Integrating Deferrable Demand in Electricity Markets

Anthony Papavasiliou, CORE, Université catholique de Louvain

Innovation in Energy Management – Make Green Efficient!

November 19, 2015

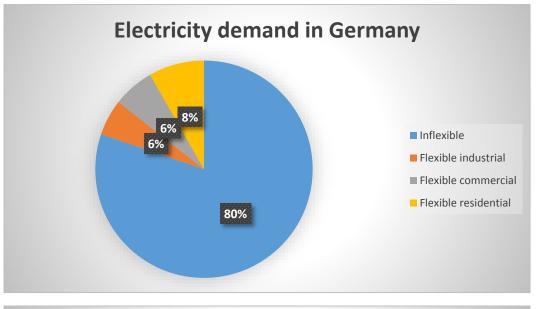
Motivation

Flexibility

Demand response paradigms

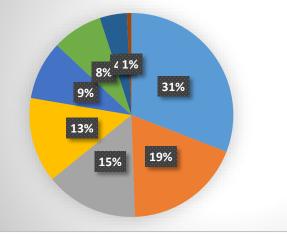
Electricity market models with DR

Flexibility in Germany (Gils, 2014)



Industrial flexible demand Paper machines Recycling paper Cooling food manufacturing 19 8% Cement mills 33% 7% Pulp production Air liquefaction O2 14% Calcium carbide production 15% 14% Air liquefaction N2 Air liquefaction Ar Ventilation industrial

Residential flexible demand



- Residential storage heater
- Residential storage water heater

Commercial flexible demand

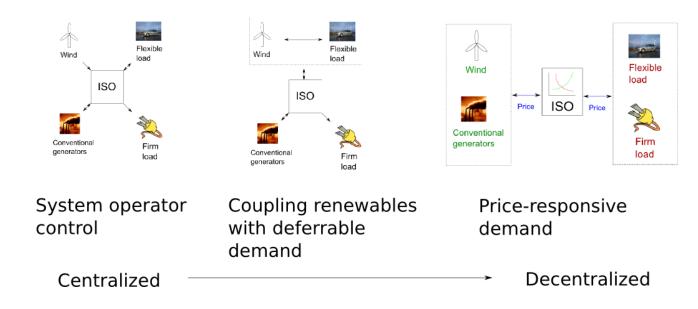


Ventilation commercial
Cooling, food retail
Waste water treatment
Pumps water supply
Storage water heater commercial
Cooling, hotels/restaurants
Cold storages

AC commercial

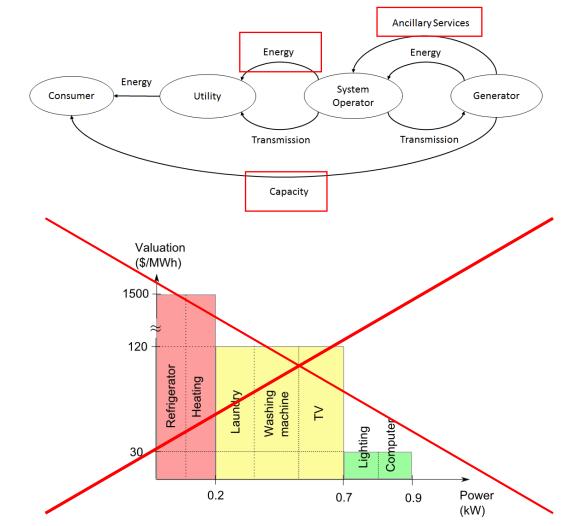
Demand Response Paradigms

- Boiteux, 1960: time of use pricing
- Schweppe, 1988: real-time pricing
- Gedra and Varaiya, 1993: interruptible service via callable forward contracts
- Chao et al., 1986: priority service pricing
- *P and Oren, 2011*: coupling renewable supply with deferrable demand



Modeling Electricity Markets with Demand Response

- Demand response can valorize flexibility in a number of markets:
 - Energy (price arbitrage, buy low sell high)
 - Ancillary services (already offers asymmetric up primary reserve, tertiary reserve)
 - Capacity
- Goal of this research: <u>closed-loop</u> electricity models with DR, while accounting for:
 - Uncertainty of renewable supply
 - Temporal evolution of consumer elasticity
 - Equilibrium between suppliers and consumers
- Our target model should quantify:
 - Operating costs and system dispatch
 - Capacity requirements
 - Electricity prices



Methodology

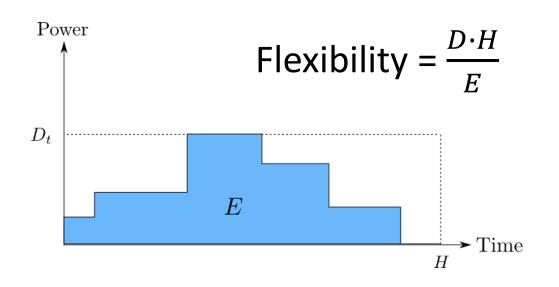
An elementary model of deferrable demand

Stochastic programming

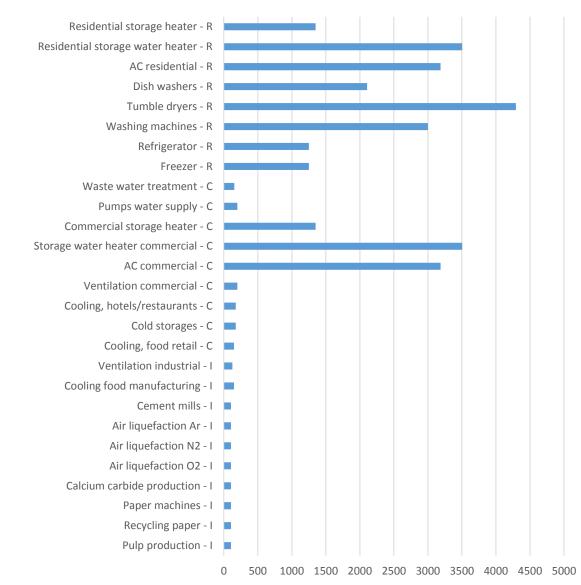
Stochastic Dual Dynamic Programming (SDDP)

Flexibility

- Deferrable demand behaves much like storage
 - H: time window for completing task
 - E: energy required for task
 - D: max rate of consumption

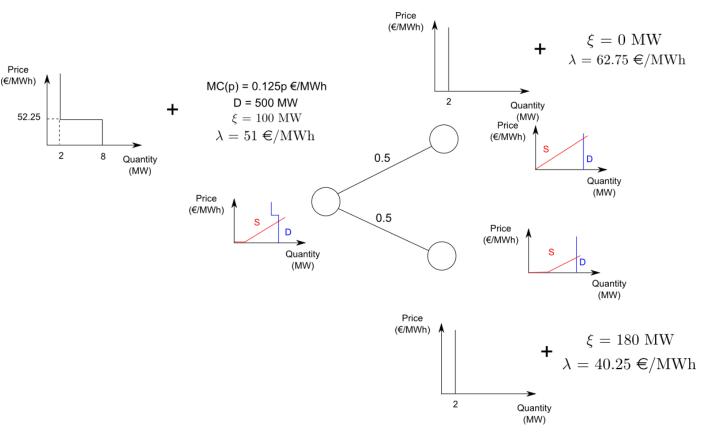


Flexibility (in %) in Germany



A Stochastic Programming Approach

- Consider a market over 2 periods:
 - Uncertain wind ξ
 - Conventional generator with marginal cost MC(p) = 0.125
 €/MWh
 - Inflexible demand D = 500 MW
 - One deferrable consumer (E = 10 MWh, P = 8 MW)
- Not a *coincidence*: market equilibrium ⇔stochastic programming optimal solution



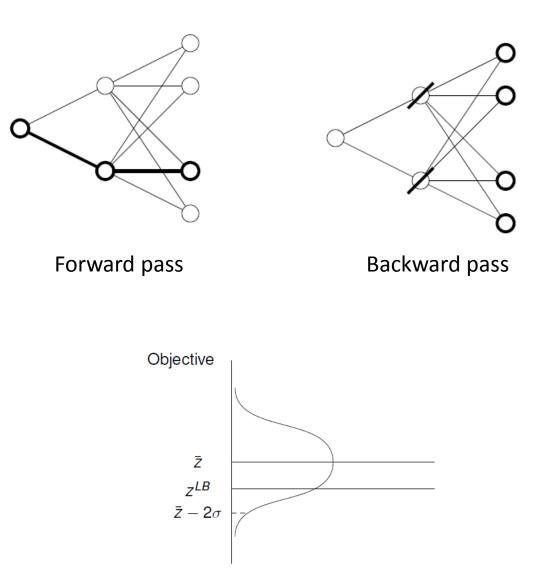
Stochastic Dual Dynamic Programming (SDDP)

- Our target model is a stochastic program that
 - captures uncertainty
 - captures balance between suppliers/consumers
 - captures the role of *time* in flexibility ...
- … but it is a multi-stage (e.g. 24 stages/hours) stochastic program → enormous number of variables/constraints
- The energy industry has solved this problem in context of hydrothermal planning through *SDDP*
 - Multi-stage (e.g. 12 stages/months) planning of hydro reservoirs
 - Uncertainty of rainfall
 - Role of *time* in level of water in hydro reservoirs
- Advantages
 - SDDP has proven itself as a commercially viable tool
 - Parallelizable
 - The algorithm generates <u>electricity price distributions</u> as a by-product
- Disadvantages
 - There is a long-standing debate about convergence*
 - Unclear if it is appropriate for DR

* See upcoming session: MVF Pereira, A Shapiro, '*Computational Challenges in Energy*', CORE 50th anniversary, May 26, 2016

The Idea of SDDP

- SDDP relies on two 'tricks'
 - Simulate scenarios, instead of enumerating → forward pass → upper bound
 - Share information among states of the world that are in the same period → backward pass → lower bound
- These tricks come with restrictions:
 - Serial independence: the future looks the same, no matter what we have observed so far
 - Probabilistic upper bounds (and ensuing debate)



Case Study

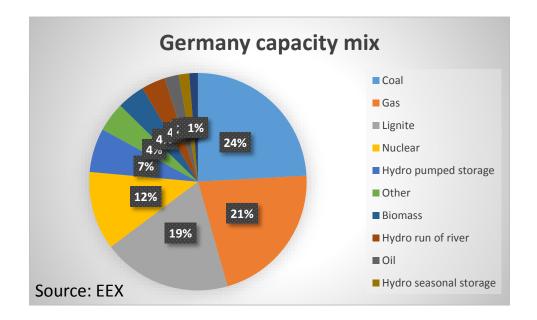
Model setup

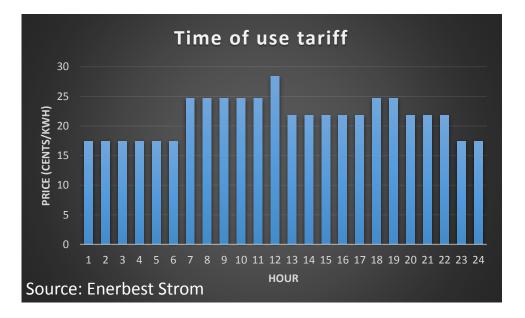
Convergence results

Operating efficiencies of demand response

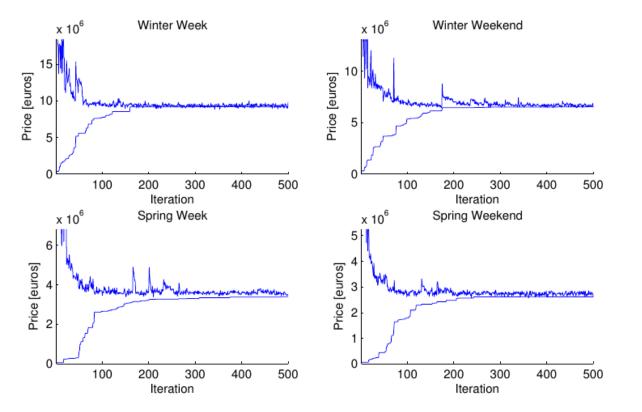
Focus on Germany, 2013

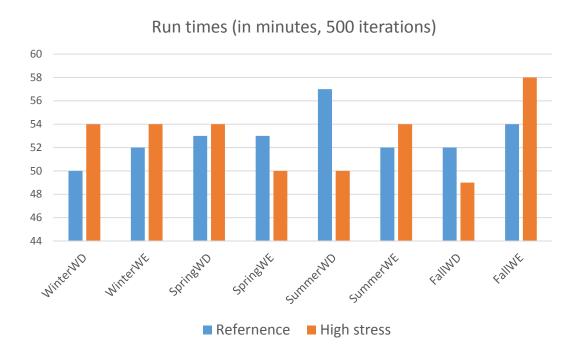
- Demand data: ENTSO-E
- Wind and solar power data: EEX transparency platform
- Flexible load data: (Gils, 2014)
- 24 stages, 2 outcomes per stage → extended form problem with 33.8 billion variables, 19 billion constraints
- Compare four models
 - Perfect foresight
 - Real-time-pricing
 - Time of use pricing
 - Inflexible demand
- Compare two scenarios
 - Reference case
 - High stress case
 - Decommissioning of nuclear capacity
 - Exports of 20 GW for *all* hours of the day



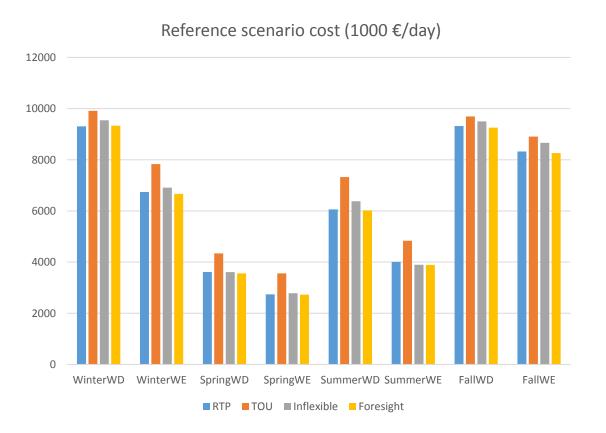


Convergence and Run Times





Policy Comparison



High stress costs (1000 €/day)

Conclusions and Perspectives

Conclusions and Perspectives

- Conclusions
 - Stochastic programming can be used as a first approximation of market models with DR
 - SDDP seems capable of tackling closed-loop market models with simple representation of DR
- Perspectives
 - Detailed modeling of DR constraints
 - Aggregator business models based on priority service pricing
 - ColorPower project (sponsor: Electrabel, colaborator: Zome)

Green = Price Sensitive Yellow = Reliability Responsive Red = Opt Out