Optimization of Trading Strategies in Continuous Intraday Markets

Anthony Papavasiliou, Gilles Bertrand

Center for Operations Research and Econometrics Université catholique de Louvain

January 31, 2019

Outline

- Introduction
- Rolling Intrinsic and Perfect Foresight
- MDP Formulation of Continuous Intraday Trading
 - MDPs and Policy Functions
 - Illustration of Threshold Policies: Purely Financial Problem
- Threshold Policy
- 5 Case Study: German Intraday Market

Outline

- Introduction
- Rolling Intrinsic and Perfect Foresight
- MDP Formulation of Continuous Intraday Trading
 - MDPs and Policy Functions
 - Illustration of Threshold Policies: Purely Financial Problem
- 4 Threshold Policy
- 5 Case Study: German Intraday Market

Motivation

Description of the Continuous Intraday Market

Figure: Short-term German electricity market

Format of Intraday Bids

	Hour	Quarter	Туре	Price (€/MWh)	Quantity (MW)
Bid 1	1	h	S	28	10
Bid 2	1	h	b	25	5
Bid 3	1	q1	b	30	8
Bid 4	1	q2	b	25	2.5
Bid 5	1	q3	S	27	0.3
Bid 6	2	h	b	29	0.8
Bid 7	14	q4	S	32	3

- Bids arrive continuously in the intraday platform
- Bids are reserved on first-come-first-serve basis

Literature Review

Intraday price models

- [Kiesel 2015]: Econometric study of the parameters influencing the price evolution
- [Kiesel 2017]: modelling of order arrivals using Hawkes process

Trading by assuming a price model

- [Aid 2015]: solving the trading problem of a thermal generator using stochastic differential equations, assuming some model for the price evolution
- [Braun 2016]: solving the problem of optimizing pumped storage trading if we have access to a price curve for the coming hours

Trading without assuming a price model

• [Skajaa 2015]: heuristic method for covering the position of a wind farm based on imbalance price forecast

Our Goal

We are interested in a model-free approach that can handle

- continuous arrival of orders
- multi-stage uncertainty
- management of flexible (e.g. pumped hydro, storage) assets

7

Outline

- Introduction
- 2 Rolling Intrinsic and Perfect Foresight
- MDP Formulation of Continuous Intraday Trading
 - MDPs and Policy Functions
 - Illustration of Threshold Policies: Purely Financial Problem
- 4 Threshold Policy
- 5 Case Study: German Intraday Market

Rolling Intrinsic

We consider the *rolling intrinsic* policy as a benchmark [Lohndorf, Wozabal, 2015]

- Applied for intraday trading with pumped hydro
- Receding horizon approach
- Myopic: accept any feasible trade that gives an instantaneous profit

Rolling Intrinsic Model

Accept any feasible trade that gives a positive profit

$$(P_t): \max_{\substack{q_{i,t}^{s/b}, v_{t,d} \\ q_{i,t}^{s/b}, v_{t,d} \\ d \in D}} \sum_{i \in I_d} \left(P_i^b \cdot q_{i,t}^b - P_i^s \cdot q_{i,t}^s \right)$$

$$q_{i,t}^{s/b} \leq Q_{i,t}^{s/b} \qquad \forall i \in I_d, d \in D$$

$$v_{t,d} = v_{t-1,d}$$

$$+ \sum_{b \in D \mid b \leq d} \sum_{i \in I_b} \left(q_{i,t}^s - q_{i,t}^b \right) \qquad \forall d \in D$$

$$v_{t,d} \leq V \qquad \qquad \forall d \in D$$

$$v_{t,d} \geq 0 \qquad \qquad \forall d \in D$$

$$q_{i,t}^{s/b} \geq 0 \qquad \forall i \in I_d, d \in D$$

Perfect Foresight

Use perfect foresight model in order to:

- obtain upper bounds for any trading policy
- gain insights from the KKT conditions in order to design our policy

Perfect Foresight Model

The variables are not indexed by t anymore because perfect foresight setting is equivalent to having access to all bids at once

$$\begin{aligned} \max \sum_{d \in D} \sum_{i \in I_d} \left(P_i^b \cdot q_i^b - P_i^s \cdot q_i^s \right) \\ q_i^{s/b} &\leq Q_i^{s/b} & \forall i \in I_d, d \in D \ (\mu_{i,d}^s) \\ v_d &= v_{d-1} + \sum_{i \in I_d} \left(q_{i,d}^s - q_{i,d}^b \right) & \forall d \in D \ (\lambda_d) \\ v_d &\leq V & \forall d \in D \ (\gamma_d) \\ v_d &\geq 0 & \forall d \in D \ (\beta_d) \\ q_{i,d}^{s/b} &\geq 0 & \forall i \in I, d \in D \ (\nu_{i,d}^s) \end{aligned}$$

KKT Analysis of Perfect Foresight Policy

- If $\lambda_d < P_i^b$, we have $q_i^b = Q_i^b$
- If $\lambda_d > P_i^b$, we have $q_i^b = 0$
- If $\lambda_d < P_i^s$, we have $q_i^s = 0$
- ullet If $\lambda_d > P_i^s$, we have $q_i^s = Q_i^s$

Interpretation of λ_d : **threshold** above which we sell and below which we buy

This suggests that a threshold policy could be a reasonable trading strategy

Outline

- Introduction
- 2 Rolling Intrinsic and Perfect Foresight
- MDP Formulation of Continuous Intraday Trading
 - MDPs and Policy Functions
 - Illustration of Threshold Policies: Purely Financial Problem
- 4 Threshold Policy
- 5 Case Study: German Intraday Market

Definition of a Markov Decision Process

Markov decision process

A Markov decision process is a tuple (S, A, P, R), where

- ullet \mathcal{S} is a set of states
- A is a set of actions
- $\mathcal{P}_{s,s'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$ is the probability to arrive in state s' if we follow action a in state s
- \mathcal{R} is a reward function, $\mathcal{R}(s, a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$

Definition of a Markov Decision Process

Objective function

We optimize over a set of policies for the sum of reward if we follow a policy

$$\max_{\pi \in \Pi} \sum_{t=1}^{T} \mathbb{E}\left[R_t(S_t, A^{\pi}(S_t))\right]$$

Policy Function Approximation

Policy function approximation (PFA)

The idea in PFA is to approximate directly the policy

$$\pi(a|s; \theta) = \mathbb{P}[A_t = a|S_t = s; \theta]$$

Illustration of Threshold Policies: Purely Financial Problem

- We have to decide whether to accept a bid at the intraday price p^{ID}
- We know the intraday price p^{ID} , but the real-time price p^{RT} is uncertain

MDP Formulation of Purely Financial Problem

Purely financial problem as an MDP

- $S = \{p^{ID}\}$, the intraday price
- $A = \{a\}$, a binary variable whose value is equal to 1 if we accept the bid, or 0 if we reject it
- $\mathcal{R}(s, a) = \mathbb{E}[p^{\mathsf{ID}} p^{\mathsf{RT}}|p^{\mathsf{ID}}] \cdot a$

Policy function approximation for the purely financial problem

We use a stochastic threshold policy with parameters $\theta = (\mu, \sigma)$

$$egin{aligned} \pi(p^{\mathsf{ID}},0; heta) &= 1 - F_{ heta}(p^{\mathsf{ID}}) \ \pi(p^{\mathsf{ID}},1; heta) &= F_{ heta}(p^{\mathsf{ID}}) \end{aligned}$$

Graphical Illustration of a Stochastic Threshold

Payoff for Bivariate Normal Distribution

Payoff as a function of $\theta = (\mu, 0^+)$:

$$J(\mu) = \mathbb{E}\left[p^{\mathsf{ID}} - p^{\mathsf{RT}}|p^{\mathsf{ID}} \geq \mu\right] \cdot (1 - F_{p^{\mathsf{ID}}}(\mu))$$

Assuming that $(p^{\text{ID}}, p^{\text{RT}})$ are *bivariate normal*, $J(\mu)$ can be computed analytically and is a **non-concave** function of μ

Outline

- Introduction
- 2 Rolling Intrinsic and Perfect Foresight
- MDP Formulation of Continuous Intraday Trading
 - MDPs and Policy Functions
 - Illustration of Threshold Policies: Purely Financial Problem
- Threshold Policy
- 5 Case Study: German Intraday Market

Graphical Representation of Threshold Policy for Pumped Hydro Problem

Graphical Representation of Threshold Policy

We use a *threshold policy*, which is a distribution over actions:

- The bell curve indicates the probability density function of the sell threshold
- The two purple segments and the red segment of the bell curve indicate the probability of each of the three actions:
 - Sell 0 MWh
 - Sell 10 MWh
 - Sell 20 MWh
- The green decreasing function corresponds to the buy bids that are available in the order book for a given trading hour

We are interested in finding an optimal threshold

REINFORCE Algorithm

Algorithm

REINFORCE algorithm for finite horizon:

- Initialize θ_0
- for each episode $\{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta}$ for t = 1: T-1 do $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} \log(\pi(s_t, a_t; \theta)) g_t$ end for

end for

Remark

 g_t is the profit from t to the end T of the episode

$abla_{ heta}\mathsf{log}$

These gradients can be expressed in closed form

Generalization of the Threshold Policy

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function s.t. $\theta = f(\alpha)$. We can compute the derivative with respect to α by using the chain rule:

$$\frac{\partial \pi(s;\theta)}{\partial \alpha} = \frac{\partial \pi(s;\theta)}{\partial \theta} \frac{\partial \theta}{\partial \alpha}$$
$$= \frac{\partial \pi(s;\theta)}{\partial \theta} \frac{\partial f}{\partial \alpha}$$

This allows us to influence the threshold by observing relevant factors

Expected Behaviour of a Threshold Policy

- Ensure that the stored volume respects reservoir limits
- Adapt with respect to the intraday auction price
- Adapt with respect to the delivery time
- Adapt with respect to the evolution of intraday prices
- Adapt with respect to the remaining time

Outline

- Introduction
- 2 Rolling Intrinsic and Perfect Foresight
- MDP Formulation of Continuous Intraday Trading
 - MDPs and Policy Functions
 - Illustration of Threshold Policies: Purely Financial Problem
- 4 Threshold Policy
- 5 Case Study: German Intraday Market

Case Study

- Data source: 2 years of data of the German CIM, procured from EPEX
- Training data: 200 days of 2015
- Testing data: 165 last days of 2015

Training the Policy Function

This graph shows the evolution of the *profit* with respect to the *iteration*. An *iteration* corresponds to 5 repetitions of our 200 days of learning.

Competing Policies

We have compared the results of four different methods:

- Rolling intrinsic 4pm: rolling intrinsic method launched at 4pm
- Rolling intrinsic 11pm: rolling intrinsic method launched at 11pm
- Threshold: our proposed threshold policy
- Perfect foresight

Comparison of Policies

Method	Profit mean [€/day]	Profit standard deviation [€/day]
Rolling intrinsic 4pm	4042	1968
Rolling intrinsic 11pm	4871	2034
Threshold	5076	2484
Perfect foresight	10321	4416

In the next slides, we will compare the two best performing policies:

- rolling intrinsic starting at 11pm
- threshold policy

Distribution of Profits

- One occurrence corresponds to one day of trading
- The profit is accumulated gradually and is not coming from one spike

Significance of Profit Difference

We conduct a p-value test with the two following hypotheses

- Null hypothesis: $\mathbb{E}[\Pi_{thres}] = \mathbb{E}[\Pi_{rol}]$
- Alternative hypothesis: $\mathbb{E}[\Pi_{thres}] > \mathbb{E}[\Pi_{rol}]$

We find that the probability of obtaining the observed profit differences with $\mathbb{E}[\Pi_{thres}] = \mathbb{E}[\Pi_{rol}]$ is equal to 0.7%

Different Attitude towards Risk

There is a trade-off between

- arbitraging against earlier bids with less interesting prices (rolling intrinsic, risk-free)
- waiting for more interesting prices later in the day (threshold policy, more risky)

Conclusions and Perspectives

- Observations
 - The profit of rolling intrinsic varies significantly with the time that trading commences
 - Our method outperforms rolling intrinsic with statistical significance
- Future research
 - We are trading at hourly frequency, we would like to solve the problem at higher trading frequency
 - Step size analysis
 - Accelerated learning through parallel computing

Thank you

Contact:

Anthony Papavasiliou, anthony.papavasiliou@uclouvain.be http://perso.uclouvain.be/anthony.papavasiliou/

Gilles Bertrand, gilles.bertrand@uclouvain.be https://sites.google.com/site/gillesbertrandresearch/home