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Introduction

Renewables Making Headlines

NEWS eurore % REUTERS =wove *

Markets - World~  Poltica+  Tech~
Germany: Nuclear power plants to close

by 2022

a

PR =

Denmark aims for 100 percent
renewable energy in 2050

BY METTE FRAENDE

California to nearly double wind, solar
energy output by 2020 -regulator
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Introduction

Uncertainty

Tehachapi Wind Generation in April — 2005

Could you predict the energy production for this wind park
either day-ahead or 5 hours in advance?

700

Each Day is a different color.

600

500

Megawatts
n w -
(=] =] =3
(=] -] (=]

-
=3
S

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

)

-100
Hour & CaliforialSO

A. Papavasilio ing Renewable Resource Uncertainty in Power Systems



Introduction

Variability

Variability of wind and solar resources - June 24,
2010

Variability in Wind and Solar
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Introduction

A Vision for Renewable Energy

Subsidies
S

Market Market

Coal/
gas/
nuclear

Current Practice
Proposal

Stochastic unit commitment appropriate for quantifying:
@ Renewable energy utilization
@ Cost of unit commitment and economic dispatch
@ Capital investment in generation capacity
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Introduction

Unit Commitment under Uncertainty

Uncertainty:
renewable supply,
contingencies .;;]
% T Recourse:
'@ Y ¥ = generator dispatch,
Unit N demand response,
commitment N transmission control,
storage

Appropriate for modeling various balancing options:
@ Demand (deferrable, price responsive, wholesale)
@ Storage (pumped hydro, batteries)
@ Transmission control (FACTS, tap changers, switching)
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Unit Commitment

Objective: min_, ;(KgUgt + SgVgt + CgPgt)

Load balance: g Pgt = D, Vt

Min / max capacity limits: Py ug: < pgr < Py Ugt, Vg, t
Ramping limits: —R; < pgst — Pgs,t—1 < Ry, Vg, t
Min up times: 37, y7. 1 Vog < Ugt, Vg, t > UTyg

Min down times: Y0714 vgq <1 — gt ¥g. t < N — DT,

State transition: vyt > Ugt — Ug 11,9, t
Integrality: vy, ugt € {0,1},Vg, t
Kirchhoff voltage/current laws

@ Transmission line thermal constraints
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

The Real Thing

- ¥ Day-ahead Market — Average Daily Volumes

1,210 generators, 3 part offers (startup, no load,
10 segment incremental energy offer curve)

10,000 - Demand bids — fixed or price sensitive
50,000 - Virtual bids / offers

8,700 - eligible bid/offer nodes (pricing nodes)
6,125 - monitored transmission elements
10,000 - transmission contingencies modeled
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Relevant Literature

@ Wind integration studies based on stochastic unit
commitment: (Bouffard, 2008), (Wang, 2008), (Ruiz, 2009),
(Tuohy, 2009), (Morales, 2009), (Constantinescu, 2011)

e Contribution: coupling scenario selection inspired by
importance sampling with dual decomposition algorithm

@ Integrating demand response with unit commitment:
(Sioshansi, 2009), (Sioshansi, 2011)

e Contribution: simultaneous modeling of uncertainty and
DR

@ Parallel computing in power system operations: (Monticelli,
1987), (Pereira, 1990), (Falcao, 1997), (Kim, 1997),
(Bakirtzis, 2003), (Biskas, 2005)

e Contribution: application to short-term scheduling
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Validation Process

Outcomes Scenario
selection

Representative
outcomes

Stochastic UC

Stochastic model
(renewable energy,
demand,
contingencies)

Stoch < Det?

Min load,
startup,
fuel cost

Slow gen UC

schedule
Outcomes Economic

dispatch

Slow gen UC
schedule

Deterministic UC
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Unit Commitment and Economic Dispatch

@ Deterministic model
@ Reserve requirements

S osgt > I =T fy > FteT

QEG QGGf geG,«

@ Import constraints

Z yier < IC,jeIG,te T
/EIG,‘

@ Slow generator schedules are fixed in economic dispatch
model: wg; = Wy, g € Gs
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Two-Stage Stochastic Unit Commitment

Used to simulate ideal two-settlement system

@ In the first stage we commit slow generators:
Ugst = Wgt, Vgst = Zgt,9 € Gs, 5 € S, t € T (corresponds to
day-ahead market)

@ Uncertainty is revealed: net demand D, line availability
Bss, generator availability P, Pys

© Fast generator commitment and production schedules are
second stage decisions: ugst, g € Gy and pgst, g € Gr U Gs
(corresponds to real-time market)

@ Objective:

min Z Z Z Fs(KgUgst + Sngst + Cgpgst)
geGseS teT
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Lagrangian Decomposition Algorithm

@ Decomposition methods: (Nowak, 2000), (Takriti, 1996),
(Carpentier, 1996), (Redondo, 1999), (Bertsimas, 2013)

@ Contribution: relax non-anticipativity constraints on both
unit commitment and startup variables

@ Feasible solution at each iteration
@ Optimality gap at each iteration

Lagrangian:
L= Z Z Z ms(KgUgst + SqVgst + CgPgst)
geGseSteT

+ Z Z Z 7"'S(Mgst(ugst - Wgt) + Vgst(Vgst — Zg[))

geGs seSteT
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Parallelization

@ Lawrence Livermore National Laboratory Hera cluster:
13,824 cores on 864 nodes, 2.3 Ghz, 32 GB/node
@ MPI calling on CPLEX Java callable library

“’gsl v gst
Dual
multiplier
update
‘ S~ Monte Carlo
— Y economic dispatch

. First-stage ED,
Second-stage °

subproblems
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Scenario Selection for Wind Uncertainty and
Contingencies

@ Past work: (Gréwe-Kuska, 2002), (Dupacova, 2003),
(Heitsch, 2003), (Morales, 2009)

@ Contribution: Scenario selection algorithm inspired by
importance sampling

@ Generate a sample set Qs C Q, where M = |Qg] is
adequately large. Calculate the cost Cp(w) of each sample
w € Qg against the best determinstic unit commitment

CD W/)

policy and the average cost C = Z
@ Choose N scenarios from Qg, where the probability of

picking a scenario w is CD(w)/AC.
© Setns = Cp(w)~! forall w® € Q.
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Wind Model Data Source

@ 2 wind integration cases: moderate (7.1% energy
integration, 2012), deep (14% energy integration, 2020)

@ California ISO interconnection queue lists locations of
planned wind power installations

@ NREL Western Wind and Solar Interconnection Study
archives wind speed - wind power for Western US

Outcome 1

wn Y

Data Outcome 2

UM'l A ) Uh}}‘ﬁlﬂ \ﬁ

Outcome N
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Unit Commitment Model
Decomposition and Scenario Selection
Wind Model

Methodology

Calibration

@ Relevant literature: (Brown, 1984), (Torres, 2005),
(Morales, 2010)

@ Calibration steps
@ Remove systematic effects:

s Yit— flkmt
Y= "%
O kmt

@ Transform data to obtain a Gaussian distribution:
&S = N~ (Fe(yi))-

© Estimate the autoregressive parameters ékj and covariance
matrix ¥ using Yule-Walker equations.
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Data Fit
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Results
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Results

Model Summary

@ System characteristics

o 124 units (82 fast, 42 slow)

e 53665 MW power plant capacity
e 225 buses

e 375 transmission lines

@ Four studies

o Deep (14% energy integration) without transmission
constraints, contingencies
e With transmission constraints, contingencies:
@ No wind
@ Moderate (7.1% energy integration, 2012)
@ Deep (14% energy integration, 2020)
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Results

Competing Reserve Rules

@ Perfect foresight: anticipates outcomes in advance

@ Percent-Of-Peak-Load rule: commit total reserve T4 at
least x% of peak load, Freq = 0.5Tq

@ 3+5 rule: commit fast reserve Fq at least 3% of hourly
forecast load plus 5% of hourly forecast wind, T..q = 2F¢q
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Results

Day Types

@ 8 day types considered, one for each season, one for
weekdays/weekends

@ Day types weighted according to frequency of occurrence
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Results

Policy Comparison - Deep Integration, No
Transmission, No Contingencies

Deep-simple

OPerfect
Forecast

E20% Peak
Load

m3+5Rule

Relative Cost
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Results

Explanation of SUC Superior Performance

@ When reserve constraints are binding, deterministic policy
overcommits.

@ When reserve constraints are not binding, deterministic
policy underestimates value of protecting against adverse
wind outcomes.

Reserve Minimum Run Levels Cumulative Startup Cost of Fast Capacity
for 2020 Study, Spring Weekdays 100:
5001 al

8000

& 80
o
s S 60
= 7000 2
] % 40
& 6000 —30% 20
—3+5
5000 =Stoch %2000 4000 6000 8000
5 10 15 20 ;
Hour Total Fast Capacity (MW)
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Results

Policy Comparison - No Wind Integration

No wind

OPerfect
Forecast
B30% Peak

Load

H3+5 Rule

Relative Cost
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Results

Policy Comparison - Moderate Integration

Moderate

6%

OPerfect
Forecast

B 30% Peak
Load

H3+5 Rule

Relative Cost
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Results

Policy Comparison - Deep Integration

Deep
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Results

Summary’

Deep-S | No Wind | Moderate Deep
RE daily waste (MWh) 100 0 890 2,186
Cost ($M) 5.012 11.508 9.363 7.481
Capacity (MW) 20,744 26,377 26,068 | 26,068
Daily savings ($) 38,628 | 104,321 198,199 | 188,735
Forecast gains (%) 32.4 35.4 41.9 46.7

'A. Papavasiliou, S. S. Oren, Multi-Area Stochastic Unit Commitment for
High Wind Penetration in a Transmission Constrained Network, Operations
Research, vol. 61, no. 3, pp. 578-592, May/June 2013, INFORMS award for
best publication in energy (2015).
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Results

Model Size

How Many Scenarios? Do we want to solve a more
representative problem less accurately or a less representative
problem more accurately?

Model Gens | Buses | Lines | Hours | Scens.
CAISO1000 | 130 225 375 24 1000
WILMAR 45 N/A N/A 36 6
PJM 1011 | 13867 | 18824 24 1
Model Integer var. | Cont. var. | Constraints
CAISO1000 | 3,121,800 | 20,643,120 | 66,936,000
WILMAR 16,000 151,000 179,000
PJM 24,264 833,112 1,930,776
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Results

Gaps Versus Number of Scenarios

FallwWD
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A large number of scenarios:

@ results in a more accurate representation of uncertainty

@ increases the amount of time required in each iteration of
the subgradient algorithm
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Conclusions and Perspectives

Conclusions

@ Consistent performance of scenario selection:
e Stochastic unit commitment yields 32.4%-46.7% of benefits
of perfect foresight over various types of uncertainty
e Favorable performance relative to Sample Average
Approximation with 1000 scenarios.
@ Insights from parallel computing?:
e Reducing the duality gap seems to yield comparable
benefits relative to adding more scenarios
e All problems solved within 24 hours (operationally
acceptable), given enough processors.

2A. Papavasiliou, S. S. Oren, B. Rountree, Applying High Performance
Computing to Multi-Area Stochastic Unit Commitment for Renewable
Penetration, IEEE Transactions on Power Systems, vol. 30, no. 3, pp.
1690-1701, May 2015.
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Conclusions and Perspectives

Conclusions (Il)

@ Transmission constraints and contingencies strongly
influence results - need for advanced optimization

e Overestimation of capacity credit from 1.2% of installed
wind capacity to 39.8% for deep integration
o Underestimation of daily operating costs from 7.481 $M to
5.102 $M for deep integration
o First steps towards integrating deferrable demand
models with renewable supply uncertainty®: Deferrable
demand imposes no additional capacity requirements,
coupling results in 3.06% - 8.38% operating cost increase

SA. Papavasiliou, S. S. Oren, Large-Scale Integration of Deferrable
Electricity and Renewable Energy Sources in Power Systems, IEEE
Transactions on Power Systems, vol. 29, no. 1, pp. 489-499; January 2014
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Conclusions and Perspectives

Perspectives

@ Model refinements

@ Sub-hourly time scales (15, 5°)
e Rolling horizon simulation
e Conventional and storage resources

@ Nuclear swings
@ CCGT and coal startup/shutdown profiles

e Solar power
@ Computation

@ Asynchronous subgradient methods
e Primal recovery heuristics
e Fast convergence to ‘good-enough’ solutions

@ Demand response

e Bottom-up modeling of demand elasticity
e Assessment of renewable integration limits
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Conclusions and Perspectives
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Conclusions and Perspectives

Thank you

Questions?

Contact: anthony.papavasiliou@uclouvain.be

http://perso.uclouvain.be/anthony.papavasiliou/public_html/
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Demand Response Results

Daily Daily Load
Cost ($) Shed (MWHh)
No wind 9,012,031 | 17.301
Centralized Moderate | 8,677,857 | 1.705
Bids Moderate 211,010 609.914
Coupled Moderate 265,128 2.217
Centralized Deep 8,419,322 | 10.231
Bids Deep 578,909 1221.492
Coupled Deep 705,497 112.452
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Load Flexibility
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Demand Response Study

Zero | Moderate | Deep
Wind capacity (MW) 0 6,688 14,143
DR capacity (MW) 0 5,000 10,000
Daily wind energy (MWh) | O 46,485 95,414
Daily DR energy (MWh) | O 40,000 80,000
DR/firm energy (%) 0 6.1 12.2
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Centralized Load Dispatch

@ Stochastic unit commitment with additional constraint:

N
Z pgst = R
t=1

@ Assumptions of centralized load control:
e Central co-optimization of generation and demand
(computationally prohibitive)
e Perfect monitoring and control of demand
@ Centralized load control represents an idealization that can
be used for:
e Quantifying the cost of decentralizing demand response
e Estimating the capacity savings of deferrable demand
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Demand Bids

@ Based on retail consumer model of (Borenstein and
Holland, 2005), (Joskow and Tirole, 2005), (Joskow and
Tirole, 2006)

@ State contingent demand functions used in economic
dispatch Di(\; w) = a(w) — abA — (1 — a)b);

@ Note that the demand function model has to:

e Be comparable to the deferrable demand model in terms of

total demand R
@ Be consistent with the observed inflexible demand in the

system
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Coupling

Real-time price

RT market payments and
load-shedding penalty

i Deci Igorithm: Charge rate RT market .
Avalabe wind ———————>| | tgon;uym constraint purchase [~ :::e'::fuceh :;ls us
from RT market constraint
N-1
i +
min B> Ar(ue(xe) — st) 1AL+ pra]
(Xt
(x) t=1

pe(x) < C, (ui(x) — 1) < My, reqy = e — Uy
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Integrating Demand Response in Stochastic Unit
Commitment

Decision support

Net load
Wind and firm load

representative outcomes
outcomes Scenario

selection Reserve
Centralized | reAurements.
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el Coupling
Flexible load o
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dispatch

Min load,
startup,
Tuel cost,
renewables
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] | coonome
dispatch

‘ Wind outcomes

Centralized
5] economic
dispatch

Firm load outcomes
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Running Times

e CPLEX 11.0.0

@ DELL Poweredge 1850 servers (Intel Xeon 3.4 GHz, 1GB
RAM)

@ (P1),(P2s) run for 120 iterations, (EDs) run for last 40
iterations

@ Average running time of 43776 seconds on single machine
@ Average MIP gap of 1.39%
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Cost Ranking: Winter Weekdays

WinterWD
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@ S = 1000 corresponds to Shapiro’s SAA algorithm

@ Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Cost Ranking: Spring Weekdays

SpringWD
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@ S = 1000 corresponds to Shapiro’s SAA algorithm

@ Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Cost Ranking: Summer Weekdays

SummerWD
12200000
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@ S = 1000 corresponds to Shapiro’s SAA algorithm

@ Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Cost Ranking: Fall Weekdays

FallwD
9000000
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8600000

8500000

@ S = 1000 corresponds to Shapiro’s SAA algorithm

@ Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Influence of Duality Gap

@ Among three worse policies in summer, S = 1000 with G =
2%, 2.5%

@ Best policy for all day types has a 1% optimality gap
(S = 1000 only for spring)

@ For all but one day type the worst policy has G = 2.5%
@ For spring, best policy is G=1,S = 1000

@ For spring, summer and fall the worst policy is the one with
the fewest scenarios and the greatest gap, namely
G=25,S5=10
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Validation of Scenario Selection Policy

@ Top performance for winter, summer and fall is attained by
proposed scenario selection algorithm based on
importance sampling

@ For all day types, the importance sampling algorithm
results in a policy that is within the top 2 performers

@ Satisfactory performance (within top 3) can be attained by
models of moderate scale (S50), provided an appropriate
scenario selection policy is utilized
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Run Time Ranking: Winter Weekdays

WinterwD
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Run Time Ranking: Spring Weekdays
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Run Time Ranking: Summer Weekdays
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Run Time Ranking: Fall Weekdays
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Running Times: Winter Weekdays
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Running Times: Spring Weekdays
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Running Times: Summer Weekdays
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Running Times: Fall Weekdays
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