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Abstract—We propose a globally convergent and robust Gauss-
Newton algorithm for finding a (local) optimal solution of a non-
convex and possibly non-smooth optimization problem arising
from AC optimal power flow on meshed networks. The algorithm
that we present is based on a Gauss-Newton-type iteration for
an exact penalty reformulation of the power flow problem. We
compare our algorithm with a state-of-the-art solver, IPOPT, on
several representative problem instances in MATPOWER. We
demonstrate the comparable performance of our method for a
variety of the MATPOWER test cases.

Index Terms—Nonlinear programming, Optimization with
non-convex constraints, penalty reformulation, Gauss-Newton
method, AC optimal power flow.

I. INTRODUCTION

The optimal power flow (OPF) problem [1] consists in finding
an optimal operating point of a power system while mini-
mizing a certain objective (typically power generation cost),
subject to the Kirchhoff’s power flow equations and various
network and control operating limits. We focus in this paper on
the alternating current optimal power flow (AC-OPF) problem,
which lies at the heart of short-term power system operations
[2]. The increasing integration of distributed resources that are
connected to medium and low-voltage networks has increased
the relevance of AC-OPF as an appropriate framework of
modeling operational constraints that affect the coordination
of transmission and distribution system operations [3].

a) Related work: In recent years, there has been a great body
of literature that has focused on convex relaxations of the AC-
OPF problem, including semidefinite programming relaxations
[4], conic relaxations [5], [6], and quadratic relaxations [7].
These works have established conditions under which these
relaxations are exact, and understanding cases in which this is
not so [8]. Instead, our interest in the present paper is to tackle
directly this problem as a non-convex optimization problem
with non-linear equality constraints. Such a formulation is
sufficiently general to produce physically implementable so-
lutions in the context of realistic system operations.
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The AC-OPF problem is usually formulated as a non-convex
optimization problem due to non-convex constraints, which
is often challenging to solve. Classical techniques such as
interior-point, augmented Lagrangian, penalty, Gauss-Newton,
and sequential quadratic programming methods can only aim
at finding a stationary point, which is a candidate for a local
minimum [9]. For an iterative method to identify a stationary
point that is a local minimum, but not a saddle-point, more
sophisticated techniques are required, such as cubic regular-
ization [10] or random noise gradient [11]. However, these
methods are often very difficult to implement and inefficient
in large-scale problems with non-convex constraints. One
of the most efficient and well-established nonlinear solvers
for finding stationary points is IPOPT [12], which relies
on a primal-dual interior-point method combined with other
advanced techniques. We emphasize that this classical method
is only guaranteed to converge to a stationary point, and often
requires a strategy such as line-search, filter, or trust-region
to achieve global convergence under certain restrictive as-
sumptions. Moreover, each iteration of IPOPT requires solving
a non-convex subproblem via linearization combined with a
line-search or filter strategy.

b) Our approach and contributions: In this paper, we consider
an AC-OPF problem over large-scale networks. We are inter-
ested in an approach that can tackle general meshed networks.
We show that this problem can be posed in the framework
of non-convex optimization with a particular structure on the
constraints. Based on this structure we devise a provable
convergent Gauss-Newton (GN)-type algorithm for solving
this non-convex problem. Our algorithm converges globally
to a stationary point of the problem from any starting point.
In addition, it is also different from standard GN methods
in the literature due to the use of a non-smooth penalty
instead of a classical quadratic penalty term. This allows our
algorithm to converge globally and also to be more robust to
ill-conditioning [13]. Hence, we refer to this algorithm as a
global and robust GN scheme. The main idea of our method
is to keep the convex sub-structure of the original problem
unchanged and to convexify the non-convex part by exploiting
penalty theory and the GN framework. Hence, in contrast
to IPOPT, each iteration of our algorithm requires solving a
convex subproblem, which can efficiently be solved by many
existing convex solvers.



The main contributions of the paper are the following:

(1) We consider a quadratic reformulation of the AC-OPF
problem, as in [5], [14], and propose an exact penalty
reformulation of the problem in order to handle the non-
convex equality constraints and a novel global and robust
GN algorithm for solving the corresponding problem.
For our optimization algorithm, we prove that its iterate
sequence converges globally (i.e. from any starting point)
to a stationary point of the underlying problem. We also
estimate its best-known global sublinear convergence rate.
We show that the newly developed algorithm can be
implemented efficiently on AC-OPF problems and test
it on several numerical examples from the MATPOWER
test cases [15], [16]. We observe competitive performance
to IPOPT.

Our algorithm is simple to implement and can be incorporated
flexibly with any available convex sub-solver that supports a
warm start strategy in order to gain efficiency.

c) Content: The paper is organized as follows. In Section II,
we introduce our Gauss-Newton algorithm. In Section III,
we present the AC-OPF problem, its quadratic reformulation
and the application of GN to AC-OPF, then illustrate through
simulations the performance of our algorithm in Section IV.
Finally, Section V concludes the paper. Note that this paper
presents the main results of the work, but we will refer to an
extended version for details [17].

(ii)

(iii)

II. A GAUSS-NEWTON ALGORITHM FOR NON-CONVEX
OPTIMIZATION

In this section, we rely on the following non-convex optimiza-
tion problem:

:irel%l{}i flx) s.t (1)

We present the main assumptions for (1), propose an exact
penalty reformulation, and solve it using a Gauss-Newton-
type algorithm. We further characterize the global and local
convergence rates of our algorithm.

U(x) =0, e

A. Exact penalty approach for non-convex programming

For the non-convex optimization problem (1) we assume that
the objective function f is convex and differentiable and 2 is
a compact convex set. Note that our method developed in the
sequel can also be extended non-smooth convex function f
or smooth non-convex function f whose gradient is Lipschitz
continuous, but we make this assumption for simplicity of
presentation. Furthermore, the non-convexity enters into the
optimization problem through the non-linear equality con-
straints ¥ () = 0 defined by ¥ : R? — R™. We assume that
U is differentiable and its Jacobian ¥’ is Lipschitz continuous,

i.e. there exists Ly > 0 such that:
[V (z) — V' (2)|| < Ly|lz — 2| Vz,2€Q,

where || - || is the f2-norm. Further, let N, denote the normal
cone of the convex set {2

No(z) = {wERd|wT(y*$)ZO,Vy€Q},if:cEQ
“ o (), otherwise.

Since problem (1) is non-convex, our goal is to search for a
stationary point of this optimization problem that is a candidate
for a local optimum in the following sense.

Definition IL.1 ( [9](Theorem 12.9)). A point (x*,y™*) is said
to be a KKT point of (1) if it satisfies the following conditions:

—Vf(x*) — V' (z*)y* € No(z*), z“ € Q, ¥(z*)=0.

Here, x* is called a stationary point of (1), and y* is
the corresponding multiplier. Let S* denote the set of these
stationary points.

Since 2 is compact, and ¥ and f are continuous, by the
Weierstrass theorem, we have:

Proposition IL1. [f QN {x | U(x) =0} # 0, then (1) has
global optimal solutions.
B. Exact penalized formulation

Associated with (1), we consider its exact penalty form [9,
Chapt. 17.3]:

min { F(@) = f(2) + | V()| }, @)
where 8 > 0 is a penalty parameter, and | - | is the ¢;-norm.

Two reasons for choosing an exact (non-smooth) penalty are
as follows. First, for a certain finite choice of the parameter 3,
a single minimization in x of (2) can yield an exact solution
of the original problem (1). Second, it does not square the
condition number of ¥ as in the case of quadratic penalty
methods, thus making our algorithm presented below more
robust to ill-conditioning of the non-convex constraints. Now,
we summarize the relationship between stationary points of
(1) and of its penalty form (2). For this, let us define the
directional derivative:

DF(x*)[d] := Vf(x*)"d + B(z*) V' (z*) " d,

where £(x*) € 0|U(x*)| is one subgradient of | - | at ¥(x*),
and J| - | denotes the subdifferential of | - |, see [13]. Recall
that the necessary optimality condition of (2) is

0 € Vf(x®)+ BY ()W (") + Na(z").
Then, this condition can be expressed equivalently as

DF(z*)[d] > 0, Vd € Fo(z"), 3)

where Fq(x) is the set of feasible directions to 2 at x:
Fo(x):={deR?|d=t(y—=z), VyeQ, t >0}.

Any point * satisfying (3) is called a stationary point of the
penalized problem (2). Stationary points are candidates for
local minima, local maxima, and saddle-points. If, in addition,
x* is feasible to (1), then we say that * is a feasible stationary
point. Otherwise, we say that * is an infeasible stationary
point. Proposition II.2 shows the relation between (1) and (2).

Proposition IL.2 ( [9], (Theorem 17.4.)). Suppose that x* is a
feasible stationary point of (2) for B sufficiently large. Then,
x* is also stationary point of the original problem (1).



Proposition II.2 requires * to be feasible for (1). When the
feasible set @ N {@x | ¥(x) =0} # O of (1) is nonempty
and bounded, according to [18, Proposition 2], if (1) satisfies
the extended Mangarasian-Fromovitz constrained qualification
condition (see [18, Proposition 2] for concrete definition), then
there exists 8, > 0 such that for any g > f., every global or
local solution of the penalized problem (2) is also a global or
local optimal solution of (1), respectively. By [18, Proposition
3], B needs to be chosen such that 5 > S, := ||y*||c, Where
y* is any optimal Lagrange multiplier of (1).

C. Global Gauss-Newton method

We first develop our GN algorithm. Then, we investigate its
global convergence rate.

1) The derivation of the Gauss-Newton scheme and the full
algorithm: Our GN method aims at solving the penalized
problem (2) using the following convex subproblem:

min { Q (@;2*) = f(2)

+B] P (2*) + V' (2F) (2 — 2¥)| + F e — 9c"fllz} @
2

where x* is a given point in §) for linearization, ¥'(-) is the

Jacobian of W, and L > 0 is a regularization parameter.
Note that our subproblem (4) differs from those used in
classical penalty methods [9], since we linearize the constraints
and we also add a regularization term. Thus, the objective
function of (4) is strongly convex. Hence, if €2 is nonempty and
even if the problem is non-differentiable, this problem admits
a unique optimal solution, and can be solved efficiently by
several convex methods and solvers. For instance, alternating
direction methods of multipliers (ADMM) [19] and primal-
dual schemes [20] can be efficient for solving (4). Note that the
convergence guarantees of ADMM and primal-dual schemes
often depends on the distance between the initial point *:* of
the algorithm and the exact optimal solution of Z**! of (4),
see, e.g, [20, Theorem 2]. Hence, if we warm-start %0 at the
previous approximate solution z* obtained at the (k — 1)-th
iteration, then the distance ||z° — Z**1|| is small. This allows
the algorithm to converge faster to a desired approximate
solution Ft1! of (4) at the k-th iteration.

Let us define: V(z*) := argmig{QL(w;wk)}. And the
following quantities: "

Gr(z") = L(zF — V(z")),
dr(zF) := Vi (a*) — zF, rp(a) = ||di ("))

The necessary and sufficient optimality condition for subprob-
lem (4) becomes

[Vf(V (b)) - Gr(ah) + BV (aF)(2h)] T (&
~Vi(zF)) >0, V&€ Q,

where £(zF) € 9|¥(xF) + V' (2F)(V(z*) — x¥)|. GL(")
can be considered as a gradient mapping of F' in (2) [13], and
dr(x*) is a search direction for Algorithm 1. Now, using the
subproblem (4) as a main component, we describe our GN
scheme in Algorithm 1.

Algorithm 1 The Basic Gauss-Newton Algorithm

1: Initialization: Choose = €  and a penalty parameter
B > 0 sufficiently large (ideally, 8 > [|y*||c0)-
2: Choose a lower bound Ly, € (0, SLy].

3: For k :=0 to kpax perform

4  Find Ly € [Lun,BLy] such that F(Vp, (zF)) <
Qr, (Vi (xF); z¥).

5. Update ="+ .=V, (xF).
6:  Update 3 if necessary.
7: End for

The main step of Algorithm 1 is the solution of the convex
subproblem (4) at Step 4. As mentioned, this problem is
strongly convex, and can be solved by several methods that
converge linearly. If we choose Ly = L > [Ly, then we
do not need to perform a line-search on L at Step 4, and
only need to solve (4) once per iteration. However, Ly may
not be known or if it is known, the global upper bound Ly
may be too conservative, i.e. it does not take into account
the local structures of non-linear functions in (2). Therefore,
following the algorithm in [13], we propose performing a line-
search in order to find an appropriate Lj. If we perform a
line-search by doubling Lj at each step starting from Lyip,
(i.e., Ly — 2Ly), then after i; line-search steps, we have
Ly = 2% L ., and the number of line-search iterations i
is at most |logy(BLw/Lmin)] + 1. Note that it is rather
straightforward/ t(g est/imoate L,in. For example, we can set
Loin = W < BLy for some #° # 2° and
¢ € (0,1]. A detailed discussion on tuning 8 and L, as well
as convergence analysis and proofs are provided in [17].

III. APPLYING THE GN ALGORITHM TO AC-OPF

In this section, we present the OPF problem and its refor-
mulation in a form that obeys the structure presented in the
previous section. We then perform numerical experiments to
validate the algorithm and compare it with IPOPT.

A. Problem settings

a) Original AC-OPF: Consider a directed electric power
network with a set of nodes B and a set of branches L. The
network consists of a set G of generators, with G; denoting
the set of generators at bus ¢. Denote Y = G + jB as the
system admittance matrix, G being the conductance and B the
susceptance (j2 = —1) [21]. The decision variables of AC-
OPF are the real and reactive power outputs of generators,
which are denoted as p € RI9 and q € RI9!, the voltage
magnitudes v € RIBl and phase angles 8 € RIBI. We will
consider a fixed real and reactive power demand at every node
7, which we denote as Pl-d and Qf, respectively. The constraints
of the AC-OPF problem can be described as follows [6]:

Z Dj — Pt — Z V05 (Gij cos(6; —6;)
JE€Gi JjEB

+ Byysin(6; — 6;)) =0, Vie B, (Sa)



Z qj — Q;j — Z V;V; (Glj Sin(Hi — Qj)

JE€G; JjEB
— Bi]‘ COS(GY‘, — 0])) = O7
(p,q,v,0) €C.

Vie B, (5b)

(5¢)

Constraints (5a) and (5b) correspond to the real and reactive
power balance equations of node ¢. Constraints (5c) gathers
the set of classical inequality constraints on power systems
such as generator capacity limits, line flow limits or voltage
limits. It is common to assume that the set C is convex and
can be casted as a second order cone set of constraints.

We will consider the objective of minimizing real power
generation costs modeled as a convex quadratic function f:

f(p) = p'diag(C2)p+ C1'p,

where Cy > 0 and C; are given coefficients of the cost
function. The AC OPF problem then reads as the following
non-convex optimization problem:

Popt : ( mine) f(p) subject to (5).

P,q,v,
b) Quadratic reformulation: The starting point of our pro-
posed GN method for solving problem P,,; is the quadratic
reformulation of AC-OPF [14]. In this reformulation, we
replace the voltage magnitudes and angles v; Z0; = v;e’% =
v;(cos(8;) + jsin(6;)) by a new set of variables ¢;; and s;;.
These new variables are defined for ¢ € B and (4, j) € £ as:

(6a)
(6b)

Ci; = ’U?, Cij = ViUy COS(@@ — Hj),
Sii — 0, Sij = —UUy sin(@i — 9]'),
where we will denote the vectors ¢ and s as the collection of
the ¢;; and s;; variables, respectively.
Assuming —7/2 < 6, < w/2,Vi € B (which is common
practice [?]), the mapping from (v, 8) to (c, s) defined by (6)
can be inverted as follows:

Uy = \/CTliv
thereby defining a bijection in (¢, s) and (v, 8) [6]. The set of

(c, s) and (v, 0) that define this bijection is further equivalent
to the following set of non-linear non-convex constraints [6]:

C?j + S?j = CiiCyj, V(Z,]) S E,
511’1(01 — Gj)cij + cos(@i — F)j)sij =0, V(Z,]) e L.

6; — 0; = atan2(s;;, ¢;;),

(7a)
(7b)

Now, we will substitute the voltage magnitude variables into
the problem P,,;, and consider the problem on the variables
(c,s,0). This reformulation has been commonly employed
in the literature in order to arrive at an SOCP (Second-
Order Cone Programming) relaxation of the problem [5],
[14]. Through numerical experiments, we demonstrate that
this reformulation results in highly effective starting points
for our algorithm based on the SOCP relaxation of the AC-
OPF. Moreover, the reformulation preserves the power balance
constraints in linear form. Thus, the power balance constraints
are not penalized in our scheme, which implies that they are

respected at every iteration of the algorithm. For all these
reasons, we pursue the quadratic reformulation of the present
section, despite the fact that it requires the introduction of the
new variables ¢ and s. Concretely, the AC OPF constraints
(5) are substituted using ¢ and s by:

Z P — Pt-d — Z(Gijcij — Bijsij) =0, Vi € B, (8a)
J€EG: jeEB
Z qj — Q;j + Z(GijSij + Bijcij) =0, Vi € 87 (8b)
J€G; JjEB
(c,s,0,p,q) €C?,. (8¢)

where C¥ is the still the set of inequality constraints, adapted
to the quadratic formulation. (8) defines a convex set of
constraints. As a result, an equivalent formulation for the AC-
OPF model P, is:

chsO .

opt -, min S (p)

We then have two non-convex equality constraints:
o Constraints (7a): ¥¥(c,s) = ¢ + s
0, V(i,j) € L. We refer to them as quadratic constraints.

« Constraints (7b): U}/ (e, s,0) := sin(0; — 6,)c;j + cos(6; —

0;)si; =0, Y(i,7) € L. We refer to them as trigonometric
constraints.
Now, AC-OPF is written in the format of (1), where
z = (pacs), f@ = fp), V@) =
(Vi (e, s), ¥ (c,s,0)) and Q := {x € R? | z satisfies (8)}.

B. A practical implementation of the GN algorithm for OPF

st (7),(8).

I

In this section, the goal is to optimize the settings of the GN
method. We will demonstrate that the choice of 8 and L is
crucial. This will allow us to derive a practical version of the
GN algorithm, which we compare to IPOPT.

a) Stopping criteria: We terminate Algorithm 1 in two occa-
sions, which have been validated through experimental results:
(i) if the maximum number of iterations kp., := 100 is
reached; (ii) if the quadratic and trigonometric constraints
are satisfied with a tolerance of ey, where e = le™®
(i.e. if max(||W,(c*, s%)|lco, [|Wi(c®, s%,0%)||0) < €2). If the
difference ||2**1 — 2¥||, < € (€1 := 1e~F in the numerical
experiment), then Algorithm 1 has reached an approximate
stationary point of the exact penalized formulation (2). In this
case, the last iterate might not be feasible for Pg;f. We then
use the run-and-inspect strategy [22]: the last iterate becomes
the starting point of GN and [ is doubled.

b) SOCP relaxation for initialization: As mentioned previ-
ously, the quadratic formulation is also used to derive the
SOCP relaxation. In this relaxation, the angles 6 are not
modeled and the trigonometric constraints (7b) are removed.
Moreover, the non-convex constraints (7a) are relaxed:

cfj + 512]' < cicjj, V(i j) € L. ©)
Then, Pgocp is defined such that:
Psocp :  min _f(p) s.t. (8),(9).
(p.a.c.s)

Solving this relaxation will provide a partial initial point
(p°.q°.c”,5") (and 6° = 0).



c) Parameter tuning strategies: The convergence theory pre-
sented above does not require tuning the 8 and L parameters.
In practice, tuning is crucial for improving the performance of
algorithms for constrained non-convex optimization, including
Algorithm 1. Several observations allow us to decrease the
number of iterations that are required for convergence: (i)
according to Proposition II.2, large values of  ensure the
equivalence between (1) and (2); (ii) quadratic constraints and
trigonometric constraints scale up differently; (iii) a careful
update of L influences the number of times that subproblem
(4) is solved. These observations guide a detailed investigation
concerning the choices of 5 and L parameters [17].

d) Acceleration through warmstart: We observe that the sub-
problems (4) are based on the same formulation, and only
differ by slight changes of certain parameters along the itera-
tions. This motivates us to warm-start the subproblem (4) with
a previous primal-dual iterate. In other words, we initialize
the solver for solving the subproblem (4) at the k-th iteration
at the final solution xj_; and its corresponding multiplier
Yj,_, obtained from the previous iteration k—1. Warm-starting
is indeed a key step in iterative methods, including our GN
scheme, and will be further analyzed in Section IV-2.

IV. NUMERICAL EXPERIMENTS

In order to validate the proposed GN algorithm, our numerical
experiments are conducted in 2 steps: first, we launch simula-
tions on several test cases of a classical library (MATPOWER)
and compare the GN algorithm with a state-of-the-art non-
convex solver (IPOPT); second, we show the potential benefit
of warm-start for our approach.

1) Illustration on MATPOWER instances: We use the MAT-
POWER [15] library to have access to a wide range of AC-
OPF test systems that have been investigated in the literature.
We test our approach on instances whose size ranges between
1,354 and 25,000 nodes (1354pegase has 11,192 variables
and 27,911 constraints while ACTIVS25k has 186,021 vari-
ables and 431,222 constraints). We benchmark our approach
against IPOPT, a non-linear solver based on the interior-point
method. To do so, we make use of PowerModels. j1 [23],
a Julia package that can be used to solve AC-OPF instances
of different libraries with different formulations. In order to
make a fair comparison, we initialize GN and IPOPT using
the SOCP solution. The experiments are conducted in Julia
(version 1.1.1) using JuMP on a MacBook Pro 2016, with a
2.9 GHz Dual-Core Intel Core i5 processors.

The results of our analysis are presented in Table 1. In Table I,
for each test case (first column), we report the objective value
and the execution time (in seconds). For GN, we also report
the number of iterations. The last column provides the gap
between the GN solution and the IPOPT solution.

The first notable observation is that GN finds a stationary point
(i.e. feasible) of the original AC-OPF problem for all 23 test
cases. The stationary point obtained by GN attains the same
objective function value as the one returned by IPOPT for most
instances (a difference of 0.05% in the objective value may

TABLE I
COMPARISON OF THE GN ALGORITHM AGAINST IPOPT

Gauss-Newton IPOPT

Test Case # It | Objective Time Objective Time Gap

1354pegase 13 7.407e* 15.1s 7.407e* 6.00 s 0.0 %
1888rte 14 | 5.981e* 259 s 5.980e% | 59.0s 0.0 %
1951rte 4 8.174¢% 6.94 s 8.174e* | 7.67s 0.0 %
ACTIVSg2000 5 1.229¢5 | 839 s 1.229¢8 148s || 00 %
2383wp 19 | 1.868¢% | 51.0s 1.868¢% | 21.6s 0.0 %
2736sp 4 | 1.307e% | 109 1.308¢% 133s || -0.1 %
2737sop 3 7.767e° 777 s 7.778¢e” 9.98 s -0.1 %
2746wop 17 1.208¢e8 38.1s 1.208¢8 12.8 s 0.0 %
2746wp 3 1.631e% | 6.89 s 1.632e8 160s || -0.1 %
2848rte 17 | 5.303¢? | 52.0s || 5.302e% | 7435 0.0 %
2868rte 4 7.980e% 9.11s || 7.979e? | 29.3 s 0.0 %
2869pegase 12 | 1.340e® | 419 1.340e® | 155 s || 00 %
3012wp 8 2.593e0 2525 || 2.592e% | 18.8s 0.0 %
3120sp 13 | 2.142e% | 4125 2.143€8 19.2 s 0.0 %
3375wp 8 7.413e8 347 s 7.412e% | 2135 0.0 %
6468rte 19 | 8.685¢% 187 s 8.683e? | 103 s 0.0 %
6470rte 11 9.835¢% | 89.3s 9.835¢% 144 5 0.0 %
6495rte 12 | 1.063€° 180 s 1.063¢® | 5245 0.0 %
6515rte 18 1.098¢” 204 s 1.098e” 86.9 s 0.0 %
9241pegase 17 3.167¢° 894 s 3.159e% 368 s 0.3 %
ACTIVSgl0k 6 2.488€% 117 s 2.486e% | 934 s 0.1 %
13659pegase 19 | 3.885¢° 137 s 3.861e® | 685s 0.6 %
ACTIVSg25k 16 | 6.033¢5 | 1,740s || 6.018e® | 544 s 03 %

be attributed to numerical precision) and the proposed method
outperforms IPOPT in some instances (e.g. 2737 sop).

Our experiments further demonstrate that the GN method
consistently requires a small number of iterations (less than
20) in a wide range of instances. This is critically important
to further accelerate the performance of our method if we
appropriately exploit warm-start strategies and efficient solvers
for the strongly convex subproblem.In terms of computational
time, the performance is shared between the two approaches.
Nevertheless, some instances reveal limitations of the GN
algorithm, compared to IPOPT (6495rte, 9241pegase
and ACTIVSg25k for example): when the solution of a
subproblem becomes time-consuming because of the size of
the subproblem, GN might require a larger execution time. We
use Gurobi for solving subproblem (4), because it is one of
the most stable QCP solvers that are available.
Unfortunately, Gurobi (and IPMs for QCPs in general) does
not support warm-start, which would have significantly de-
creased the computational time. One alternative is to use an
ADMM solver that supports warm-start. However, ADMM
solvers are not mature enough to test large-scale problems.
Implementing an efficient subsolver is out of the scope of this
work, however we are able to analyze the effect of warm start
on these solvers which is the subject of the next section.

2) The effect of warm-starting strategy: We consider using
OSQP [24] as an ADMM solver. We consider one small test
case (118_1ieee) since we observed numerical instability for
larger test cases. We examine each GN iteration individually,
and highlight the impact of warm-start on the number of
ADMM iterations in Fig. 1. Note that we warm-start dual and
primal variables only after iteration 1. Warm-start decreases
substantially the number of ADMM iterations in two cases: (i)
When L is updated. Indeed, updating L only results in slightly
changing the objective function. One expects the previous
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Fig. 1. Evolution of the percentage of ADMM iterations along the iterations
for 118_ieee. The percentage of ADMM iterations ‘With Warm-start’ is
measured relatively to ‘No Warm-start’. GN iterations are shown on the =
axis in an a — b format: a is the actual GN iteration and b represents the bth
subproblem that had to be solved at iteration a because of an update of L.

iterates to provide a good warm-start. This is confirmed in Fig.
1, where we observe that the number of ADMM iterations is
divided by at least a factor of 2 every time L is updated;(ii)
when the last iterates are computed. Intuitively, one does not
expects iterates to change substantially when approaching the
optimal solution. This intuition is confirmed by Fig. 1. For
the particular case of the last iterate, the required number of
ADMM iterations is less than 30%. Globally, we observe that
warm start divides the total number of ADMM iterations by
almost 3 for 118_ieee. This investigation suggests that, with
a mature ADMM solver, warm-starting is a promising feature
for improving the performance of GN on large test cases.

V. CONCLUSION

We propose a novel Gauss-Newton algorithm for solving a
general class of optimization problems with non-convex con-
straints. We utilize an exact non-smooth penalty reformulation
of the original problem and suggest an iterative scheme for
solving this penalized problem which relies on the non-squared
Gauss-Newton method. The subproblems of our proposed
scheme are strongly convex programs, which can be efficiently
solved by numerous third-party convex optimization solvers.
We apply our proposed approach to solve AC-OPF, which
is a fundamental and ubiquitous problem in power systems
engineering. We apply our proposed algorithm to a reformula-
tion of the AC-OPF, and we propose numerous strategies for
tuning our proposed GN scheme, initializing the algorithm,
and warm-starting the resolution of the subproblems that
are treated by our proposed method. We perform extensive
numerical experiments on a large set of instances from the
MATPOWER library, and demonstrate the competitive per-
formance of our method to IPOPT, which is a state of the
art non-linear non-convex solver. This analysis validates the
theoretical analysis of our proposed GN scheme, and proves
its effectiveness in practical applications.
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