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Abstract—Gas units are becoming an increasingly
important component of modern power system op-
erations, due to the flexibility that they offer in a
regime of large-scale renewable energy integration. The
valve point effect refers to the loss of efficiency when
operating a turbine off a valve point, that is just after
the previous valve opens. The valve point effect for gas
power plants is a primary attribute of their operation,
however its representation raises computational chal-
lenges, due to the non-linear and non-smooth model
that is required for representing the fuel cost. In this
work, a new heuristic based on successive piecewise
approximations of the cost function is described. This
heuristic consists in two steps: first, the optimization
is run over the whole feasible set and a lower bound
for the optimal objective is obtained, then the feasible
solutions collected in the previous step are enhanced
through local searches. The approach is tested on sev-
eral IEEE bus systems that have been extended with
generators obeying a valve point effect.

Index Terms—Economic dispatch, global optimiza-
tion, mixed-integer programming, non-convex opti-
mization, non-linear optimization.

I. INTRODUCTION

Gas units are gaining importance as components of
modern power system operations, as a result of the adapt-
ability that they offer in systems with significant levels of
renewable energy integration. Various market operators,
such as the Midcontinent ISO, have made some advances
in the representation of detailed and complex operating
and cost constraints of gas units in their unit commitment
and economic dispatch models. The focus of the present
paper is the valve point effect in the context of a multi-
period economic dispatch model, which serves as a starting
point for the modelling of this important operational
attribute in more advanced operational planning models.

Commonly, fuel costs in economic dispatch are modelled
as smooth quadratic functions. Such convex models do not
account for the valve point loading effect: a turbine which
is loaded at a valve point, i.e., just before the next valve
opens, operates at full efficiency and a turbine operating
off a valve point is working less efficiently due to throttling
losses [1]. This effect significantly alters the output of gas
units. A typical model for a fuel cost function, fg;, that
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accounts for the valve point effect (VPE) is the sum of a
quadratic component with a non-smooth and non-convex
rectified sine function, i.e.,

fo(pgt) = Agp?;t + Bypgt + Cg + Dy ’sin Eq(pgt — Pg_)’ .

=15 (Pgt) =fYPE (pgt)

(1)
Here, py; represents the production of generator g at time
t; Ag, By,Cy, Dy, E4 correspond to cost parameters, and
P, is the minimum operating range of the plant. The
operational constraints of the considered problem include
power-range restrictions and ramp constraints. We further
consider transmission constraints, which are represented
using the DC optimal power flow model.

While the valve point effect has been accounted for in
various economic dispatch models in the literature (see,
e.g. [2], [3], [4]), few studies investigate its impact in the
context of optimal power flow (OPF) [5]. Besides, most
approaches are based on heuristics and do not show any
guarantees with respect to the optimality of the returned
solution. In [6], a globally convergent method relying on
piecewise-quadratic approximations was developed. This
method was extended in [7] to multi-periodic cases but
suffers from a long execution time.

In this work, we extend this approach to handle network
constraints, and in order to remedy the long execution
time, we describe a heuristic able to capture solutions of
similar quality in a reduced amount of time. We demon-
strate the effectiveness of our proposed heuristic in a
transmission-constrained IEEE network, and illustrate the
notable impact of accounting for the valve point effect
in systems with significant levels of gas unit integration.
These methods can be easily expanded to more compli-
cated models that include spinning reserves, multiple fuels
and prohibited operating zones.

The approach followed here, and introduced in [6], [7],
can be summarized as follows. First a piecewise linear
or quadratic under-approximation of the non-smooth and
non-convex cost functions is constructed around a chosen
set of knots, where the knots refer to the points where
the pieces meet. This new objective function, as well
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as the operational and transmission constraints of the
problem, constitute the initial surrogate economic dis-
patch problem. This surrogate problem is then fed into a
mixed-integer programming solver, e.g., Gurobi [8], which
returns a solution along with a lower bound to the global
objective. As the feasible set of the problem is represented
exactly, any solution of the surrogate problem is feasible
for the true problem. Moreover, any lower bound of the
surrogate economic dispatch model is a valid lower bound
of the economic dispatch problem, because the surrogate
problem works with an under-approximation of the actual
problem that we wish to solve. Hence, an interval in which
the globally optimal cost of the economic dispatch problem
must lie, is obtained. If the prescribed tolerance is not met,
the solution of the surrogate economic dispatch problem
is added to the set of knots. This defines a new piecewise
objective which is in any point superior or equal to the first
surrogate function. The algorithm stops either when the
target tolerance is attained, or when the surrogate function
matches the true function at the optimum of the former.
In this way, any tolerance up to the solver accuracy can
be attained.

The structure of the paper is as follows. In section II the
main and surrogate problems are introduced. The global
method is described in section III, and two versions of a
heuristic are defined. Then, the method and both heuris-
tics are tested on two IEEE test systems in section IV.
Finally conclusions are drawn in section V.

II. MATHEMATICAL FORMULATION OF DED-DCOPF
A. Main problem: DCOPF based on reactance

We employ a bus angle model of the DC optimal power
flow (DCOPF) problem, where Bj corresponds to the
reactance of each line k = (m,n). The flow of power, ey,
along line k at time t, is then described as a function of
the bus angle difference along the nodes that the line is
joining:

ext = By, (th - ant) . (2)

If losses are neglected, the main addition to the common
economic dispatch models, that are employed in the lit-
erature for accounting for the valve point effect, is in the
power balance constraint:

_Zpgt_ Z ekt + Dpy + Z ept = 0. (3)

9€Gn k=(-n) k=(n.")

where G, is the set of generators at bus n and D,; the
demand of bus n at time t.

This constraint must hold for each bus n, and in the
multi-period case, for each time period t. Given a flow
limit T'Cy, for line k, the flow of power along each line is
constrained as follows:

—TCr <ep <TCY . (4)

With these three additional constraints, the dynamic eco-
nomic dispatch (DED) problem studied in [7] can be

readily extended as the minimization of the non-convex
and non-smooth objective,

(DED-DCOPF) min » > fo(pgt) . (5)
teT geG
with cost function (1). The following constraints apply:

o Power generation restrictions
Py <pu<P[, (6)
o Ramp rate limits
Ry < pgt — Pgi—1) < Ry, (7)

o Flow constraints, egs. (2) to (4).

In these constraints, P, and P; are the min and max
power generation limits of unit g, and R, and R; are
the lower and upper ramp limits, respectively. Note that
the angles at each bus, 8, and the flows over each line, F,
can be fully determined with the production at each node
n. For the sake of simplicity, the main problem (DED-
DCOPF) is denoted as (P) in the following. The surrogate

problem, introduced hereafter, is denoted as (S).

B. Surrogate problem

Due to the linearization of the flow constraints via the
DCOPF model, the feasible set of (P) is a polyhedron
and the main difficulty in solving the problem comes
from the non-convex and non-smooth objective. Thus, in a
similar fashion as [6], a surrogate problem (S) is defined by
approximating the objective without changing the feasible
set, namely by employing the following objective function:

(S) min Z Z hgt (pgt) ) (8)
teT geG

subject to the constraints of eqgs. (2) to (4), (6) and (7).
Given the set of knots X := (thl, ce Xy
terms of eq. (8) read as

i VPE
hgt(Pgt) = {H[fg,th}(pg) By 70,

knot the
ng?o )

P e v
Here, II[f, X] stands for the piecewise-linear interpolation
of f, given the knots X. The smooth part of the objec-
tive, ng, and the non-smooth part, fgv PE " are defined as
in eq. (1).

Fig. 1 depicts the main and surrogate objective for a
given unit g and time step ¢. The initial objective, f,, is
plotted in solid line and the smooth part, f?, in dash-
dotted line. The points where both curves meet are the
points at which the sine from the non-smooth part, f;/ PE
vanishes and therefore at which the initial objective is not
smooth due to the absolute value in eq. (1). We refer to
these points as kink points. As explained in section III, the
approach considered here consists in successively adding
knots to the piecewise approximation to refine it. These
knots, X gm which define the piecewise approximation, h’;t,
at step k of the algorithm are depicted as bullets and
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include the kink points. The colour difference illustrates
when the points were added to the set of knots: the red
ones belong to the initial set of knots, the green have been
added during previous iterations and the purple is the —
possibly inexistant — knot to be added. Let us now consider
the choice of initial knots and the monotonic property of
two successive approximations.
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® Knot to be added: (z},, f(x},))

Fig. 1. Illustration of the method APLA at iteration k on a single
term of the objective.

1) Choice of the initial knots: In order for the inter-
polant to be lower than the original function that we wish
to approximate, it can be shown that the kink points
should be included in the set of knots [7]. However, this
gives a poor initial approximation: the interpolant being
the zero function. Indeed, since fYFP vanishes at the kink
points, X % we have II[fyT®, X K](p)) = 0 for all
pg. Therefore, the maxima of f;’ PE are also added to the
initial set, th. This gives the red dots of Fig. 1.

2) Monotonic property: If f;’ PE i piecewise-concave
between two kink points, we have

Xl g X2 . H[f;/PE,Xl] S H[f;/PE,Xﬂ S f;/PE,
(10)
given any X! containing the kink points of
The novel aspect of the present paper relative to [7]
is the addition of the network constraints, as well as the
development of a heuristic which reduces the execution
time and avoids timeouts. The comparison of the different
methods in section IV shows that the heuristics reach
comparable solution in a significantly reduced execution
time.

f;/PE-

III. METHODS

This section is devoted to the description of two meth-
ods. The first one (section III-A) is largely similar to

the method given in [7], the difference being that, in the
present paper, the network is accounted for. In section IV,
we demonstrate that network effects exhibit a rich inter-
play with the valve point effect. Therefore, it is important
to consider the representation of the valve point effect in
future dispatch models. However, the size of the systems
considered in the present work renders the approach of [7]
non-viable, therefore in this paper we develop a second
method. The second method (section III-B) is a local
heuristic based on the former approach, and trades opti-
mality guarantees for an acceleration in the computation
time. We detail two variants of the heuristic.

A. A globally convergent method

1) Method description: We refer to the globally con-
vergent method proposed in this paper as APLA. APLA
stands for adaptive piecewise-linear approximation. The
method starts with a set of knots X (red dots in Figs. 1
and 2) satisfying the property described in II-B1, i.e., the
inclusion of the kink points in the set of knots. The first
surrogate problem, (S)Y, which is defined by the first sur-
rogate function h°, is then formulated as a mixed-integer
problem (MIP) and solved with a predefined tolerance +.
The MIP solver returns a solution, p°, along with a lower
bound to the global optimum. The surrogate gap, °, is
then computed as,

8" = f(p") — h°(°). (11)
This gap is visualized in Fig. 1. Then, the optimality gap
is computed by adding the solver tolerance and surrogate
gap. If the target accuracy is reached, the algorithm
stops. Otherwise, the obtained solution p° is added to
the set of knots, refining in this way the approximation,
and the algorithm iterates. This process is illustrated
in Fig. 2. The red and green dots represent the initial
and already added knots, respectively. The purple square
is the optimal solution of the surrogate problem and the
purple dot is the evaluation of the real objective at this
solution. It can be seen that the method locally refines
the approximation. In this sense, the method is adaptive
and benefits from a lower number of knots with respect
to a regular meshing. The efficiency gains of the method
rely on quickly converging to a subset of the feasible space
where the global optimum should lie. This follows the
philosophy of other methods used in dispatch algorithms,
such as stochastic dual dynamic programming (SDDP) [9],
that also aim at computational savings by using locally
valid representations of the objective function that is being
optimized, with the aim of quickly limiting the search
to the relevant part of the feasible space by employing
the information contained in the approximation of the
objective function.

2) Convergence guarantees: At iteration k of the
method, the optimality gap can be computed as [7]

Optimality gap

—_——
) = f(p*) <" + 4" + €, (12)
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‘Initialize set of knots (e)

'

Solve surrogate problem (S) |
defined with knots (e Je) |
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Refine: add solution
tolerance

of (S), (m) , to knots

Fig. 2. Flow chart of the method APLA.

where p* is the optimal solution of (P), v* stands for the
gap of (9)* returned by the MIP solver, and ¢* is an
over-approximation error. This over-approximation error
is almost equal to zero for the cost functions considered
here (see [7]), hence we will neglect it in the rest of the
paper. The following result, given in [7], also still holds
because it only relies on the Lipschitz continuity of the
objective functions and on the boundedness of the feasible
set.

Theorem 1. For Lipshitz continuous cost function f, the
sequence of iterations provided by APLA satisfies

lim 6% =0.

k—o0

3) Stopping criterion: The algorithm terminates when

the optimality gap, eq. (12), is lower than a predefined
tolerance v: 0¥ + 4% < 5. This 7 is chosen to be equal to
the targeted MIP gap, i.e., the gap between the lower and
upper objective bound of the surrogate problem, which
is given as input to the MIP solver. Theorem 1 shows
that the method converges but the drawback is that the
method requires several costly calls to the MIP solver,
which increase the computation time of the algorithm.
This motivates the development of a heuristic, described
in the following section, as well as a time criterion based
on the number of iteration and the maximum time allowed
to the MIP solver. This time criterion is also used in the
experiments section IV.

B. A local heuristic

1) Method description: Fig. 3 summarizes the heuristic
which can be split into two steps: first a global search is
made on the whole feasible set in order to find optimum
candidates. Then, the search is refined around these can-
didates. In [10], the authors proposed to use the solution
of the initial surrogate problem as the initial point of an
interior point method. Here, we follow the same approach
with three main differences: a) the initial point is obtained
with a few steps of APLA, b) a list of candidates is

considered and c) the local search method is also based
on a local approximation. Let us explain more formally
these three points.

a) Search for an initial point: The first step of this
heuristic is to select a promising candidate, around which
the local search will be initialized. In order to achieve
this, the APLA algorithm is used with a finite number
of iterations, njier, over the whole search space €2, i.e., the
feasible set of (P). This number is typically chosen to be
very small in order to avoid excessive running time. In the
experiments below, we take njior = 1.

b) List of candidates: During the search for an initial
point, several potential candidates for the global solution
of the surrogate problems are found by the MIP solver.
Most of these points, called incumbents, are good initial
guesses for a local search. Hence, APLA is slightly modi-
fied to return a list £y of the best incumbents, which will
serve as initial guesses.

¢) Local search method: The local search in the neigh-
bourhood i, of a specific point p‘, at iteration i of
the inner loop, proceeds as follows: the power generation
constraint of eq. (6) is narrowed around the value p¢ via
the closest knots. Eq. (6) now reads

X;tj < Ppgt < X;tj’ (13)

for j < j' and X;tj < ;52,5 < X;tj,. In such a way,
the feasible set is strongly reduced and the power ranges
become t—dependent. In the specific case when j' = j+1,
the (first) local problem becomes a much simpler convex
quadratic problem which can be solved efficiently.

‘ Run APLA(9, niter)

vL1
Select p' = argmin f(L;) .
and remove it from L
v
‘ Run APLA(Q:,00) ‘

Is tolerance
reached or

L1 =07

Update best solution

Fig. 3. Flow chart of the APLA-based heuristic.

2) Convergence guarantees: This APLA-based is con-
verging because every APLA call inside the loop (Fig. 3)
converges by theorem 1, and the number of loop calls is
equal to the finite size of L£;. However, the lower bound
obtained on sub-instance €z is not a lower bound for (P).
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As we neglect the over-approximation error, the optimality
gap is computed as follows,

Optimality gap

FF) = f(p*) < F(pPF) — (wer (priver)
i,fc)

- ,yniter) ) (14)

where (p“*);_g ;. and (P*)k=0.1,... ny.. are the sequences
of solutions from APLA(Qz,00) and APLA(S, njger).
Eq. 14 shows that once the heuristic enters the inner loop
in Fig. 3, it reduces the optimality gap only by decreasing
the objective.

An expression similar to eq. (12) can also be obtained,

) = F(p7) < J(pF) = (W (pre) — o),
= f@") — Fp™) e
+ ) — hte(pte)
oo
< 5i,l~c +’}/i’k —l—ei’k +’7n"er _’_Ci7
R R e ¢

(15)

where p*? := arg minpeq_; f(p). The second inequality
holds because the application of APLA on the restricted
domain € is a valid instance. Hence, eq. (12) can be used.
Furthermore, the over-approximation error is negligible
here and the restricted instances APLA (£, 00) are solved
to optimality, i.e., with a tolerance v** ~ 0.

Eq. 15 shows that at iteration & of APLA (i, 00),
there are three main contributions to the optimality gap.
Firstly, 6%* which is the gap between the surrogate and
true function. This gap goes to zero as k goes to oo by
Theorem 1. Secondly, v™tr the MIP gap obtained at the
end of APLA(Q, niter) and finally, ¢;, which captures the
fact that the optimal solution p* may lie outside of Q.

By construction p™tr € L, and in the special case
where p' = p™ter we have f(p™!) < f(p™t), which
implies that ¢? < §™ter: the heuristic either improves p™iter
or shows that it is globally optimal.

3) Stopping criterion: The heuristic terminates either
if it reaches the targeted optimality gap, eq. (14), or after
iteration over the whole list L.

4) Eztension of the methods: Similarly as APLA, the
heuristic can be easily extended to account for spinning
reserves, multiple fuels and prohibited operation zones
(POZ). This will incur an increase in the number of integer
variables and further motivate the use of an APLA-based
heuristic.

IV. TEST CASE STUDY

In this section, the comparison is made between the two
approaches detailed in section III and the benefit from
taking the VPE into account is estimated. In this work,
Gurobi 8.1 [8] has been used for solving the MIP problem
associated with the surrogate problem. The optimization
has been run on a PC with Intel-i7 3.6 GHz CPU and
16 GB of RAM. Two variants of the heuristic from sec-
tion III-B are tested: H-local, which restricts the feasible

region to a single segment, i.e., i/ = j + 1 from eq. (13),
and H-full, which restricts the feasible region to up to
three segments. The impact of the VPE is highlighted by
comparing the solution obtained via the aforementioned
methods with respect to the solution from a method which
does not take the VPE into account.

The data and algorithm implementations are available
on GitLab [11].

A. Data set creation

As no data set with transmission constraints and VPE is
openly available in the literature, we analyze the IEEE test
systems, by introducing additional generators that obey
VPE. We use IEEE test system data from the PSTCA
and MatPower ([12], [13]), while VPE generator data can
be found in [14]. The VPE generators are added randomly
in buses of the IEEE networks which are represented
in Figs. 4 and 7. In order to limit the uncertainty from
this random selection, several trials of the algorithm are
made with different configurations. This allows for a more
robust analysis of the methods.

B. IEEE 57-bus system

The original case study with seven generators [12] is
extended by including ten additional generators that obey
a valve point effect. The network topology is sketched
in Fig. 4. The tolerance of the MIP solver and the maximal
MIP solver time are set to 0.1% and 60 seconds when
the surrogate problem is defined over the whole domain
Q, and to 0.01% and 60 seconds when the problem is
restricted to a subdomain Q4. Figs. 5 and 6 (blue boxes)
present a comparison between the execution time and the
final optimality gap of the three methods: APLA, H-local,
and H-full. Whereas some instances of the initial APLA
algorithm can be resolved in a few seconds, others require
significantly more time, due to timeouts. The timeout limit
for APLA is set at a maximum of ten iterations of sixty
seconds. This results in a total run time of ten minutes,
i.e., the time frame accepted by european PXs for the
day-ahead market clearing [15]. We consider this as a
reasonable run time benchmark for an economic dispatch
model, since the run time of an economic dispatch model
which is executed closer to real time is upper bounded by
the run time dictated for day-ahead market clearing.

The two heuristics, H-full and H-local, perform much
faster, and for the majority of instances they are executed
within 15 seconds. This time improvement is at the cost
of an increase in the optimality gap, with less than half
of the instances being solved at the target tolerance of
0.1%. The bottom magnification in Fig. 5 shows that the
median execution time of H-local is approximately 30%
lower than the median of H-full, while the optimality
gap, Fig. 6, is comparable. We discuss the implication of
these observations in detail in section IV-E.
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Fig. 4. Single-line diagram of IEEE 57 bus system [16].
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Fig. 5. Comparison between the execution time of the methods for
100 random instances with targeted optimality gap of 0.1%. The
orange lines and green triangles represent the medians and means,
respectively. The bottom frame is a magnification of the upper one.

C. IEEFE 118-bus system

In a similar way as the previous case, we extended
the 54-generator IEEE 118-bus system (Fig. 7) with the
same ten generators obeying a valve point effect [12]. Tests
are performed with the same methods and parameters as
in section IV-B. The comparison of the execution time,
Fig. 5 (green boxes), shows that APLA performs faster
in the IEEE 118 case but it is still outperformed by the
two heuristics. However, the final optimality gap (Fig. 6)
and final objective (table I) is slightly better with APLA.
We discuss the implication of these results in detail in
section IV-E.
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Fig. 6. Comparison between the final optimality gap of the meth-
ods proposed in the paper for 100 random instances with targeted
optimality gap of 0.1%.

Fig. 7. Single-line diagram of IEEE 118 bus system [17].

D. Impact of the VPE

In order to assess the benefit of accounting for the VPE,
each instance of both case studies is solved, while ignoring
the VPE, by specifically removing the rectified sine term.
As a result of this simplification, the objective function be-
comes quadratic and the problem becomes much simpler.
The computation time is less than a second, but there is
no guarantee with respect to the optimal solution. The
mean of the final objective is reported in table I, for this
method (QP) as well as for APLA and both heuristics.
The cost of neglecting the VPE can be readily estimated
at 5% and 1% for the IEEE 57 and IEEE 118-bus system
case, respectively.

TABLE 1
OBJECTIVE MEAN OF EACH METHOD.
H-full H-local APLA QP
Caseb7 621622 621634 621547 654535
Casell8 2447475 2447540 2447383 2471132
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E. Discussion

The application of the APLA method on a network-
constrained case study is compromised by the fact that a
significant number of instances terminate due to timeouts.
These timeouts push up the mean of the execution time.
However, the heuristics based on the former method are
able to reach at least 0.3% optimality gap for 75% of the
instances in reduced time, relative to APLA.

Also, APLA reduces the optimality gap by increasing
the lower bound, on the one hand, and by decreasing the
optimal objective, on the other hand. On the contrary,
the heuristic approaches compute a single lower bound
and then focus on the objective; for the same optimality
gap, the solution of the heuristic is therefore lower. This
phenomenon is highlighted by the fact that even if the
final optimality gap depicted in Fig. 6 is 10% better for
APLA, the final APLA objective reported in table I is
lower than the heuristics by only ~ 0.01% on average. Of
the two variants of the heuristic considered, H-local, which
restricts the local search on a smaller subset than H-full,
performs slightly faster.

Finally, the cost of the valve point effect computed for
both test cases demonstrates the interplay of the network
with the VPE; ignoring the VPE costs on average 5%
for the 57-bus case and 1% for the 118-bus case. This
difference can be explained by the distinct level of VPE-
units in the two test cases: more than half of the units obey
a valve point effect for the modified IEEE 57 case, while
this number is reduced to fifteen percent in the second
case.

V. CONCLUSION

In this paper, a global method for the solution of the
multi-period economic dispatch problem with transmission
constraints has been studied. This method, the adaptive
piecewise-linear approximation (APLA), suffers from long
execution time when applied to larger problems with
network constraints, and a ten-minute run time threshold
(which is a reasonable upper bound on economic dispatch
models in European market operations) is attained several
times. This motivates the development of a faster method,
which still targets the global solution of this non-convex
problem and provides guarantees with respect to the final
solution.

Our main contributions are i) to demonstrate that VPE
matters in test instances with network constraints and ii)
to develop local heuristics which accelerate the execution
time of the problem.

The APLA method, as well as the heuristics, are tested
on several instances of the IEEE 57-bus and IEEE 118-
bus system. We show that the heuristics produce solutions
of comparable quality to those obtained by APLA, at a
fraction of the computation time required by the latter.
The additional cost of ignoring the VPE effect is computed
for the different instances of the two IEEE systems and is
measured on average as five and one percent, respectively.

Further work may include the extension of the method
to unit commitment and an analysis of the interactions of
the valve point effect with the scheduling decisions. The
impact of the position of the VPE-units in the network
may also be of interest, as suggested by the various range
of solutions obtained here for different network topologies.
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