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Abstract

This master’s thesis investigates different methods to tackle a problem that power system
designers, such as Tractebel, face every day: finding the optimal expansion planning of a power
system. This research presents a robust method able to handle a variety of power systems, in a
reasonable amount of time, and with a respectable convergence.
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1
Introduction

The Transmission Expansion Planning (TEP) problem is a complex task whose main objective
consists in finding ways to expand a transmission system while respecting predefined criteria.
Generally, the objective of an expansion plan is to ensure that power systems are able to meet
the forecasted demand without load interruption or damage to the physical integrity of the
equipment while minimising investment and operational costs. To date, the problem is often
solved by engineers trying to find the less expensive way to expand the transmission system,
but without solving a formal optimization problem. This approach has two drawbacks: first it
can be time-consuming and, second, it is unable to provide a guarantee on the quality of the
solution obtained, i.e. is the solution close to the cheapest one?

In this context, we understand the need of the formalization of the TEP problem as an
optimization problem in order to automatically find the best expansion plan. This formalization
is referred to as Optimal Transmission Expansion Planning (OTEP) and consists in finding the
optimal expansion of the transmission network subject to technical and economic constraints.
This problem is a complex decision-making process to decide where, when and what reinforce-
ments should be placed in the power network. The resulting optimization problem consists in
minimizing an objective function (usually the total investment cost) subject to different sets of
constraints. The constraints are introduced in the optimization problem with the objective of
translating several planning criteria to respect. This optimization problem is usually formulated
as a large-scale mixed-integer linear programming (MILP) problem considering a pre-defined
list of candidate circuits. The definition of the list of candidate circuits has a major impact on
the final expansion plan and is usually built only based on the experience of the planners.

The purpose of this master’s thesis is twofold: (i) first, one is interested in the ways the
OTEP problem has already been approached in literature and, (ii) second, one desires to obtain



2 Introduction

a method that could provide good solutions to the OTEP problem within a reasonable amount
of time. To tackle these challenges, the master’s thesis is structured in three parts:

• First, in part I, after a literature review on the different ways to formulate the transmission
expansion planning (TEP) problem, a mathematical presentation (objective function,
constraints, etc.) of the TEP problem and a formulation as an optimization problem are
given .

• Second, in part II, we review from literature the methods traditionally used to solve the
TEP problem and then present and justify our own way to approach the problem.

• Finally, in part III, the performances of our approach, on the one hand, and Gurobi (a
commercial solver), on the other hand, are compared.

http://www.gurobi.com/
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Model





2
Literature review on the transmission expansion

planning (TEP) problem.

Copyrigthts: Julien Vaes and Anthony Papavasiliou
As mentioned in the introduction 1, the transmission expansion planning problem is a well

known challenge that has a multitude of formulations depending on the criteria, selected by
transmission system operators, that must be respected. The idea of this chapter is to present the
most common formulations of the TEP problem encountered in the scientific literature. Gener-
ally, the difference between two TEP formulations lies in the planning horizon, the definition
of the candidate transmission lines, the costs to minimize, the consideration of uncertainty, the
way to consider uncertainty, etc.

Hence, hypotheses have to be made in order to choose the right TEP problem’s formulation;
they are presented in section 3.1 together with Tractebel’s requirements. Moreover, since
certain formulations of the TEP problem are very dissimilar, some well-know methods to solve
the TEP problem are performant for some formulations and useless for others. It is thereby
important to be aware of the different formulations in order to consciously adopt the most
appropriate solving methods or at least to be able to select the promising ones.

2.1 Planning horizon

The first distinction concerns the planning horizon; traditionally the TEP can be classified in
either static (single-stage) or dynamic (multi-stage) planning. One talks about static planning if
the planner seeks the optimal expansion plan for a single year on the planning horizon, i.e. the
transmission system operator (TSO) seeks the answer to the questions: "what" transmission
facilities1 should be added to the network and "where" should they be installed. Hence, in static

1For instance, in the IEEE-24 buses system A.1, one has transmission lines of different voltage as well as
switches.

http://www.tractebel-engie.com/
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planning, only the final optimal network state is sought. By contrast, in dynamic planning, the
operation costs are also considered during the construction of the expanded network. As a
consequence, in addition to the questions "what" and "where", the TSO seeks also the answer
to the question "when" a certain facility should be built, i.e. his objective is to find the best
expansion strategy over all future years given a time horizon by elaborating a construction plan
over the years of the lines to add to the current network [34, 56].

The static version of the TEP was first of interest to the scientific community and has been
approached in literature using either mathematical programming [2, 25] or heuristics [26].
Dynamic planning models are tremendously more complex; finding the optimal construction
plan over all years requires a large number of variables and constraints to ensure the coherence
of the investments over time, resulting in an enormous computational effort to get the optimal
expansion plan. Hence, few articles approach the problem from this point of view [18, 57];
instead, to achieve reasonable computation time, pseudo-dynamic procedures are considered,
i.e. the successive resolution of static expansion problems. Pseudo-dynamic procedures often
take two forms: (i) a forward procedure, i.e. solving static expansion problems sequentially
for all years, starting from the first one [9]; (ii) a backward procedure which starts from the
last year and goes back in time while trying to respect the decisions taken [48]. Since in the
later periods the network is often more stressed than in the first ones, backward procedures
generally achieve better performances than forward procedures [8].

In our case, we are interested in static planning; our objective is to find the best investment
plan for a given network, i.e. obtaining the cheapest expanded power system while respecting
all TSO’s constrains, rather than knowing when the new transmission lines should be added to
the existing power system.

2.2 AC/DC model

If we want to model the steady-state of a power transmission network in the most accurate
way (the AC-formulation), one should consider a set of nonlinear algebraic equations known
as the power flow. The AC formulation of the TEP problem is rarely discussed in literature
since it is modelled as a mixed-integer nonlinear programming (MINLP) problem, which are
problems amongst the most difficult to solve due to their intrinsic mathematical complexity [61].
Moreover, for non-convex MINLP problems, such as the AC-formulated TEP problem, solvers
give either a heuristic solution or no solution at all [63]; a globally optimal solution is seldom
obtained [62]. Hence, even though the AC network model represents the electric power network
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accurately, one prefers modelling the TEP problem as a mixed-integer linear programming
(MILP) problems via a DC approximation of the network [63]. To obtain linear equations, one
makes four assumptions: (i) ignoring the reactive power balance equations, (ii) assuming all
voltage magnitudes to be nominal, (iii) ignoring line losses, and, finally, (iv) ignoring the tap
dependence in the transformer reactances. Moreover, it is a common assumption to consider
that the difference in voltage phase angle of the adjacent buses in the network is small; hence
one can use the following approximations:

sin
(
θi −θ j

)
≃

(
θi −θ j

)
, (2.1)

cos
(
θi −θ j

)
≃ 1. (2.2)

Starting from equation 2.3, which represents the active power transferred on the transmission
line between buses i and j when losses are neglected, one can derive the DC-power flow, i.e.
the linearized power flow equations, by using the five assumptions previously mentioned:

fi, j
i, iii and iv

= Bi, j ·Vi ·Vj · sin
(
θi −θ j

)
, (2.3)

ii
= Bi, j · sin

(
θi −θ j

)
, (2.4)

2.1
= Bi, j ·

(
θi −θ j

)
, (2.5)

where Bi, j is the susceptance of the line between buses i and j, Vi and Vj are the voltage
magnitudes in buses i and j, and θi and θ j are the phase angles in buses i and j respectively.
Based on approximation 2.5, real power injection in each bus is approximated by the unique
solution of the following set of linear equations (full rank):

N

∑
n=1

Pn = 0, (2.6)

P = T ·θ , (2.7)

where N is the number of buses, P = (Pn), n ∈ {1, . . . ,N}−{h} is the vector of real power
injections, θ = (θn), n ∈ {1, . . . ,N}−{h} is the vector of bus voltage angles, where h is the
hub node 2, and where T is defined as follows:

2A node arbitrarly chosen where we impose its voltage angle to 0.
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Tmn =


− 1

Xmn
, (m,n) ∈ A, m ̸= n

∑
N
n′=1,n′ ̸=m

1
Xmn′

, m = n

0, (m,n) /∈ A

(2.8)

where A is the set of arcs in the network, and Xmn = B−1
mn is the reactance of the line linking

buses m and n. Equations 2.6-2.7 are known as the node-based direct-current power flow
equations. [44, 45]

For small power systems it is easy to find examples for which the results given by the DC-
power flow are either exact or totally wrong; however, for larger systems, the errors resulting
from such an approximation are hard to quantify analytically [63]. Article [33] provides a
complete analysis of different existing approximations of the power flow, whereas article [62]
presents a less relaxed model of the network compared to the DC-formulation that leads to
better solutions to the TEP problem.

Finally, active power losses are generally neglected like in the DC-power flow; however
considering losses can influence the optimal transmission plan. Article [1] shows how to obtain
a MILP while considering line losses by using a piecewise linear approximation to approach
the quadratic loss term.

2.3 Objective function

Generally, the objective function of the TEP problem is a combination of the following most
common costs:

• Investment costs, representing the costs coming from the construction of the new lines
composing the expansion plan.

• Load shedding costs, representing the cost of not serving demand.

• Operation costs, representing the expenses related to the transmission of the power
along the expanded power network.

The different objective functions found in the scientific literature are usually a combination
of these costs, such as: minimizing only the investments costs [3, 10, 55, 42], minimizing the
investment and load shedding costs [26, 31], minimizing the investment and operation costs
[1, 29] and, finally, minimizing all three costs [16, 12].
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2.4 Candidate lines selection

In general, solving a transmission expansion planning problem means selecting the transmis-
sion lines to build among a set of candidate lines in order to satisfy given constraints while
minimising a given objective function. Of course the set of candidate lines to consider has a
major impact on the optimal expansion planning. As mentioned in the introduction, this set
is traditionally manually defined by the transmission systems operators only based on their
experience. Ideally, we would like to consider all possible candidate transmission lines in order
the find the best expansion plan possible; however, if we consider the possibility to reinforce
each existing transmission line, (N −1)! candidate lines should be considered, where N is the
number of buses. Of course, considering all possible candidates lines is foolish since most
of them can be eliminated based on geographical conditions, line length, etc. However, it
is obvious that for large networks, considering even a part of all possible candidate lines is
not an option since it leads to an intractable combinatorial optimization problem; hence a
formalization in the selection of the candidate lines is requested. In article [59], a so-called
congestion buses approach is proposed to select the candidate transmission lines automatically.
Article [39] proposes a selection of the candidate lines in three steps: (i) first, a selection is
performed based on sensitivities, (ii) then a filter is applied to keep to most promising lines in
order to obtain a tractable problem without compromising global optimality and finally (iii) the
relationships among investments is studied. The research in this domain remains limited and
will probably be explored in the coming years.

2.5 Uncertainty

The TEP problem tries to find the best way to expand or reinforce an existing transmission
network; the decisions of reinforcement have to be made under great uncertainty due to the
uncertain nature of (i) the demand growth, (ii) the stochastic production of renewable generation
facilities, such as wind turbines, (iii) the reliability of the equipment, such as the transmission
lines, (iv) the construction of new generating facilities, (v) the political policies, etc. In
the literature, depending on how we consider the uncertainty, the TEP problem is classified
into two categories: deterministic and non-deterministic approaches. In non-deterministic
approaches, the optimal expansion plan takes all possible future cases into account by according
an occurrence probability to them [56]. Generally, a large number of scenarios are needed to
represent the uncertainty accurately, which results in computationally complex problems that
are often intractable; moreover, it is often impossible to determine the probability distribution
function of the uncertain parameters and thus to obtain scenarios representing the reality
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correctly. An alternative to stochastic programming is to consider confidence intervals for the
uncertain parameters and use robust optimization (RO) approaches [52, 13, 24]. The advantage
of this approach is that RO approaches do not require the generation of scenarios but robust
sets instead; the problem complexity is thereby reduced compared to stochastic programming.
However the drawback of robust optimization is that the results are often too conservative.
More details about the optimization techniques to use in the TEP problems are presented in
chapter 5, where we investigate the strategy to adopt in order to address the TEP problem
described in chapter 3.



3
Presentation of the problem

Copyrigthts: Julien Vaes and Anthony Papavasiliou
As mentioned in the literature review 2, the purpose of a power transmission network

is to transfer power from generation plants to load centers securely, efficiently, reliably and
economically. Any practical transmission network is expanding and thus, the transmission
expansion planning (TEP) problem is to identify where to construct new transmission lines in
the future, so that the forecasted demand can be managed without load interruption or damage
to the physical integrity of the equipment [60]. These expansion’s decisions have to be made
under uncertainty due to (i) the power demand growth and (ii) the stochastic production of
some generation facilities, such as renewable energies, etc. [52]. These decisions need to be
taken carefully and in a robust manner since they are in general irrevocable because of their
high investment costs. It is therefore frequently considered that the expanded network must be
able to manage the worst future situation.

The purpose of the optimal transmission expansion planning (OTEP) problem is to find the
best expansion planing. When a superlative is given, such as best, one should always give a
criterion for comparison. For example, based on the FIFA ranking, one can say that, in 2015,
the greatest nation in football was Belgium. This assertion could be shocking for Brazilian or
German people, however I made the hypothesis that the FIFA ranking was the only reference
for comparison and therefore it is a non-arguable fact that Belgium was the best nation in
football is 2015.

From this example, we see that rigorously defining the TEP problem is crucial; an optimal
expansion plan for one TSO is not necessarily optimal for another. In this chapter, one defines
an OTEP by mentioning all the constraints it has to meet and on which criterion two expansion
plans are compared (the objective function). In a first step, constraints inherent to a power

http://fr.fifa.com/fifa-world-ranking/associations/association=bel/men/index.html
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system are presented; additional constraints will then be inserted in the model in order to obtain
a more sophisticated and robust expanded transmission network.

3.1 Hypotheses

Finding the optimal transmission expansion plan is a difficult task; to simplify the model of the
power system to expand and to facilitate the research of the optimal solution, we will make,
under the supervision of Tractebel, the following assumptions:

A1 We consider DC-power flow (losses on transmission lines are thus not considered).

A2 The problem is solved for a one-period horizon, i.e. one does not consider that lines can
be built on different periods, i.e. we consider a static planning.

A3 No uncertainty is considered. Instead, one assumes that the optimal expansion planning
must be able to deal with different scenarios that are given, i.e. different instances of load
and generator net injections. We are not in the case of stochastic programming since we
only consider a limited number of scenarios; however they have been selected in order to
represent the extreme cases that should be manageable by the power network.

A4 The power system’s structure can only be modified by adding candidate lines, i.e. no bus
is built or removed and no existing line is decommissioned.

A5 A list of candidate transmission lines is given in order to address the TEP problem. The
main objective is thus to find the best combination of lines in a given set and not defining
the lines to built.

3.2 Notations

In its simplest form, a power system is composed of generators, loads, buses and lines. The
transmission network can be seen as a graph where the nodes correspond to the buses and the
edges to the transmission lines, an example of a representation is given in figure 3.1.

In this section, we present the notations used in the problem’s description. We will consider
the following sets (the notations are similar to those used in [29]):

http://www.tractebel-engie.com/
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Fig. 3.1 Example of a representation of a power network as a graph. The plain lines are the
existing transmission lines in the network and the dotted lines are the candidate ones.

Sets
N Set of buses (nodes).
Le Set of existing transmission lines, where l = (m,n) ∈ Le is the line with

endpoints m and n.
Lc Set of prospective/candidate transmission lines.

Ω−
n ,Ω

+
n Set of incoming and outgoing arcs at bus n.

The following parameters will also be considered in order to characterize the components
of the network :

Parameters
Il Investment cost for candidate line l.
Ll Length of candidate line l.
L Maximum total length of installed lines.
Tl Maximum flow capacity on line l.
Bl Susceptance of line l.
Ml Big-M value for line l.
Pn Power generation at bus n.
Dn Load at bus n.
∆θ Maximum difference in voltage angle between two adjacent buses.

Finally, the decision variables of the problem are presented in the table hereafter:
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Decision variables
xl Investment decision on candidate line k (binary variable).
fl Algebraic power flow on line k, i.e. a line can be considered as an

oriented edge in a graph and is thus defined by its endpoints. Hence the
flow over a line l = (m,n) ∈ Le is by definition positive if it goes from
m to n and negative otherwise.

θn Phase angle of bus n.

Before going any further, note that : (i) sets are written in round capital letters, (ii) parame-
ters in capital letters and (iii) variables in lowercase letters.

3.3 Objective function

By assumption, we will focus here on minimising the investment costs of the expansion
planning only. Hence, ∑l∈Lc Ilxl is the objective function we try to minimise:

min
xl , fl ,θn

∑
l∈Lc

Ilxl. (3.1)

3.4 Constraints

Since a transmission network model is a representation of reality, some physical properties
must be satisfied such as the Kirchhoff’s laws or the maximum transmission capacity of the
lines; these constraints are inherent to the problem. Besides, transmission system operators
(TSOs) are often adding constraints in order to ensure the security, flexibility and robustness of
the expanded transmission network. In the following section, we detail, for each constraint, (i)
the purpose of adding it and (ii) how to derive its mathematical expression.

Capacity constraints

A generator has a maximum production capacity; in the same manner, a transmission line has a
maximum transmission capacity, which cannot be exceeded in order to preserve the physical
integrity of the lines. It is thus natural to consider the following constraints where parameter Tl

is directly derived from physical properties:

−Tl ≤ fl ≤ Tl, ∀l ∈ Le, (3.2)

−Tlxl ≤ fl ≤ Tl xl, ∀l ∈ Lc, (3.3)
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where constraints 3.2 and 3.3 represent respectively the maximum and minimum capacity
constraints of the existing and candidate lines. If a candidate line l is not constructed, i.e. xl = 0,
constraint 3.3 imposes that the flow on the line be zero: fl = 0.

Balance constraints (i.e. deriving from Kirchhoff’s current law)

Kirchhoff’s current law states that: «At any node (junction) in an electrical circuit, the sum
of currents flowing into that node is equal to the sum of currents flowing out of that node.»
(source: Wikipedia). Applied to power systems modelled with DC-power flow, this law can be
stated as follows: the sum of the incoming power (generators and incoming transmission lines)
equals the outgoing power (loads and outgoing transmission lines). Mathematically this means
that the following equation must be satisfied at each bus n of the power system:

Pn + ∑
l∈Ω

−
n

fl = Dn + ∑
l∈Ω

+
n

fl, ∀n ∈ N . (3.4)

Kirchhoff’s voltage law

Kirchhoff’s voltage law states that: «The directed sum of the electrical potential differences
(voltage) around any closed network is zero.» (source: Wikipedia). Applied to power systems,
this law implies that equations 3.5-3.7 must be respected1:

fl −Bl(θm −θn) = 0, ∀l = (m,n) ∈ Le, (3.5)

fl −Bl(θm −θn)≤ Ml(1− xl), ∀l = (m,n) ∈ Lc, (3.6)

− fl +Bl(θm −θn)≤ Ml(1− xl), ∀l = (m,n) ∈ Lc, (3.7)

−∆θ ≤ θm −θn ≤ ∆θ , ∀l = (m,n) ∈ Le, (3.8)

−∆θ − (1− xl)M∆ ≤ θm −θn ≤ ∆θ +(1− xl)M∆, ∀l = (m,n) ∈ Lc, (3.9)

where constraint 3.5 represents the voltage’s law for existing lines, whereas constraints 3.6 and
3.7 represent the voltage’s law for candidate lines, i.e. if candidate line l is built fl −Bl(θm −
θn) = 0 since xl = 1. If xl = 0, constraints 3.6 and 3.7 have no impact on the solution if Ml

is large enough. However the value of Ml has an impact on the optimisation’s performances;
indeed it is used to define the convex hull of the problem, therefore a larger value of Ml results
in a larger convex hull and thus a larger feasible set for the relaxed problem2. As a consequence,

1The textbook of the course LINMA2415 - Quantitative Energy Economics taught by Professor Papavasiliou at
the Université catholique de Louvain gives the details of how to derive these equations. [45]

2In commercial solvers, MILP problems are often solved via a Branch and Bound (B&B) tree, which solves a
relaxation of the problem at each node. We see here the interest of having a convex hull as small as possible, i.e.
the smallest it is, the quicker the relaxed problem is solved and the quicker is the search in the B&B tree.

https://uclouvain.be/en-cours-2017-LINMA2415
http://perso.uclouvain.be/anthony.papavasiliou/public_html/
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the way to assign Ml’s value is not random; the main reference in the literature is Binato’s
article [10]. We will not address this problem in the rest of this master’s thesis because, as
justified later on, we will not try to find the exact solution of the problem; interested readers
can refer to Kathleen Hemmer’s master’s thesis [30] where the question has been addressed.
Constraints 3.8 and 3.9 are not necessary for the formulation, however it could potentially help
the problem in term of stability. As for Ml , M∆ must be large enough in order to guarantee that,
if xl = 0, constraint 3.9 does not restrict the problem.

Limited budget/time

The expansion of a transmission network cannot be achieved in one day and can be expensive.
Consequently, it makes sense to consider a limited length of candidate lines L to be built. Each
candidate line l has a length Ll , thus the sum of the lengths of the lines built should not be
greater than L:

∑
l∈Lc

xlLl ≤ L. (3.10)

Robustness

So far, we have established the expressions of all constraints as if there was a unique production-
consumption scenario, i.e. the production Pn and consumption Dn at each bus n ∈N are known
and do not vary. Nowadays, power consumption is increasing every year and, depending on
the weather and other factors, power production and consumption can vary. It would therefore
be natural for the expanded network to be able to withstand different instances, i.e. different
combinations of parameters Pn and Dn, which would represent a range of possible worst-case
outcomes. The objective behind these scenarios is to expand the network in an appropriate
way: (i) if the worst-case scenarios are too conservative, the resulting expansion plan will be
too expensive, (ii) conversely, if the worst-case scenarios are too optimistic, we could end up
with a network that could easily collapse. This justifies the consideration of robust optimization
approaches, i.e. approaches that guarantee worst case protection within an uncertainty set K .
Obviously, the definition of the uncertainty set K of net injections causes a tradeoff between
security and cost [52].

Definition 1 (K -Robust) A transmission expansion planning is K -robust if the expanded
network can handle each element of set K .

Each element k ∈ K defines the values of parameters Dn and Pn for all n ∈ N , i.e. it
defines the net injection at each bus n ∈ N . Hence, to deal with this constraint, one needs to
add continuous variables and to repeat all previous constraints for each element k. For instance,
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the balance constraint 3.4 is transformed as follows for all k ∈ K , the other constraints being
transformed in a similar way:

P(k)
n + ∑

l∈Ω
−
n

f (k)l − ∑
l∈Ω

+
n

f (k)l = D(k)
n , ∀n ∈ N .

Even though the number of continuous variables (variables f and θ ) of the problem increases
linearly with the number of scenarios considered, i.e. the number of elements in K , the number
of binary variables x remains the same; as a consequence, the combinatorial complexity of the
model is not affected by the incorporation of the robustness constraint [31, 42].

N-1 security criterion

The widely used N-1 security criterion states that load supply should be ensured not only under
base-case conditions, but also in the case of single circuit failures. This criterion is modeled by
repeating all network’s constraints for each circuit contingency s ∈ S , where S is the finite
set of all possible circuit contingencies. As previously mentioned, the way to assign the value
of Ml depends on the network, therefore since any contingency s generates a change in the
network, one needs to compute a value of Ml for each contingency s.

As for the robustness, considering contingency s implies considering a particular case
for which the power system must be able to respect all previous constraints, hence one adds
continuous variables indexed by s as well as constraints in the same way as we did for the
scenarios. Here are some examples of modified constraints for a given s ∈ S , the other
constraints being transformed in a similar way:

Pn + ∑
l∈Ω

−
n

f (s)l − ∑
l∈Ω

+
n

f (s)l = Dn, ∀n ∈ N

f (s)l −Bl

(
θ
(s)
m −θ

(s)
n

)
≤ Ms

l (1− xl), ∀l = (m,n) ∈ Lc,

− f (s)l +Bl

(
θ
(s)
m −θ

(s)
n

)
≤ Ms

l (1− xl), ∀l = (m,n) ∈ Lc.

As for the robustness constraint, the consideration of contingencies generates a linear
increase in the number of continuous variables and does not affect the combinatorial complexity
of the problem [31, 42]; a more detailed complexity analysis in done in section 4.1.
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Definition 2 ((N-1)-Secure) A transmission expansion planning is (N-1)-secure if the ex-
panded network can handle any single circuit contingency s ∈ S . An element s of set S

corresponds to the case where a circuit l ∈ L fails, where L is the set of lines of the expanded
network.

3.5 Optimal Transmission Expansion Planning (OTEP) prob-
lem formulation

We have now all the elements needed to define the optimization problem to solve in order to get
a solution to the Optimal Transmission Expansion Planning (OTEP) problem. The optimization
problem is formulated as follows:

OTEP problem formulation

min
xl , f

(s,k)
l ,θ

(s,k)
n

∑
l∈Lc

Ilxl (3.11)

s.t. P(k)
n + ∑

l∈Ω
−
n

f (s,k)l − ∑
l∈Ω

+
n

f (s,k)l = D(k)
n , ∀n ∈ N

f (s,k)l −Bl

(
θ
(s,k)
m −θ

(s,k)
n

)
= 0, ∀l = (m,n) ∈ Le,

f (s,k)l −Bl

(
θ
(s,k)
m −θ

(s,k)
n

)
≤ Ms

l (1− xl), ∀l = (m,n) ∈ Lc,

− f (s,k)l +Bl

(
θ
(s,k)
m −θ

(s,k)
n

)
≤ Ms

l (1− xl), ∀l = (m,n) ∈ Lc,

−∆θ ≤ θ
(s,k)
m −θ

(s,k)
n ≤ ∆θ , ∀l = (m,n) ∈ Le,

−∆θ − (1− xl)Ms
∆ ≤ θ

(s,k)
m −θ

(s,k)
n ≤ ∆θ +(1− xl)Ms

∆, ∀l = (m,n) ∈ Lc,

−Tl ≤ f (s,k)l ≤ Tl, ∀l ∈ Le,

−Tl xl ≤ f (s,k)l ≤ Tl xl, ∀l ∈ Lc,

xl ∈ {0, 1}, ∀l ∈ Lc,

s ∈ S ,

k ∈ K .
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Theoretical analysis

Copyrigthts: Julien Vaes and Anthony Papavasiliou
This chapter focuses on a theoretical analysis of the TEP problem (3.5). This optimization

problem is categorized as a mixed-integer programming (MIP) problem since it includes both
continuous and integer variables:

• binary variables, xl , for the decision of building or not building each candidate line l in
Lc,

• continuous variables, f (s,k)l , representing the flows on each line l ∈ Le ∪Lc for each
contingency s and scenario k,

• continuous variables, θ
(s,k)
n , representing the phase angles of each bus n ∈ N for each

contingency s and scenario k.

Moreover, since we have considered a DC-power flow model, the TEP problem is a MILP.

4.1 Complexity analysis

Obviously, as already mentioned, the combinatorial complexity of the problem is independent
of the number of contingencies and scenarios. As a consequence, one could think that the
number of scenarios or contingencies should not significantly impact the computational time
since it is the combinatorial complexity that impacts the most the global complexity. This
assertion is valid theoretically but not in practice; indeed a commercial solver, such as Gurobi,
has memory issues when the number of constraints and continuous variables becomes too
important; even solving the root node causes difficulties.

Example 1 For a network consisting of 35 buses, 50 existing lines and 49 candidate lines
(100 elements in set S , i.e. |S |= 100; one base state and 99 contingency cases) and for 20

http://www.gurobi.com/products/gurobi-optimizer?campaignid=202956936&adgroupid=9321633576&creative=58575440256&keyword=gurobi&matchtype=e&gclid=CPqExo67nNQCFckV0wodHxENfQ


20 Theoretical analysis

scenarios considered (|K |= 20), the number of flow and phase angle variables amounts to
(100+35)(100 ·20) = 2.7 ·105. Moreover, more than 105 constraints are needed to enforce
each constraint presented in section 3.4: the balance constraint, the Kirchhoff voltage constraint,
the maximum flow on the lines, etc. Finally the number of combinations of candidate lines, i.e.
investment plans, amounts to 2|Lc| ≃ 5.63 ·1014 possibilities.

This example clearly illustrates the rapid augmentation of complexity when the problem
size increases:

• the number of investment plans is exponentially proportional to the number of candidate
lines, i.e. O

(
e|Lc|

)
.

• the number of continuous variables and constraints is directly proportional to the square
of the number of contingencies, i.e. O

(
|S |2

)
.

As a consequence, this problem is intractable for large instances; indeed the decision
version of the TEP problem, i.e. the task of deciding, given a plan p, whether the network
has any expansions plan p′ cheaper than p, belongs to the class of NP-complete problems.
Here is what is said in reference [19]: « The electrical energy transmission system expansion
planning problem is a mixed integer nonlinear programming problem, and is NP-complete,
that is, a problem for which no method exists that solves it in polynomial time. This problem
presents a large number of local optimal solutions and is not convex. The problem is not
solving successfully using exact optimization techniques when system size becomes large, and
the system has an appreciable amount of buses isolated, because the number of solutions grows
exponentially. »

Hence the TEP problem is NP-Hard, i.e. if somebody certifies that investment plan p∗ is
the optimal investment plan, there exists no efficient algorithm to verify the assertion.

Definition 3 (Efficient algorithm) An algorithm A is said to be efficient if it runs in a poly-
nomial amount of time w.r.t. the size of its entries.

Until today, no efficient algorithm is known for solving NP-complete problems. There is
thus little hope to find a method able to solve exactly the TEP problem in a reasonable amount
of time as shown in the next section 4.2.
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4.2 Expected performances

One method for finding the optimal expansion plan could be to investigate all possibilities,
i.e. performing a brute-force search. However, this method can result non feasible in practice;
for instance, a mid-size problem like the one in example 1, results in already more than 1014

possible expansion plans. If we consider that a computer can check the feasibility of 106

plans per second, more than three years would be necessary for a single computer to test all
possibilities.

Definition 4 (Brute-force search) In computer science, brute-force search or exhaustive search,
is a very general problem-solving technique that consists in systematically enumerating all pos-
sible candidates for the solution and checking whether each candidate satisfies the problem’s
statement. (source: Wikipedia)

One can also focus on the performances of the randomized enumeration algorithm.

Definition 5 (Randomized algorithm) For a transmission expansion planning problem, the
randomized algorithm generates randomly, uniformly and independently candidate plans and
tests their feasibility until a stopping criterion is reached.

4.2.1 Finding the optimal solution with an randomized algorithm

In this section, we are interested in the probability of finding the optimal expansion planning
after having tested a fixed number m of plans generated randomly, uniformly and independently.
Let n be the number of candidate lines and N = 2n the number of candidate expansion plans.
The probability P(p∗|m) of finding the optimal solution after m samples1 is given by the
following formula:

P(p∗|m) = 1− P̄(p∗|m)
i.i.d.
= 1−

(
P̄(p∗|1)

)m
= 1−

(
N −1

N

)m

, (4.1)

where P̄(p∗|m) is the probability of not finding the optimal solution after m samples. Let
us note, as mentioned previously, that there exists no efficient certificate of the optimality of an
investment plan. This means that after m samples, one might have the optimal investment plan
but verifying its optimality would need the call of a non-efficient algorithm.

Figure 4.1 represents how the probability of succeeding in finding the optimal investment
plan evolves with the number of samples realized. We observe that no matter the number

1We consider here that a sample is a candidate expansion plan generated randomly, uniformly and indepen-
dently.
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of candidate lines, the shapes of the cumulative distribution functions are identical. For 10
candidate lines (1024 possible investment plans), 3216 random plans have to be investigated
in order to have a probability higher than 0.95 to get the optimal solution. A brute force
approach would thus be wiser if such a guarantee of probability is required since there are less
possibilities than the number of random plans to check. This approach has thus little hope to
succeed in obtaining the optimal solution.

Fig. 4.1 Evolution of the probability of finding the optimal solution with the number of samples.

We could also focus on the probability of getting the optimal solution after having found a
number m f of feasible expansion plans. Of course an a priori knowledge of the total number
of feasible plans N f is required. For instance if we consider that 1% of the plans are feasible
then N f = 0.01N and the probability P(p∗|m f ) of finding the optimal solution after finding m f

feasible plans is given by the following formula:

P(p∗|m f ) = 1− P̄(p∗|m f )
i.i.d.
= 1−

(
P̄(p∗|1 f )

)m f = 1−
(

N f −1
N f

)m f

. (4.2)

Figure 4.2, represents how the probability of succeeding in finding the optimal investment
plan evolves with the number of random feasible plans tested. As expected, the behavior
is similar to the previous situation; the graph is just shifted to the left by a value equal to
log2(100) = 6.64. Hence, in this case one observes that the probability of finding the optimal
expansion plan increases faster than previously, however a sample corresponds to a feasible
plan, which happens, by hypothesis, once in a hundred random expansion plans. There is thus
no interest in focusing on the number of feasible expansion plans instead of random ones if one
cannot find a way to generate random feasible expansion plans with a larger probability than
the proportion of feasible plans among all expansion plans.
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Fig. 4.2 Evolution of the probability of finding the optimal solution with the number of feasible
plans found.

4.2.2 Finding a solution close to optimality with an randomized algo-
rithm

As mentioned in section 4.1, the decision version of the TEP problem belongs to the class
of NP-complete problems, which are problems that can, today, not be solved by efficient
algorithms. Hence obtaining the optimal solution to the TEP problem can be illusory, whereas
obtaining a solution of a relative good quality, i.e. close from optimality, is more accessible.
In this section, we derive the probability of finding a good expansion plan with a randomized
algorithm based on different hypotheses stated hereafter.

Hypotheses

To derive the probability of finding a feasible expansion plan near the optimal one, we make
different hypotheses:

H1 each candidate line has the same cost C.

H2 each possible investment plan p has the same probability to be the optimal one p∗, i.e.
P(p = p∗) = 1

2n . This implies with H1 that the number of candidate lines built in the
optimal solution, np∗ , follows a binomial distribution, i.e. np∗ ∼ B (n,0.5).

H3 the optimal solution is unique, i.e. only one plan p∗ is feasible given the optimal cost
Cp∗ .

H4 an investment plan p strictly more expensive than the optimal one p∗ is feasible if and
only if all the candidate lines built in p∗ are also built in p. As a consequence, the
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probability for a given investment plan p of cost Cp to be feasible amounts to:

P(p is feasible |Cp and Cp∗) =


(n−np∗)!

(np−np∗)!·(n−(np−np∗))!
n!

np!(n−np)!
, if Cp ≥Cp∗,

0 otherwise,

(4.3)

where

– np and np∗ are the number of candidate lines in investment plan p and in the
optimal investment plan p∗ respectively; Cp is the cost of plan p. Let us note that,
considering H1, the condition Cp ≥Cp∗ is identical to np ≥ np∗ ,

– the denominator = n!
np!(n−np)!

represents the number of different investment plans

that build np candidate lines among the n available,

– the numerator = (n−np∗)!

(np−np∗)!·(n−(np−np∗))!
represents the number of different invest-

ment plans that build np candidate lines among the n available and where all the
candidate lines of the optimal solution p∗ are built.

Figure 4.3, represents an example of the behavior of expression 4.3 based on the IEEE-
24 buses system for which all candidate lines’ cost has been fixed to one, i.e. C = 12.
This system considers 28 candidate lines and its optimal plan builds 14 of them, i.e.
np∗ =Cp∗ = 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
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Fig. 4.3 Illustration of the probability for an investment plan p of being feasible. In red color,
the effective probabilities obtained via the law of large numbers. The 95% confidence interval
is represented by the space between the green and black curves. In blue color, the approximate
probabilities (via equation 4.3)

Let us explain how to obtain the confidence interval. First, for a fixed number of candidate
lines to insert, the probability for a plan of being feasible is equivalent to a Bernoulli

2A detailed presentation of the IEEE-24 buses system is given in Appendix A.1.
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random variable of a certain parameter p, which corresponds to the proportion of feasible
expansion plans among all possible ones. Moreover, for a Bernoulli distribution, if the
estimate p̂ of parameter p is not near 0 or 1, and if the sample size n is sufficiently large
(i.e. np̂ > 5 and n(1− p̂)> 5), then the (1−α)th%-confidence interval can be estimated
with the use of the Central Limit Theorem:[

p̂− z1−α/2

√
p̂(1− p̂)

n
, p̂+ z1−α/2

√
p̂(1− p̂)

n

]

where z1−α/2 is the (1−α/2)th quantile of the standard normal distribution. If p̂ = 0
and n > 30, the 95% confidence interval is approximately

[
0, 3

n

]
[32].

In figure 4.3, one observes that the approximation of the probability for a plan p to be
feasible (in blue) is lower than its effective value (in red); this makes our approach wise
since our interest is to find an upper bound on the number of random realizations to
simulate in order to guarantee the proximity to optimality. Therefore, being pessimistic
when considering the feasibility of an investment plan fits with the objective of finding
an upper bound. One could have expected this observation for different reasons:

1. First, hypothesis H1 assumes that there is only one optimal solution, which is not
necessarily the case. Hence, for the approximation of the feasibility of an investment
plan (equation 4.3), one should not verify the presence of one set of candidate lines
but of several sets, i.e. one set of candidate lines per different optimal expansion
planning.

2. Second, hypothesis H4’s statement: «an investment plan p strictly more expensive
than the optimal one p∗ is feasible if and only if all the candidate lines built in p∗

are also built in p.» is not correct. Indeed, it could be possible that a plan is feasible
even if it has not a subset of lines that corresponds to the set of lines of an optimal
solution. Figure 4.4 shows an example where it is not the case; hypothesis H4 is
thus not a necessary condition to obtain feasible expansion plans.

3. Finally let also mention that adding a line to a feasible investment plan may result
in an infeasible investment plan as illustrated in Figure 4.5; hence hypothesis H4 is
also not a sufficient condition to obtain feasible expansion plans.

To summarize, points 1 and 2 justify the under-estimation in the approximation of the
probability for a plan to be feasible (equation 4.3), whereas point 3 could explain an
over-estimation. However in practice, we observe that points 1 and 2 have more effect
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Fig. 4.4 Illustration of a counter-example of the statement mentioned in H4. Here, each line
has a cost of 1; the optimal solution is to build lines 3 and 4 for a cost of 2. However building
lines 1, 2 and 3 or 1, 2, and 4 are also feasible expansion plans even though they do not build
both lines 3 and 4, i.e. the set of candidate lines of the optimal solution.

Fig. 4.5 Like in example 4.4, the optimal investment plan is to build lines 2 and 3. However
building all the lines would lead to an infeasible expansion plan. Indeed, when there is no
contingency, the flow is equally distributed on the three lines, which leads to an overloading of
line 1 that has a capacity of 0.01 MW. We assume here that all lines have the same susceptance.

on the estimation than point 3, which lead to a global under-estimation as illustrated in
figure 4.3.

Probability analysis

Based on hypotheses H1-H4, it is possible to derive the probability P(|Cpr.a. −Cp∗| ≤ k ·
C |niter = m) of obtaining a feasible plan pr.a. with the randomized algorithm that is at most
k ·C more expensive than the optimal plan p∗ after m samples. It is possible to express this
probability in terms of number of candidate lines built in the plan instead of in terms of cost:

P(|Cpr.a. −Cp∗| ≤ k ·C |niter = m)
H1
= P(|npr.a. −np∗| ≤ k |niter = m), (4.4)
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where npr.a. is the number of candidate lines (of cost C) that are built in feasible plan pr.a.. This
probability can be computed as follows:

P(|npr.a. −np∗ | ≤ k |niter = m)

=
n

∑
i=0

P(|npr.a. −np∗ | ≤ k |niter = m and np∗ = i) ·P(np∗ = i),

=
n

∑
i=0

P(|npr.a. − i| ≤ k |niter = m and np∗ = i) ·P(np∗ = i),

=
n

∑
i=0

[
1− P̄(|npr.a. − i| ≤ k |niter = m and np∗ = i)

]
·P(np∗ = i),

i.i.d.
=

n

∑
i=0

(
1−
[
P̄(|npr.a. − i| ≤ k |niter = 1 and np∗ = i)

]m) ·P(np∗ = i). (4.5)

Deriving P(np∗ = i) is easy since we have assumed that np∗ ∼ B (n,0.5) in H2; deriving
P̄(|npr.a. − i| ≤ k |niter = 1 and np∗ = i) needs more details: npr.a. is a random variable that
represents the number of candidate lines of the best feasible investment plan given a certain
number of realisations, hence after one sample, the probability that npr.a. equals n̄ knowing the
best investment plan p∗ equals

P(npr.a. = n̄ |niter = 1 and np∗) = P(np = n̄) ·P(p is feasible |np∗ and np = n̄) , (4.6)

where np ∼ B (n,0.5). We can then derive the following probability:

P̄(|npr.a. − i| ≤ k |niter = 1 and np∗ = i)

= 1−P(|npr.a. − i| ≤ k |niter = 1 and np∗ = i),

= 1−
k

∑
j=0

P(npr.a. = i+ j |niter = 1 and np∗ = i) ,

4.6
= 1−

k

∑
j=0

P(np = i+ j) ·P(p is feasible |np∗ = i and np = i+ j) . (4.7)

Finally, inserting expression 4.7 in equation 4.5 gives the following result:

P(|Cpr.a. −Cp∗ | ≤ k ·C |niter = m)

=
n

∑
i=0

(
1−
[
P̄(|npr.a. − i| ≤ k |niter = 1 and np∗ = i)

]m) ·P(np∗ = i),

4.7
=

n

∑
i=0

[
1−

(
1−

k

∑
j=0

P(np = i+ j) ·P(p is feasible |np∗ = i and np = i+ j)

)m]
·P(np∗ = i).

Everything needed to compute this expression is now available since (i) both np and np∗

follow a binomial distribution B(n,0.5) and (ii) the probability for p to be feasible knowing the
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cost of plan p and p∗ is given by equation 4.3. Figure 4.6 represents this probability for different
values of k; as our intuition would have told us, the larger k, the more probable to find a feasible
plan pr.a. that has a cost Cpr.a. ∈ [Cp∗,Cp∗ + k ·C] for a given number of random realisations
tested. Of course, if k = 0 is considered, one get the same graph as the one represented on
figure 4.1. An arbitrary choice of k to guarantee the proximity of pr.a. to the optimal plan p∗,
could be k = 5. From the graphs hereafter, one observes that the number of samples needed to
reach a given probability confidence is already much lower than for finding the exact solution.
However, for large systems, guaranteeing to be close to the optimal solution (for example k = 5)
would need too large a number of samples to be computationally feasible; we see here the need
of searching a plan in a more clever way.

Fig. 4.6 Illustration of the probability to find a feasible plan close to optimal given a certain
number of random realisations niter and given a maximum cost gap k ·C.
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Copyrigthts: Julien Vaes and Anthony Papavasiliou
The transmission expansion planning (TEP) problem has extensively been addressed in the

scientific literature. The way to model the problem has a significant impact on the efficiency of
well-known methods traditionally used to solve MILP. Hence, before proposing methods to
solve the TEP problem, one should first look at the existing methods and evaluate if they could
be promising in our situation.

In this part, the objective is to get efficient methods that could tackle the optimization
problem established in part I in a reasonable amount of time. To continue the literature review
undertaken in chapter 2 where different TEP formulations have been presented, we present,
in chapter 5, the most common methods used so far to solve the TEP problem depending on
its formulation. In chapter 6, we investigate mathematical optimization models applicable
to our formulation whereas chapter 7 focuses on heuristics and presents the method we have
developed.
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Literature review on the methods to solve the TEP

problem.

Copyrigthts: Julien Vaes and Anthony Papavasiliou
In the literature, two main approaches are reported to solve the transmission expansion

planning (TEP) problem: (i) mathematical optimization models and (ii) heuristics. Other
approaches exist, referred to as meta-heuristics, that have characteristics of both types of
approaches. [34, 29].

5.1 Mathematical Optimization Models

Mathematical optimization models solve a mathematical formulation of the TEP problem, such
as the one derived in section 3.5, in order to obtain the optimal expansion plan. Obviously, the
optimality trait of the obtained expansion plan depends on the TEP formulation; the solution of
the optimization problem differs, for instance, as regards to considering or not the losses on
the transmission lines. In these models, the optimal solution is the result of an optimization
problem characterized by (i) an objective function allowing the comparison between expansion
plans, and (ii) a set of constraints representing the requirements imposed by the TSOs to the
expanded power system.

The TEP problem is modelled as an integer optimization problem that can be linear or
not depending on the chosen way to represent the power flow. Hence, most of the methods
proposed so far, solve the TEP problem using traditional optimization techniques such as linear
programming [27], non-linear programming [35, 38], dynamic programming [18, 57] or mixed
integer programming (such as Branch and bound) [4, 28, 31, 36]. However those analytical
methods have some drawbacks [31]:
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• Linear programming is only used for the transportation model, i.e. a relaxed version of the
DC model where Kirchhoff’s voltage law constraints are eliminated. As a consequence,
the optimal expansion plan obtained must be considered with caution since it arises out
of a (too?) relaxed model.

• Non-linear programming has still reliability and robustness difficulties when dealing
with large complex power systems, especially for non-convex problems such as the TEP
problem.

• Branch and Bound resorts to selective/partial enumerations, which can lead to memory
issues for large problems. Moreover it has also high execution times.

Because of the drawbacks of the most common methods, decomposition strategies were
investigated in order to treat the problem in several simpler pieces, such as Benders decomposi-
tion or hierarchical decomposition [51]. G.C. Oliveira and S. Binato were among the first to
apply Benders decomposition to the TEP problem [9]. Benders decomposition was first pro-
posed in 1962 [5] and has received much attention in the literature since then. The idea of this
decomposition is to apply a divide-and-conquer strategy: the variables of the original problem
are divided into two subsets, i.e. (i) first-stage variables whose values are determined by the
so-called master problem and (ii) second stage variables whose values are obtained by solving
the slave problem for a given first-stage solution1. Benders decomposition is particularly
advantageous when (i) the number of variables linking the two stages is small or when (ii) the
nature of the master and slave problems are different; the TEP problem presents both aspects.
The way to apply Benders decomposition to the TEP problem is further detailed in section 6.2.1.

In section 3.4, we have presented the (N −1)-security criterion, widely requested by trans-
mission system operators (TSOs) in order to guarantee a certain level of reliability and security
of the expanded power system. In a similar way as in section 3.4, article [42] shows how
to formulate the problem by repeating all network constraints for each circuit contingency
2. In the literature, different ways have been proposed in order to solve the TEP problem
under the (N−1)-security criterion. Article [31] explains how to apply Benders decomposition
based on a stochastic model of the TEP problem. In contrast, in articles [14, 41] the authors
decided to have recourse to adjustable robust optimization to circumvent the tractibility issues
experienced by conventional methods relying on explicitly modelling the whole contingency

1For interested readers, the textbook of the course LINMA2491 - Operations research taught by Professor
Papavasiliou at the Université catholique de Louvain gives more detail about Benders decomposition [46].

2Let us remind that imposing the robustness of a power system, i.e. considering different instances of net
power injections (section 3.4), can be treated in the same way as contingencies.

https://uclouvain.be/cours-2016-LINMA2491
https://perso.uclouvain.be/anthony.papavasiliou/public_html/
https://perso.uclouvain.be/anthony.papavasiliou/public_html/
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set; this approach is similar to the way article [52] addresses the TEP problem while considering
uncertainty of future demand and generation facilities production. The methods are presented
in sections 6.2.1 and 6.2.2.

The main issue with mathematical optimization models is that they usually require a large
computational effort and present difficulties to deal with the expansion of medium and large
power systems [26]. In certain circumstances, they are even subject to convergence problems
[25, 53]. This major drawback of mathematical optimization models explains why the scientific
community decided to approach the TEP problem with heuristics as well.

5.2 Heuristics and Meta-Heursitics

Heuristics methods are the current alternative to mathematical optimization models. All tech-
niques that are building solutions step-by-step instead of resolving an optimization problem are
categorized as heuristics. These procedures perform local searches until they are not able to
find any better solution; the search is then interrupted by invoking the satisfaction of a prede-
fined stopping criteria. Hence, heuristics are simplified procedures used to identify feasible
solutions of complex problems requiring little computational effort compared to mathematical
optimization models. Even though heuristics return relatively quickly feasible solutions, they
fail in providing, mathematically speaking, bounds or proofs on the quality/optimality of their
solution; they rarely find the optimal expansion plan, especially when they are used on real
power systems [50, 40].

Meta-heuristics are heuristic techniques enhanced by a search procedures inspired mainly
by natural mechanisms. They are adequate to solve complex combinatorial problems and
usually succeed in identifying optimal or suboptimal solutions even for large power systems.
The main drawbacks of such algorithms is that they require large computational efforts.

Many different heuristics/meta-heuristics have been applied to the TEP problem; due to
the abundance of heuristics applied to the TEP problem, we decided to only mention but not
implement the most well-known ones hereafter; for more information on their performances
we refer the interested readers to cited articles [34, 17]:

• A first class of heuristics are those iteratively selecting the candidate lines to add to an
initial plan, based on sensivities [6, 21, 47]. The sensitivity analysis can focus exclusively
an electric sensitivities such as in [6], or on sensitivities related to the power system
behavior such as load curtailment [47].
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• With the progress of computer performances, interest in methods appropriate to parallel
processing has risen. The most well-known method being genetic algorithms GA, which
are based on the mechanism of evolution (natural selection). The particularity of these
methods is that, contrary to conventional optimization techniques performing point-to-
point searches, it searches from population-to-population. The following articles explain
how to approach the TEP problem using GA [23, 60].

• Ant Colony Search (ACS) system introduced in 1992 [20] is an algorithm inspired by the
behavior of ant colonies and used to solve combinatorial problems. Article [37] proposes
an adaptation of this algorithm to the TEP problem.

• The transmission expansion planning has been approached using many other ways: game
theory [15, 43], simulated annealing [22], greedy randomized adaptive search procedure
[7], etc.

We can see that a multitude of approaches have been proposed, however none of them
has really taken the lead, i.e. the performances of each approach is dependent on the power
system, the performances are thus variables depending on the network structure. In chapter
7, we propose a heuristic approach that does not require strong computational efforts and that
does not require a particular power systems structure to perform correctly.
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Copyrigthts: Julien Vaes and Anthony Papavasiliou
In chapter 5, we have presented the most well-known methods used to solve the transmis-

sion expansion problem. In this chapter, we give more detail about the methods that can be
applied to our formulation of the TEP problem (cfr. section 3.5). The common trait of the
following methods is that they solve exactly the TEP problem 3.11.

We first explain how to implement the TEP problem in a commercial solver, such as Gurobi,
then we detail two Benders decomposition approaches to solve our TEP problem and finally
we have a word about the Branch and Bound method.

6.1 Solver method

The first reflex to have when dealing with the transmission expansion planning problem is to
try to solve it in a commercial solver; indeed for small/medium power systems, it is probable
that a commercial solver, such as Gurobi, is able to solve the TEP problem within a reasonable
amount of time. As a consequence, in our case there would not be any interest in approaching
the problem with any special mathematical approach.

Depending on the power system and the candidate lines, the TEP problem formulated as in
section 3.5 might be infeasible, i.e. no combination of candidate lines makes the expansion
planning feasible. However, by allowing load curtailment, the TEP problem is guaranteed to be
feasible; this approach is for example used in [10, 31] to guarantee the feasibility of the slave
problem in Benders decomposition, which justify the only presence of optimality cuts.

The consideration of load curtailment introduces new continuous variables, r(s,k)n , at each
bus for each contingency and scenario; the complexity of the optimization problem to solve is



38 Mathematical optimization

thus enhanced. Moreover, if load shedding has no cost, the optimal solution would be to shed
all loads, which is obviously not the optimal solution researched. Hence, as suggested in [10],
we should tolerate load shedding but at a high cost, CLS, in order to ensure no load shedding
occurs at final solution when the TEP problem is feasible. As a consequence, to load shedding
corresponds the amount of network infeasibility. The easiest way to assign a value to CLS is
to consider a cost equal to the maximum investment cost possible, i.e. CLS = ∑l∈Lc Il . The
adapted objective function of TEP problem while considering load curtailment writes as:

min
xl , fl ,θn

∑
l∈Lc

Il · xl +CLS ·

(
∑

n∈N
∑

k∈K
∑

s∈S

r(s,k)n

)
. (6.1)

Formulated like this, the TEP problem stays infeasible due to the enforcement of the power
balance constraint 3.4 since the production at each bus is fixed. A most natural way to render
the TEP problem feasible when allowing load curtailment, is to consider that power generation
at each bus and for all contingencies and scenarios, g(s,k)n , can vary between 0 and its maximum
value Pn. Constraint 3.4 is then replaced by the following set of constraints:

g(s,k)n + ∑
l∈Ω

−
n

f (s,k)l − ∑
l∈Ω

+
n

f (s,k)l = Dn − r(s,k)n , ∀n ∈ N ,∀s ∈ S ,∀k ∈ K , (6.2)

0 ≤ r(s,k)n ≤ Dn, ∀n ∈ N ,∀s ∈ S ,∀k ∈ K , (6.3)

0 ≤ g(s,k)n ≤ Pn, ∀n ∈ N ,∀s ∈ S ,∀k ∈ K , (6.4)

where constraints 6.3 and 6.4 impose that load and generator shedding should be non-negative
and should not exceed their maximum value, Dn and Pn respectively.

Table 6.1 includes the time needed for both approaches (with or without load curtailment)
to solve the transmission expansion planning problem for the IEEE-24 buses power system A.1.
As expected from the design of both approaches, they find the same solution; no load shedding
is used in the second approach. We also observe that, when the TEP problem is feasible, the
time needed to find the optimal solution is less important in the case where no load shedding is
inserted in the problem; this was of course expected since when load shedding is allowed, the
problem complexity increases. One observes here the trade-off between (i) the computational
time and (ii) the certainty of having a useful solution. Indeed, even for small power systems,
such as the IEEE-24 buses power system, one sees the consequent increase in computation
time needed when load shedding is considered.
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IEEE-24 buses system Gurobi without LS Gurobi with LS
Time [s] 285.45 3465.11

Optimal cost [ke] 113600 113600
Quantity of LS [MWh] - 0.0

Table 6.1 Time needed to solve the TEP problem for the IEEE-24 buses system with Gurobi.

6.2 Benders decomposition

In the following section, we explain how to apply Benders decomposition to our problem using
two approaches: (i) first we consider a stochastic formulation and (ii) second we explain how
to combine Benders decomposition with adjustable robust optimization.

6.2.1 Bender decomposition using a stochastic model

Binato et al. were among the first researchers to apply Benders decomposition to the TEP
problem in [10]. As discussed when commenting equations 3.6 and 3.7, their major contribution
was to propose a clever way to assign the value of the disjunctive parameters Ml . Their work
has then been further developed in many ways, as explained in the introduction of article
[31]. Article [31] is particularly relevant in our case since it explains how to apply Benders
decomposition while considering the (N −1)-security criterion. Since imposing robustness to
a power system is very similar to imposing the (N −1)-security criterion, applying Benders
decomposition in our situation requires only few modifications.

The first step is to include load curtailment in our formulation 3.11 by using a stochastic
optimization model. This is done by transforming the objective function as in equation 6.1 and
by transforming the power balance constraint by the set of equations 6.2-6.4. Let us remark
that normally, in stochastic optimization, we should insert probabilities ps,k representing the
probability that contingency s occurs in scenario k as illustrated in equation 6.5. However, by
hypothesis, we desire the power system to be able to manage each situation equivalently; we
can thus, without loss of generality, remove ps,k from the objective function since it does not
vary and can be integrated in CLS.

min
xl , fl ,θn

∑
l∈Lc

Il · xl +CLS ·

(
∑

n∈N

ps,k ·

[
∑

k∈K
∑

s∈S

r(s,k)n

])
. (6.5)
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The extensive stochastic formulation can be formulated as in 6.6:

Stochastic optimization model

min
xl , f (s,k)l ,θ

(s,k)
n ,g(s,k)n ,r(s,k)n

∑
l∈Lc

Il · xl +CLS ·

(
∑

n∈N
∑

k∈K
∑

s∈S

r(s,k)n

)
(6.6)

s.t. g(s,k)n + ∑
l∈Ω

−
n

f (s,k)l − ∑
l∈Ω

+
n

f (s,k)l = Dn − r(s,k)n , ∀n ∈ N ,

f (s,k)l −Bl

(
θ
(s,k)
m −θ

(s,k)
n

)
= 0, ∀l = (m,n) ∈ Le,

f (s,k)l −Bl

(
θ
(s,k)
m −θ

(s,k)
n

)
≤ Ms

l (1− xl), ∀l = (m,n) ∈ Lc,

− f (s,k)l +Bl

(
θ
(s,k)
m −θ

(s,k)
n

)
≤ Ms

l (1− xl), ∀l = (m,n) ∈ Lc,

−Tl ≤ f (s,k)l ≤ Tl, ∀l ∈ Le,

−Tl xl ≤ f (s,k)l ≤ Tl xl, ∀l ∈ Lc,

xl ∈ {0, 1}, ∀l ∈ Lc,

0 ≤ r(s,k)n ≤ Dn, ∀n ∈ N ,

0 ≤ g(s,k)n ≤ Pn, ∀n ∈ N ,

s ∈ S , k ∈ K .

To simplify the notations we will rather consider matrix notations 6.7, which are classically
used in Benders decomposition; matrix notations help making the distinction between first and
second stage decisions.

Stochastic optimization model (matrix notations)

min
x, ys,k

cT · x+ ∑
s∈S ,k∈K

qT
s,k · ys,k (6.7)

s.t. A · x ≤ b, (6.8)

Ts,k · x+Ws,k · ys,k ≤ hs,k, (6.9)

x ∈ X , ys,k ≥ 0. (6.10)

In formulation 6.7, x denotes the first stage decision variables restricted by an integer set
X ; ys,k are the continuous second stage decisions for each scenario k and contingency s; A
and b are parameter matrix and vector independent of the scenarios and contingencies; Ts,k,
Ws,k and hs,k are parameter matrices and vector for each scenario k ∈ K and contingency
s ∈S . In article [49] it is suggested to assign the value of the disjunctive parameters as follows:
Ml =

2π

Bl
, where Bl is the susceptance of circuit l. We note that second stage variables f (s,k)l and
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θ
(s,k)
n may be negative, whereas we desire non-negative second stage variables as mentioned in

equation 6.10; this issue is easily solved by adding non-negative variables to the problem, i.e.
f (s,k)l = f (s,k)+l − f (s,k),−l .

We can now apply Benders decomposition which is interesting in our situation since, as
explained before, (i) the number of variables linking first stage to second stage problems, i.e.
investment decisions, is relatively small compared to the total number of variables, and (ii) the
nature of both problems are different: the master problem is a MILP whereas the slave problem
is a LP. The master problem 6.11 is formulated hereinafter where Q = ∑s∈S ,k∈K Qs,k:

Benders decomposition: master problem (MP)

min
x

cT · x+Q (6.11)

s.t. A · x ≤ b, x ∈ X

Given the first stage decisions x̄ obtained by solving the master problem, the slave problem
must be solved. However, since there are no interactions between each scenario and contin-
gency, it is more efficient to solve a slave problem 6.12 for each scenario k and contingency s;
the separation of these problems enables the use of parallel processing.

Benders decomposition: slave problem (SP)

min
ys,k

qT
s,k · ys,k (6.12)

Ws,k · ys,k ≤ hs,k −Ts,k · x̄,
ys,k ≥ 0.

The dual DP 6.13 of SP is formulated hereinafter:

Benders decomposition: dual of the slave problem (DP)

max
us,k

(
hs,k −Ts,k · x̄

)T ·us,k (6.13)

W T
s,k ·us,k ≤ qs,k,

us,k ≤ 0.

Based on the argument developed in the previous section 6.1, the primal of the slave problem
(SP) is always feasible since load curtailment is tolerated. As a consequence, feasibility cuts
will never be generated. By duality, the dual problem DP is bounded and its objective function



42 Mathematical optimization

value provides a lower bound on SP, which allows to generate an optimality cut as follows:

Qs,k ≥
(
hs,k −Ts,k · x

)T · ūs,k, (6.14)

where ūs,k is the optimal solution of DP 6.13. The value of Q is then constrained in the master
problem by using these optimality cuts:

Q ≥ ∑
s∈S ,k∈K

(hs,k −Ts,k · x)T · ūi
s,k, i = 1, . . . ,N (6.15)

where N is the number of iterations already realized. One can also split Q in the master problem
as the sum of Qs,k and impose the following lower bounds on Qs,k:

Qs,k ≥ (hs,k −Ts,k · x)T · ūi
s,k, i = 1, . . . ,N. (6.16)

This last version of the master problem is called the multicut strategy; it has been demonstrated
that this version has a faster convergence rate than the classical version [11]. To increase the
convergence, one can use the fact that no load curtailment is actually tolerated, which imposes
that Q = 0 ⇔ Qs,k = 0, ∀k ∈ K ,s ∈ S . Hence the new multi-cut master problem can be
transformed as follows:

Benders decomposition: master problem (MP), multi-cut version

min
x

cT · x+Q (6.17)

s.t. A · x ≤ b, x ∈ X ,

0 ≥ (hs,k −Ts,k · x)T · ūi
s,k, i = 1, . . . ,N.

Algorithm 1 (Benders decomposition: multi-cut version) The Benders decomposition al-
gorithm applied to our situation can thus be formulated as follows [31]:

1. Step 1. Set i = 1, LB = −∞, UB = +∞, and solve MP without cut. Update the lower
bound as follows LB = max(LB, LB′), where LB′ is the objective function value of the
master problem.

2. Step 2. Solve DP 6.13 for each scenario and contingency given the master first stage deci-
sion x̄. Save the solution ūs,k and update the upper bound as follows UB=min(UB,UB′),
where UB′ = cT x̄+∑s∈S ,k∈K (hs,k −Ts,k · x̄)T · ūs,k.
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3. Step 3. Evaluate the stopping criteria, i.e. if UB−LB ≤ ε (e.g. ε = 10−6) then STOP;
otherwise we generate optimality cuts 6.16 and insert them in the master problem before
going back to step 1 with i = i+1.

6.2.2 Bender decomposition using adjustable robust optimization

In section 3.1, we made the hypothesis that the uncertainty of production generation facilities
would be represented by several scenarios representing extreme cases; this hypothesis enables
to approach the problem via the Benders decomposition strategy based on a stochastic model of
the problem as presented in section 6.2.1. In practice, rather than having extreme scenarios, one
represents more often the uncertain parameters, such as future production and demand, through
robust sets. Indeed the probability distribution functions of those parameters, needed in the
stochastic formulation, are often inaccessible. Moreover, considering extremes scenarios can
lead to an enormous amount of variables and constraints; as a consequence, approaching the
TEP problem via the previous approach 6.2.1 can rapidly lead to an intractable problem due to
limited memory. Therefore, to circumvent the tractability issues associated with conventional
contingency-constrained methods, articles [14, 54] propose a different approach to solve the
TEP problem, which consists in formulating the problem as an adjustable robust optimization
model and to apply the Benders decomposition strategy. Adjustable robust optimization (ARO)
models, which are comparatively less complex than stochastic programming models, obey the
following philosophy:

• The optimal expansion plan is sought by minimizing the same objective function as in
the stochastic formulation 6.6.

• This optimal expansion plan is sought knowing that once the investment decisions are
taken, the worst scenario occurs, i.e. given a transmission expansion plan, uncertain
parameters take the values that maximize objective function 6.6.

• Once the uncertain parameters are fixed, the power system reacts in order to minimize
the impact of those on the objective function by finding the best combination of the
remaining variables.

This philosophy is translated in mathematics in an optimization problem at three levels:

• The upper level determines optimal non-adjustable decisions, i.e. decisions that must be
feasible for every deviation of the uncertain parameters.

• The middle level determines the worst-case parameters values leading to maximum
feasibility damage of the upper-level decisions.
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• The lower level aims at finding the best reaction, by means of adjustable variables, that
minimize the upper-level infeasibility.

The trilevel optimization model can be explained as follows: for a given upper-level de-
cision, the middle-level searches in the contingencies set the most damaging one in terms of
power imbalance, given the best redistribution provided by the lower level. In other words, the
two lowermost optimizations are the identification of the contingency leading to the largest
system power imbalance.

References [14, 54] prove the equivalence between the trilevel optimization model derived
and the original contingency-dependent formulation. They explain also how to apply Benders
decomposition once, by strong duality, the two lowermost optimization problems being merged
together in a single-level equivalent problem.

In conclusion, the advantage of Benders decomposition is that (i) it helps to derive lower
and upper bounds on the best expansion plan achievable and (ii) it allows parallel processing,
which gains in success these years with the increase in computational capabilities. We decided
not to implement this method since, as studied in a previous master’s thesis [30], the results of
this method are not convincing, i.e. the lower bound estimation behaves badly which leads to
difficulties in the convergence.

6.3 The Branch and Bound method

Branch and Bound (B&B) trees are often used in commercial solvers in order to solve MILP
optimization problems. The idea of this method is to use a decision tree and to update recursively
the upper and lower bounds until a stopping criterion is reached, e.g. UB−LB

LB < ε , where ε is a
chosen tolerance. This method is famous but has unfortunately bad performances on the TEP
problem; to understand more in detail this bad behavior let us recall the philosophy of Branch
and Bound (B&B) trees with the help of figure 6.1.

6.3.1 A quick reminder on how it works

Figure 6.1 represents a result that we could get when applying Branch and Bound (B&B) to a
minimization optimization problem composed of four binary variables only. The main idea of
Branch and Bound (B&B) trees is to iteratively split the search set into two complementary
parts, e.g. by imposing for a binary variable a value of 0 in left part of the tree and of 1 in the
right part. As a consequence, each node of the tree has some fixed decisions to respect; for
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each of those nodes the linear relaxation of the integer problem is solved. Let denote Z the
solution of this relaxed problem, which is a lower bound of the potential feasible solutions in
its children nodes; for example, in figure 6.1, the first node of level 2 has a value Z = 12, which
means that any feasible node in the subtree of this node will always have a value greater than
or equal to Z = 12. Based on these values, it is possible to derive lower and upper bounds of
the global optimum at each level l:

• LBl = minn∈{Node of level l}(Zn); the global lower bound of the problem is the minimum
of the lower bounds of all subtrees, which is given by the value Zn for a node n of the
level l.

• UBl = min
[
UBl−1; minn∈{Feasible nodes of level l}(Zn)

]
; the upper bound corresponds to the

best solution found sa far.

When the algorithm is processing, it can avoid exploring some parts of the tree in two
frequent cases:

1. First, a branch issued from a node n can be pruned if the value of the relaxed problem, Z,
is greater than the upper bound.

2. Second, the relaxation of a certain node might be infeasible. Hence any child of this
node is also infeasible and does not need to be explored.

Example 2 illustrates these cutting strategies based on figure 6.1.

Example 2 (Branch and Bound tree) On the right of the figure, we observe the updates of
the lower and upper bounds. In the south-west corner is the legend of the nodes colors. The
root node is unfeasible but has a feasible relaxation Z = 10, its children are both infeasible but
have also feasible relaxations. In the third level, four different cases occur: (i) the green node
is feasible and updates the upper bound, (ii) the red node is infeasible relaxation, which implies
that it is not necessary to visit its children, (iii) the orange node has a relaxation value of 15,
which is greater than the upper bound (UB3 = 14); it can thus be pruned and finally (iv) the
last has a relaxation value strictly smaller than UB3; hence its children need to be investigated.
Finally in level 4, a feasible node has a cost of 12, which corresponds to the lower bound; one
can thus terminate the algorithm.

Theoretically the Branch and Bound method seems attractive, however it is not appropriate
to the transmission expansion planning problem for one major reason: the continuous relaxation
of this mixed integer problem does not give useful/tight lower bounds. As a consequence, a
solver, such as Gurobi, will loose time in evaluating, at each node, the relaxed problem for
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Fig. 6.1 Example of a B&B tree.

negligible benefits in the pruning strategy. Few attempts have been made in the perspective to
improve the performance of the method: article [28] proposes a customization when applied
to the transportation model, which is a very relaxed model of the TEP problem and in article
[36] it is used only as a tool. Finally, one must mention that solving the relaxed problem or
even checking the feasibility of an investment plan might cause memory and loading issues for
commercial solvers when the power network size is large, e.g. the UK power system A.3.

6.3.2 How to apply the Branch and Bound method to the TEP problem?

From the previous section, we observe that solving the relaxed problem at each node of the tree
is a waste of time. Hence, it could be interesting to implement a Branch and Bound tree, where
the relaxed problems are not solved and where the feasibility of a plan is checked without
calling a commercial solver.

Verifying the feasibility of an expansion plan requires that, for each scenario and contin-
gency, (i) the flows respect the line capacities (ii) the net injections are respected. However,
since one knows the net injections, it is easy to get the phase angles at each bus and as con-
sequence the flows. Indeed, as described in section 2.2, the phase angles θ are obtained by
solving the following linear system:

T ·θ = P, (6.18)
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where P is the vector of real power injections and T is a matrix whose elements are:

Tmn =


− 1

Xmn
, if (m, n) ∈ A,m ̸= n,

∑n′=1,n′ ̸=m
1

Xmn′
, if m = n,

0, if (m, n) /∈ A,

(6.19)

where A is the set of arcs in the network and where Xmn = B−1
mn is the reactance of arc (m, n).

Equation 6.18 is the matrix version of the balance constraints 3.4:

Pm =
N

∑
n=1, n̸=m

1
Xmn

θm −
N

∑
n=1, n̸=m

1
Xmn

θm, ∀m ∈ N .

For interested readers, we refer them to Appendix A.4. of the Quantitative Energy Eco-
nomics course’ textbook [45] for more detail on how to obtain those equations. With this
approach, verifying the feasibility of an investment plan given a scenario and a contingency
requires (i) the resolution of a linear system where the matrix is of size |N |−1×|N |−1,
which remains relatively rapid to compute since the number of buses in a power system remains
small enough and (ii) a for loop on the lines (number of iterations: |Le ∪Lc|) to verify that
each flow respects the line maximum capacity.

Table 6.2 compares the mean time needed to check the feasibility of an expansion plan when
using either a commercial solver or the linear system approach, i.e. checking the feasibility of
the power system for each scenario and contingency via the resolution of system 6.18.

System | Method Gurobi solver Resolving T ·θ = P
IEEE-24 buses (A.1) 1.20 s 0.02 s

UK system (A.3) 110.0 s 2.0 s

Table 6.2 Time needed to check the feasibility of an expansion plan [s].

From this table, one can conclude that calling a commercial solver to check the feasibility
of an investment plan of large power systems is maybe not the best idea. However, even with
this gain in efficiency, it is hopeless to obtain good performances with the Branch and Bound
approach. Indeed, even if we assume that the optimal investment plan is quickly obtained, it
might be computationally infeasible to prove its optimality in a reasonable amount of time as
illustrated in example 3.

https://uclouvain.be/en-cours-2017-LINMA2415
https://uclouvain.be/en-cours-2017-LINMA2415
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Example 3 Let assume that the optimal investment plan uses 48 out of the 49 candidates lines.
Then to prove optimality, all cheaper investment plans should be checked, which means that at
least 248 ≃ 2.81 ·1014 plans must be considered; which leads to computational time issues.

As a conclusion, approaching the transmission expansion planning with a Branch and
Bound tree is hopeless since the number of plans to check is exponentially proportional to the
number of candidate lines. However, we have shown here that checking the feasibility of an
expansion plan is much more efficient via the linear system approach than calling a commercial
solver.
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As mentioned in section 4, it is senseless to attempt to find, in a reasonable amount of

time, the optimal solution of the transmission expansion planning problem when the number of
candidate lines is large. In this chapter, we present and analyze the heuristic we have developed,
called the probabilistic method. This heuristic has as objective to provide a feasible solution, of
relatively good quality, to the TEP problem within a reasonable amount of time.

7.1 Ideas

The probabilistic method presented in the next section 7.2 arises as a result of two observations:

• First, as explained in section 6.3 and in [45], verifying the feasibility of an expansion
plan in our formulation of the TEP problem 3.5 can be managed via the resolution of a
linear system. This approach turned out to be more efficient than using an optimization
commercial solver as illustrated in table 6.2. Hence, it could be relevant to design an
algorithm that tests a multitude of expansion plans since one can check their verification
at a greater pace than commercial solvers. As a consequence, we decided to reconsider
the idea of randomized algorithms; indeed, if one could generate random investment
plans with a higher probability to be feasible, we should be able to increase the chances
of finding a good solution, which are low when generating completely random expansion
plans as proved in section 4.2.2.

• Second, in section 4.2.2, we have derived an estimate of the probability of feasibility of
an expansion plan p knowing its cost Cp and the optimal cost Cp∗ (see figure 4.3). Based
on figure 4.3, we can argue that this estimation is of relatively good quality; this partially
validates the correctness of hypotheses H1-H4 made in section 4.2.2. Hence the good fit
of the estimation 4.3 with reality gave us two ideas detailed in the next paragraphs: (i)
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first, based on empirical values, it is possible to derive a lower bound on the number of
lines inserted in the optimal expansion plan and, (ii) second, the validity of hypotheses
H1-H4 suggests a strategy to generate random feasible expansion plans.

Deriving a lower bound on np∗

We have noticed in figure 4.3, that the estimate of the probability of feasibility of an expansion
plan p was an under-estimation of the empiric probability, estimated using the law of large
numbers (in red). To compute this estimation, one needs to know the number of candidate lines
built in the optimal expansion plan np∗ , which is unknown. However we can argue that if a
value greater than or equal to np∗ is used in equation 4.3, we should obtain an under-estimation
of the empirical values. The contraposition of this statement is that, if, for a given estimate
value n̄ of np∗ , one obtains an approximation that is greater than the empirical values, then
n̄ < np∗ . This assertion gives us a strategy (confer algorithm 2) to find a lower bound on the
number of candidate lines built in the optimal expansion plan, np∗ .

Algorithm 2 (Lower bound obtention) white
1. Test different estimates n̄ of np∗ and check whether equation 4.3 gives an under or

over-estimation of the empirical values.
2. Take as lower bound on np∗ , the greatest value n̄ where equation 4.3 returns an over-

estimation of the empirical values.

Example 4 (A lower bound on np∗ for the IEEE-24 buses system) Figure 7.1 represents the
approximation of the feasibility probability computed via equation 4.3 for n̄ = 10, 11, and 12.
When n̄ equals 11 or 12, it is difficult to conclude that the obtained result is an over-estimation;
in contrast, for n̄ = 10, one can say quite surely that the obtained result is an over-estimation.
As a consequence, we can conclude that np∗ > 10 which is verified since we know that np∗ = 14.

Example 5 (A lower bound on np∗ for the UK system) We can make the same analysis for
the UK power system1. Figure 7.2 represents the approximation of the feasibility probability
computed via equation 4.3 for n̄ = 63, 64, and 65. For n̄ = 63, we can still say with confidence
that the result obtained is an over-estimation. As a consequence, we can conclude that np∗ > 63.

An idea to generate a solution to the TEP

From figures 7.1 and 7.2, we can observe that the shape of the empirical probability for a plan
to be feasible is close from the one derived via equation 4.3. Hence we can suppose that, if

1This power system is described in Appendix A.3



7.2 Probabilistic method 51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0

0.5

1
Empirical probability
Theoretical approximation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0

0.5

1
Empirical probability
Theoretical approximation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0

0.5

1
Empirical probability
Theoretical approximation

Fig. 7.1 Illustration of the probability for an investment plan p of being feasible for the IEEE-24
buses power system.

there is more than one solution to the TEP problem, the majority of the candidate lines built
in these solutions are the same. As a consequence, if we generate a large number of random
feasible expansion plans and if we observe that a candidate line is built in the majority of these
plans, then it is highly probable that this candidate line (i) is needed to ensure the feasibility of
an expansion plan and (ii) is built in the optimal expansion plan. From this observation, we
have formulated algorithm 3 presented in the next section 7.2.1.

7.2 Probabilistic method

7.2.1 Algorithm

Algorithm 3 (Probabilistic method) The probabilistic method is a recursive procedure based
on the generation of random plans. This algorithm is composed of different steps:

Step 1. Initialization.

• let Costmin =+∞ be the cheapest investment plan known so far.
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Fig. 7.2 Illustration of the probability for an investment plan p of being feasible for the UK
power system.

• let CostOld
min =+∞ be the cheapest investment plan known so far at the beginning of

each iteration.

• let proba := [p1, p2, . . . , p|LC|] be a vector composed of the probabilities of selecting
each candidate line while generating random expansion plans. Hence for p1 =

· · · = p|LC| = 0.99, any candidate line has 99% chance of being included in any
random expansion plan generated. At the beginning of the algorithm, there is a
priori no reason to make any distinction between the candidate lines, hence we will
set all probabilities equal to α , i.e. p1 = · · ·= p|LC| = α . The parameter α has an
impact on how fast the algorithm will find feasible plans. Empirically the following
assumption is verified: the more candidate lines are inserted in an expansion plan,
the more probable it is for this expansion plan to be feasible. Hence, taking a value
close to 1 for α increases the probability of generating feasible expansion plans.

• let m̄ be the maximum number of random expansion plans tested per iteration.

Step 2. Recursion.
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(a) let veccount := [0, . . . ,0] be a vector with |Lc| entries and mc := 0 be a scalar
counting the number of feasible plans found.

(b) Generation. Random expansion plans are generated until a number of m feasible
plans cheaper than the best one at the beginning of the iteration (of cost CostOld

min )
are found or until m̄ expansion plans are tested. When a feasible plan cheaper
than Costmin is found, the minimum cost Costmin is updated. Moreover, for any
feasible plan p found, mc is incremented and vector veccount is updated as follows;
component i is incremented by one if candidate line i is built in plan p.

(c) Probabilities update. When m feasible expansion plans are found or when m̄
plans have been tested, the vector of probabilities (proba) is updated as follows:
proba[i] = max

(
(1−β ),min

(
β , veccount [i]

mc

))
. Parameter β is a safety parameter;

indeed one desires to avoid making hasty decisions and one keeps considering
building or not building all candidate lines.

(d) Evaluating the gap. A relative gap can be computed at the end of each iteration. It
is computed as follows:

gaprel =
Costmin −CostBuilt

Costmin
,

where CostBuilt is the cost of building all the lines i for which veccount [i]
m equals 1, i.e.

all the lines that are built in all feasible expansion plans found during the iteration.

(e) Evaluating the stopping criteria. If during the iteration, one has not improved the
best solution, i.e. Costmin =CostOld

min , then the algoritm terminates.

(f) Update the best solution. CostOld
min =Costmin.

(g) Moving to the next iteration. Go back to (a).

7.2.2 Description of the parameters

In the probabilistic algorithm 3, different parameters are used: α , β , m and m̄; in this section
we give an explanation on how to select these parameters.

• Parameter α . This parameter is used only for the first iteration. As mentioned above,
taking a value close to 1 allows to generate random expansion plans that have a high
probability to be feasible. However, this implies also that the random expansion plans
obtained contain the majority of the candidate lines and are probably much to expensive
compared to the optimal expansion plan. There is thus a trade-off between generating
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plans with a high cost and a high probability to be feasible and generating plans with a
lower cost but also with a lower probability to be feasible.

• Parameter β . The role of this parameter is to reconsider the decisions taken previously
by limiting the probability to insert or not insert a candidate line in the random plans
generated. For instance, if one has a pretty good idea on the decision to take for 100
candidate lines and if one takes a value of β equal to 0.99 then the probability of
respecting the probable decisions is equal to 0.99100 ≃ 0.366, which means that on
average (i) one third of the random plans generated respects the advised decisions, and
(ii) two thirds explore expansion plans "in the neighborhood" of the advised one and thus
reconsider the advised decisions. Obviously, as presented in III, this parameter has an
important impact on the convergence speed. For instance selecting a value of β slightly
lower, e.g. of 0.95, results in an important difference with only 0.5% of the random plans
generated respect the advised decisions; hence, if those decisions must be respected to
ensure the feasibility of a plan, the algorithm will have to generate much more random
plans in order to get the n feasible ones required to move to the next iteration.

• Parameter m. At the end of each iteration of algorithm 3, vector proba is updated.
As mentioned previously, the ith element of this vector is a probability estimation for
candidate line i to be inserted in a feasible plan cheaper than CostOld

min ; this estimation
is then used in the next iteration as the best approximation of probability of line i to be
inserted in a feasible plan cheaper than Costmin. The probability for a line to be inserted
in a random feasible plan cheaper than a specified cost can be seen as a Bernoulli random
variable. Hence we should fix the value of m such that the size of the confidence interval
of the estimation of each probability, i.e. proba[i], is reasonable. From the Central Limit
Theorem, one can derive the (1− γ)th confidence interval as follows:

Ii =

[
p̂i − z1− γ

2

√
p̂i(1− p̂i)

n
, p̂i + z1− γ

2

√
p̂i(1− p̂i)

n

]
, (7.1)

where p̂i = proba[i] and z1− γ

2
is the

(
1− γ

2

)th quantile. Figure 7.3 represents the size of
the confidence interval as a function of the estimated probability p̂i for different values
of n. Obviously, the larger n, the smaller the confidence interval. In algorithm 3, a
high precision on the estimates p̂i is not essential since these values are used to estimate
the probability of insertion of line i in a feasible plan cheaper than Costmin, whereas
p̂i is an estimate of this probability for plans cheaper than CostOld

min . As a consequence,
considering a maximum size for the confidence interval of 0.1 seems already reasonable
enough, i.e. m = 400.
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Fig. 7.3 Illustration of the size of the 95%-confidence interval for the approximation of
Bernoulli’s parameter, p̂.

• Parameter m̄. This parameter is critical for the stopping criteria of the algorithm. Indeed
if, for an iteration, the algorithm cannot find a better solution than CostOld

min when it
generates m̄ random expansion plans, it terminates. As a consequence, parameter m̄
describes the proportion of the neighborhood to be investigated, near the optimal solution
provided by the algorithm. Based on the hypotheses made in section 4.2.2, we can
assume that if there exists a better solution than the one found so far, it should have
the majority of their candidate lines built in common, which justifies the neighborhood
search. An analysis of this parameter on the performance is carried out in part III.



56 Probabilistic method (Heuristic)

7.3 Theoretical analysis

7.3.1 Convergence estimation

As mentioned in section 5.2, the major drawback of heuristic techniques is that they fail in
providing a proof on the quality of the solution provided; moreover they rarely find the optimal
expansion plan for real power systems [40, 50]. Unfortunately, this is also the case in the
method we proposed in the previous section 7.2. However, if we consider that the hypotheses
H1-H4 made in section 4.2.2 are correct, we can still estimate the convergence. We will then
comment what would be the expected convergence when the hypotheses are removed.

Convergence estimation based on hypotheses H1-H4.

The four hypotheses that were made are: (H1) each candidate line has the same cost C; (H2)
each possible investment plan p has the same probability to be the optimal one p∗; (H3) the
optimal solution is unique and (H4) an investment plan p strictly more expensive than the
optimal one p∗ is feasible if and only if all the candidate lines built in p∗ are also built in p.

Based on these hypotheses, the behavior of the algorithm is illustrated in figure 7.4. The
vertical axis represents the best cost achieved at the end of each iteration i, Cost i

min; the length
of the horizontal segment inside the polyhedral represents the maximum number of candidate
lines that it is possible to insert in an expansion plan in order that its cost is smaller or equal to
Cost i

min. Of course, with H1 the size of these segments shrinks at each iteration; the size of the
green segment represents the number of candidate lines inserted in the optimal expansion plan.

To derive the probability of success of algorithm 3, we compute the probability of failure
at each possible state of the algorithm, until we get the probability of reaching the final state,
i.e. the optimal solution p∗. With H2 we know that, given the number of candidate lines n,
the number of lines built in the optimal solution follows a binomial distribution, B(n,0.5). In
a first step, we compute the probability of getting the right solution knowing the number of
candidate lines inserted in the optimal plan, np∗; we will then compute this probability for all
possible np∗ and merge all those probabilities, while respecting the binomial distribution, in
order to get the final probability of success. To estimate the probability of success knowing np∗

we follow the structure of algorithm 3:

• At the beginning of the algorithm, we know that the expansion plan that builds all the
candidate lines is feasible. Hence, the first iteration of the algorithm has as objective to
find a feasible solution strictly cheaper that the sum of all investment costs, i.e. ∑l∈Lc Il .
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Fig. 7.4 Schematization of the convergence under hypotheses H1-H4.

Hypothesis H4 stipulates that a random plan is feasible if and only if it builds the np∗

optimal lines; as a consequence the probability for a plan to be feasible equals α
np∗ , and

the probability that among the other lines at least one is not built, in order to get a cheaper
plan, equals p+ = P(X ≤ n† −1), where X is a random variable following a binomial
distribution, X ∼ B(n†,α); α is the initial probability used to generated random plans
and n† is the number of candidate lines not inserted in the optimal solution, n† = n−np∗ .
In conclusion, the probability of success of iteration 1 equals p+ ·

[
1− (1−α

np∗ )m̄],
where m̄ is the maximum random plans tested per iteration.

• At the end of the first iteration, we estimate the probability of transition to the other states,
i.e. a state corresponding to the best cost achieved. Hence, in the case of a successful
iteration, the probability to move from the initial state, state n†, to state i, i.e. the state
where the minimum cost achieved equals np∗ + i ·C (cfr. H1) is computed as follows:

P(staten† → statei | Iteration 1 is feasible) (7.2)

=P(min(D j) = np∗ + i ·C, j = 1, . . . ,m | Iteration 1 is feasible), (7.3)

=P(min(C j)≤ np∗ + i ·C, j = 1, . . . ,m)

−P(min(C j)≤ np∗ + i ·C−1, j = 1, . . . ,m), (7.4)
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where D j is a random variable representing the cost of a random feasible plan; C j is a
random variable representing the cost of a random feasible plan strictly cheaper than
(np∗ +n†) ·C. We have supposed that when an iteration is successful, the m feasible plans
required to move to the next iteration are found. Probability 7.4 is computed with the
help of the following result:

P(min(C j)≤ np∗ + i ·C, j = 1, . . . ,m) =1−P(C j > np∗ + i ·C, j = 1, . . . ,m),

=1−P(C j > np∗ + i ·C)m.

The probability to move from state n† to i is thus equal to:

P(staten† → statei)=P(staten† → statei |Iteration 1 is feasible)· p+ ·
[
1− (1−α

np∗ )m̄] .
• At a state i, the random plans are generated based on vector proba, whose component

i corresponds to the estimation of insertion of line i in feasible plans strictly cheaper
than np∗ + i ·C, the minimum cost achieved so far. Of course this estimation depends on
the previous state, which explains why we have computed the transition probabilities
between states in the previous point. Based on H4 we can separate the candidate lines
into two groups: a group of useful lines which have to be built to get a feasible expansion
plan, and another group with the others lines categorized as useless. The components
of vector proba corresponding to useful lines equals β , the maximum probability, no
matter what the previous state was. For useless lines, this probability is dependent on the
previous stage; for instance if the previous state is state i, i.e. the best optimal plan so far
includes i useless lines, then the estimation of the probability of insertion of useless lines
equals max

(
(1−β ),min

(
β , i−1

i

))
. We assume that all lines have the same estimation

since the situation is symmetric when considering the useless lines; the value of i−1
i is

chosen to be pessimistic, i.e. the greater the probability of inserting a useless line, the
greater the chances that the algorithm is unable to find a cheaper solution than the current
one.

• The algorithm will find the optimal solution if and only if it can reach the final state,
i.e. state 0, where no useless lines are inserted. Hence the probability of success of the
algorithm is obtained by summing all probabilities of transition from state i to state 0 for
i = 1, . . . ,n†.

Figure 7.5 represents the evolution of the probability of finding the optimal solution with
the maximum number of random expansion plans allowed to be tested per iteration, m̄, under
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hypotheses H1-H4. Compared to the performances found in the theoretical analysis of the
randomized algorithm 4.2.1 illustrated in figure 4.1, we observe that our approach requires
significantly less random expansion plans. To correctly compare both graphs we must keep
in mind that figure 7.5 illustrates the evolution of the probability with the maximum number
of random expansions allowed to be tested per iteration and not the total number of random
expansion plans tested like in figure 4.1. However, in the worst case, algorithm 3 requires n†

iterations to converge, which can be bounded by the total number of candidate lines, n; as
a consequence we should shift the curves of figure 7.5 to the right by a value of log2(n), as
illustrated in figure 7.6, to get comparable values with those of the randomized algorithm.

It is counterintuitive, as illustrated in figure 7.5, that the maximum number of random
expansion plans requested at each iteration to obtain a high probability of success (e.g. > 0.8)
decreases with the total number of candidate lines n. However this is justified in the next
paragraph, where we consider the convergence of the algorithm when not respecting certain
hypotheses among H1-H4. Figure 7.6 is consistent with our intuition, since it suggests that the
greater the number of candidate lines, the greater the number of random expansion plans to
generate in order to get a high probability of success.
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Fig. 7.5 Evolution of the probability of finding the optimal solution with the maximum number
of random expansion plans allowed to be tested per iteration under hypotheses H1-H4.

Convergence estimation without hypotheses H1-H4.

Hypothesis H1. If we assume that the cost of the candidate lines is not uniform, the only
impact on the algorithm’s behavior is that, in the worst case situation, the difference in the
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Fig. 7.6 Evolution of the probability of finding the optimal solution with the number of random
expansion plans tested under hypotheses H1-H4.

investment costs of two successful iterations won’t be constant anymore. As illustrated in figure
7.4, when we consider H1, the difference in the best cost achievable between two successive
iterations equals C; figure 7.7 schematizes the typical convergence when hypothesis H1 is not
taken into account. Both graphs consider the worst case situation where useless candidate
lines are rejected one by one. In conclusion, dropping hypothesis H1 has no influence on the
convergence.

Hypothesis H2. This hypothesis stipulates that each possible investment plan p has the same
probability to be the optimal one p∗, and thus that the number of candidate lines built in the
optimal solution, np∗ , follows a binomial distribution, i.e. np∗ ∼ B (n,0.5). We could have
made a different hypothesis on the distribution of np∗ , for instance figures 7.8 represents the
probability of finding the optimal solution with the maximum number of random expansion
plans allowed to be tested when np∗ follows a uniform distribution. We observe that in this case
the maximum number of iterations m̄ must be higher than in the previous situation in order to
guarantee a high probability of success.

Figures 7.10 and 7.11 represent the probability of finding the optimal solution in the worst
and best case respectively. Whatever the number of candidate lines n in the power system, the
worst case scenario is when the number of lines in the optimal expansion plan equals n−1. In
the worst case, the probability for algorithm 3 to be successful equals α(n−1) · (1−α), which is
a decreasing function in n. In contrast, the best case is when np∗ = 0 and we observe that the
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Fig. 7.7 Schematization of the convergence under hypotheses H2-H4.
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Fig. 7.8 Evolution of the probability of finding the optimal solution with the maximum number
of random expansion plans allowed to be tested per iteration under hypotheses H3-H4.

greater n the greater the probability of success.

From figures 7.10 and 7.11, we observe that, the greater the number of candidate lines
in the power system n, the greater the probability variation of finding the optimal solution
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Fig. 7.9 Evolution of the probability of finding the optimal solution with the number of random
expansion plans tested under hypotheses H3-H4.
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Fig. 7.10 Evolution of the probability of finding the optimal solution in the worst case with
the maximum number of random expansion plans allowed to be tested per iteration under
hypotheses H3-H4.

with np∗ given a value of m̄. However this observation does not justify why, if we consider
that np∗ follows a binomial or a uniform distribution, the maximum number of random plans
allowed to be tested m̄ needs to be greater for small values of n than for large ones in order to
guarantee a high probability of success of the algorithm. To understand this fact we need one
more information: figures 7.12 and 7.13 represent, for different values of m̄, the evolution of
the probability of success of algorithm 3 with the number of candidate lines in the optimal plan,
np∗ , when n = 10 and n = 50 respectively. As our intuition would have suggested, the greater
m̄, the greater the chances to find the optimal solution. The important fact is that the situation
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Fig. 7.11 Evolution of the probability of finding the optimal solution in the best case with
the maximum number of random expansion plans allowed to be tested per iteration under
hypotheses H3-H4.

is asymetrical, i.e. the evolution of the probability between the best case, i.e. np∗ = 0, and the
worst case, i.e. np∗ = n− 1, is not linear; indeed we observe that the probability of success
decreases significantly only for values close to n when m̄ is large. As a consequence, the facts
that (i) the greater n, the greater the proportion of the cases when the probability of success
is high, and that (ii) the uniform distribution puts the same weight on each case, justify the
counterintuitive observation made previously, i.e. the maximum number of random expansion
plans requested at each iteration to obtain a high probability of success (e.g. > 0.8) decreases
with the total number of candidate lines n.

Hypothesis H3. Under this hypothesis it is assumed that the optimal solution is unique. If the
optimal solution is not unique, different optimal sets of the same cost exist, where an optimal
set is the set of all candidate lines built in an optimal solution. Considering the existence of
different optimal solutions increases the probability of success of the algorithm; indeed the case
of a unique solution is a restriction of this situation. If we want to schematize the convergence
of the algorithm for the case where there are several optimal solutions, we should draw one
convergence cone per solution, as illustrated in figure 7.14 in the case where there are 2 optimal
solutions.

Hypothesis H4. From the previous sections, we have demonstrated that under hypothesis
H4 only, we could expect similar results as those presented under hypotheses H1-H4. Not
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Fig. 7.12 Evolution of the probability of finding the optimal solution with the number of
candidate lines built in the optimal solution under hypotheses H3-H4 when n = 10.
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Fig. 7.13 Evolution of the probability of finding the optimal solution with the number of
candidate lines built in the optimal solution under hypotheses H3-H4 when n = 50.

considering hypothesis H4 complicates tremendously the estimation of the probability of
success; unfortunately we were not able to derive the probability of success.

7.3.2 Computational time estimation

Under hypothesis H4, we can estimate the worst case computational time using the results of
table 6.2 and of figure 7.10. Table 6.2 gives the average time needed to validate the feasibility
of a feasible expansion plan, which is always greater or equal than the time needed to check
the potential feasibility of an infeasible expansion plan. Based on figure 7.10, we see that we
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Fig. 7.14 Schematization of the convergence under hypothesis H4 when there are 2 optimal
solutions.

should take a value for m̄ of about 1000 in order to guarantee a high probability of success
(1000 ≃ 210). Hence we can derive upper bounds on the computational time for the IEEE-24
buses and UK power systems as presented in table 7.1.

System UB on to time check feasibility [s] UB on the computational time
IEEE-24 buses (A.1) 0.02 0.02 · m̄ ·n = 0.02 ·1000 ·28 = 560s

UK system (A.3) 2.0 2.0 ·1000 ·138 = 2.76 ·105s ≃ 77h

Table 7.1 Upper bound estimate on the computational time of algorithm 2 under hypothesis H4
given m̄ = 1000.

From table 7.1, we observes that there are three parameters that influence the upper bound
estimate on the computational time of algorithm 3:

1. The time needed to check the feasibility of an expansion plan. In section 6.3.2, we
presented the way to verify the feasibility of a plan via the resolution of a linear system
and the verification of all lines’s capacities and bus net-injections. The size of the matrix
of the linear system is equal to |N |−1×|N |−1, N being the set of buses; hence the
complexity of verifying the feasibility of a plan equals:

O(|N |3)+O(|Le|+ |Lc|)+O(|N |)≃ O(|N |3)+O(|Le|+ |Lc|), (7.5)
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where O(|N |3), O(|Le|+ |Lc|), O(|N |) are respectively the complexity of solving
the linear system, of verifying the lines’ capacities and of verifying the bus net-injections.

2. The number of candidate lines, i.e. |Lc|.

3. The maximum number of random plans allowed to be tested per iteration, m̄. As
illustrated in figure 7.5, this value can be bounded by 210 in order to guarantee a high
probability of success of algorithm 3 whatever the number of candidate line n.

In conclusion, the global complexity of algorithm 3 is in

O(|Lc| · |N |3)+O(|Lc| · (|Le|+ |Lc|)), (7.6)

which is a polynomial complexity. This justifies why our probabilistic approach performs better
than the randomized algorithm (see section 4.2.1), which has an exponential complexity.

Finally, let us mention that the upper bounds derived in table 7.1 are obtained in the case
of sequential computation; however parallel processing can be applied on algorithm 3, which
empirically leads to a gain of a factor 3 on the computational time.
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Copyrigthts: Julien Vaes and Anthony Papavasiliou
In this chapter, we test the different methods presented in part II on three power systems

of different size: (i) a small power system, the IEEE-24 buses power system A.1, which has
28 candidates lines; (ii) a mid-size power system, the RTS power system A.2, which has 60
candidates; and (iii) a large power system, the UK power system A.3, that has 138 candidates
lines. We will compare the performances of the following methods:

• The solver method where load curtailment is not allowed (see section 6.1).

• The probabilistic method.

• The solver method where an upper bound on the optimal cost is given, e.g. the optimal
cost returned by the probabilistic method.

All computational times reported in the next sections are obtained on a Mac Pro dating from
mid-2010 which has two 2.66 GHz 6-Core Intel Xeon processors, 48 GB 1333 MHz DDR3
ECC of memory and which runs under OS X 10.9.5. Any simulation exceeding two days has
been interrupted and is reported by a "-".
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8.1 Solver method

Table 8.1 presents the time needed by Gurobi to solve the TEP problem when no load curtail-
ment is tolerated. From this table, we can observe the rapid growth in the computational time
required to solve the TEP problem with the number of candidate lines in the power system.
Indeed the RTS power system has more or less twice the number of candidate lines as the
IEEE-24 buses power system but requests around 11.25 times its computational time in order
to reach the optimal solution. For the UK system, it is even worse: this power system is five
times larger than the IEEE-24 buses power system in terms of candidate lines but Gurobi is
not able to find the optimal solution (or even any feasible solution) in 2 ·105 seconds, which is
already 712 times greater than the computational time required for the IEEE-24 buses power
system. Finally, let us mention that Gurobi takes full advantage of parallel processing, so the
results reported are comparable to those obtained via the parallel version of the probabilistic
method reported in the next section 8.2.

System Computational time
IEEE-24 buses 281.31 s
RTS system 3161.77 s
UK system - s

Table 8.1 Computational time needed by Gurobi to solve the TEP problem [s].

8.2 Probabilistic method

In this section, we comment the results given by the probabilistic algorithm 3 in its parallelized
version1. An example of the output of this method is given in appendix B, where the prob-
abilistic algorithm 3 is launched on the RTS power system. Since we obtained the optimal
solution of only two power systems out of the three tested, we will split the convergence
analysis of the probabilistic algorithm 3 in two: (i) first we focus on the two smaller power
systems, the IEEE-24 buses and the RTS power systems, and make some correspondences with
the theoretical analysis led in 7.3; (ii) we present the results obtained for the UK power system.

In the results presented hereafter in table 8.2, the mean values reported are computed based
on 100 realizations in average, i.e. for each set of parameters, the probabilistic algorithm

1Not being an expert in computer science, I used the parallel computing only while generating and verifying
the feasibility of random plans with the help of the following architecture available in Julia @parallel (a function)
for. More information on how to use parallel computing in Julia are available here.

https://docs.julialang.org/en/latest/manual/parallel-computing
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has been launched around 100 times. Unfortunately, it was not possible to make as much
realizations on the larger power system since, for interesting sets of parameters, the algorithm 3
requires more than 19 hours to converge.

8.2.1 Analysis of the performances of the probabilistic method on the
IEEE-24 buses and RTS power systems

IEEE-24 buses power system
Parameters C1 C2 C3 C4 C5 C6 C7
m = 400, β = 0.99, m̄ = 16 1.18 s 82.83% 939.34 ke 0.83% 5470 ke 4.82% 9.16
m = 50, β = 0.99, m̄ = 1000 1.84 s 98.99% 29.29 ke 0.00% 2900 ke 2.55% 8.18
m = 400, β = 0.99, m̄ = 1000 6.17 s 100.00% 0.00 ke 0.00% 0 ke 0.00% 7.06
m = 400, β = 0.99, m̄ = 50000 39.07 s 100.00% 0.00 ke 0.00% 0 ke 0.00% 7.00
m = 400, β = 0.95, m̄ = 1000 5.67 s 100.00% 0.00 ke 0.00% 0 ke 0.00% 6.40

RTS power system
Parameters C1 C2 C3 C4 C5 C6 C7
m = 400, β = 0.99, m̄ = 16 4.98 s 88.89% 0.51 Me 2.45% 4.58 Me 22.07% 16.73
m = 50, β = 0.99, m̄ = 1000 8.96 s 99.00% 0.05 Me 0.23% 4.74 Me 22.81% 15.23
m = 400, β = 0.99, m̄ = 1000 30.85 s 100.00% 0.00 Me 0.00% 0.00 Me 0.00% 12.51
m = 400, β = 0.99, m̄ = 50000 213.53 s 100.00% 0.00 Me 0.00% 0.00 Me 0.00% 12.62
m = 400, β = 0.95, m̄ = 1000 31.45 s 100.00% 0.00 Me 0.00% 0.00 Me 0.00% 11.32

Table 8.2 Performances of the probabilistic method on the IEEE-24 buses and RTS power
systems. C1: computational time, C2: percentage of success, C3: mean gap, C4: mean
relative gap, C5: mean gap when the optimal solution is not found, C6: mean relative gap
when the optimal solution is not found, C7: mean number of iterations.

Table 8.2 presents the results of the probabilistic method for the IEEE-24 buses and RTS
power systems. These results fit particularly well with the intuition we developed in the
theoretical analysis:

• Parameter m̄. As predicted in the theoretical analysis, the more random expansion plans
allowed to be tested per iteration in order to get the m feasible ones required to move to
the next iteration, the greater (i) the probability of finding the optimal solution and (ii)
the computational time.

• Parameter m. This parameter is a key factor in the computation of vector proba, which
contains the estimation of the probability of insertion of each candidate line in a feasible
expansion plan cheaper than the best cost achieved so far by the algorithm. In figure 7.3,
we had justified that taking a value of m = 400 was a good trade-off between (i) a good
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estimation of the probability of insertion of each candidate line and (ii) the computational
time of each iteration. As for the previous parameter, we observe from table 8.2 that the
greater m , the greater the (i) computational time and (ii) the probability of success of the
algorithm 2. Obviously, this can be justified by the fact that the greater m, the better the
estimation of the probabilities of insertion, the easier for the algorithm to find feasible
solutions, and thus the less probable for the algorithm to interrupt its search prematurely.
Moreover, this argument justifies also the fact that the greater m, the fewer iterations
required for the algorithm to converge. Indeed, at each iteration, the greater m, the more
opportunities to improve the best cost achieved so far and thus the larger the difference
between the best costs achieved between two iterations.

Finally, while comparing the results of the first two sets of parameters of table 8.2,
we observe that the probability of success of the RTS power system is larger than for
IEEE-24 buses power system. This could be surprising since the RTS power system has
more candidate lines than the IEEE-24 buses power system, but this can be explained
in two ways. First, these results validate the counterintuitive observation made in figure
7.5, which was that, given the maximum number of random expansion plans allowed to
be tested per iteration m̄, the probability of success increases with the total number of
candidate lines n in the power system. Second, from Gurobi one knows that the optimal
solution of the transmission expansion planning problem of both systems includes 14
candidate lines and, as observed in figures 7.12 and 7.13, the lower the percentage of
candidate lines inserted in the optimal plan, the greater the probability of success of
algorithm 3. Hence, since the IEEE-24 buses power system has only 28 candidate lines
whereas the RTS power system has 60 candidate lines, the difference in the percentage
of candidate lines built (50% versus 23.33%) could explain the difference in the success
rate of algorithm 3.

• Parameter β . This parameter represents the maximum probability allowed in vector
proba, which is the maximum probability for a candidate line to be inserted in a random
expansion plan. In section 7.2.2, we had mentioned the following trade-off: the lower β ,
the lower the chances to find feasible solutions if vector proba is a good approximation
of the probabilities of insertion, but the higher the probability of obtaining feasible
solutions with low costs and thus the fewer iterations required. In table 8.2, the number of
iterations required is indeed reduced for both power systems when we consider β = 0.95

2The first line of table 8.2 corresponds to the case where m = 400 and m̄ = 16. However, from the definition of
the parameters, we know that in reality we have m ≤ m̄, since m̄ is the maximum number of random plans allowed
to be tested per iteration. As a consequence, we should look to the first line of table 8.2 as if m = 16.
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instead of β = 0.99. However, we see that the impact on the computational time is more
mitigated since for one power system it reduces the computational time but not for the
other. This is explained by the fact that, although it reduces the total number of iterations,
it complicates the obtaining of m feasible plans and thus it increases the computational
time per iteration to an extent such that the benefit of lowering the number of iterations is
abated.

In conclusion, table 8.2 clearly presents the benefits of approaching the TEP problem with
the probabilistic approach instead of the solver method. Indeed, taking the following set of
parameters m = 400, β = 0.99 and m̄ = 1000, leads to a very high probability of finding the
optimal solution while requiring less than 1

45
th

the computational effort of the solver method.

8.2.2 Probabilistic method on the UK power systems

As mentioned previously, it is though to comment the performances of the probabilisitic
algorithm on this power system since we do not know the optimal solution. Moreover, since
one simulation requires a large computational time, we were not able to make a large number
of tests in order to obtain meaningful statistical values.

Realization # Parameters C1 C2 C3
1 m = 400, β = 0.99, m̄ = 1000 1.32 h 159.18 Me 21
2 m = 400, β = 0.99, m̄ = 50000 19.19 h 149.88 Me 19
3 m = 400, β = 0.99, m̄ = 50000 23.63 h 149.70 Me 19
4 m = 400, β = 0.99, m̄ = 50000 28.16 h 148.19 Me 22
5 m = 400, β = 0.99, m̄ = 100000 42.27 h 149.70 Me 22
6 m = 400, β = 0.95, m̄ = 100000 36.52 h 149.88 Me 18

Table 8.3 Performances of the probabilistic method on the IEEE-24 buses and RTS power
systems. C1: computational time, C2: best cost achieved, C3: number of iterations.

Using table 8.3 we verify also the few points explained in the previous section 8.2.1: (i) the
greater m̄, the greater the computational time, (ii) the lower β , the fewer iterations required by
algorithm 3 to converge.

Even though we cannot estimate correctly the gap, we can observe that the values obtained
with reasonable parameters (m̄ ≥ 50000) are close from each other, i.e. the largest relative dif-
ference equals 149.88−148.19

148.19 = 1.14%, which is relatively good since the first feasible solutions
that the algorithm finds have a cost around 250 Me, which corresponds to a relative gap of
68.70%.
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Finally, we should compare those performances with the solver method. Indeed after 58
hours, Gurobi has been unable to provide any feasible solution, whereas the probabilistic
method is able to find a non-trivial solution in less than 2 hours and a more sophisticated one in
20 hours; there is thus a significant advantage in using the probabilistic method in order than
the solver method if we wish to have rapidly an estimation on the cost of the optimal expansion
plan.

8.3 Solver method with an upper bound

Table 8.4 presents the time needed by Gurobi to solve the TEP problem when no load cur-
tailment is tolerated and when the investment cost of the optimal solution obtained with the
probabilistic method is given as upper bound on the objective function. From this table, we can
observe there is not a meaningful difference between obtaining the optimal solution as in 8.1
and certifying the optimality of an optimal solution.

System Computational time
IEEE-24 buses 245.40 s
RTS system 3575.06 s
UK system - s

Table 8.4 Computational time needed to certify the optimality of the optimal solution of the
TEP problem [s].

8.4 Lower and upper bounds estimation on the optimal cost

In the description of algorithm 3, we mentioned that the upper bound at the end of each iteration
was the best cost achieved, whereas the lower bound was estimated at the end of each iteration
by CostBuilt , which is the total investment costs of building all candidate lines that are built
in all feasible expansion plans found during the iteration. Figures 8.1, 8.2 and 8.3 show the
evaluation of these bounds for a realization of algorithm 3 on the IEEE-24 buses, the RTS and
the UK power systems respectively.

From a theoretical point of view, the upper bound estimation is always correct, whereas,
under hypothesis H1-H4 (see section 4.2.2), the lower bound is a probabilistic lower bound;
the more the number of feasible expansion plans required per iteration (parameter m), the more
confident we can be in the lower bound estimation. Of course, if hypotheses H1-H4 are not
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Fig. 8.1 Lower and upper bound estimation on the optimal cost for the IEEE-24 buses power
system (Probabilistic algorithm).
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Fig. 8.2 Lower and upper bound estimation of the optimal cost for the RTS power system
(Probabilistic algorithm).

considered, the lower bound should be taken with a grain of salt. For the two smaller system,
we can assume, based on the results presented in table 8.2, that the systems respect quite well
hypotheses H1-H4; as a consequence, the lower bound estimation are accurate for large values
of m, and as we can observe on figures 8.1 and 8.2, we never get a lower bound greater that the
optimal cost, which would be embarrassing. For the UK power system, the situation is not as
good; indeed for certain iterations the given lower bound is erroneous since the algorithm finds
solutions lower than those bounds in the last few iterations.
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Fig. 8.3 Lower and upper bound estimation of the optimal cost for the UK power system
(Probabilistic algorithm).

Figures 8.4 and 8.5 present the evolution of the lower and upper bound obtained with
Gurobi. Gurobi does not return any upper bound for the first iterations, hence the values
represented (all the constant part at the beginning until the first decrease) are values given by
ourselves. From those figures, we can conclude that Gurobi concentrates its work on getting
tighter lower bounds; however, compared with the probabilistic method, the convergence of
the lower bound to the optimal solution is slower but smoother. The major drawback of using
Gurobi is that it returns interesting feasible solutions only at the end of its computation; hence
we have to wait a long time before getting any feasible solution, which, as for the UK power
system, can lead to obtaining no solution at all in a reasonable amount of time, when the power
system is too large.

Finally, in section 6.2, we have argued that we would not implement the Benders decompo-
sition method since the convergence of the lower bound to the optimal solution behaves badly.
To illustrate this, let us consider figure 8.6, issued from Ms. Hemmer master’s thesis [30],
which represents the convergence of the Benders decomposition method proposed by S. Binato
in [10] and of other methods derived from this one and supposed to improve the convergence.
In this figure, we observe two drawbacks of the methods: (i) first the upper bound remains
more or less constant and (ii) the lower bound increases a lot in the first iterations and then
stagnates in its evolution; there is thus little hope that the algorithm converges in a reasonable
amount of time or that the algorithm provides interesting lower bounds.
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Fig. 8.4 Lower and upper bound estimation on the optimal cost for the IEEE-24 buses power
system (Gurobi).
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Fig. 8.5 Lower and upper bound estimation of the optimal cost for the RTS power system
(Gurobi).

In conclusion, the validity of hypotheses H1-H4 is requested in order to obtain meaningful
lower bounds; since these hypotheses are not valid for all power systems, the lower bound
returned by the probabilistic algorithm should be taken in consideration carefully. As mentioned
at the end of the previous section, the huge advantage of the probabilistic algorithm is that it
improves the upper bound at each iteration, whereas the solver method does it only at the end
of its convergence; as a consequence using the probabilistic algorithm allows us to rapidly have
an idea on the order of magnitude of the optimal cost. This is even more true regarding the
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Fig. 8.6 Illustration of the convergence of the Benders decomposition method proposed by S.
Binato [10] and other methods ameliorating the convergence.

shape of the upper bound: it first decreases quite steeply and then improves the best solution by
little steps at the end of the convergence.
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Copyrigthts: Julien Vaes and Anthony Papavasiliou
In this master’s thesis, we have investigated different ways to formulate and solve the

transmission expansion planning (TEP) problem. A literature review, as exhaustive as possible,
was conducted and led us to the conclusion that mathematical programming methods were not
the best option to solve the TEP problem when the number of candidate lines is large.

As a consequence, we have switched our approach and decided to look to heuristics. A
multitude of heuristics have been proposed in literature to solve the TEP problems, such as
genetic algorithms, simulated annealing, etc. Even though those heuristics behave well on
certain types of power systems, they fail in being robust and in providing proofs of their
convergence. Therefore, we decided to approach the TEP problem via randomization; based on
intuitive hypotheses, we designed the probabilistic algorithm. The theoretical convergence of
this algorithm was proven under the hypotheses considered; tests on real power systems have
then revealed that the probabilistic algorithm has, for small and medium systems, a reasonable
probability of finding the optimal expansion plan, while requiring a limited computational time.

Large power systems tend to respect to a lesser extent the hypotheses on which the proba-
bilistic algorithm relies; the convergence results are thus more mitigated since the optimality of
the returned solution is not guaranteed. However, we observe that the maximum difference in
the solutions returned by the probabilistic algorithm is small enough, typically of 1.5%, which
could lead us to think that we are close to the optimum. The major advantage of the method
proposed is that the algorithm returns a relatively good solution, whereas a commercial solver
does not return any solution at all, in this case of large power systems. Hence, the probabilistic
algorithm could be a useful tool for transmission system operators in order to get a precise idea
of the investment cost of the optimal expansion plan.
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Different possibilities could be investigated in the future in order to improve the proposed
method. First, one could investigate in what proportion the hypotheses made are respected in
real power systems; based on this, one should be able to estimate the confidence in the best
solution returned by the probabilistic algorithm. Second, one could examine whether it is
possible to prove any convergence of the probabilistic algorithm when H4 is not satisfied (cfr.
section 7.3.1). Finally, once the probabilistic algorithm has converged, one could apply a local
search, as proposed in [58], in order to diversify the search strategy and to improve the global
convergence of the method.
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A
Power systems

A.1 IEEE-24 buses system

The IEEE-24 buses power system we consider in this master’s thesis is composed of 24 buses,
38 existing lines (table A.1) and 28 candidate lines (table A.2). The candidate lines were
selected in order to have the possibility to double all single-circuit branches; to assign to cost
of each candidate line, we made the following assumption: for a 138-kV line the cost amounts
300 ke per km, for a 230-kV line the cost amounts 400 ke per km and for a 138/230-kV
transformer the cost amounts 2.1 Me1.

As mentioned in the model part I, the optimal transmission network should be able to
manage different scenarios representing worst cases. For this system, we consider 4 scenarios
illustrated in tables A.3, which represent four extreme cases of the economic dispatch: peak
load and high/low wind and off-peak load and high/low wind. The rationale is that, if the grid
can withstand all extreme load conditions, it should withstand the intermediate load conditions.

The excel file containing the data is available in the following link.

A.2 RTS system

The RTS power system is composed of 73 buses, 120 existing lines and 60 candidate lines. The
excel file containing the data is available at the following link. Note that the costs assigned to
the candidate lines have no true meaning and have been arbitrarily chosen.

1Lines length are available at the following website.

https://git.urbainvaes.com/public/www-julien.git/plain/document/master-thesis/systems/IEEE-24-Bus.xls
https://git.urbainvaes.com/public/www-julien.git/plain/document/master-thesis/systems/RTS3_OTEP_Red.xls
http://www2.ee.washington.edu/research/pstca/rts/pg_tcarts.htm
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A.3 UK system

The UK power system is composed of 548 buses, 899 existing lines and 138 candidate lines.
The excel file containing the data is available at the following link. Note that the costs assigned
to the candidate lines have no true meaning and have been arbitrarily chosen.

Line name Initial bus End bus Reactance [p.u.] Capacity [MW]
L1 Bus 1 Bus 2 0,014 175
L2 Bus 1 Bus 3 0,211 175
L3 Bus 1 Bus 5 0,085 175
L4 Bus 2 Bus 4 0,127 175
L5 Bus 2 Bus 6 0,192 175
L6 Bus 3 Bus 9 0,119 175
L7 Bus 3 Bus 24 0,084 400
L8 Bus 4 Bus 9 0,104 175
L9 Bus 5 Bus 10 0,088 175
L10 Bus 6 Bus 10 0,061 175
L11 Bus 7 Bus 8 0,061 175
L12 Bus 8 Bus 9 0,165 175
L13 Bus 8 Bus 10 0,165 175
L14 Bus 9 Bus 11 0,084 400
L15 Bus 9 Bus 12 0,084 400
L16 Bus 10 Bus 11 0,084 400
L17 Bus 10 Bus 12 0,084 400
L18 Bus 11 Bus 13 0,048 500
L19 Bus 11 Bus 14 0,042 500
L20 Bus 12 Bus 13 0,048 500
L21 Bus 12 Bus 23 0,097 500
L22 Bus 13 Bus 23 0,087 500
L23 Bus 14 Bus 16 0,039 500
L24 Bus 15 Bus 16 0,017 500
L25 Bus 15 Bus 21 0,049 500
L26 Bus 15 Bus 21 0,049 500
L27 Bus 15 Bus 24 0,052 500
L28 Bus 16 Bus 17 0,026 500
L29 Bus 16 Bus 19 0,023 500
L30 Bus 17 Bus 18 0,014 500
L31 Bus 17 Bus 22 0,105 500
L32 Bus 18 Bus 21 0,026 500
L33 Bus 18 Bus 21 0,026 500
L34 Bus 19 Bus 20 0,040 500
L35 Bus 19 Bus 20 0,040 500
L36 Bus 20 Bus 23 0,022 500
L37 Bus 20 Bus 23 0,022 500
L38 Bus 21 Bus 22 0,068 500

Table A.1 Information about the existing lines in the IEEE-24 buses system.

https://git.urbainvaes.com/public/www-julien.git/plain/document/master-thesis/systems/UK_OTEP_Red.xls
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Line name Initial bus End bus Reactance [p.u.] Capacity [MW] Investment cost [ke]
C1 BUS1 BUS2 0,0139 175 900
C2 BUS1 BUS3 0,2112 175 16500
C3 BUS1 BUS5 0,0845 175 6600
C4 BUS2 BUS4 0,1267 175 9900
C5 BUS2 BUS6 0,192 175 15000
C6 BUS3 BUS9 0,119 175 9300
C7 BUS3 BUS24 0,0839 400 2100
C8 BUS4 BUS9 0,1037 175 8100
C9 BUS6 BUS10 0,0605 175 4800

C10 BUS7 BUS8 0,0614 175 4800
C11 BUS8 BUS9 0,1651 175 12900
C12 BUS8 BUS10 0,1651 175 12900
C13 BUS11 BUS13 0,0476 500 13200
C14 BUS11 BUS14 0,0418 500 11600
C15 BUS12 BUS13 0,0476 500 13200
C16 BUS12 BUS23 0,0966 500 26800
C17 BUS13 BUS23 0,0865 500 24000
C18 BUS14 BUS16 0,0389 500 10800
C19 BUS15 BUS16 0,0173 500 4800
C20 BUS15 BUS24 0,0519 500 14400
C21 BUS16 BUS17 0,0259 500 7200
C22 BUS16 BUS19 0,0231 500 6400
C23 BUS17 BUS18 0,0144 500 4000
C24 BUS17 BUS22 0,1053 500 29200
C25 BUS21 BUS22 0,0678 500 18800
C26 BUS14 BUS16 0,0389 500 10800
C27 BUS16 BUS17 0,0259 500 7200
C28 BUS17 BUS18 0,0144 500 4000

Table A.2 Information about the candidate lines in the IEEE-24 buses system.
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Bus name SC1: P [MW] SC1: D [MW] SC2: P [MW] SC2: D [MW] SC3: P [MW] SC3: D [MW] SC4: P [MW] SC4: D [MW]
BUS1 108 0 108 0 54 0 54 0
BUS2 97 0 97 0 48,5 0 48,5 0
BUS3 180 0 180 150 90 0 90 150
BUS4 74 0 74 150 37 0 37 150
BUS5 71 0 71 150 35,5 0 35,5 150
BUS6 136 0 136 150 68 0 68 150
BUS7 125 0 125 0 62,5 0 62,5 0
BUS8 171 0 171 150 85,5 0 85,5 150
BUS9 175 0 175 150 87,5 0 87,5 150

BUS10 195 0 195 150 97,5 0 97,5 150
BUS11 0 0 0 0 0 0 0 0
BUS12 0 0 0 0 0 0 0 0
BUS13 265 0 265 0 132,5 0 132,5 0
BUS14 194 0 194 0 97 0 97 0
BUS15 317 155 317 0 158,5 0 158,5 0
BUS16 100 155 100 0 50 0 50 0
BUS17 0 0 0 0 0 0 0 0
BUS18 333 800 333 700 166,5 325 166,5 0
BUS19 181 0 181 0 90,5 0 90,5 0
BUS20 128 0 128 0 64 0 64 0
BUS21 0 800 0 800 0 800 0 75
BUS22 0 300 0 300 0 300 0 300
BUS23 0 640 0 0 0 0 0 0
BUS24 0 0 0 0 0 0 0 0

Table A.3 Information about the scenarios of the IEEE-24 buses system (SC ⇔ Scenario, P ⇔
Production, D ⇔ Demand).



B
Example of outputs

=============================================
============== Begin algorithm ==============
=============================================
This instance is generated with random number: 770526
—————————————————————————-
–> Iteration: 1
Simulation of random instances ...
Number of feasible realisations requested: 400
* Update: Best plan until now: 310200.0
* Update: Best plan until now: 288600.0
* Update: Best plan until now: 286200.0
* Update: Best plan until now: 281000.0
Iteration information
Time needed to complete iteration: 0.94 sec
Number of random expansion plans tested: 439
Number of feasible expansion plans obtained: 400/400.
** Absolute gap estimation: 186300.0
** Relative gap estimation: 66.299
Number of candidate lines without any idea about the decision: 6
Lines probably built: C2 C4 C6 C7 C9 C10 C11 C12 C13 C14 C16 C17 C18 C19 C20 C21

C23 C24 C25 C26 C27 C28
Lines probably not built:
—————————————————————————-
–> Iteration: 2
Simulation of random instances ...
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Number of feasible realisations requested: 400
* Update: Best plan until now: 272900.0
* Update: Best plan until now: 274600.0
* Update: Best plan until now: 268100.0
* Update: Best plan until now: 262200.0
* Update: Best plan until now: 257000.0
* Update: Best plan until now: 254200.0
* Update: Best plan until now: 251400.0
* Update: Best plan until now: 244400.0
* Update: Best plan until now: 239200.0
Iteration information
Time needed to complete iteration: 1.02 sec
Number of random expansion plans tested: 835
Number of feasible expansion plans obtained: 400/400.
** Absolute gap estimation: 186200.0
** Relative gap estimation: 77.843
Number of candidate lines without any idea about the decision: 17
Lines probably built: C2 C7 C10 C11 C18 C20 C21 C23 C26 C27 C28
Lines probably not built:
—————————————————————————-
–> Iteration: 3
Simulation of random instances ...
Number of feasible realisations requested: 400
* Update: Best plan until now: 192500.0
* Update: Best plan until now: 182000.0
Iteration information
Time needed to complete iteration: 0.93 sec
Number of random expansion plans tested: 576
Number of feasible expansion plans obtained: 400/400.
** Absolute gap estimation: 118200.0
** Relative gap estimation: 64.945
Number of candidate lines without any idea about the decision: 17
Lines probably built: C2 C7 C10 C11 C18 C20 C21 C23 C26 C27 C28
Lines probably not built:
—————————————————————————-
–> Iteration: 4
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Simulation of random instances ...
Number of feasible realisations requested: 400
* Update: Best plan until now: 168500.0
* Update: Best plan until now: 165200.0
* Update: Best plan until now: 164000.0
* Update: Best plan until now: 157400.0
* Update: Best plan until now: 154400.0
* Update: Best plan until now: 153500.0
* Update: Best plan until now: 145700.0
Iteration information
Time needed to complete iteration: 0.98 sec
Number of random expansion plans tested: 730
Number of feasible expansion plans obtained: 400/400.
** Absolute gap estimation: 39400.0
** Relative gap estimation: 27.042
Number of candidate lines without any idea about the decision: 15
Lines probably built: C2 C7 C10 C11 C14 C18 C20 C21 C23 C26 C27 C28
Lines probably not built: C24
—————————————————————————-
–> Iteration: 5
Simulation of random instances ...
Number of feasible realisations requested: 400
* Update: Best plan until now: 142700.0
* Update: Best plan until now: 136400.0
* Update: Best plan until now: 134200.0
* Update: Best plan until now: 132500.0
* Update: Best plan until now: 131300.0
* Update: Best plan until now: 123200.0
Iteration information
Time needed to complete iteration: 0.79 sec
Number of random expansion plans tested: 663
Number of feasible expansion plans obtained: 400/400.
** Absolute gap estimation: 33400.0
** Relative gap estimation: 27.11
Number of candidate lines without any idea about the decision: 12
Lines probably built: C2 C7 C10 C11 C14 C18 C20 C21 C23 C26 C27 C28
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Lines probably not built: C16 C17 C24 C25
—————————————————————————-
–> Iteration: 6
Simulation of random instances ...
Number of feasible realisations requested: 400
* Update: Best plan until now: 122900.0
* Update: Best plan until now: 116500.0
* Update: Best plan until now: 113600.0
Iteration information
Time needed to complete iteration: 1.07 sec
Number of random expansion plans tested: 1105
Number of feasible expansion plans obtained: 371/400.
–> The limit on the number of random expansion plans allowed to simulate is reached.

Moving to the next iteration.
** Absolute gap estimation: 7300.0
** Relative gap estimation: 6.426
Number of candidate lines without any idea about the decision: 7
Lines probably built: C2 C7 C10 C11 C14 C18 C20 C21 C23 C26 C27 C28
Lines probably not built: C4 C5 C12 C13 C15 C16 C17 C24 C25
—————————————————————————-
–> Iteration: 7
Simulation of random instances ...
Number of feasible realisations requested: 400
Iteration information
Time needed to complete iteration: 0.76 sec
Number of random expansion plans tested: 1000
Best cost achieved: 113600.0
This iteration has reached the maximum amount of expansion plans allowed to be tested

and could not find a better solution.
Stopping criterion reached: could not get a better solution than the one found in the previous

iteration.
=============================================
=============== End algorithm ===============
=============================================
Minimum investment cost found: 113600.0
Time needed to stop the algorithm: 6.484247569
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Best transmission expansion plan: C1 C2 C7 C10 C11 C14 C18 C20 C21 C22 C23 C26
C27 C28





C
Implementation

The implementation of the methods studied in the performance part are implemented in Julia
and can be dowloaded on the following website: https://julien.vaes.uk/english/acpro.html.

The main file, Implementation contains 4 subfolders:

• Code contains the implementation of all methods.

• Data contains the data of the three power systems used (IEEE-24 buses, RTS and UK).

• Output saves all output files of the implemented methods.

• Script contains all scripts in order to launch the methods from the terminal.

To launch a method, one needs to move via the terminal in the Script folder and launch a
command line of the type:

bash run.sh ARG1 ARG2 ARG3 ARG4 ARG5 ARG6,

where

⋄ ARG1 is the method we desire to launch. The user have the choice between the following
methods:

1. proba corresponds to the probabilistic method.

2. probaParallel corresponds to the parallel version of the probabilistic method (using
all processors of the computer).

3. gurobi corresponds to the solver method when load curtailment is forbidden.

https://julien.vaes.uk/english/acpro.html
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4. gurobiWithLS corresponds to the solver method when load curtailment is tolerated.

5. gurobiWithUpperBound corresponds to the solver method when load curtailment
is forbidden and when one gives an upper bound on the optimal cost, for instance
the optimal solution returned by the probabilistic method.

6. probaGurobi corresponds to the probabilistic method and where the end of the
algorithm is computed by Gurobi, i.e. the probabilistic method sends the problem
to Gurobi once it has obtained a small relative gap, e.g. 5%.

7. probaParallelGurobi corresponds to the parallel version of the probabilistic method
and where the end of the algorithm is computed by Gurobi.

⋄ ARG2 correspond to the power system for which we desire to find the optimal expansion
planning:

1. IEEE-24 corresponds to the IEEE-24 buses power system A.1.

2. RTS corresponds to the RTS power system A.2.

3. UK corresponds to the UK power system A.3.

⋄ ARG3 must be equal to y if one desires to create the data based on the excel file located
in the Data folder; if one chooses n, the algorithm will take the existing data files of the
power system located in the Data folder.

⋄ ARG4 must be equal to y if one desires to save the output of the method in folder Output;
n otherwise.

⋄ ARG5 is the number of realizations one desires to launch. If this argument is not
mentioned the method is launched only once.

⋄ ARG6 corresponds to the upper bound one desires to send to Gurobi if method gurobi-
WithUpperBound is chosen. This argument do not need to be completed for any other
method.

Here are two examples of valid command lines:
bash run.sh probaParallel RTS y y 10
bash run.sh gurobiWithUpperBound IEEE-24 n n 2 113600.00
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