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Abstract—Day-ahead energy market clearing relies on a de-
terministic equivalent model with a limited time horizon, which
may lead to inefficient scheduling of generating units from the
point of view of generators. For this reason, generators may wish
to assume the risk of self-committing their units with the hope of
securing greater profits. This phenomenon may reduce the room
for economic signals in the day-ahead market. In this paper
we investigate the influence of risk aversion and price volatility
on the decision of generators to self-commit units. We present
a stochastic programming model for self-committing combined
cycle units under price uncertainty with a conditional value
at risk criterion. We use Benders decomposition to solve the
problem and present results on a case study to draw conclusions.

Index Terms—Self-Commitment, Combined Cycle Units, Con-
ditional Value at Risk, Benders Decomposition

I. INTRODUCTION

The clearing of day-ahead markets relies on a deterministic
equivalent model where uncertainty is represented through its
expected value. In addition, the horizon of day-ahead market
models is often too short to account for operating constraints
that couple the operations of units from one day to the next1.
These two factors may lead to the inefficient commitment
of conventional units. This is especially true for combined
cycle units due to the increased complexity of their technical
constraints and cost characteristics.

The self-commitment of units reduces the room for eco-
nomic signals since generators that would otherwise contribute
to setting the market clearing price fix their commitment
independently of price. The large-scale integration of re-
newable resources with the resulting increase of real-time
price uncertainty2, and the increased complexity of combined
cycle units3, exacerbates the weakness of a deterministic day-
ahead market model. On the other hand, the risk aversion of

1The time horizon of the California ISO Integrated Forward Market is 24
hours [1].

2In the California ISO market, there will be a high demand for flexible
resources as renewable generation is integrated increasingly in the market.
Self-commitment and more so self-scheduling undermine this purpose by
rendering combined cycle units as inflexible resources from the point of
view of the system operator, although these resources are inherently flexible.
An initiative is underway from the California ISO and the California Public
Utilities Commission to enforce flexible capacity (flexible resource adequacy)
in addition to the current generic resource adequacy requirement on California
utilities [2].

3An additional reason for self-commitment is the fact that certain cost
components of combined cycle units are not accurately represented in the
ISO model due to bid cap rules. For instance, in the California ISO the
fixed startup cost is capped by twice the cost of startup fuel [3] which is
not sufficient to recover the true actual startup cost of combined cycle units,
that exceeds cost factors not related to fuel.

generators provides a strong incentive to participate in the day-
ahead market. In this paper we investigate how these two
factors influence the decision of generators to self-commit
combined cycle units.

The use of combined cycle units in short-term balancing
is becoming increasingly important due to the better control-
lability of these units, their modularity, and their flexibility
in terms of the fuel they consume [4]. The proliferation of
these units has increased the need to represent their operations
and costs accurately in day-ahead commitment models. This
need was underscored in a recent presentation by Ott [5] for
the Pennsylvania Jersey Maryland (PJM) system. A detailed
survey of literature on combined cycle unit modeling is
presented by Anders et al. [6].

The difficulty of modeling combined cycle units stems from
the fact that they consist of multiple components, each of
which has independent technical and cost characteristics, as
well as dependencies with the other components of the unit.
Combined cycle units typically consist of multiple combustion
turbines. The waste heat from the combustion turbines can
be used for fueling steam turbines. The operation of these
units can be represented either by a bottom-up modeling of
the components (combustion and steam turbines) of the units,
or a reduced modeling of the modes (the combination of
combustion and steam turbines that are operational). Liu et
al. [7] present a detailed comparison of a component model
and a mode model for combined cycle units. Both approaches
result in a mixed integer linear program which is substantially
more complex than simplified models of conventional units.

Early work on the modeling of combined cycle units is
presented by Cohen and Ostrowski [8]. Subsequent determin-
istic models of combined cycle units include the work of
Lu and Shahidehpour, [4], [9]. In [4] the authors present a
model for combined cycle units with combustion turbines and
steam turbines that they incorporate in a security constrained
economic dispatch model. In [9] the authors extend their
model to account for the operation of flexible generating
units of three types, mixed fuel units, combined cycle units
and dual fuel units. Li and Shadidehpour [10] compare the
solution of unit commitment models with combined cycle
units based on Lagrange relaxation and branch and bound
methods. Simoglou et al. [11] present a detailed model for
self-scheduling combined cycle units, however they also do
not account for uncertainty.

The modeling of uncertainty in self-scheduling has been
addressed by various authors. Cerisola et al. [12] present a
stochastic unit commitment model for deciding on the day-
ahead and balancing market trades and production quantities
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of an owner of a hydrothermal portfolio under electricity
price uncertainty. Tseng and Zhu [13] also present a model
for self-scheduling generators subject to uncertainty in elec-
tricity prices. Garces and Conejo [14] present a stochastic
programming model for a generator that decides on self-
scheduling units, forward contracting and offering bids in
the pool. The authors also account for risk aversion in the
model through the use of the conditional value at risk (CVaR),
using the theory provided by Rockafellar and Uryasev [15].
Although this work focuses on self-commitment, none of
the aforementioned papers account for combined cycle unit
operations and uncertainty simultaneously. In addition, with
the exception of Garces and Conejo [14], none of the papers
account for risk aversion.

The purpose of this paper is to investigate the influence of
risk aversion and price volatility on the decision of generators
to self-commit combined cycle units. This requires the integra-
tion of uncertainty and risk aversion in the self-commitment
model. The previously cited literature either addresses self-
commitment under uncertain price conditions without account-
ing for the complexity of combined cycle unit operations, or
addresses the complex operations of combined cycle units
without accounting for uncertainty and risk aversion. In ad-
dition to introducing a model that accounts for these features
simultaneously, in this paper we develop a methodology that
exploits this model in order to analyze the influence of risk
aversion and price volatility on the willingness of generators to
self-commit units in the day-ahead time frame. Following the
previously referenced literature, we will focus on an open-loop
model that optimizes utility operations.

A simple example that motivates our analysis is presented
in Sect. II. In Sect. III we describe our methodology and the
models used in our analysis. A solution algorithm for the risk-
averse self-commitment model is presented in Sect. IV. We use
the case study of Sect. V in order to draw conclusions, which
are presented in Sect. VI.

II. A MOTIVATING EXAMPLE

In this paper we assume a two-settlement system with a
day-ahead power pool where market agents submit multipart
bids and the system operator solves a unit commitment prob-
lem and provides side payments in order for generators to
voluntarily follow the centralized unit commitment schedule
[16]. Our model is specifically inspired by the California
Market Redesign and Technology Upgrade (MRTU) [1]. In
this market design, self-commitment refers to the situation
where a resource is modeled as being online in the day-ahead
and real-time market unit commitment applications, but is not
eligible for recovery of startup and minimum load costs for
the intervals when the resource self-commits [1], §2.5.2.1. The
paper will focus on self-commitment, assuming that units bid
truthfully in the power pool. A game theoretic analysis of
bidding in the power pool is therefore outside the scope of
the paper.

In order to clarify how self-commitment can result in a
different outcome from simply bidding into the market, we ex-
amine a simple example. Consider the owner of a conventional

unit with capacity P , constant marginal cost C and minimum
load cost K, facing an uncertain real-time price λ. We assume
that the generator is risk-neutral.

The unit will be kept off, unless it receives uplift payments,
if the day-ahead price cannot support the commitment of the
generator, namely

λDA ≤ C +
K

P
. (1)

Suppose that the conventional unit considers self-
committing in order to capture real-time profit opportunities.
The conventional unit then solves the following problem:

maxE[(λRT − C) · p]−K · u
0 ≤ p ≤ P · u
u ∈ {0, 1}

where p is the production of the unit according to the realized
price and the expectation is taken with respect to the belief of
the generator about the distribution of real-time prices. If the
generator self-commits and real-time price does not exceed
marginal cost, λRT ≤ C, then the generator will limit its
output to zero and incur the fixed cost K. If, on the other
hand, the real-time price exceeds marginal cost, λRT > C,
then the generator will produce at maximum output and earn
a profit of (λRT − C) · P − K. The optimal solution to the
self-commitment problem, then, is to commit the unit if the
conditional average of the real-time price, for λRT ≥ C,
can compensate the average cost of the unit when the unit
produces, namely:

C · P[λRT ≥ C] +
K

P
≤ E[λRT |λRT ≥ C] (2)

We note that if both conditions of Eqs. (1) and (2) hold
simultaneously, then the generator would prefer to keep the
unit on, whereas the day-ahead market would keep the unit
off. The interpretation of these conditions is quite intuitive.
The right-hand side of Eq. (1) is the average hourly cost,
per MW of output, incurred by the generator. According to
Eq. (1), the unit is kept off if the day-ahead price is not
sufficient to cover the average cost of operating the unit. The
interpretation is identical in Eq. (2). The left-hand side is the
average hourly cost per MW of output, where fuel cost is only
incurred when the real-time price is high enough to induce the
generator to produce. The right-hand side is the average price
that the generator receives conditional on the price being high
enough to induce the generator to produce. The generator is
self-committed provided that the average price that it receives
when it produces exceeds its average cost.

The simultaneous occurrence of the conditions described in
Eqs. (1), (2) is certainly possible. Note that, given a probability
that price exceeds marginal cost P[λRT ≥ C], an increased
volatility of real-time prices can increase the incentive of the
generator to self-commit by resulting in a higher conditional
average, E[λRT |λRT ≥ C].

In order to simplify the discussion in the example, we
have considered a single-period unit commitment model. We
have also assumed that the generator does not account for the
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influence of its actions on price. Although these simplifying
assumptions do not reflect realistic practice, they illuminate
the difference between self-commitment and bidding in the
day-ahead market and they highlight conclusions that are also
confirmed in a realistic example in the case study of Sect. V.

III. MODEL

The decision of a generator on whether or not to self-commit
in the day-ahead time frame depends on its assessment of
real-time risk, and is depicted in Fig. 1. Throughout the paper
we focus on uncertainty in the real-time price of electricity,
denoted λst

4. Here s ∈ S indexes a discrete set of scenarios
that represents the possible realizations of uncertainty and
t ∈ T indexes the set of time periods over which the evaluation
of the self-commitment decision is performed. We consider
a two-stage model. In the first stage generators commit their
units. Subsequently, generators are dispatched against the real-
time prices given the fixed day-ahead commitment decisions.
From Fig. 1 it is evident that the modeling of the day-ahead
and real-time market in a two-settlement system is necessary
in our analysis since it determines the default profit against
which a generator can improve by self-commitment. Once
this baseline is established, it is possible to quantify the
incremental benefits of self-commitment.

The day-ahead market model is presented in Sect. III-A. The
day-ahead market model also determines the day-ahead profit
of generators, which is a secured profit that can only increase
if the generator identifies profit opportunities in the real-time
market. The real-time profits are computed by running the
real-time dispatch model, which is presented in Sect. III-C.
The profits are computed over a large number of samples, and
the resulting distribution of profits is transformed through the
CVaR risk criterion in order to compute the risked profits.
The CVaR criterion is defined mathematically in Sect. B of
the appendix.

CVaR has been used increasingly in modeling risk aversion
due to its robustness with respect to input and the fact that
it satisfies the axioms of coherent risk measures [15]. The
computational advantage of using the CVaR risk criterion,
demonstrated by Rockafellar and Uryasev [15], is the fact
that it can be computed by solving a linear program. In
addition, as we will show in Sect. IV, this linear program
can be incorporated within a Benders decomposition scheme
for solving the risk-constrained self-commitment problem.
The risk-constrained self-commitment problem is presented in
Sect. III-B.

A. Market Model

A feature that makes the modeling of combined cycle units
complex is the fact that the components of the units can only
be fired up in sequence. This can be depicted through a state
transition diagram which represents the sets of permissible
transitions, as in Fig. 2. The set of permissible states x ∈ X
and transitions y ∈ Y in this diagram correspond to a

4The model can also account for demand uncertainty, as we will explain
in Sect. III-B.
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Fig. 2. The state transition diagram for a combined cycle unit with three
combustion turbines.

px3tpx2tpx1t

HRx4

HRx3

HRx2

BPx4BPx3BPx2BPx1

MWh

MMBtu/MWh

Fig. 3. The incremental heat rate curve within each operating state of a
combined cycle unit.

generating unit that consists of three combustion turbines.
Within each state there are various operating constraints that
need to be respected. Costs are incurred for operating within
each state and also transitioning between states. Transitions
between states are modeled through the indicator variable vyt,
equal to 1 if there is a transition y in period t and zero
otherwise. The indicator variable uxt indicates whether the
unit is in state x (in which case uxt = 1) or not (in which
case uxt = 0) in period t.

Each state obeys a non-linear incremental heat rate curve,
such as the one depicted in Fig. 3. The entire operating
range of a certain state x is separated in a set of segments
{1, . . . ,M}. The incremental heat rate is constant within each
segment and the total production pxt within the specific state
x is equal to the minimum load of the specific state BPx1 plus
the production within each segment px,m−1,t. Fig. 3 explains
the notation that is used in the mixed integer linear program.
We note that the heat rate curve needs to be increasing in
order to avoid adding binary variables indicating the segment
within which each state is operating. This is not always obeyed
in practice, in which case we ‘convexify’ the cost curve before
solving the model, as shown in Fig. 3.

The objective function of the market model is given by Eq.
(3). Congestion is internalized in the model through locational
marginal prices. Locations that suffer from congestion will
exhibit large price volatility and risk, which will be accounted
for by the self-commitment model and the economic dispatch.
The models presented in this section describe the problem
faced by a single generator in a single location, which is valid
in the absence of utility-scale coupling constraints (e.g. self-
provision of reserves). Coupling constraints and correlations
among locational marginal prices can be incorporated in the
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Fig. 1. The decision of self-committing or bidding a unit in the day-ahead market.

model.
The cost of operating a combined cycle unit consists of fuel

costs, variable operating and maintenance (VOM) costs, fixed
operating costs and transition costs. Fuel costs are computed
using the non-linear heat rate curve of Fig. 3, where F is the
price of fuel, HRxm is the heat rate in segment m of state
x and BPxm is the upper breakpoint of segment m in the
heat rate curve. The fixed operating charge that is incurred
every hour that a unit runs is denoted as OCx. The fixed
cost of a transition y from a certain state F (y) to another
state T (y) is denoted as TCy . V OMx is the VOM cost in
state x. The generator also has the option of buying (bt > 0)
or selling (bt < 0) energy at the day-ahead price λ̄t and
selling regulation up and down services, denoted r+

xt and r−xt
respectively, at prices λRUt , λRDt respectively. Lower value
spinning reserve can similarly be incorporated in the model,
and is ignored here in order to simplify the exposition.

min
∑
t∈T

λ̄tbt −
∑

x∈X,t∈T
(λRUt r+

xt + λRDt r−xt)

+
∑

x∈X,m∈1...M−1,t∈T
HRx,m+1 · F · pxmt

+
∑

x∈X,t∈T
V OMxpxt

+
∑

x∈X,t∈T
(OCx + F ·HRx1 ·BPx1)uxt

+
∑

y∈Y,t∈T
TCyvyt (3)

The utility that owns the combined cycle unit may also
function as a load serving entity, in which case it can serve
its demand Dt either from the combined cycle unit or by
procuring power in the market, as in Eq. (4).

∑
x∈X

pxt + bt = Dt, t ∈ T (4)

The total power output in a certain state x is calculated as

in Eq. (5).

pxt = BPx1uxt +

M−1∑
m=1

pxmt, x ∈ X, t ∈ T (5)

Limits on the production of each segment are imposed in
Eq. (6).

pxmt ≤ (BPx,m+1 −BPxm)uxt, x ∈ X,
1 ≤ m ≤M − 1, t ∈ T (6)

Eqs. (7), (8) impose ramp rate limits in each state. R+
x

and R−x are the ramp up and ramp down rates of mode
x respectively. The ramp rate constraints apply both for
transitions from state to state as well as ramp rates within
a state.

pxt − px,t−1 + r+
xt ≤ (2− ux,t−1 − uxt)BPx1 +

(1 + ux,t−1 − uxt)R+
x , x ∈ X, 2 ≤ t ≤ N (7)

px,t−1 − pxt + r−xt ≤ (2− ux,t−1 − uxt)BPx1

+(1 + ux,t−1 − uxt)R−x , x ∈ X, 2 ≤ t ≤ N (8)

The allocation of capacity in energy or reserves is described
in Eqs. (9), (10).

pxt + r+
xt ≤ BPxMuxt, x ∈ X, t ∈ T (9)

pxt − r−xt ≥ BPx1uxt, x ∈ X, t ∈ T (10)

The provision of reserves is limited by the ramp rate of
the unit within the interval at which the reserves need to be
offered, as in Eqs. (11), (12).

r+
xt ≤ R+

x , x ∈ X, t ∈ T (11)
r−xt ≤ R−x , x ∈ X, t ∈ T (12)

Eq. (13) dictates that the combined cycle unit can perform
no more than one state transition from period to period.∑

y∈Y
vyt ≤ 1, t ∈ T (13)

Eq. (14) describes the dynamics of the transition.

uxt = ux,t−1 +
∑

a∈A:T (a)=x

vat −
∑

a∈A:F (a)=x

vat,

x ∈ X, 2 ≤ t ≤ N (14)
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Eq. (15) requires that at each period the unit be in exactly
one state. ∑

x∈X
uxt = 1, t ∈ T (15)

Minimum up and down times for each state are enforced in
Eqs. (16), (17). The minimum up and down times of state x
are denoted by UTx, DTx respectively.

t∑
τ=t−UTx+1

∑
y∈Y :T (y)=x

vyτ ≤ uxt,

x ∈ X,UTx ≤ t ≤ N (16)
t+DTx∑
τ=t+1

∑
y∈Y :T (y)=x

vyτ ≤ 1− uxt,

x ∈ X, 1 ≤ t ≤ N −DTx (17)

Eq. (18) defines a binary variable ut that indicates whether
the combined cycle unit is off or not, and Eq. (19) defines a
binary variable vt that indicates whether the unit has started
up or not.

ut =
∑

x∈X−{’Off’}
uxt, t ∈ T (18)

vt =
∑

y∈Y :F (y)=’Off’
vyt, t ∈ T (19)

Using these variables we define overall minimum up and
down time constraints in Eqs. (20), (21), where UT and DT
denote the minimum up and down times respectively5.

t∑
τ=t−UT+1

vτ ≤ ut, UT ≤ t ≤ N (20)

t+DT∑
τ=t+1

vτ ≤ ut, 1 ≤ t ≤ N −DT (21)

Lower and upper bounds and integrality constraints are
defined in Eqs. (22), (23).

vyt ≤ 1, y ∈ Y, t ∈ T (22)
uxt ∈ {0, 1},

ut, vt, vyt, pxt, pxmt, r
+
xt, r

−
xt ≥ 0, x ∈ X, y ∈ Y, t ∈ T(23)

We denote as b̄t the amount of energy procured in the day-
ahead market. Similarly, we denote as r̄+

t , r̄
−
t the amount of

regulation up and down.

B. Self-Commitment Model

When a unit self-commits at a certain state, it has the
freedom to produce between its technical minimum and max-
imum output for the given state6. Self-commitment exposes
the generator to real-time electricity price risk. This risk is a
function of the self-commitment decision, which is taken in

5Analogous constraints to Eqs. (16), (17), (20), (21) that account for the
state of the unit in the end of the previous day are included in the model but
not presented here.

6By comparison, in self-dispatch the units not only fix the state they will
operate in during each hour but also their hourly output.

the day-ahead time frame. In this paper we assume that the
attitude of the decision-maker towards risk can be represented
by the CVaR criterion. The role of risk aversion in the model
is explained in Fig. 1. The formal definition of value at risk
and conditional value at risk are provided in Sect. B of the
appendix7.

Consider a risk-averse generator that evaluates the real-time
market payoff Q(w, λs) over a set of price scenarios s ∈ S
according to the CVaR criterion, where w = (uxt, vyt, ut, vt)
is the set of first-stage commitment and transition decisions
and λs = (λst, t ∈ T ) is the vector of real-time electricity
prices for scenario s. The influence of virtual bidding can be
incorporated in the methodology presented in the paper by
requiring that real-time prices converge to day-ahead energy
prices [1], [18]. The results presented in this paper rely on
the 2012 California hub data, which exhibit this pattern8.
Theorem 10 of Rockafellar and Uryasev [15] guarantees that
the CV aRa of the random payoff Q(w, λs) for a given first-
stage decision w can be computed as the optimal objective
function value of the following optimization:

min
ζ
ζ +

1

1− a
∑
s∈S

πs(Q(w, λs)− ζ)+, (24)

where (x)+ = max(x, 0). In addition, the theorem guarantees
that the VaR of the random payoff Q(w, λs) is given by the
optimal value of ζ.

In the case of the self-commitment model, the computation
of Q(w, λs) is a linear program that represents the reaction
of generators in the real-time market, given a day-ahead self-
commitment decision w = (uxt, vyt, ut, vt). In particular, the
risk averse self-commitment model can be described by the
following optimization problem:

min
∑
t∈T

(λ̄tb̄t − λRUt r̄+
t − λRDt r̄−t ) (25)∑

x∈X,t∈T
(OCx + F ·HRx1 ·BPx1)uxt

+
∑

y∈Y,t∈T
TCyvyt

+ζ +
1

1− a
∑
s∈S

πs(Q(w, λs)−
∑
t∈T

λstb̄t − ζ)+

s.t. (11), (12), (13), (14), (15), (16),

(17), (18), (19), (20), (21), (22), (23), (26)

where the second-stage cost given first-stage decision w and
price realization λs is computed by solving the following
linear program:

7The incorporation of a risk-seeking measure in our model would induce
load serving entities to self-commit units above day-ahead market schedules
in order to capture potentially high prices while incurring fixed costs of
transitioning to and operating in higher states. This conduct is illegal in
certain markets, including California [17], page 52. Since our paper focuses
on the management of generation resources by load serving entities rather
than speculation by a merchant generator, we conduct our analysis by using
a risk measure that encapsulates risk averse as well as risk neutral behavior.

8Virtual bidding was enacted in California in February 2011. The average
day-ahead hub price in California was 28.3$/MWh in 2012, the average real-
time hub price was 28.7$/MWh.
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Q(w, λs) = min
∑
t∈T

λstbt +
∑

x∈X,t∈T
V OMxpxt

+
∑

x∈X,m∈1...M−1,t∈T
HRx,m+1 · F · pxmt

s.t. (4), (5), (6), (7), (8), (9), (10), (23). (27)

Note that the market procurement bt, total production pt,
production per state pxt and production per segment pxmt
are now contingent on scenario s since they are second-stage
decisions. Demand uncertainty can be modeled by introducing
scenario-dependent demand Dst in Eq. (4). The notation
Q(w, λs) indicates that first-stage decisions are fixed in the
constraints of the model. When the self-commitment problem
is solved over a large number of scenarios, it is impossible to
solve the problem in extended form. In Sect. IV we present a
decomposition algorithm for solving the problem.

C. Evaluation Model

A generator will respond to real-time profit opportunities
by changing its dispatch only if the real-time prices can
yield increased profit. In order to compute the real-time profit
opportunity of generators we solve the following problem:

min
∑
t∈T

λ̄tb̄t −
∑
t∈T

(λRUt r̄+
t + λRDt r̄−t )

+
∑
t∈T

λst(bt − b̄t) +
∑

x∈X,t∈T
V OMxpxt

+
∑

x∈X,m∈1...M−1,t∈T
HRx,m+1 · F · pxmt

+
∑

x∈X,t∈T
(OCx + F ·HRx1 ·BPx1)uxt

+
∑

y∈Y,t∈T
TCyvyt

s.t. (4), (5), (6), (7), (8), (9), (10), (23)

uxt = u?xt, vyt = v?yt, ut = u?t , vt = v?t ,

x ∈ X, y ∈ Y, t ∈ T (28)

The payoff of the generator consists of day-ahead energy
and ancillary services market revenues (the first two terms of
the objective function), real-time charges for deviations from
the day-ahead position b̄t (the third term), and generator costs
(all remaining terms). We ignore real-time ancillary services in
order to simplify the presentation of the model. The incorpo-
ration of real-time ancillary services can be accomplished by
modifying the objective function and constraints of the self-
commitment and evaluation model without complicating the
computational approach presented in the next section.

Eqs. (28) fix the commitment and transition decisions to
their day-ahead values. This implies that only the production
of units can be rescheduled in the real-time market. When day-
ahead commitment decisions (u?xt, v

?
yt) are fixed to the optimal

solution of the day-ahead market model we obtain the payoff
CMs of bidding in the market, whereas when they are fixed to
the optimal solution of the self-commitment model we obtain
the payoff CSCs of self-commitment. The real-time payoff will

be at least as favorable as the day-ahead payoff, since the day-
ahead solution is feasible for the evaluation model. The goal
of self-commitment is to improve on this payoff by adapting
it to the risk preferences of the supplier, using a deeper time
horizon and using a more detailed model for the multi-stage
generating unit. This profit opportunity comes at the cost of
assuming the risk of the real-time market.

In order to quantify the benefit of self-commitment, we
compute a distribution of costs over a set of price samples, O.
This set of price samples is different from the set of scenarios
S that are used as input for the stochastic self-commitment
model (see Fig. 1). We then obtain a vector of sample costs
CSC = (CSCs , s ∈ O), CM = (CMs , s ∈ O) and apply the
CV aRa operator:

RM = CV aRa(CM ) (29)
RSC = CV aRa(CSC) (30)

Obtaining the cost distribution of self-commitment, CSC ,
requires the solution of a stochastic program. In the following
section we describe a decomposition algorithm for tackling
the self-commitment problem. The computation of CV aRa
given a distribution of costs in Eqs. (29), (30) is immediate:
in the case of a discrete set of outcomes the CV aRa operator
simply averages the (1− a)% worse outcomes. The generator
then decides to self-commit if RSC ≤ RM and to participate
in the day-ahead market otherwise.

The decision-making strategy described in Fig. 1 assumes
that generators self-commit after the day-ahead market closes.
There is also the option of self-committing before the day-
ahead market closes, which we do not analyze in this paper.
Following the California MRTU market design for multi-stage
units [1], §6.6.2.1, we assume that in case the day-ahead
market commits a unit above its specified self-commitment
level, then the market rewards the unit as if the unit had
not self-committed in the first place. In the case where the
day-ahead market would commit the unit at a certain state,
whereas the generator would find it advantageous to self-
commit the unit at a higher state, there is an inherent bias
towards real-time prices that are higher than day-ahead prices.
In these cases, we assume that generators would prefer to
self-commit after the day-ahead market closes, in order to
avoid the loss of buying back their day-ahead position in the
real-time market had they self-committed before day-ahead
market closure. This assumption justifies the decision strategy
presented in Fig. 1. By considering self-commitment after the
clearing of the day-ahead market we can also compute uplift
payments independently from the self-commitment decision,
which implies that we can easily incorporate uplift payments
without complicating the model.

IV. SOLUTION METHODOLOGY

In this section we present a decomposition algorithm for
solving the problem in Sect. III-B, which cannot be solved in
extended form when a large number of scenarios is accounted
for. We first use elementary arguments to prove the convexity
of the value function in the first-stage decisions and compute
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the subgradient of the value function with respect to first-
stage decisions. We then use these results to apply Benders’
decomposition on the problem.

The self-commitment problem has the following form:

min cTw + ζ +
1

1− a
∑
s∈S

πs(Q(w, λs)− ζ)+ (31)

s.t. w ∈W, (32)

where W is a set of polyhedral and integer constraints, w is
a set of first-stage decision variables and c is a vector of cost
coefficients. The second-stage cost for a given realization is
given by

(P2s) : Q(w, λs) = minλTs z (33)
s.t. Aw +Bz = h (34)
z ≥ 0 (35)

where z are second-stage continuous decision variables, A,B
are matrices of appropriate dimension, and λs and h are
vectors of appropriate dimension.

Proposition 1. The value function V (w, ζ) =∑
s∈S πs(Q(w, λs)− ζ)+ is a convex function of (w, ζ).

Proof: According to theorem 2, paragraph 3.1 of [19],
we have that Q(w, λs) is a convex function of w. We get
convexity of the value function from the fact that the non-
negative sum of convex functions, Q(w, λs)−ζ, is convex; the
composition of convex functions, (Q(w, λs)− ζ)+, is convex;
and the expectation operator preserves convexity.

Proposition 2. The subgradient of V (w, ζ) at (w, ζ) is given
by

∂V (w, ζ) =
∑
s∈S

πs1s

[
−σTs A
−1

]
(36)

where 1s = 1Q(w,λs)≥ζ and σs are the dual optimal multipli-
ers of the coupling constraints in Eq. (34).

Proof: It suffices to show that for any (w′, ζ ′) 6= (w, ζ)

(Q(w′, λs)− ζ ′)+ ≥
1s[(Q(w, λs)− ζ)+ − σTs A(w′ − w)− (ζ ′ − ζ)]

Suppose Q(w, λs) ≥ ζ. For any (w′, ζ ′) 6= (w, ζ) we have
that

1s[(Q(w, λs)− ζ)+ − σTs A(w′ − w)− (ζ ′ − ζ)] =

Q(w, λs)− σTs A(w′ − w)− ζ ′

≤ Q(w′, λs)− ζ ′

≤ (Q(w′, λs)− ζ ′)+

The first inequality follows from the fact that −σTs A is a
subgradient of Q(w, λs) at w [19]. On the other hand, if
Q(w, λs) < ζ we have

1s[(Q(w, λs)− ζ)+ − σTs A(w′ − w)− (ζ ′ − ζ)] = 0

≤ (Q(w′, λs)− ζ ′)+.

We can now apply Benders’ decomposition to the problem.
We formulate a relaxation of the first-stage problem by intro-
ducing an auxiliary variable θ:

(P1) : min cTw + ζ +
1

1− a
θ (37)

s.t. θ ≥ Dl

[
w
ζ

]
+ dl, 1 ≤ l ≤ k (38)

w ∈W, θ ≥ 0, ζ ≥ ζLB (39)

where ζLB is a lower bound on the value at risk, which is
easily computable from problem data and prevents unbound-
edness of (P1). Using the previous results, we propose the
following algorithm:
Step 0: Set k = 1. Initialize θ̂1 = −∞, and (ŵ1, ζ̂1). Go to
step 2.
Step 1: Solve (P1). Set (ŵk, ζ̂k) equal to the optimal first-
stage solution. Go to step 2.
Step 2: For all s ∈ S, solve (P2s) using ŵk as input.
Set σ̂ks equal to the dual optimal multipliers of the coupling
constraints in Eq. (34). Set 1ks = 1(σ̂ks )T (h−Aŵk)≥ζ̂k . Go to
step 3.
Step 3: Set

Dk =
∑
s∈S

πs1
k
s(−(σ̂ks )TA,−1) (40)

dk =
∑
s∈S

πs1
k
s(σ̂ks )Th (41)

If θ̂k =
∑
s∈S

πs1
k
s((σ̂ks )T (h − Aŵk) − ζ̂k) then exit with

(ŵk, ζ̂k) as the optimal solution. Otherwise, set k = k + 1
and go to step 1.

Note that, following Rockafellar and Uryasev [15] and
Ehrenmann and Smeers [20], we are considering CV aR as the
objective in our analysis. A convex combination of expectation
and CV aR [14] also yields a coherent risk measure. Such an
objective would in no way complicate the application of the
methodology or decomposition presented in the paper. The
methodology and computational approach is not confined to
combined cycle units. The model can be applied to other
types of units, provided no integer decisions are involved in
the second stage. Simpler technologies, for example thermal
generators with on-off unit commitment decisions, can be
represented with fewer binary decision variables, and probably
less computational effort.

V. CASE STUDY

We present results from a case study performed on a
combined cycle unit with three combustion turbines. We use
the technical and cost characteristics of units ALAMIT3 -
ALAMIT5 of the WECC 240 bus model [21], assuming that
the three generators are connected in a 3 × 1 configuration.
The minimum up and down times of the units have been set
equal to 4 hours, and the overall unit up/down times have been
set equal to 6 hours. The heat rate curve of the unit is shown
in Table I.

We run our case study for a 48-hour horizon. We an-
alyze two seasons, Spring and Summer, for two typical
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k = 1

θ̂1 = −∞
Initialize (ŵ1, ζ̂1)

Solve (P1)

Store (ŵk, ζ̂k)

Solve (P2s), s ∈ S for ŵk

1ks ← 1(σ̂ks )T (h−Aŵk)≥ζ̂k

Dk ←
∑
s∈S

πs1
k
s(−(σ̂ks )TA,−1)

dk ←
∑
s∈S

πs1
k
s(σ̂ks )Th

θ̂k =
∑
s∈S

πs1
k
s((σ̂ks )T (h−Aŵk)− ζ̂k)?

Yes

Exit with (ŵk, ζ̂k) optimal
No

k ← k + 1

Fig. 4. The flow diagram of the Benders decomposition algorithm.

TABLE I
INCREMENTAL HEAT RATE CURVE OF THE COMBINED CYCLE UNIT USED

IN THE CASE STUDY. BREAKPOINTS ARE IN MW AND HEAT RATES ARE IN
MMBTU/MWH.

Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Seg. 6
BP1×1,? 15 72.2 129.4 186.6 243.8 301
BP2×1,? 316 373.2 430.4 487.6 544.8 602
BP3×1,? 624.5 710.14 795.78 881.42 967.06 1052.7
HR1×1,? 9.04 8.55 8.88 9.21 9.54 9.87
HR2×1,? 9.25 8.75 9.08 9.42 9.76 10.09
HR3×1,? 8.87 8.39 8.71 9.04 9.36 9.68

planning horizons, Weekday-Weekend (e.g. Friday-Saturday)
and Weekday-Weekday (e.g. Monday-Tuesday). We use 2012
real-time and day-ahead electricity price data and day-ahead
ancillary services price data for the NP15 hub of the California
market, which is publicly available at the California ISO
website. We use the price data in order to calibrate a second-
order autoregressive model that can be used for generating a
large number of Monte Carlo simulation samples. The order
of the autoregressive model is chosen in order to minimize
the mean absolute error between the model and the observed
data. Natural gas prices are set equal to 3.11$/MMBtu, based
on the annual average day-ahead prices at the PG&E Citygate
hub.

The model that we have presented assumes that generators
can ramp down if market prices are not favorable. Certain
markets, including California, allow units to ramp down in

TABLE III
THE UNIT COMMITMENT SCHEDULE (MW) FOR RISK-NEUTRAL

SELF-COMMITMENT (a = 0) VERSUS DAY-AHEAD MARKET COMMITMENT
FOR SUMMER WEEKDAY-WEEKDAY.

Hours 1-21 22 - 28 29 - 32 33-36 37 - 47 48
Self-Commit 1053 1053 1053 1053 1053 0

Market 1053 0 301 602 1053 0

real time but prohibit units from withholding capacity below
the level that is committed by the day-ahead market in order
to prevent gaming. This can be easily captured in our model
by requiring that the state of the unit in real time cannot be
lower than the day-ahead commitment uDAxt :

u3×1,t ≥ uDA3×1,t, u2×1,t + u3×1,t ≥ uDA2×1,t,

u1×1,t + u2×1,t + u3×1,t ≥ uDA1×1,t, t ∈ T (42)

The following results have been obtained by enforcing this
constraint on the self-commitment model of Section III-B.

A. Impact of Risk Aversion

The decomposition algorithm of Sect. IV is applied to a
stochastic program with |S| = 100 scenarios. The proposed
algorithm is capable of tackling problems with thousands
of scenarios, however as we explain in Section V-D the
incremental benefit of the increased number of scenarios is
negligible relative to the increase in run time. For this reason
we proceed with |S| = 100 scenarios for the rest of the paper.
The unit is assumed to be in 3 × 1 configuration in the end
of the previous day. In order to investigate the impact of risk
aversion on the model, we run each problem against a CV aRa
risk criterion with a = 0, 0.25, 0.50, 0.75. Note that a = 0
corresponds to a risk-neutral decision maker.

We use |O| = 10, 000 samples in the Monte Carlo sim-
ulation in order to attain results with high confidence. The
95% confidence intervals of the risk-adjusted profits of self-
commitment versus bidding in the day-ahead market are shown
in Table II. The day-ahead market commitment produces the
same average profit for every level a of risk aversion, however
the payoff of the profit distribution has a different value
depending on the level of risk aversion, which is the result
shown in the table.

The superior performance of self-commitment can be un-
derstood by comparing the unit commitment schedules of
self-commitment versus the market for Summer Weekday-
Weekday, which is shown in Table III. The market shuts the
unit down in hour 22 and starts it up again in hour 29. This
results in startup costs and lost profits in the second day due
to the fact that the unit needs 8 hours in order to transition
back to 3×1 mode. Instead, the self-commitment model keeps
the unit in 3 × 1 mode throughout the entire horizon. The
unit commitment schedule for Summer Weekday-Weekday for
the risk-averse cases (a = 0.25, 0.50, 0.75) follows a similar
trend: the unit is kept at 3× 1 or a lower mode during hours
22-36, but does not shut down.

We observe that the incentive for generators to self-commit
is enhanced by less risk aversion. This is due to the fact
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TABLE II
95% CONFIDENCE INTERVALS OF RISK-ADJUSTED PROFITS (IN $ · 103 OVER THE 48-HOUR HORIZON) OF SELF-COMMITMENT VERSUS DAY-AHEAD

MARKET COMMITMENT FOR REFERENCE AND VOLATILE PRICES. DAY TYPES ARE AS FOLLOWS: (I) SPRING WEEKDAY-WEEKEND, (II) SPRING
WEEKDAY-WEEKDAY, (III) SUMMER WEEKDAY-WEEKEND, (IV) SUMMER WEEKDAY-WEEKDAY.

Reference prices Volatile prices
a = 0 0.25 0.50 0.75 a = 0 0.25 0.50 0.75

(I) Self-Commit 59.7-64.5 0 0 0 88.2-100.1 23.8-26.7 0 0
Market 0 0 0 0 0 0 0 0

(II) Self-Commit 60.0-64.4 4.7-6.4 0 0 106.3-113.5 24.0-26.8 0 0
Market 0 0 0 0 0 0 0 0

(III) Self-Commit 357.4-360.4 334.9-335.9 324.8-325.7 315.8-317.2 402.2-411.7 349.0-350.5 332.0-333.3 317.2-319.3
Market 350.4-352.6 327.7-328.2 320.8-321.1 317.4-317.6 379.2-382.7 342.7-343.7 330.4-330.8 323.2-323.5

(IV) Self-Commit 414.9-420.9 375.8-376.7 366.2-367.1 359.4-359.6 451.7-460.9 389.2-390.6 372.0-372.5 365.0-365.3
Market 390.5-392.6 369.2-369.7 362.8-363.0 359.4-359.6 417.9-421.1 383.6-384.5 372.0-372.5 365.0-365.3

that increased risk aversion reduces the differences of near-
optimal unit commitment schedules. The results of Table
II demonstrate that self-commitment can deliver consistent
benefits relative to the market due to the fact that it is adaptive
to the risk preferences of the generator. Self-commitment
can limit the room for economic signals from the real-time
market. This price distortion is mitigated by the fact that the
market schedule is fairly close to the optimal self-commitment
schedule. In equilibrium, self-commitment generates the same
schedule as the day-ahead market. The computation of such
an equilibrium is an interesting question for future research.
We revisit this question using our model in Section V-C.

B. Impact of Price Volatility

In order to investigate the impact of price volatility we
run the same model against a set of price scenarios whose
spread around the average hourly value is 150% the spread
of the original price data. The results are shown in the right
side of Table II. We observe that the increased price volatility
increases the benefits of self-commitment in the risk-neutral
case. This may be somewhat counterintuitive since higher price
volatility implies higher risk which would make the day-ahead
market more desirable. On the other hand, higher volatility
also increases the value of explicitly accounting for uncertainty
in a stochastic self-commitment model, which drives the
result. In contrast, the benefits of self-commitment are less
pronounced for the risk-averse cases (a = 0.25, 0.50, 0.75).
In the case of a = 0.25 for Summer Weekday-Weekend, the
market schedule slightly outperforms self-commitment due to
the large number of scenarios that are neglected by the CVaR
risk criterion.

The increase in expected profits can be understood by
examining the distribution of profits for Summer Weekday-
Weekend for both the case of reference (non-volatile) prices
as well as volatile prices, shown in Fig. 5. For the case of
market bidding, a significant portion of the distribution is
concentrated around $320,000, which is the day-ahead profit.
This is due to the fact that for the given commitment, a large
number of realizations cannot make a profit in real time and
only accrue the day-ahead market profit. It is also intuitive
that the spread of the profit distribution should increase in
the positive direction as price volatility increases. This stems
from the fact that high revenue outcomes under reference
prices result in even higher revenues under volatile prices.

Fig. 5. The distribution of profits for Summer Weekday-Weekend for market
bidding with reference prices (upper left), risk-neutral self-commitment with
reference prices (upper right), market bidding with volatile prices (lower left)
and risk-neutral self-commitment with volatile prices (lower right).

Instead, low revenue outcomes will result in a profit no
less than the profit accrued in the day-ahead market, which
results in a significant concentration of mass around the day-
ahead profit. In the case of self-commitment, increased price
volatility increases the positive spread of the profit distribution
in the lower right panel, but leaves the negative spread of
the distribution nearly unaffected. The positive bias resulting
from increased price volatility can be understood by the
fact that periods of low prices correspond to low generator
output, with a minor influence on revenue, whereas periods
of high prices correspond to periods of high output with a
major influence on revenue. We therefore observe that flexible
combined cycle units utilize their capability to ramp up and
down rapidly in order to increase the value of their option-
ality in conditions of increased price volatility. As renewable
resources are increasingly integrated in the system, resulting in
increased real-time price volatility, this enhances the incentive
to self-commit for risk-neutral market participants. Dispatch
constraints (ramp rate limits and minimum run levels) and
fixed production and transition costs imply that the shift to
self-commitment introduces the risk of profits dropping below
day-ahead levels, which we observe in the left and right lower
panels. With increasing risk-aversion (a = 0.25, 0.50, 0.75),
price volatility makes self-commitment less valuable relative
to maintaining the day-ahead market schedule. Although the
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Fig. 6. Real-time price reduction (in $/MWh) that results in a day-ahead
unit commitment decision that is identical to the optimal self-commitment
decision. Day types are as follows: (I) Spring Weekday-Weekend, (II) Spring
Weekday-Weekday, (III) Summer Weekday-Weekend, (IV) Summer Weekday-
Weekday.

present analysis has focused on the impact of price volatility,
the decrease in average energy prices that results from large-
scale renewable energy integration can also be analyzed using
the model presented in this paper.

C. Feedback of Real-Time Prices on Self-Commitment

The self-commitment of units increases real-time supply
and may depress real-time electricity prices. Prices used as
the reference for self-commitment may be prices generated
under mild self-commitment of units. However, once units are
self-committed this will drive prices down. One approach for
analyzing how real-time price feeds back into the decision of
self-commitment requires the development of an equilibrium
model. However, there are discrete choices in the model
regarding the commitment of states and transitions of multi-
stage units. Given the negative result on the existence of
competitive market-clearing prices in systems with discrete
decisions [22], [16], it is unclear how one might construct an
equilibrium model for analyzing this feedback.

In order to provide insight into this feedback effect, we can
use the model presented in this paper in order to compute
the reduction in real-time prices that renders the unit indif-
ferent between self-commitment and bidding in the market,
i.e. results in a day-ahead unit commitment decision that is
identical to the optimal self-commitment decision. The results
are presented in Fig. 6. For cases where the self-commitment
and day-ahead schedule differ, we find that the price decrease
of real-time prices that would render units indifferent between
self-commitment and the day-ahead market schedule range
between 2.2-80$/MWh. We observe that volatility increases
the required reduction in real-time prices that would render
units indifferent between self-commitment and the day-ahead
schedule. Instead, lower risk aversion does not imply that a
higher price separation is needed in order to render the units
indifferent.

Arbitrage between the day-ahead and real-time market lim-
its the average price differences between these markets. This

observation is confirmed by an examination of historical price
data from 2009-2012 in the CAISO NP15 hub (annual differ-
ence of day-ahead and real-time prices between -2.37$/MWh
and +0.19$/MWh), the ISO New England Internal hub (an-
nual difference between -0.66$/MWh and -0.01$/MWh), the
PJM Dominion hub (annual difference between -0.42$/MWh
and +0.59$/MWh), the New York ISO Capital hub (annual
difference between +0.77$/MWh and +1.43$/MWh), and the
MISO Consumer Energy hub (annual difference between
+0.40$/MWh and +1.05$/MWh). None of these price differ-
ences are within the range of price differences required in Fig.
6.

D. Running Time and Size of the Scenario Set

A large scenario set better represents uncertainty at the cost
of requiring longer running time. We investigate this tradeoff
in Table IV, where we present the running time, number of cuts
and 95% confidence intervals of profit for the case of reference
prices with |S| = 100 and |S| = 1000 scenarios. In most cases
both models result in the same self-commitment decision. In
cases where the two models differ (e.g. Spring Weekday-
Weekend for a = 0.25), the increased benefits in moving
from 100 to 1000 scenarios appear negligible compared to
the required increase in running time. For this reason we use
|S| = 100 scenarios in the rest of the paper.

The problems are solved using CPLEX 12.5.0.0 on a
Macbook (2.4 GHz Intel Core i5, 8GB 1333 MHz DDR3). The
algorithm is terminated in 100 iterations with the best solution
found in case a certificate of optimality is not furnished.
Summer weekdays and weekends require fewer iterations
since the search space of the algorithm is smaller due to the
constraints of Eqs. (42). The algorithm is initialized with the
market schedule.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented a risk-averse stochastic model for self-
committing combined cycle units under real-time electricity
price uncertainty. We have used the model in order to inves-
tigate the impact of risk aversion and price volatility on the
incentive for generators to self-commit their units.

The advantage of a stochastic self-commitment model in
terms of accounting for uncertainty, risk aversion, and a
longer horizon can yield consistent benefits relative to the
day-ahead market. This can increase the benefits of self-
commitment and may limit the room for economic signals
in the market. The benefit of self-commitment is reduced by
increasing risk aversion. Price volatility increases the benefit
of self-commitment in the risk-neutral case. This may appear
counter-intuitive since the day-ahead market hedges against
risk, which is greater in conditions of higher price volatility.
The result is driven by the fact that self-commitment explicitly
accounts for the increased uncertainty resulting from higher
price volatility and arrives at more profitable unit commitment
schedules due to the dominant role of high-price periods on
the profit distribution. Instead, for greater risk aversion the
marginal benefits of self-commitment relative to the day-ahead
market schedule decrease with higher price volatility.
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TABLE IV
RUNNING TIMES, NUMBER OF CUTS, AND 95% PROFIT CONFIDENCE

INTERVALS FOR 100 AND 1000 SCENARIOS. DAY TYPES ARE AS FOLLOWS:
(I) SPRING WEEKDAY-WEEKEND, (II) SPRING WEEKDAY-WEEKDAY, (III)

SUMMER WEEKDAY-WEEKEND, (IV) SUMMER WEEKDAY-WEEKDAY.

Day α |S| Time (sec) Cuts Profit ($ · 103)
I 0 100 537 100 59.7 - 64.5
I 0 1000 2679 100 59.7 - 64.5
I 0.25 100 588 100 0
I 0.25 1000 2901 100 4.2 - 6.0
I 0.5 100 499 100 0
I 0.5 1000 2522 100 0
I 0.75 100 469 100 0
I 0.75 1000 2343 100 0
II 0 100 532 100 60.0 - 64.4
II 0 1000 2875 100 60.0 - 64.4
II 0.25 100 465 100 4.7 - 6.4
II 0.25 1000 3058 100 4.2 - 6.0
II 0.5 100 387 100 0
II 0.5 1000 2582 100 0
II 0.75 100 456 100 0
II 0.75 1000 2593 100 0
III 0 100 229 69 357.4 - 360.4
III 0 1000 2637 100 361.4 - 367.7
III 0.25 100 243 79 334.9 - 335.9
III 0.25 1000 1979 69 334.9 - 335.9
III 0.5 100 190 74 324.8 - 325.7
III 0.5 1000 1526 66 324.8 - 325.7
III 0.75 100 240 93 315.8 - 317.2
III 0.75 1000 2112 86 317.4 - 317.6
IV 0 100 162 65 414.9 - 420.9
IV 0 1000 1534 32 413.3 - 419.4
IV 0.25 100 159 67 375.8 - 376.7
IV 0.25 1000 2045 80 375.8 - 376.7
IV 0.5 100 203 74 366.2 - 367.1
IV 0.5 1000 1844 14 366.2 - 367.1
IV 0.75 100 242 87 359.4 - 359.6
IV 0.75 1000 2591 100 359.4 - 359.6

Self-commitment can limit the room for economic signals
in the market. This effect is mitigated by the fact that the
market schedule is fairly close to the optimal self-commitment
schedule. In equilibrium, self-commitment generates the same
schedule as the day-ahead market, although modeling this
equilibrium can prove challenging.

Flexible ramp products are currently under consideration
in various markets, including the California and Midwest
ISO, in order to contribute towards the increased ramping
requirements caused by renewable energy integration. This
ancillary service is expected to influence the benefits of self-
commitment and is worth exploring in future research.

APPENDIX

A. Nomenclature

Sets
S: set of scenarios for stochastic optimization
O: set of samples for Monte Carlo simulation
T = {1, . . . , N}: set of time periods
X: set of states
Y : set of transitions

Decision variables
bt: amount of power bought in period t (sold if negative)
pxt, r

+
xt, r

−
xt, uxt: production, regulation up, regulation down

and indicator for commitment of unit in state x, period t

vyt: indicator for transition of unit over y in period t
pxmt: incremental production for unit in segment m+ 1 of

state x in period t
ut, vt: indicator for commitment, startup of unit in period t

Parameters
N : number of periods in horizon
M : number of segments in incremental heat rate curve
πs: probability of scenario s
UT,DT : minimum up and down time of unit
UTx, DTx: minimum up and down time of state x
HRxm, BPxm: incremental heat rate/breakpoint in segment

m of state x
V OMx, R

+
x , R

−
x , RUx, RDx: variable O&M cost, ramp up

rate, ramp down rate, regulation up limit, and regulation down
limit of state x
TCy: transition cost of MSG unit for transition y
F (y), T (y): set of states that y transitions from/to
Dt: demand in period t
λ̄t, λ

RU
t , λRDt : day-ahead energy price, regulation up price,

and regulation down in period t
λst: real-time price in sample / scenario s, period t
b̄t, r̄

+
t , r̄

−
t : cleared day-ahead market energy procurement,

regulation up and regulation down

B. Conditional Value at Risk
This section is based on Rockafellar and Uryasev [15].

Consider a decision vector w within a decision set W and
a random vector λ that obeys a probability measure P that
is independent of w. For each w, we denote by Π(w, ·)
the cumulative distribution function of a cost Q(w, λ) which
depends on both the decision vector w as well as the random
vector λ:

Π(w, ζ) = P[λ|Q(w, λ) ≤ ζ], (43)

where we assume that Q(w, λ) is continuous in w and mea-
surable in λ, with E[|Q(w, λ)|] <∞ for each w ∈W .

Definition 1. The a-value at risk associated with a decision
w is the value

ζa(w) = min{ζ|Π(w, ζ) ≥ a}. (44)

Definition 2. The a-conditional value at risk of the cost
associated with a decision w is

CV aRa(w) = EΠα [Q(w, λ)] (45)

where the expectation is taken with respect to the following
measure:

Πa(w, ζ) =

{
0, ζ < ζa(w)

Π(w,ζ)−a
1−a , ζ ≥ ζa(w)

The level of a controls the level of risk aversion. Effectively,
the decision maker ignores the a% most favorable outcomes,
as if they had never occurred, and only accounts for the payoff
in the (1 − a)% worst cases. As a increases, more favorable
outcomes are accounted for and the lottery is evaluated more
favorably by the decision maker. In the case where a = 0, all
outcomes are accounted for in the assessment of the lottery,
which corresponds to risk-neutral behavior.
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