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Flexibility

Demand response paradigms

Electricity market models with DR



Flexibility in Germany (Gils, 2014)
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Demand Response Paradigms

• Boiteux, 1960: time of use pricing

• Schweppe, 1988: real-time pricing

• Gedra and Varaiya, 1993: 
interruptible service via callable
forward contracts

• Chao et al., 1986: priority service 
pricing

• P and Oren, 2011: coupling
renewable supply with deferrable
demand



Modeling Electricity Markets with
Demand Response

• Demand response can valorize flexibility in a 
number of markets:
• Energy (price arbitrage, buy low – sell high)
• Ancillary services (already offers asymmetric up 

primary reserve, tertiary reserve)
• Capacity

• Goal of this research: closed-loop electricity
models with DR, while accounting for:
• Uncertainty of renewable supply
• Temporal evolution of consumer elasticity
• Equilibrium between suppliers and consumers

• Our target model should quantify:
• Operating costs and system dispatch
• Capacity requirements
• Electricity prices



Methodology
An elementary model of deferrable demand

Stochastic programming

Stochastic Dual Dynamic Programming (SDDP)



Flexibility

• Deferrable demand behaves much
like storage
• H: time window for completing task

• E: energy required for task

• D: max rate of consumption
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A Stochastic Programming Approach

• Consider a market over 2 periods:
• Uncertain wind 𝜉

• Conventional generator with
marginal cost 𝑀𝐶 𝑝 = 0.125
€/MWh

• Inflexible demand 𝐷 = 500 𝑀𝑊

• One deferrable consumer (𝐸 = 10
MWh, P = 8 MW)

• Not a coincidence: market
equilibrium ⇔stochastic
programming optimal solution



Stochastic Dual Dynamic Programming (SDDP)
• Our target model is a stochastic program that

• captures uncertainty
• captures balance between suppliers/consumers
• captures the role of time in flexibility …

• … but it is a multi-stage (e.g. 24 stages/hours) stochastic program → enormous number of 
variables/constraints

• The energy industry has solved this problem in context of hydrothermal planning through SDDP
• Multi-stage (e.g. 12 stages/months) planning of hydro reservoirs
• Uncertainty of rainfall
• Role of time in level of water in hydro reservoirs

• Advantages
• SDDP has proven itself as a commercially viable tool
• Parallelizable
• The algorithm generates electricity price distributions as a by-product

• Disadvantages
• There is a long-standing debate about convergence*
• Unclear if it is appropriate for DR

* See upcoming session: MVF Pereira, A Shapiro, ´Computational Challenges in Energy´, CORE 50th anniversary, 
May 26, 2016



The Idea of SDDP

• SDDP relies on two ‘tricks’
• Simulate scenarios, instead of 

enumerating → forward pass → upper
bound

• Share information among states of the 
world that are in the same period → 
backward pass → lower bound

• These tricks come with restrictions:
• Serial independence: the future looks the 

same, no matter what we have observed
so far

• Probabilistic upper bounds (and ensuing
debate)

Forward pass Backward pass

Probabilistic upper bound



Case Study
Model setup

Convergence results

Operating efficiencies of demand response



Focus on Germany, 2013

• Demand data: ENTSO-E

• Wind and solar power data: EEX transparency platform

• Flexible load data: (Gils, 2014)

• 24 stages, 2 outcomes per stage → extended form
problem with 33.8 billion variables, 19 billion constraints

• Compare four models
• Perfect foresight
• Real-time-pricing
• Time of use pricing
• Inflexible demand

• Compare two scenarios
• Reference case
• High stress case

• Decommissioning of nuclear capacity
• Exports of 20 GW for all hours of the day
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Convergence and Run Times
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Policy Comparison
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Conclusions and Perspectives



Conclusions and Perspectives

• Conclusions
• Stochastic programming can be used as a first 

approximation of market models with DR

• SDDP seems capable of tackling closed-loop
market models with simple represntation of DR

• Perspectives
• Detailed modeling of DR constraints

• Aggregator business models based on priority
service pricing

• ColorPower project (sponsor: Electrabel, 
colaborator: Zome)

Green = Price Sensitive
Yellow = Reliability Responsive
Red = Opt Out


