after 100 iterations offers around
30% of duality gap less.
It should be noted that the constant step size does not provide satisfaction anymore,
its behavior is now close to the level method’s behavior, even though the step size
has been taken very small, the rationale behind this phenomenon could be the
steepness of the function. Going a bit "too far" having disastrous consequences.

Since the prices must be computed rapidly, the time needed to compute the
100 iterations is of importance. On the same computer, the computation of a first
"good" price (with dispatchable or restricted approach) takes a few minutes and
every iteration of the subgradient takes around 15 seconds. 100 iterations take
then around 25 minutes (without the starting price computation). For practical
applications, this can then be an issue to further investigate.

To conclude, these experiments highlight the fact that the level method
should not be used when the size of the dual space increases excessively and
the best way to compute the CHP so far is to use the subgradient with Polyak
step together with a good starting point.
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Chapter 4

Economical results

This chapter aims at summarizing the main economical results obtained in this
analysis. The solver used in this thesis is Gurobi 9.0. Gurobi is a commercial
solver created in 2008 and is now available in various programming languages and
widely used in the industry.

In the vanilla case study, our goal is to confirm the quality of the results to
make sure that our analysis of the real Italian case study will be consistent.
As explained throughout this document, the amount of uplift payment is a critical
quantity that we want to minimize both for its impact on the total welfare and for
its political inconvenience.

However, we will also look at the slack variables of the SOC constraint (constraint
2.9). Indeed, as highlighted in section 1.2.3, for the solution to be feasible, this
constraint must be tight (i.e. slacks = 0).
Finally, we will present the profits resulting of each method.

4.1 Vanilla test case
As already observed in chapter 3, the vanilla test case is near-convex and, as
a consequence, the uplift should be almost zero (cf. section 1.3.2). Table 4.1
summarizes these payments and they are indeed close to zero over the four time
steps. The slacks of the SOC constraint are equal to zero so the solution is
feasible.

Obtaining a near-zero uplift for the vanilla case study was not expected.
In fact, given the number of potential sources of nonconvexity quite the reverse
would have been expected. In order to gain insights about this case and to better
understand how "far" from a nonconvex case this scenario is, a sensitivity analysis
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Vanilla case study
Approach Uplift payment
Restricted 0.01e
Dispatchable 0.02e
CHP 0.01e

Table 4.1: Overview of the uplift payment in the vanilla case study.

Figure 4.1: Evolution of the duality gap for xsb > ε on the vanilla case (dispatchable
approach).

is performed (see figure 4.1). The idea is to increase the minimum acceptable ratio
(xsb) which correspond to the minimum stable level, the first source of nonconvexity
introduced in section 2.3.1.

We observe that increasing xsb indeed offers a way to "deconvexify" the prob-
lem and it validates the consistency of the computation of our results. Another
interesting observation is the fact that the slacks are not all equal to zero anymore;
as soon as the duality gap starts to increase we observe some slacks greater than 0.

Figure 4.2 sketches the money flows between the agents, it highlights the fact
that the producers earn money by selling power to the network operator (NO)
-their profit is then obtained by retrieving the costs of production from theses
revenues- while the NO earns money by trading power between producers and
consumers. The market operator (MO) pays the uplifts to the market partici-
pants and, in the US-design, these uplifts fall back on the consumers as network fees.

In table 4.2, the profits of the producers and the NO are presented. From
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Figure 4.2: Payments flow diagram.

Profits vanilla case study
Agent Profit
Producers (real power) 340,147.97e
Producers (reactive power) 0e
NO (real power) 4,837.92e
NO (reactive power) 0.20e

Table 4.2: Overview of the profits made in the vanilla case study.

this table we observe that pricing the reactive power has a negligible influence on
the agents’ profits. Figure 4.3 illustrates that phenomenon too by showing that
the reactive prices are mostly equal to zero (since the problem is near-convex, all
approaches give similar prices).

4.2 Real case study
From figure 3.5, we know that, in the real case, hoping for a zero duality gap would
be too optimistic, we are here in a true nonconvex case.
The uplifts per approach over the three time steps are given in table 4.3 (a visual
view of it is in figure 4.4) and, interestingly, the slacks associated to the SOC
constraint are all equal to zero so the solution is physically meaningful.

The CHP approach (approximated with 100 iterations of the subgradient

42



Real case study CHAPTER 4. ECONOMICAL RESULTS

Figure 4.3: Reactive prices for every node and every time steps in vanilla case.

Real case study
Approach Uplift payment
Restricted 164.26e
Dispatchable 143.93e
CHP 91.44e

Table 4.3: Overview of the uplift payment in the real case study.

method) gives the lowest uplift. However, even the "worst" uplift remains very
small in comparison with the total profits generated (see table 4.4). The profits
are also significantly higher than in the vanilla case, simply because we have signif-
icantly more nodes and bids. We also observe that the choice of the approach has
a negligible influence on the profits.

As for the vanilla case, we observe that the pricing of reactive power has a
negligible influence and that the reactive prices are mostly zero (figure 4.5 illustrates
this with a "box" plot where the box is a line since a vast majority of the nodes
have a zero reactive price).

Profits real case study
Agent Dispatchable Restricted CHP
Producers (real power) 2,121,478.66e 2,121,490.00e 2,121,478.20e
Producers (reactive power) 0e 0e 0e
NO (real power) 60,690.86e 60,693.50e 60,690.74e
NO (reactive power) 0e 0e 0e

Table 4.4: Overview of the profits made in the real case study.

Another noticeable element comes from figure 4.6. Indeed, whatever the ap-
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Figure 4.4: Uplift payment per method in the real case study.

Figure 4.5: Box plot of reactive prices in real case (restricted in blue, dispatchable
in orange and CHP in grey).

Figure 4.6: Received uplift per agent in the real case study (dispatchable approach).
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proach, > 99% of the uplift is due to the NO and a the rest is due to the prosumers
(where prosumers are the aggregation of the consumers and the producers). In
practice, if the market operator and the NO are merged the leftover uplift would
be negligible.

45



Chapter 5

Conclusion

The potentiality of a broader coordination between TSO and DSO offers the op-
portunity to optimize the choice of the nodal prices more globally.

In this work, different pricing schemes were applied to a real dataset (provided
by SmartNet) containing the Italian network and a significant number of bids.
The most promising pricing scheme, for its intrinsic properties, is the convex hull
pricing (CHP) but unfortunately, up to now, no efficient way to compute it on
large complicated dataset is known.

Recently, a new hope has arisen from the level method, which has proven to
retrieve efficiently the CHP with the dual approach on a small problem. Our
analysis shows however that this path seems to be a dead end while attempting to
solve larger problems.

5.1 Main results
• Considering optimizing dual functions to retrieve the CHP, the level method
should be disregarded when the size of the dual space is large. On the
other hand, the subgradient method initialized with a "good" first estimate
allowed us to approximate the CHP. It should however be noted that the
convergence rate of the subgradient method can possibly be an issue for
practical implementation.

• Concerning the feasibility of the retrieved solution, for both the vanilla and
the real case the SOC relaxation gives satisfaction since the solutions are
physically meaningful.

• Concerning the uplift in the real Italian case, it is a nonconvex scenario with
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a nonzero associated uplift. The approximate of the CHP gives the lowest
one which is about 45% smaller than the highest uplift obtained with the
restricted approach and about 35% smaller than the uplift computed with
the dispatchable approach. In comparison with the total profits generated by
the producers and the network operator, these uplifts are negligible.

5.2 Improvement paths
There are several interesting directions for future research:

• The analysis performed here takes only one country and a few time steps
into account. Increasing the number of time steps and analyzing different
countries and periods of the year would allow to obtain more information
about "how bad" the required uplifts are. Specifically, comparing the welfare
obtained with the pricing schemes presented here with the welfare obtained
with EUPHEMIA would be of the greatest interest in order to assess their
potential benefit.

• As highlighted, in this analysis, the SOC relaxation gives satisfaction since
physically meaningful solutions were obtained which was not guaranteed.
Extending the analysis would also allow to test this element and, if it happens
that we simply had luck in our analysis, trying other relaxations could be
considered.

• Since the CHP seems to be the most desirable pricing scheme, trying other
ways to retrieve it would be interesting. In the same idea of what was done
here, other dual function optimization techniques could be exploited but
finding a way to formulate the primal approach efficiently could possibly be
a better idea and would also allow to obtain the CHP more quickly.
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