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Context



African Energy Poverty

● 600 million Africans with no access to 

electricity (50% of population)

● Population growth: from 1.2 billion to 2.5 

billion in 2050

● African Renewable Energy Initiative (AREI): 

ratified by Europe, Canada, Japan, USA in 

December 2015

● AREI aims to gather at least 10 billion € from 

2015 to 2020

● Goal of AREI: universal access to sustainable 

energy by 2030



The Role of Renewable Resources

● Total capacity requirement for Africa by 2030 

in order to cover energy access gap: 600 GW

● Current buildout plans up to 2030: 220 GW

● Renewable capacity deployment phases of 
AREI
○ Phase 1: at least 10 GW by 2020

○ Phase 2: at least 300 GW by 2030

● Opportunity for Africa to leapfrog to 
renewable energy



The Case Burkina Faso

● Heavily relies on 

○ thermal resources

○ imports from Ivory Coast

● Low electrification

○ less than 5% in rural areas

○ 20% in urban areas

● Frequent load shedding 

● Many projects and investments in PV since 2015

○ Zagtouli PV park produces 33 MW since November 2017

○ Government objective is to install 100 MW of solar energy in the national network by 2020, which 

represents around 30 % of total energy production



Offsetting Solar Power Uncertainty Using Storage



Multistage Stochastic Linear Programming 

on the FAST Toolbox



Multi Stage Stochastic Linear Programming (MSLP)

● Minimize expected cost over a finite time horizon

● The problem is not scalable due to the exponential growth of Ω[𝑡]



FAST Toolbox

● Open-source MATLAB implementation of nested decomposition for 

solving MSLP

● Developed by students at Université catholique de Louvain, currently

maintained at https://web.stanford.edu/~lcambier/fast/

● Easy way to model MSLP (like CVX or YALMIP)

● All subproblems are compiled at the beginning so that forward and 

backward passes are performed quickly

● What the user needs to specify:

○ Description of Nested L-Shaped Decomposition Subproblem (NLDS)

○ Uncertainty lattice

https://web.stanford.edu/~lcambier/fast/


Lattice Representation of Uncertainty

● Uncertainty follows a discrete-time, discrete value Markov process

○ Nodes: realization of uncertainty (e.g. amount of rainfall): 𝜉𝑡,𝜔𝑡

○ Edges: transition probability: ℙ[(𝑡, 𝜔𝑡)|(𝑡 − 1,𝜔𝑡−1)]

● FAST toolbox instruction: L = Lattice.latticeEasyMarkovNonConst(H, P)
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Decomposition of the Problem

● Decompose the original problem to subproblems (NLDS)

○ Defined for each stage 𝑡 and each node 𝑘

● Value function

○ Cost of remaining stages when the decision is x

● FAST toolbox uses easy syntax to describe 𝑁𝐿𝐷𝑆𝑡,𝑘

Cost from stage 𝑡 + 1 to end of horizon 𝐻

Trial decision of the previous stage



Multistage Storage Model



Objective Function and Power Balance 

Goal : minimise the total cost

Power Balance

Demand Supply

Stochastic parameters

=

load sheddingimportsthermal
cost



Other Constraints

- Storage balance in batteries

- Capacity constraints

- Non-negativity



Procedure for Building a Lattice 

1. Estimate joint distribution of start/end moments of PV output
2. Use kernel density estimation in order to estimate joint distribution of PV power at 𝑡 − 1

and 𝑡
3. Populate FAST toolbox lattice by sampling from the continuous distirbution



Case Study



Problem setting

● Single thermal generator with a constant marginal cost

● 5 identical batteries, initially empty

● Lattice: 96 stages (4 days with hourly step), 10 nodes per stage

Battery capacity 1000 MWh

Battery charge/discharge rate 200 MW

Import capacity 200 MW

Generator capacity 300 MW

Generator 200 $/MWh

Import 100 $/MWh

Value of lost load 1000 $/MWh

Physical Parameters Cost parameters



Cost Comparison

Performance on 1000 samples

Stochastic programming Greedy Policy

Cost (103 $) Percentage Cost (103 $) Percentage

Total 1279 1850

Generator 146 11% 1019 55%

Import 1133 89% 660 36%

Load shedding 0 0% 171 9%



Demand Side

20

Import during the 

daytime

Stochastic 

programming

Greedy
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Greedy

Stochastic 

programming Import even if there is 

enough battery charge

Use expensive generator 

Supply Side
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Greedy
Run out of battery

Manage battery to be 

empty at the end of the 

day (i.e. at sunrise)

Battery Storage

Stochastic 

programming



Conclusion

● Renewable energy integration can become an important means of addressing the 

African energy access gap

● Multistage stochastic programming can be valuable for short-term operation of storage 

under renewable supply (solar/wind) uncertainty

● We present FAST, an open-source MATLAB toolbox for nested decomposition

● Future extensions of FAST

● New language: Julia or Python

● Parallelization

● Multistage stochastic nonlinear convex programming
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