Stochastic Modeling of Multi-Area Wind Production PMAPS 2012, Constantinople, Turkey

Anthony Papavasiliou, Shmuel S. Oren

University of California at Berkeley, U.S.A.

June 11th, 2012

▲ 글 ▶ - 글

A. Papavasiliou, S. S. Oren PMAPS 2012

Outline

イロン 不得 とくほ とくほとう

Stochastic Unit Commitment

- Stochastic unit commitment has become a useful tool for assessing the impact of large-scale renewable energy integration on power system operations:
 - (Wang, Shahidehpour et al., 2008), (Bouffard, Galiana, 2008).
 - (Ruiz, Philbrick et al., 2009), (Tuohy, Meibom et al., 2009), (Morales, Conejo et al., 2009).
 - (Constantinescu, Zavala et al., 2011), (Papavasiliou, Oren et al, 2011).

ヘロト 人間 ト ヘヨト ヘヨト

- Ability to quantify:
 - Renewable energy utilization
 - Cost of unit commitment and economic dispatch
 - Capital investment in generation capacity

The Need for Multi-Area Wind Production Models

- Two sources of uncertainty:
 - Continuous disturbances: load/renewable forecast errors
 - Discrete disturbances: generator/line failures
- Transmission constraints affect operating costs, reserve requirements. Where wind power is produced matters.

프 🕨 🗉 프

A. Papavasiliou, S. S. Oren PMAPS 2012

Introduction Model Results

Integration of Wind Models in Unit Commitment

A. Papavasiliou, S. S. Oren

PMAPS 2012

Previous Work

- (Brown, Katz et al., 1984): Model wind speed, use exponential transformation of data set to fit autoregressive model, capture hourly patterns of wind speed.
- (Torres, Garcia et al., 2005): Same approach as Brown, using autoregressive moving average model.
- (Morales, Minguez et al., 2010): Noise vector drives a vector autoregressive process. Authors assume a diagonal matrix of autoregressive coefficients (spatial correlations captured by noise vector).

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Autoregressive Model

Mathematical model:

$$Y_{k,t+1} = \sum_{j=0}^{p} \phi_{kj} Y_{k,t-j} + \omega_{kt},$$

where $\Phi = (\phi_{kj})$ is the matrix of autoregressive parameters and $(\omega_{kt}), k \in \{1, \dots, K\}$, are iid, multivariate Gaussian random variables with mean 0 and covariance matrix Σ

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- No diagonal terms assumed in autoregressive parameter matrix
- Spatial correlations are captured by noise vector ω_{kt}

Calibration

Remove systematic seasonal and diurnal effects:

$$y_{kt}^{S} = \frac{y_{kt} - \hat{\mu}_{kmt}}{\hat{\sigma}_{kmt}}.$$

2 Transform data to obtain a Gaussian stationary distribution:

$$y_{kt}^{GS} = N^{-1}(\hat{F}_k(y_{kt}^S)).$$

< ロ > < 同 > < 三 >

Settimate the autoregressive parameters $\hat{\phi}_{kj}$ and covariance matrix $\hat{\Sigma}$ using Yule-Walker equations.

Calibration Details

- Important to work with wind speed model if possible
- Data fit:
 - (Brown, Katz et al, 1984) and (Torres, Garcia et al.) use Weibull distribution, (Papavasiliou, Oren et al., 2011) use inverse Gaussian distribution to fit wind speed data
 - (Callaway, 2010) uses non-parametric distribution
 - In current study we use non-parametric distribution since each area has different distribution

ヘロト ヘヨト ヘヨト

 Shorter epochs increase accuracy of fit but require estimation of more parameters μ̂_{kmt}, σ̂_{kmt}

Simulation

• Generate autoregressive noise of order p:

$$Y_{k,t+1}^{GS} = \sum_{j=0}^{p} \hat{\phi}_{kj} Y_{k,t-j}^{GS} + \omega_{kt}$$

Transform to non-Gaussian distribution:

$$Y_{kt}^{S} = \hat{F}_{k}^{-1}(N(Y_{kt}^{GS}))$$

• Add seasonal and hourly mean and variance:

$$\mathbf{Y}_{kt} = \hat{\sigma}_{kmt} \mathbf{Y}_{kt}^{\mathbf{S}} + \hat{\mu}_{kmt}$$

• Simulate power using approximate power curve:

$$P_{kt} = \hat{P}_k(Y_{kt})$$

< ロ > < 同 > < 三 > .

Wind Model Data Source

- 2 wind integration cases: moderate (7.1% energy integration, 2012), deep (14% energy integration, 2020)
- California ISO interconnection queue lists locations of planned wind power installations
- NREL Western Wind and Solar Interconnection Study archives wind speed - wind power for Western US

County	Existing	Moderate	Deep
Altamont	954	954	1,086
Clark	-	-	1,500
Imperial	-	-	2,075
Solano	348	848	1,149
Tehachapi	1,346	4,886	8,333
Total	2,766	6,688	14,143

Introduction Model Results

Conclusions and Perspectives

WECC Model

イロト 不得 トイヨト イヨト 二日 二

Altamont County

Power curves (left) and complementary cdf of wind output (right) for moderate (up) and deep (down) integration study

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Solano County

Power curves (left) and complementary cdf of wind output (right) for moderate (up) and deep (down) integration study

PMAPS 2012

イロト イポト イヨト イヨト

э

Tehachapi County

Power curves (left) and complementary cdf of wind output (right) for moderate (up) and deep (down) integration study

PMAPS 2012

イロト イポト イヨト イヨ

э

Clark County and Imperial Valley

Power curves (left) and complementary cdf (right) for Clark County (up) and Imperial Valley (down) for deep integration

・ロト・国・・ヨト・ヨー うらぐ

Remarks

- Slight deviation of cdf for deep integration study in high power output levels of Tehachapi and Solano area
- Approximate power curve cannot capture scatter diagram accurately due to wide geographical dispersion of wind sites
- Remedy is to increase number of wind sites at the cost of increasing number of estimated parameters in correlation matrix $\boldsymbol{\Sigma}$
- Acceptable approximation in unit commitment studies since low-power output outcomes are represented accurately

(日)

Conclusions and Perspectives

Conclusions

- Multi-area wind power production model that captures nonlinearities of power conversion, systematic seasonal and diurnal effects, non-Gaussian distribution of original data set, spatial correlations and inter-temporal dependencies
- **Tradeoff** between accuracy of correlation matrix estimation and accuracy of approximate power curves

< ロ > < 同 > < 三 >

- Perspectives
 - Solar power production modeling
 - Check fit of model to 2004, 2005 NREL data

Thank you

Questions?

Contact: tonypap@berkeley.edu

http://www3.decf.berkeley.edu/~tonypap/publications.html

A. Papavasiliou, S. S. Oren PMAPS 2012

イロト イポト イヨト イヨト