Self-Commitment of Combined Cycle Units under Electricity Price Uncertainty IEEE PES General Meeting 2015

Anthony Papavasiliou (Université catholique de Louvain) Yi He (Wells Fargo) Alva Svoboda (PG&E)

July 28, 2015

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation and Research Objective

Motivation:

- Day-ahead market clearing: deterministic equivalent model, limited horizon, simplified representation of combined cycle units
- Renewable resources ⇒ real-time price uncertainty
- Increased utilization of combined-cycle units

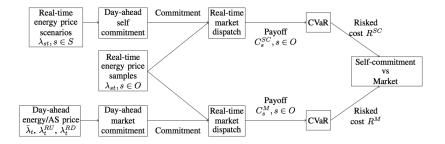
Dilemma: should utilities self-commit combined cycle units?

- Benefit: high real time prices \Rightarrow operate at higher mode
- Cost: low real-time prices \Rightarrow no recovery of fixed costs

(4回) (日) (日)

Motivating Example

- Risk-neutral generator with capacity *P*, marginal cost *C*, minimum load cost *K*, facing uncertain real-time price λ_{RT}
- Without uplift payments, unit stays off if $\lambda_{DA} \leq C + \frac{K}{P}$
- When considering self-commitment, unit solves


$$\max \mathbb{E}[(\lambda_{RT} - C) \cdot p] - K \cdot u$$

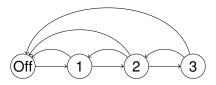
 $0 \le p \le P \cdot u$
 $u \in \{0, 1\}$

• Condition for self-commitment:

$$C \cdot \mathbb{P}[\lambda_{RT} \geq C] + rac{K}{P} \leq \mathbb{E}[\lambda_{RT} | \lambda_{RT} \geq C]$$

Conclusion: A generator may want to self-commit despite the day-ahead market keeping them off

Model Setup



A. Papavasiliou Self-Commitment of Combined Cycle Units

イロト 不得 とくほ とくほとう

э.

Combined Cycle Model

- Objective: maximize profits
 - Revenues from selling energy and reserves
 - Fuel costs (non-linear heat rate curve), variable O&M costs, fixed operating costs / transition costs
- States are fired up in sequence, \leq 1 transition per period
- Sales + own demand = production
- Ramp rate limits per state
- Min up down/time limits per state and for unit overall

Self-Commitment Model

- Self-commitment introduces risk in the real-time market
- We represent risk using conditional value at risk (CVaR)
- Represent real-time market payoff as $Q(w, \lambda_s)$
 - λ_s: real-time price
 - w: first-stage decisions (unit commitment)
- Rockafellar, Uryasev (2002): CVaR can be computed as

$$\min_{\zeta} \zeta + \frac{1}{1-a} \sum_{s \in S} \pi_s (Q(w, \lambda_s) - \zeta)^+,$$

• Self-commitment problem has following form:

$$\min_{w \in W} c^T w + \zeta + \frac{1}{1-a} \sum_{s \in S} \pi_s (Q(w, \lambda_s) - \zeta)^+$$
$$(P2_s) : Q(w, \lambda_s) = \min_{Aw+Bz=h, z \ge 0} \lambda_s^T z$$

Case Study Assumptions

- 3 × 1 configuration
- Heat rate curve from typical WECC unit, 6 segments
- 4-hour min up/down times per state, 6-hour overall min up/down times
- Horizon: 48-hours
- Calibrate 2nd order AR model to 2012 CAISO NP15 hub real-time / day-ahead energy prices
- Day-ahead ancillary services prices: 2012 CAISO NP15
- Natural gas prices: 3.11 \$/MMBtu (2012 average day-ahead PG&E Citygate hub price)

・ 同 ト ・ ヨ ト ・ ヨ ト

- We study 4 intervals:
 - (I) Spring weekday-weekend
 - (II) Spring weekday-weekday
 - (III) Summer weekday-weekend
 - (IV) Summer weekday-weekday
- We study 4 levels of risk aversion: a = 0 (risk neutral), 0.25, 0.5, 0.75
- We use |S| = 100 scenarios for optimization
- We use |O| = 10,000 samples for Monte Carlo simulation

(1) マン・ション・

Impact of Risk Aversion

Table: 95% confidence intervals of risk-adjusted profits (in 10^3 over the 48-hour horizon)

		Reference prices					
		<i>a</i> = 0	0.25	0.50	0.75		
(I)	Self-Commit	59.7-64.5	0	0	0		
	Market	0	0	0	0		
(II)	Self-Commit	60.0-64.4	4.7-6.4	0	0		
	Market	0	0	0	0		
(111)	Self-Commit	357.4-360.4	334.9-335.9	324.8-325.7	315.8-317.2		
	Market	350.4-352.6	327.7-328.2	320.8-321.1	317.4-317.6		
(IV)	Self-Commit	414.9-420.9	375.8-376.7	366.2-367.1	359.4-359.6		
	Market	390.5-392.6	369.2-369.7	362.8-363.0	359.4-359.6		

ヘロン ヘアン ヘビン ヘビン

3

Impact of Price Volatility

Re-run same analysis with RT / DA market price spread = 150% of reference model

Table: 95% confidence intervals of risk-adjusted profits (in \$ 10³ over the 48-hour horizon).

		Volatile prices					
		<i>a</i> = 0	0.25	0.50	0.75		
(I)	Self-Commit	88.2-100.1	23.8-26.7	0	0		
	Market	0	0	0	0		
(II)	Self-Commit	106.3-113.5	24.0-26.8	0	0		
	Market	0	0	0	0		
(III)	Self-Commit	402.2-411.7	349.0-350.5	332.0-333.3	317.2-319.3		
	Market	379.2-382.7	342.7-343.7	330.4-330.8	323.2-323.5		
(IV)	Self-Commit	451.7-460.9	389.2-390.6	372.0-372.5	365.0-365.3		
	Market	417.9-421.1	383.6-384.5	372.0-372.5	365.0-365.3		

Running Time and Size of the Scenario Set

Day	α	S	Time (sec)	Cuts	Profit (\$ · 10 ³)
Ι	0	100	537	100	59.7 - 64.5
Ι	0	1000	2679	100	59.7 - 64.5
Ι	0.25	100	588	100	0
Ι	0.25	1000	2901	100	4.2 - 6.0
Ι	0.5	100	499	100	0
I	0.5	1000	2522	100	0
Ι	0.75	100	469	100	0
Ι	0.75	1000	2343	100	0
	0	100	532	100	60.0 - 64.4
П	0	1000	2875	100	60.0 - 64.4
II	0.25	100	465	100	4.7 - 6.4
П	0.25	1000	3058	100	4.2 - 6.0
	0.5	100	387	100	0
П	0.5	1000	2582	100	0
II	0.75	100	456	100	0
П	0.75	1000	2593	100	0

2

Day	α	S	Time (sec)	Cuts	Profit (\$ · 10 ³)
	0	100	229	69	357.4 - 360.4
111	0	1000	2637	100	361.4 - 367.7
	0.25	100	243	79	334.9 - 335.9
III	0.25	1000	1979	69	334.9 - 335.9
	0.5	100	190	74	324.8 - 325.7
111	0.5	1000	1526	66	324.8 - 325.7
	0.75	100	240	93	315.8 - 317.2
Ш	0.75	1000	2112	86	317.4 - 317.6
IV	0	100	162	65	414.9 - 420.9
IV	0	1000	1534	32	413.3 - 419.4
IV	0.25	100	159	67	375.8 - 376.7
IV	0.25	1000	2045	80	375.8 - 376.7
IV	0.5	100	203	74	366.2 - 367.1
IV	0.5	1000	1844	14	366.2 - 367.1
IV	0.75	100	242	87	359.4 - 359.6
IV	0.75	1000	2591	100	359.4 - 359.6

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Conclusions and Perspectives

Conclusions:

- Benefits of self-commitment exist, but decrease with increased risk aversion
- Price volatility can increase the benefit of self-commitment
- Observed differences between DA/RT prices of US markets justify self-commitment

Perspectives:

- Engie (formerly GDF-Suez): Commitment of combined cycle units with off-take constraints (TOP gas contracts)
- Detailed modeling of combined cycle units in ISO models (Guan, forthcoming IEEE TPS)

ヘロト ヘアト ヘビト ヘビト

Questions?

anthony.papavasiliou@uclouvain.be

http://www.perso.uclouvain.be/anthony.papavasiliou/public_html

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Profit Distribution, Summer Weekday-Weekend

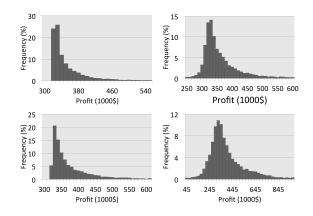
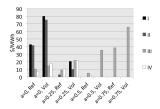



Figure: Market, reference prices (upper left). Self-commitment (a = 0), reference prices (upper right). Market, volatile prices (lower left). Self-commitment (a = 0), volatile prices (lower right).

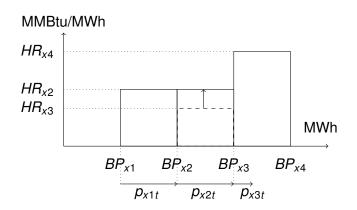
Feedback of Real-Time Prices on Self-Commitment

 How low do RT prices have to go to make units indifferent between self-commitment and DA market: 2.2-80\$/MWh

- 2009-2012 DA RT data outside this range:
 - CAISO NP15 hub: -2.37\$/MWh to +0.19\$/MWh
 - ISO New England Internal hub: -0.66\$/MWh to -0.01\$/MWh
 - PJM Dominion hub: -0.42\$/MWh to +0.59\$/MWh
 - New York ISO Capital hub: +0.77\$/MWh to +1.43\$/MWh
 - MISO Consumer Energy hub: +0.40\$/MWh to +1.05\$/MWh

Properties of the Value Function

- The value function V(w, ζ) = ∑_{s∈S} π_s(Q(w, λ_s) − ζ)⁺ is a convex function of (w, ζ)
- The subgradient of V(w, ζ) at (w, ζ) is given by


$$\partial V(\boldsymbol{w},\zeta) = \sum_{\boldsymbol{s}\in\boldsymbol{S}} \pi_{\boldsymbol{s}} \mathbf{1}_{\boldsymbol{s}} \begin{bmatrix} -\sigma_{\boldsymbol{s}}^{T}\boldsymbol{A} \\ -\mathbf{1} \end{bmatrix}$$

where $1_s = 1_{Q(w,\lambda_s) \ge \zeta}$ and σ_s are the dual optimal multipliers of Aw + Bz = h in $(P2_s)$

We can apply Benders decomposition

ヘロト ヘアト ヘビト ヘビト

Incremental Heat Rate Curve

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Differences Among the Two Policies

Table: Commitment (MW) for self-commitment (a = 0) versus day-ahead market, Summer Weekday-Weekday.

Hours	1-21	22 - 28	29 - 32	33-36	37 - 47	48
Self-Commit	1053	1053	1053	1053	1053	0
Market	1053	0	301	602	1053	0

Market shuts unit down in hour 22, restarts in hour 29:

- Startup costs
- Lost profits due to delay (8 hours) for returning to 3 × 1

・ 回 ト ・ ヨ ト ・ ヨ ト