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Abstract We present a distributed asynchronous algorithm for solving two-
stage stochastic mixed-integer programs (SMIP) using scenario decomposi-
tion, aimed at industrial-scale instances of the stochastic unit commitment
(SUC) problem. The algorithm is motivated by large differences in run times
observed among scenario subproblems of SUC instances, which can result
in inefficient use of distributed computing resources by synchronous paral-
lel algorithms. Our algorithm performs dual iterations asynchronously using a
block-coordinate subgradient descent method which allows performing block-
coordinate updates using delayed information, while candidate primal solu-
tions are recovered from the solutions of scenario subproblems using heuristics.

We present a high performance computing implementation of the asyn-
chronous algorithm, detailing the operations performed by each parallel pro-
cess and the communication mechanisms among them. We conduct numeri-
cal experiments using SUC instances of the Western Electricity Coordinating
Council (WECC) system with up to 1000 scenarios and of the Central Western
European (CWE) system with up to 120 scenarios. We also conduct numeri-
cal experiments on generic SMIP instances from the SIPLIB library (DCAP
and SSLP). The results demonstrate the general applicability of the proposed
algorithm and its ability to solve industrial-scale SUC instances within oper-
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ationally acceptable time frames. Moreover, we find that an equivalent syn-
chronous parallel algorithm would leave cores idle up to 80.4% of the time on
our realistic test instances, an observation which underscores the need for de-
signing asynchronous optimization schemes in order to fully exploit distributed
computing on real world applications.

Keywords Asynchronous algorithm · stochastic programming · unit
commitment · high performance computing

Mathematics Subject Classification (2010) 90C15 · 68W15 · 68W20 ·
90C10 · 90C06

1 Motivation

The unit commitment problem is a classical problem in the short-term schedul-
ing of electric power systems. Unit commitment deals with deciding which gen-
erating units will supply energy to a power system over a certain time horizon,
so as to minimize the operation cost while respecting the technical constraints
of the power system. The problem is usually formulated as a mixed integer
linear program (MILP) and it is solved on a daily basis by power system
operators worldwide.

In recent years, the integration of significant shares of renewable energy
resources into electric power systems has motivated the industry and academic
community to investigate efficient approaches for scheduling power systems
in the presence of uncertainty (see [51] and references therein for a recent
survey on the subject). Stochastic unit commitment (SUC) is a widely studied
approach to incorporate uncertainty in this scheduling problem. SUC can be
formulated as the two-stage stochastic mixed integer program (SMIP) (1) –
(4),

max
u,v,w

N∑
i=1

(cTi vi + dTi wi) (1)

s.t. u ∈ U , (2)

(vi,wi) ∈ Di, i = 1, . . . , N (3)

vi − u = 0, i = 1, . . . , N (4)

where i indexes scenarios, u is the vector of non-anticipative decision vari-
ables, U ⊂ Rn is a bounded convex set, vi are local copies of non-anticipative
variables at each scenario, wi are recourse variables of each scenario, Di ⊂
Rn+mi i = 1, . . . , N are bounded non-convex sets and constraints (4) model
non-anticipativity constraints. We assume that the problem satisfies Pvi(Di) =
Pvj

(Dj) for any i, j ∈ {1, . . . , N}, where Pvi
is the projection of Di on the

coordinates of vi. We later refer to this property as weak relatively complete
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recourse1. Typically, vi corresponds to commitment variables of thermal gen-
erators (binary decisions), but it can also include production variables of in-
flexible generators (continuous decisions). The vector wi includes commitment
variables of fast generators, production variables of all generators and flows
over the network (mixed integer decisions). Di describes the feasible opera-
tion domain for scenario i in terms of production constraints (minimum stable
level, maximum capacity, maximum ramp rates, minimum up/down times)
and power grid constraints (power balance, power flow equations, flow limits).
U corresponds to a convex relaxation of the production constraints for vari-
ables included in u, U ⊇ Pvi

(Di) for an arbitrarily chosen i ∈ {1, . . . , N}. See
appendix A for a detailed description of the SUC model.

Our aim is to solve problem (1) – (4) for real power systems, within the
time limits imposed by daily operations. This differentiates SUC from other
applications of stochastic programming in that the typical scale of realistic
SUC instances (see [1, 18, 44]), as measured by the number of variables and
the number of constraints required to describe U and Di, is orders of magnitude
larger than that of commonly used SMIP test instances [5]. Furthermore, the
computational effort required for optimizing over Di can vary significantly
from one scenario to another, as well as for the same scenario with slight
modifications. Therefore, a parallel implementation of a serial decomposition
scheme may perform inefficiently in practice.

In order to overcome these challenges, in this paper we propose an asyn-
chronous distributed algorithm for solving (1) – (4), and we present a high
performance computing implementation of the algorithm which is used for
solving SUC instances of two industrial-scale systems and the largest instances
in the SIPLIB collection [5].

1.1 Relevant literature

Stochastic unit commitment was initially proposed in the seminal work of
Takriti et al. [52] and Carpentier et al. [15] as a methodology for coping with
demand uncertainty in power systems. The scope for application of SUC has,
since then, been extended to renewable energy forecast uncertainty and compo-
nent failures (referred to as contingencies in the power engineering literature),
among other sources of uncertainty in power system operations.

SUC studies commonly use decomposition methods for handling the scale
of the problem, which increases linearly with the number of scenarios. Takriti et
al. [52] use Lagrange relaxation of non-anticipativity constraints (i.e. scenario
decomposition), and a progressive hedging heuristic to obtain non-anticipative
solutions. Carpentier et al. [15] relax the problem over generators using an
augmented Lagrangian. They maximize the dual function with a proximal
point method and recover primal solutions by allowing demand shedding at a

1 This requirement is weaker than relatively complete recourse, as defined in [29], which
demands that any feasible first-stage solution leads to a feasible second-stage subproblem
for every scenario.
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quadratic penalty. Shiina and Birge [49] use a column generation approach over
production schedules, decomposing over generators and solving the slave pro-
duction scheduling problems using dynamic programming. Cerisola et al. [16]
compare scenario decomposition with variants of Benders decomposition and
stress the importance of finding good initial solutions. Additional decomposi-
tion approaches for SUC can be found in [51].

SUC instances in the literature have often been limited to test systems
which fall short of industrial scale instances. In order to advance towards
more realistic instances, several recent studies exploit distributed computing
alongside decomposition methods. Papavasiliou et al. [44] implement scenario
decomposition in an HPC cluster to solve instances of the Western Electricity
Coordinating Council (WECC) system with up to 1000 scenarios in at most
24 hours within an optimality gap of 1% – 2.5%. Cheung et al. [18] decompose
the problem by scenarios and use progressive hedging on a multi-processor
workstation and on an HPC cluster to solve instances of the WECC system
with up to 100 scenarios in at most 25 minutes within an optimality gap of
1.5% – 2.5%. Kim and Zavala [30] propose an interior point cutting-plane
algorithm to handle dual iterations in scenario decomposition and solve SUC
instances based on the IEEE 118-bus test system with up to 32 scenarios,
using an HPC cluster, in 6 hours within an optimality gap of 0.01%.

Other recent methods, which do not exploit distributed computing explic-
itly, have also being used to solve large SUC instances. Among them, Schulze
et al. [48] use a stabilized Dantzig-Wolfe decomposition to solve multi-stage
SUC instances of the British system with up to 50 scenarios in 2 hours within
an optimality gap of 0.1%. van Ackooij and Malick [1] use primal-dual de-
composition along with bundle methods to solve SUC instances of the French
system with up to 250 scenarios within an optimality gap of 1%, however no
solution times are reported.

As our research is focused on making it practical to solve industrial-scale
SUC instances, (i) we present a method capable of solving SUC instances faster
than the state-of-the-art, (ii) we release all the industrial-scale test instances
used in this study and (iii) we provide the time it takes to solve them with
the proposed method. These three elements are not found simultaneously in
any of the aforementioned studies.

In the broader SMIP class, to which SUC belongs, scenario decomposition
has inspired several different decomposition algorithms. Carøe and Schultz [14]
propose a scenario decomposition method where non-anticipativity constraints
are gradually enforced through a branch-and-bound algorithm. Lubin et al. [33]
extend the previous method to a parallel computing setting by solving the dual
problems at each node of the branch-and-bound tree using an interior point
solver that exploits the structure of the problem. Oliveira et al. [42], and ref-
erences therein, use scenario decomposition and solve the dual problem using
bundle methods. Ahmed [2,3] proposes an alternative approach for stochastic
integer programs where solutions to scenario subproblems are directly used for
primal recovery while, at the same time, these solutions are separated from
subproblems in order to improve the bound of the relaxation. Ryan et al. [47]
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develop several improvements over Ahmed’s original algorithm, including a
distributed asynchronous implementation.

Distributed computing has also found applications in stochastic program-
ing outside the realm of scenario decomposition methods. Lubin et al. [32]
propose a distributed memory simplex algorithm for stochastic linear pro-
grams. Mungúıa et al. [36] propose a branch-and-bound algorithm for stochas-
tic mixed integer programs on which each node of the tree is solved using
Lubin’s method. Moritchs et al. [35] propose a nested asynchronous decom-
position algorithm for multistage stochastic linear programs. Chaturapruek et
al. [17] propose and prove optimal convergence for asynchronous stochastic
gradient descent methods on unconstrained stochastic programs with strongly
convex and differentiable objective functions.

A crucial aspect to scenario decomposition is the method used to optimize
the dual function, which is separable, convex and non-differentiable. Certain
specialized methods allow exploiting the separable structure of the dual func-
tion in a distributed computing infrastructure. Nedić et al. [37–39] analyze
incremental subgradient algorithms, on which each update is made along the
direction of the subgradient of a part of the objective function. Coordinate
descent methods are a different approach to exploit the structure of minimiza-
tion problems for which it is cheaper to compute the gradient with respect
to a subset of variables (coordinates) than it is to compute the full gradient
of the objective. Wright [55] provides a recent survey on coordinate descent
methods. Nesterov [41] provides worst-case complexity results for randomized
coordinate descent methods for smooth optimization. Fercoq and Richtárik [24]
propose a parallel synchronous coordinate descent method for minimizing non-
differentiable simple composite functions. The authors use Nesterov’s smooth-
ing technique [40] to obtain a smooth approximation of the non-decomposable
part of the objective and perform a line search separately on each coordinate
of each iteration, as proposed by Tseng [53]. Fisher and Helmberg [25] propose
an asynchronous distributed bundle method for non-differentiable convex op-
timization, where at each step a worker greedily selects a subset of variables,
blocks them from being accessed by the other workers, and performs a proxi-
mal bundle iteration on the selected variables.

1.2 Contributions

Stochastic unit commitment, despite its attractiveness, has failed to become
an industry standard due to several reasons, including the difficulty of solv-
ing the mathematical programs in an operationally acceptable time frame. In
the present paper, we aim at overcoming this challenge by developing an asyn-
chronous scenario decomposition scheme based on distributed computing. The
main innovation of the developed scheme is that we optimize the dual func-
tion using an asynchronous block-coordinated subgradient algorithm. Our al-
gorithm does not require differentiability or strong convexity assumptions that
are commonly used in the literature [17,31,41,55]; it differs from the algorithm
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of Fercoq and Richtárik [24] in that we perform iterations asynchronously and
without the need for line search, which would be prohibitive in our context;
and it requires less serial coordination overhead than the asynchronous bundle
method [25]. We provide convergence guarantees for the proposed algorithm
based on previous results for stochastic subgradient methods [22] and incre-
mental subgradient methods [37–39].

We also perform primal recovery asynchronously and in parallel to the dual
iterations, either by recovering solutions from scenario subproblems, as pro-
posed in [2,3], or by using recombination heuristics, similar to those proposed
in [14]. The proposed asynchronous algorithm allows us to solve limited-size
SUC instances faster than the state-of-the-art [18] and to solve SUC instances
for systems larger than the state-of-the-art [1] within operationally acceptable
time frames.

Even though the proposed algorithm is inspired and tailored to SUC, the
proposed framework for asynchronous dual decomposition can be applied in
other contexts, such as temporal or spatial decomposition of unit commitment.

In order to make our numerical experiments replicable, we release all SUC
instances used in the present study [10] (WECC and CWE, see section 6)
along with the source code of our implementation [11].

1.3 Notation and paper organization

Throughout this document we use boldface to denote vectors, lowercase let-
ters to denote variables and uppercase letters to denote parameters or sets.
Additionally, we use partial indexation of vectors to keep notation simple, i.e.
x = [xT1 . . . xTN ]T and xi ∈ Rni .

The rest of the paper is organized as follows. Section 2 introduces the
stochastic unit commitment problem and its scenario decomposition in a styl-
ized fashion. Section 3 presents the asynchronous distributed block-coordinate
subgradient method and provides convergence results for the dual iterations.
Section 4 describes our primal recovery heuristics. Section 5 describes the
HPC implementation of the dual algorithm, where we also cover aspects of
communications and load balancing. Section 6 presents the numerical results
for the WECC and Central Western European (CWE) systems. Finally, sec-
tion 7 presents the conclusions of the study and points to directions of future
research.

2 Scenario decomposition in stochastic programming

Problem (1) – (4) is a general formulation for two-stage mixed integer stochas-
tic programs with finitely many scenarios and bounded feasible sets [34].

Following [52], we relax problem (1)–(4) by associating multipliers xi to
non-anticipativity constraints (4). We thus obtain the dual problem (5), where
f0 and fi are defined according to (6) and (7), respectively.
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min
x∈Rm

f0(x) +

N∑
i=1

fi(xi) (5)

f0(x) := sup
u∈U

(
−

N∑
i=1

xTi

)
u (6)

fi(xi) := sup
(v,w)∈Di

(
(cTi + xTi )v + dTi w

)
i = 1, . . . , N (7)

Scenario decomposition schemes for solving (1)–(4) work by solving the
dual problem (5) and generating primal solutions based on the solution to
subproblems (6) and (7). The objective of problem (5) has a separable struc-
ture. Moreover, by evaluating the component functions f0 and fi, i = 1, . . . , N
at a certain x̄, we obtain a subgradient of the objective at x̄. These two prop-
erties motivate the use of subgradient algorithms for solving (5) and evaluating
the component functions in parallel in order to speed up the algorithm [44].
A third important property of problem (5) should be carefully considered,
namely, the differences in evaluation times between component functions.

In our context, the evaluation of fi at a certain x̄i, i = 1, . . . , N , requires
the solution of a large mixed integer linear problem, while the evaluation of f0

at a certain x̄ requires solving a medium-size linear program, hence the evalu-
ation of f0 requires only a small fraction of the time that it takes to evaluate
fi for any i2. In addition, for a given x̄ and two component functions fi and
fj , the evaluation times of fi and fj can be dramatically different (we have
observed differences of more than 7500%). These differences in evaluation time
can also arise for the same component function evaluated at two different iter-
ates. Altogether, these differences can render synchronous parallel algorithms
ineffective because the time between iterations is limited by the component
function which requires the greatest time to be evaluated. The main aim of
the present work is to overcome this limitation.

3 Asynchronous distributed block-coordinate subgradient method

In this section we present a minimization method that exploits the special
structure of (5) in order to effectively harness distributed computing. The
proposed method has been inspired by previous work on incremental subgra-
dient algorithms by Nedić et al. [37–39].

2 This differs from the usual scope of application of coordinate descent methods, where
the decomposable part of the objective is easier to evaluate than the non-decomposable
part [24,31,41,55].
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We replace the non-decomposable component function f0 by a smooth
approximation fµ0 , defined in equation (8), as done in [24].

fµ0 (x) := sup
u∈U

((
−

N∑
i=1

xTi

)
u− 1

2
µ‖u− u0‖22

)
(8)

We show in section 3.1 that smoothness of the non-decomposable part of the
objective is necessary for the convergence of our method. Given µ > 0 and
certain u0 ∈ U , fµ0 is a convex differentiable function and its gradient has a
Lipschitz constant Lµ0 [40, Thm. 1]. We then focus on solving problem (9),
where X is a convex set, onto which it is easy to project.

min
x∈X

f(x) = fµ0 (x) +

N∑
i=1

fi(xi) (9)

The solution of problem (9) will be an approximate solution to problem
(5) [40]. Note that problem (9), as well as problem (5), are non-differentiable
convex optimization problems.

For ease of presentation, we first introduce a serial variant of the proposed
method. We then generalize it to an asynchronous distributed setting. Proofs
for all results presented in this section are provided in appendix B.

3.1 Serial method

Let us consider a block version of the randomized coordinate descent method
[41] for minimizing f . At iteration k, with current iterate xk, we select uni-
formly at random a block j(k) from {1, . . . , N} and compute the next iterate
xk+1 using the following update rule:

xk+1 := PX
[
xk − λk · ITj(k)

(
Ij(k)∇fµ0

(
xk
)

+ g
(
j(k),xkj(k)

))]
. (10)

Here, λk is the step size, g(j,x) ∈ ∂fj(x) and Ij is a matrix that maps ∇fµ0
to its components relevant to block j, i.e.

Ij =
[
0nj×(

∑j−1
i=1 ni) 1nj×nj

0nj×(
∑N

i=j+1 ni)

]
,

with 1nj×nj
corresponding to the identity matrix. Simply put, rule (10) up-

dates the multipliers by moving them in the opposite direction to a subgradient
of the objective function, restricted to the coordinates related to scenario j(k).

Although f is a non-differentiable function, the update rule (10) is equiva-
lent to the update rule of the stochastic subgradient method, as in the following
proposition.

Proposition 1 Let J be a discrete uniform random variable on the set {1, . . . ,
N}. The expected direction of update rule (10), E[ITJ (IJ∇fµ0

(
xk
)

+ g
(
J,xkJ))|

xk], coincides with the direction of a subgradient of f at xk.
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Note that smoothness of fµ0 is a necessary condition for Prop. 1. This can be
understood intuitively by observing that the expectation in Prop. 1 constructs
the expected update direction by concatenating subgradients of f restricted to
blocks of coordinates, which are obtained from different calls to a first-order
oracle. The concatenation of blocks of coordinates of different subgradients of
a non-separable function (e.g.

∑N
j=1 I

T
j Ijg

j , where gj ∈ ∂f0(x), j = 1, . . . , N)
is not necessarily a subgradient of the function (see Prop. 4, in appendix
B), whereas the concatenation of blocks of coordinates of the gradient of a

differentiable function (
∑N
j=1 I

T
j Ij∇f

µ
0 (x) = ∇fµ0 (x)) results in the gradient

of that function.

The stochastic subgradient method and its convergence have been well
studied in the literature, see for instance [22, Thm. 2]. By extension, with an
appropriate selection of the step size λk (diminishing, nonsummable, square
summable), the method defined by the update rule (10) will converge to an
optimal solution with probability 1.

Note that the update rule (10) requires computing the gradient of fµ0 and
a subgradient of fj(k) at each iteration k. This makes the method more ex-
pensive than the subgradient method when we consider an entire pass over all
scenarios, i.e. N iterations of the method, which is the minimum amount of
iterations required to update every block of variables. Nevertheless, since the
cost of computing the gradient of fµ0 is almost negligible compared to the cost
of computing a subgradient of fi for any i, the extra cost in practice would
not be noticeable.

3.2 Asynchronous distributed method

The idea behind the asynchronous distributed method is essentially the same
as in the serial method presented in the previous subsection, with the exception
that subgradients of component functions are computed in parallel to the
updates. Specifically, following [39], we use the computation model presented
in Fig. 1. In this computation model, only the Updating system can increase
iteration counters, and updates are performed serially using the information
provided by the Subgradient computation system. The serial nature of the
Updating system allows us to describe the algorithm using a single iteration
counter k.

Note that subgradients communicated by the Subgradient computation sys-
tem to the Updating system might have been computed at previous iterates.
In other words, the subgradient information available to the Updating system
might have delays. We denote these delays by l(k), the total number of up-
dates since the last evaluation of the gradient of fµ0 , at iteration k; and `(j, k),
the number of updates to block j since the last computation of its subgradi-
ent, at iteration k. Considering delays, we propose update rule (11) for the
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Updating system
Subgradient
computation

system

xk

∇fµ0
(
xk−l(k)

)
g
(
i,x

k−`(i,k)
i

)
∀i

Fig. 1 Computation model for the asynchronous distributed method. At each iteration k,
the Updating system communicates the current iterate xk to the Subgradient computation
system. In turn, the Subgradient computation system communicates back the last computed
subgradient for each component function. The parallelism of this scheme resides within the
Subgradient computation system.

randomized block-coordinate subgradient method:

xk+1 := PX
[
xk − λk · ITj(k)

(
Ij(k)∇fµ0

(
xk−l(k)

)
+ g
(
j(k),x

k−`(j(k),k)
j

))]
.

(11)
Here, j(k) is selected uniformly at random from {1, . . . , N}. This update rule is
an extension of (10), where we allow for delays in the subgradient information.

The presence of delays implies that Proposition 1 is no longer valid for
update rule (11). Nevertheless, we can use essentially the same idea in or-
der to prove convergence of the method defined by rule (11) as the one we
used in the previous subsection. That is, we show that the expected update
direction coincides with the direction of the approximate subgradient of the
objective function and that the error in the approximate subgradient vanishes
as the iterations advance. In this work, approximate subgradients are defined
as follows.

Definition 1 (Approximate subgradient [46]) Let f be any convex func-
tion and let x ∈ Dom(f). A vector g is called an ε-subgradient, or approximate
subgradient, of f at x if there exists ε > 0 such that

f(y) ≥ f(x) + gT (y − x)− ε, ∀y ∈ Dom(f).

Our analysis of the iterates of the asynchronous method is based on the
Supermartingale Convergence Theorem [12, Prop. 4.2] (replicated as Theorem
2 in appendix B for self-containedness) and the following assumptions:

Assumption 1 (Subgradient boundedness)
The subgradients of component functions are bounded above by some pos-

itive constants. In particular, there exist positive constants C and D such
that

sup
j∈{1,··· ,N}
x,y ∈X

∥∥Ij∇fµ0 (x)+ g
(
j,yj

)∥∥
2
≤ C and sup

j∈{1,··· ,N}
x∈X

∥∥g(j,xj)∥∥2
≤ D.

Assumption 2 (Delay boundedness) There exist a positive integer L (pos-
sibly unknown) such that l(k) ≤ L, ∀k = 1, . . . ,∞ and `(j, k) ≤ L,∀j =
1, . . . , N,∀k = 1, . . . ,∞.
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Assumption 3 (Diminishing-bounded stepsize)
The stepsize λk might be a function of xk,xk−1, . . . ,x0, but not of the

block coordinate to be updated j(k). Furthermore, the sequence {λk} is
bounded above and below by a deterministic sequence {γk}, such that

Ǧγk ≤ λk ≤ Ĝγk, γk =
1

(1 + rk)q
∀k,

∞∑
k=0

γk =∞,
∞∑
k=0

γ2
k <∞,

where Ǧ, Ĝ, r, q are positive constants.

For SMIP instances, Assumption 1 is ensured by the boundedness of the
sets U and Di, i = 1, . . . , N of the primal problem (1) – (4), while Assumption
2 will hold as long as the evaluation time of all component functions is finite.
The selection of a stepsize which is consistent with Assumption 3 is discussed
in subsection 3.3.

The following lemma conveys the key idea of our analysis and the rest of
the proof follows almost directly from it.

Lemma 1 Let Assumptions 1 and 2 hold. Additionally, let J be a discrete
uniform random variable on the set {1, . . . , N} and Fk = {xk,xk−1, . . . ,x0}.
Then, the expected direction of update rule (11),

E[ITJ (IJ∇fµ0 (xk−l(k)) + g(J,x
k−`(J,k)
J ))| Fk],

coincides with the direction of an ε-subgradient of f at xk, with

ε = C2Lµ0

k−1∑
m=k−L

λ2
m + 2CDN

k−1∑
m=k−L

λm.

Lemma 1 shows that the update direction of rule (11) should, on average,
be close to a subgradient of the objective and that the error in the subgradient
is bounded by the sum of the last L stepsizes, hence by choosing a stepsize
consistent with Assumption 3 this error will vanish as k grows. In the following,
Proposition 2 gives an estimate of the progress of the asynchronous method at
each iteration, based on the result of Lemma 1, while Proposition 3 presents
a straightforward consequence of Assumption 3.

Proposition 2 Let Assumptions 1, 2 and 3 hold and let Fk = {xk,xk−1, . . . ,
x0}. Then, for the sequence {xk} generated by the update rule (11), we have
that

E
[
‖xk+1 − y‖22

∣∣Fk] ≤‖xk − y‖22 − 2
λk
N

(
f(xk)− f(y)

)
+

λ2
kC

2 + 2
C2Lµ0
N

λk

k−1∑
m=k−L

λ2
m +

4CDλk

k−1∑
m=k−L

λm ∀y ∈ X.

(12)
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Proposition 3 Let Assumption 3 hold. Then, we have

∞∑
k=0

λk =∞,
∞∑
k=0

λ2
k <∞,

∞∑
k=0

λk

k−1∑
m=k−L

λm <∞,
∞∑
k=0

λk

k−1∑
m=k−L

λ2
m <∞,

where for notational convenience we let λ−l = λ0 ∀l ∈ N.

Finally, in the following theorem, we apply the Supermartingale Conver-
gence Theorem (Theorem 2, appendix B) to the results of Propositions 2 and
3 in order to prove the convergence of the asynchronous method to an optimal
solution.

Theorem 1 Let Assumptions 1, 2 and 3 hold, and assume further that the
optimal solution set X∗ is nonempty. Then the sequence {xk} generated by the
randomized method converges to some optimal solution with probability 1.

The result presented in Theorem 1 extends the state-of-the-art by provid-
ing a convergence guarantee for the asynchronous block-coordinate descent
method for non-differentiable optimization problems with the structure of
problem (9) without the need for a line search on xj(k) at each iteration [24,53].

An important remark is that the asynchronous incremental method pro-
posed in [39] is guaranteed to converge to an optimal solution for both prob-
lem (5) and problem (9), while also exploiting their decomposable structure
to a certain extent. We utilize block-coordinate descent instead of incremental
methods for two reasons:

– The choice between incremental and block-coordinate subgradient meth-
ods can have significant implications on the magnitude of delays whenever
we are minimizing a problem with the structure of problem (9), where a
gradient of fµ0 is much easier to evaluate than a subgradient of fi for any
i = 1, . . . , N , and X = Rn (unconstrained optimization).
The incremental subgradient method at iteration k selects at random a
component function, j(k) ∈ {0, 1, . . . , N}, and performs an update follow-
ing the direction of the computed subgradient for the selected component
function. Whenever j(k) ≥ 1, the algorithm will update block-coordinate
j(k), which will cause the current gradient of fµ0 and the subgradient fj(k)

to gain one unit of delay. On the other hand, every time j(k) = 0, the
algorithm will update the entire vector x, adding one unit of delay to all
the subgradient information available to the Updating system. This effect,
which is unavoidable for the problem structure analyzed in [39], is un-
desirable because errors on the update direction depend directly on the
magnitude of the delays.
The block-coordinate subgradient method at iteration k updates only the
coordinates of block j(k) ∈ {1, . . . , N}, causing the available gradient of fµ0
and subgradient fj(k) to gain a unit of delay, but leaving unaffected the rest
of the subgradient information available to the Updating system. Moreover,
new gradients for fµ0 can be computed rapidly as iterations advance, which
allows us to maintain small delays throughout the solution process.
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– For SMIP instances and, in general, for Lagrangian relaxation of con-
straints linking duplicated variables, as the dual multiplier x approaches
an optimal value, u and vi start becoming similar for all i. As a conse-
quence, the gradient of fµ0 will tend to point in an opposite direction to
the subgradient of fi for any i = 1, . . . , N , thereby causing the incremental
method to be susceptible to oscillations in x.

3.3 Stepsize selection and function value estimation

Although Assumption 3 might seem to restrict the stepsize to a diminishing
series of the type 1/kq, it also allows us to use a stepsize similar to the dynamic
stepsize proposed by Polyak for the subgradient method [45],

λk = p
f
(
xk
)
− f∗

‖g
(
xk
)
‖22

, g
(
xk
)
∈ ∂f

(
xk
)
, 0 < p < 2.

In order to use the original Polyak stepsize, we need to know the objective
value at the current iterate f

(
xk
)
, the optimal value f∗, and the norm of

the subgradient at the current iterate ‖g
(
xk
)
‖2, none of which are available

for the asynchronous method. Instead, we construct a new stepsize which uses
estimates for each of the aforementioned quantities. An estimate of the current
objective, which is also an upper bound on the objective of the primal problem
(1)–(4), can be obtained at the cost of evaluating f0 as follows:

f
(
xk
)
≈ UBk := f0

([(
x
k−`(1,k)
1

)T
. . .
(
x
k−`(N,k)
N

)T ]T)
+

N∑
j=1

fj
(
x
k−`(j,k)
j

)
.

(13)
On the other hand, an estimate ḡk of the subgradient norm can be computed
using the last known subgradients for the component functions:

‖g
(
xk
)
‖2 ≈ ḡk := max

{
σ,

∥∥∥∥∇fµ0 (xk−l(k)
)

+

N∑
j=1

Ijg
(
j,x

k−`(j,k)
j

)∥∥∥∥
2

}

Here, σ is a small positive constant intended to prevent that ḡk = 0 (note that,
due to the delays, ḡk = 0 does not imply that xk is optimal). An underestimate
for the optimal value LBk can be obtained from a feasible solution to the
primal problem, which is computed as described in section 4. We assume that
this is a strict underestimate, i.e. θ ≤ f∗−LBk for some θ > 0. In other words,
we assume that strong duality is never attained for realistic SUC instances.

Using these estimates, we propose the following dynamic stepsize:

λk = pk ·
min

{
ξ, UBk − LBk

}
ḡ2
k

, (14)
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where ξ is a positive constant and pk = p0/(1 + rk)q, with p0, r positive
constants and 1/2 < q ≤ 1. The goal of ξ is to prevent the method from
taking long steps whenever the underestimate of the optimal value is loose. At
the same time, we scale our estimate of the Polyak stepsize by the decreasing
sequence pk. We do this order to ensure that the resulting stepsize λk, defined
in equation (14), respects Assumption 3. This can be verified by observing
that λk satisfies the following inequality:

p0
θ

C
· γk ≤ λk ≤ p0

ξ

σ
· γk.

Therefore, by Theorem 1, the asynchronous algorithm using the proposed step-
size (14) will converge with probability 1 to an optimal solution.

A diminishing stepsize of type λk = p0/(1 + rk)q is also guaranteed to
achieve convergence under Assumptions 1–3. However, for such a stepsize to
work effectively, it is necessary to determine a ‘good’ initial stepsize p0 in
absolute terms. The process of selecting a ‘good’ initial stepsize can require
several trial-and-error runs of the algorithm for every instance to be solved,
which would not be possible in an industrial implementation with a strict time
limitation.

By contrast, in order to set the parameters for the proposed stepsize (14),
we only need to decide the proportion pk of the Polyak stepsize that we would
like to have at two different iteration counts (e.g. p0 = 0.5 and p50·N = 0.25)
and the rate at which we would like to decrease pk (e.g. decreasing with a
rate 1/k). Given that these parameters are scale-free, in the sense that they
do not depend on the absolute value of the objective function, there is no
need for trial-and-error runs when using this stepsize rule in industrial-size
applications.

4 Primal recovery

Primal recovery is an essential component of any Lagrangian relaxation
method aiming at solving the original problem. Although there exist exact
methods for recovering primal solutions in the case of linear programs [8],
these methods do not extend to the mixed integer case. Therefore, primal
recovery generally relies on heuristics.

In the case of the SMIP instances in this paper, we exploit the weak rela-
tively complete recourse of the problem, i.e. that Pvi(Di) = Pvj (Dj) for any
i, j ∈ {1, . . . , N}. In other words, any solution to a scenario subproblem v̄
can be used as a candidate non-anticipative first-stage solution. We can then
compute the second-stage cost hi(v̄) by solving second-stage problems with
fixed vi = v̄:

hi(v̄) = cTi v̄ + min
w|(v̄,w)∈Di

dTi w.

Thus, we obtain a complete primal solution to (1) – (4) and a lower bound on
the objective of (5) [2, 3].
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Recovering one feasible non-anticipative solution at every dual iteration
would require the solution of N2 second-stage MILPs for every dual pass over
data. For medium to large scenario sets, the computational requirements of
primal recovery can easily become larger than the requirements of the dual
algorithm. If both dual iterations and primal recovery are performed concur-
rently, primal candidates would need to enter into a queue for evaluation, which
will typically grow as dual iterations advance (assuming similar resources are
allocated for dual iterations and primal recovery). Within this context, we test
three rules for determining the order of evaluation of primal candidates in the
queue:

– First-in-first-out (FIFO).
– Random order (RND), motivated by the possibility that a good solution

might appear anywhere in the sequence of solutions to scenario subprob-
lems.

– Last-in-first-out (LIFO). This approach accounts for the fact that, as dual
iterations advance, solutions to scenario subproblems tend to be almost
non-anticipative (vi ≈ vj , i, j = 1, . . . , N). Therefore, scenario subproblem
solutions in later iterations could achieve better overall performance.

A different approach towards recovering primal solutions is to create pri-
mal candidates as they are required, by combining the solutions to different
scenario subproblems. Carøe and Schultz [14] propose creating primal candi-
dates by first averaging the solutions to all scenario subproblems and then
rounding the result using a heuristic. We use a variant of this idea, combined
with importance sampling (IS), to create primal solutions. Let V = Pvi(Di)
for an arbitrarily chosen i ∈ {1, . . . , N}. Our recovery heuristic, then, proceeds
as follows:

1. Associate to each scenario i = 1, . . . , N a probability proportional to an

estimate of its importance, e.g. ρi ∝ fi(xk−`(i,k)
i ).

2. Pick a sample of the scenarios of size M < N , using ρi as the probability
of sampling scenario i.

3. Average the current scenario subproblem solution v̄i associated to the sam-
pled scenarios {i(m),m = 1, . . . ,M} in order to generate an average ṽ:

ṽ =
1

M

M∑
m=1

vi(m).

4. Generate a primal candidate ū by projecting the average of step 3 onto V,

ū = arg min
u∈V

‖u− ṽ‖22 . (15)

In general, problem (15) follows the form of a modified scenario subprob-
lem, because V = Pvi(Di) = {v ∈ Rn | ∃w, (v,w) ∈ Di}, for an arbitrarily
chosen i ∈ {1, . . . , N}. Nevertheless, in most cases V = U ∩ (ZnI × Rn−nI ),
where nI indicates the number of integer first-stage variables. Problem (15)
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then reduces to a quadratic version of problem (6), which is smaller and easier
to solve than a scenario subproblem.

The proposed heuristic allows us to create primal candidates that combine
the characteristics that make a solution optimal for a representative subset
of the scenarios while, at the same time, generating different candidates after
each dual iteration if necessary. The latter would not be possible if we were to
follow [14], since the average of the solution to all scenario subproblems does
not change significantly from one coordinate descent iteration to the next.

5 High performance computing implementation

Section 3 provides convergence guarantees for the asynchronous dual opti-
mization algorithm, based on the conceptual distributed computation model
of Fig. 1, while section 4 proposes two primal recovery schemes that can be
parallelized. This section specifies the actual implementation of the algorithm,
that is, the different processes running in parallel and the information to be
exchanged between them.

We implement the algorithm using the Master/Slave design presented in
Fig. 2. The Master coordinates the work of all workers, dynamically assigning
tasks (solving optimization problems) to Slaves as the algorithm progresses.
Slaves, on the other hand, limit themselves to perform the tasks demanded by
the Master, without a view of the global progress of the algorithm.

In contrast to the conceptual computation model presented in Fig. 1, in
the actual implementation there is no clear separation between the Updating
system and the Subgradient computation system. The Updating system is con-
tained within the Master. The Subgradient computation system is split between
the Master and the Slaves that are currently evaluating fµ0 or fi, i = 1, . . . .N .
This part of the process shown to the left of the Master in Fig. 2.

Primal recovery is performed concurrently with dual iterations, using a
portion of the Slaves. This part of the process is shown to the right of the
Master in Fig. 2. Primal recovery evaluates the second-stage cost of primal
candidates and, if using the IS heuristic, it also creates new candidates by
projecting averaged first-stage solutions onto the first-stage feasible set.

Performing dual iterations alongside primal recovery enables the algorithm
to continuously compute upper bounds (dual function evaluations) and lower
bounds (primal recovery) on the optimal value. This allows us to establish
a natural termination criterion, UB − LB ≤ ε. We can also terminate the
algorithm at a certain wall time, while still returning the incumbent solution
and an optimality gap. These termination guarantees permit the deployment
of our asynchronous algorithm in settings with hard limits on execution time,
such as day-ahead unit commitment.

In the following, we detail the internal layout of the Master and Slave
processes, and how they interact with each other. The implementation is based
on the SMPS file format for stochastic programs [27]. In particular, it uses
the concepts of CORE problem, time indexation of variables and constraints
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Master

Slave s1
Evaluating
fµ0 , f0 ...

Slave s2
Evaluating
fj(k) ...

Slave s3
Projecting
onto V ...
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∑
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hi(ū t)

Fig. 2 Execution snapshot of the asynchronous distributed algorithm for stochastic unit
commitment. Each box corresponds to a process and each dashed line corresponds to in-
formation that is exchanged between processes. The Master assigns tasks to each of the
Slaves dynamically. Not all types of tasks need to be present at all times, and there might
be several Slaves engaged on the same task, but over different data.

(TIME file), and the specification of scenarios by their differences to the CORE
problem (STOCH file). In order to maintain a small memory footprint, which
is critical for solving large SUC instances, only the CORE problem and the
TIME indices are maintained in memory, while the information in the STOCH
file is loaded from the hard drive as needed and purged after it has been used.

5.1 Slave

The Slave process, presented in Fig. 3, starts by partially reading the instance
to be solved (steps 1-2, Fig. 3): it loads the CORE problem, loads all the
information in the TIME file (time stages of variables and constraints) and
gathers information about the organization of the STOCH file (metadata), e.g.
a list of the scenarios and where in the STOCH file are they located.

The reading process respects the classification of constraints within the
CORE file. In particular, it differentiates between normal constraints, delayed
constraints (i.e. constraints that are necessary for feasibility but are unlikely
to be binding, also known as lazy constraints) and model constraints (i.e.
constraints redundant at the optimal MIP solution, also known as user cuts)3.
Current commercial MILP solvers can take advantage of this classification of
constraints to speed up the solution process. Note that, in order to read files
with this constraint differentiation, the TIME file must explicitly declare the
time index of rows and columns [27].

After every process finishes the reading step (step 3), the control flow
is organized around a loop within which the Slave receives a task from the
Master, executes it, and communicates back the result. Subproblems in all
tasks are formulated either by modifying the CORE problem, as in steps 6, 10

3 Delayed constraints and model constraints correspond to the terminology used by
Xpress, while lazy constraints and user cuts correspond to the terminology used by Cplex.
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Fig. 3 Control flow of the Slave process. Continuous lines show the flow of the program,
while dashed lines indicate exchange of information with other processes. Italics denote
constants and parameters. The iteration counter k and the candidate index t are dropped
because they are not relevant within the Slave.
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and 22, or by taking a subset of the constraints of the CORE problem, as in
steps 14 and 18. The transformation of steps 6, 10 and 22 uses the metadata
to avoid parsing unnecessary parts of the STOCH file.

There are 5 types of tasks, as well as 1 termination signal, that the Slave
can receive from the Master. Among these, dual scenario corresponds to eval-
uating a certain component j ∈ {1, . . . , N} of the dual objective for certain
multipliers, primal projection corresponds to projecting an averaged candidate
onto the feasible set of first stage decisions (see equation (15)), and second stage
scenario corresponds to solving a recourse problem for a given first stage de-
cision.

The dual f0 task involves the following two actions: computing the gra-
dient of fµ0 and computing an upper bound. These tasks are merged because
they involve solving very similar mathematical programs, (6) and (8), none of
which has a strict requirement on the frequency with which it must be solved
(contrary to the case of primal projection, which must be solved whenever we
need a new primal candidate). The task uses four pieces of data. The first

two, the sum of the current multipliers
∑N
i=1 xi and a center u0, are used to

compute the gradient of fµ0 at the current iterate. The other two, the sum of

certain multipliers y,
∑N
i=1 yi, and the sum of the scenario component func-

tions of the dual evaluated at y,
∑N
i=1 fi(yi), are used to obtain an upper

bound on the optimal value of the original program by evaluating f0(y) and

letting f̄(y) = f0(y) +
∑N
i=1 fi(yi), as indicated in equation (13).

The approx dual scenario task has the same objective as the dual scenario
task, with the difference that the former solves only a relaxation of the scenario
subproblem.Two types of relaxation are considered: (i) the linear programming
(LP) relaxation, applicable to problems where the sets Di are mixed-integer
polyhedral sets, and (ii) the period relaxation, in which each period of the
scenario subproblem is solved independently. The latter is applicable to prob-
lems where sets Di have a multi-period structure, such as the case of SUC (see
appendix A). The period subproblem is constructed using the indexation of
variables and constraints present in the TIME file. These relaxations provide
cheap subgradient estimates and upper bounds on component functions. They
are used in the initialization procedure described in subsection 5.3.

5.2 Master

The Master process, presented in Fig. 4 and Fig. 5, starts in the same manner
as the Slave, by allocating memory to variables and reading the necessary in-
formation from the CORE, TIME and STOCH files, steps 1-2 in Fig. 4. Note
that the Master does not require further information regarding the subprob-
lems because this is not used directly for dual iterations or primal recovery.

After reaching the synchronization point, step 3, the Master uses the Slaves
to perform the initialization procedure, step 4, which provides initial values
for the subgradients and upper bounds. This step is followed by the launching
of the initial batch of tasks of the algorithm, in steps 5 and 6. We update as
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Fig. 4 Control flow of the Master process.
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UB − LB < ε
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Fig. 5 Control flow of the Master process (cont.).

many blocks as possible, launching the corresponding subgradient evaluation
tasks. If there are free Slaves after updating all blocks, we use them to perform
primal recovery tasks, so that all Slaves are assigned to a task. The Master
keeps track of the task assigned to each Slave.

The Master then enters its main loop, which receives the result of a task
from Slave s (step 7), processes it (steps 8-16) and assigns a new task to the
Slave s (steps 21-28). The processing procedure depends on the type of task.
For dual f0, we simply overwrite the gradient of f0 and update the upper
bound, while for primal projection we add the new candidate to the list of
primal candidates.

The processing of dual scenario tasks requires checking whether the re-
ceived result contains new information relative to what is already available



22 Ignacio Aravena, Anthony Papavasiliou

to the master before overriding it (step 11). This is necessary, because as the
updates of x are performed at random, there might be two or more Slaves
evaluating the same component function i, each for a different xi. If the eval-
uation for an older xi finishes later, it should not overwrite the subgradient
information available to the Master, since this would only introduce more de-
lays in the subgradient information. Irrespective of its delay, the result is used
in step 12 as a primal candidate as long as the primal recovery heuristic is not
set to importance sampling.

Second stage scenario tasks, on the other hand, return the second stage cost
of a given first stage candidate solution at a certain scenario (step 14). If the
first stage solution has been evaluated for all scenarios, it is used in step 15 in
order to update the lower bound on the primal objective. Note that we do not
assume any order in the evaluation of first-stage candidate solutions, allowing
for primal recovery to be performed asynchronously on several candidates at
the same time.

Once the processing phase is complete, at the top of Fig. 5, the algorithm
checks whether the termination criterion is met and terminates the execution
of the Master and Slaves if that is the case. If the termination criterion is
not met, the algorithm will proceed to decide which task to assign to Slave s.
This decision is made according to the following criteria, in the same order of
importance as they are presented:

1. Use at most N concurrent processes for dual scenario tasks.
2. Maintain the proportion of Slaves engaged in dual iterations as close as

possible to the value of the configuration parameter DualShare.
3. A dual f0 task must be executed every certain number of dual scenario

tasks.
4. If using the IS primal recovery heuristic, a primal recovery task must be

executed whenever the number of elements left in primal tasks is small
enough to risk primal tasks to be empty before a new candidate is gen-
erated.

Before sending the chosen task to Slave s, certain preprocessing steps are
required. In the case of a dual scenario task, a block coordinate descent update
is performed on a random scenario j and, only then, a dual scenario task for
scenario j with the new multipliers is assigned to Slave s. This action (steps
22-23) corresponds to the updating system of Fig. 2.

Before assigning a second stage scenario task, on the other hand, it is neces-
sary to check whether there are pending primal tasks to be executed. If this is
not the case, then, in step 25, new tasks are created using the next candidate,
which is chosen according to the order specified by the RecoveryType parame-
ter (FIFO, RND, LIFO, IS) from the list of pending candidates, primal cand,
and removed from it. If the RecoveryType configuration parameter is set to IS,
then the most recent candidate in the list is chosen.

The assigned task is then sent to Slave s and the Master returns to the
beginning of its main loop, where it will wait for the next result.
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5.3 Initialization

The main objective of the initialization subroutine, executed by the Master
at step 4 (Fig. 4), is to obtain cheap estimates of the subgradients of compo-
nent functions, upper bounds on the component function values at the initial
multipliers x0 and, optionally, an initial set of primal candidates.

The initialization proceeds as follows. First, subgradient estimates and up-
per bounds are computed by executing approx dual scenario using the Slaves,
for all scenarios with the initial multipliers. Once the results for all scenarios
have been collected, a dual f0 task is executed to obtain a gradient for fµ0 and
a valid upper bound on the primal objective.

If the selected primal recovery heuristic is not IS, subgradient estimates
can be used as primal candidates (because of the projection onto V, step 8,
Fig. 3) and evaluated at step 6 of Fig. 4 (if S > N). On the other hand, if
the selected primal recovery heuristic is IS, then at step 6 of Fig. 4 the next
primal task would correspond to primal projection, with averaged candidates
generated by the Master on the fly.

Without these subgradient estimates, the first round of updates (step 5,
Fig. 4) would not modify the multipliers, and the computation of the first
upper bound would be delayed until all component functions have been evalu-
ated, that is, at least until the slowest of all component functions is accurately
evaluated. Considering that differences in evaluation times of component func-
tions observed in real instances can be as high as 7500%, the lack of an initial
upper bound can significantly delay termination of the algorithm, even when
a good primal candidate and lower bound are already available.

Note that primal recovery also benefits from the initialization. The reason
for this is that, without the initial set of candidates, primal recovery would be
delayed until the results from the accurate evaluation of component functions
fi are returned to the Master.

6 Numerical results

We implement the proposed asynchronous algorithm as described in the pre-
vious section in C, using Xpress (through its C API) [23] for solving all math-
ematical programs and MPI [26] for handling communications between pro-
cesses.

We test the proposed algorithm on SUC instances of the WECC [44] and
CWE [9] systems, and on generic SMIP instances from the SIPLIB collec-
tion [5]. Sizes and solution times of scenario subproblems of SUC instances are
presented in Table 1, where it can be observed that the instances used in the
present study are at least as large, or present scenario subproblems as difficult
to solve (in terms of solution time) as the models in the literature. We con-
duct these numerical experiments using multiple high-performance computing
clusters, the technical specifications of which are presented in appendix C.
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Table 1 Scenario subproblem sizes and solution times for different instances used in the
present study (highlighted in boldface) and in the literature. Subproblem solution times for
WECC [44] correspond to a winter weekend instance with 100 scenarios, while subproblem
solution times for CWE [9] correspond to a spring weekday instance with 120 scenarios.

Instance Rows Columns Non-zeros Integers
Subproblem solution
time [s], avg. (max.)

WECC [18] 69 447 28 943 240 724 4 080 9.4 (25.7)
WECC [44] 34 441 23 090 139 394 3 074 8.3 (67.9)
EDF [1] 812 906 73 562 – 26 122 – –
CWE [9] 609 589 390 075 1 941 270 9 753 3 383.2 (7 851.8)

6.1 Western Electricity Coordinating Council system instances

The WECC system instance [44] is composed of 130 thermal generators,
182 buses and 319 branches. It features multiarea renewable production with
hourly resolution over a 24 hour horizon for 8 representative day types, one
weekday and one weekend day per season. The number of scenarios ranges from
10 to 1000, and each scenario is associated with different renewable production
profiles and contingencies.

Numerical experiments on the WECC system were run on the Cab cluster,
hosted at the Lawrence Livermore National Laboratory. We configure Xpress
to solve the root node in all subproblems using the barrier algorithm, we limit
the number of Xpress threads to 1 and set the termination gap of subproblems
to 1%. For all WECC instances, we use 1 core per process, so that S =
#Cores− 1, and we limit the run time of the algorithm to 2 hours.

The solution times of the WECC instances are summarized in Table 2 for
different configurations of the asynchronous algorithm. Regarding stepsizes,
‘Dim. 1/k’ corresponds to a stepsize of the type 1/k and ‘Polyak’ corresponds
to the Polyak stepsize defined in equation (14), where the diminishing part
is set to decrease from 0.5 to 0.25 in 50N iterations with q = 1. Primal
solution recovery methods correspond to the four methods described in section
4. The modification of the DualShare parameter for 1000-scenario instances is
motivated by the findings that are presented in subsection 6.4.

From the perspective of dual optimization, Polyak stepsizes outperform
1/k stepsizes when considering a 1% termination criterion. In all our instances
and test runs, Polyak stepsizes provided better results without the need for
tuning.

For primal recovery, we observe that the three methods that recover so-
lutions directly from solutions to scenario subproblems (FIFO, RND, LIFO)
exhibit similar performance for the 10-scenario instances. RND and LIFO out-
perform FIFO on instances with 100 scenarios. The IS heuristic outperforms
its counterparts in all instances.

The best configuration of Table 2, which is highlighted in boldface, out-
performs the run time reported in [44], in which 1000 scenario instances (23.1
million variables, 35.9 million constraints and 3.1 million integers) were solved
in up to 24 hours using 1000 cores. Instead, the best performing algorithm
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Table 2 Solution time statistics for WECC instances, over 8 representative day types.
Statistics for configurations that failed to achieve the target optimality gaps, within the
limit wall time, for one or more day types are not reported and are denoted with a dash.

N
Step Recovery # Dual Solution time [s], avg. (max.)
size Type Cores Share 2% optimality 1% optimality

10

Dim. 1/k FIFO 16 0.5 228.1 (792.9) –
Dim. 1/k RND 16 0.5 229.4 (856.1) –
Dim. 1/k LIFO 16 0.5 200.6 (739.7) –
Dim. 1/k IS 16 0.5 178.0 (638.0) –
Polyak FIFO 16 0.5 148.2 (469.3) 424.4 (1 361.1)
Polyak RND 16 0.5 117.8 (392.6) –
Polyak LIFO 16 0.5 131.2 (446.2) 384.0 (1 326.9)
Polyak IS 16 0.5 118.4 (441.4) 364.7 (1 291.5)

100

Polyak FIFO 160 0.5 267.6 (325.1) –
Polyak RND 160 0.5 113.2 (345.6) 534.2 (1 134.1)
Polyak LIFO 160 0.5 99.4 (268.3) 508.9 (1 152.4)
Polyak IS 160 0.5 95.5 (289.8) 517.9 (1 126.1)

1000
Polyak LIFO 256 0.75 723.9 (2 155.2) –
Polyak IS 256 0.75 411.7 (1 354.5) 2 535.0 (6 427.0)

in this paper solves the same instance in less than 2 hours using 256 cores.
Similar speedups are observed for instances with fewer scenarios with respect
to [44]. The progressive hedging method of Cheung et al. [18] solves instances
of the WECC with up to 100 scenarios within 1.5–2.5% optimality within 25
minutes. In comparison, the proposed algorithm solves instances of similar dif-
ficulty in terms of solution time of subproblems (see Table 1) to 1% optimality
in at most 18.7 minutes and to 2% suboptimality in less than 5 minutes. We
perform a direct comparison between progressive hedging [18] and the pro-
posed asynchronous algorithm using a subset of the SUC WECC instances.
Details of this comparison are presented in appendix D. We observe that the
proposed method is 4.35 times faster than the progressive hedging method
of [18], though the latter tends to produce better quality solutions.

Detailed solution statistics per day type for the best configuration are
reported in Table 8, in appendix E. For ease of replicability, in Table 9, which
is also included in appendix E, we report the solution statistics for the 10-
scenario instances obtained using a 4-core laptop.

6.2 Central Western European system instances

The CWE system instance is based on [9], with the following adaptations:
(i) we include the commitment of nuclear units (binary variables) and (ii)
the selection of a set point for CHP power plants4 (continuous variables) as
first-stage decisions of SUC. The system consists of 656 thermal generators,
679 buses and 1037 branches, and it features multiarea renewable production
with quarterly resolution over a 24-hour horizon (96 periods). The problem
is solved for 8 representative day types and using 30, 60 and 120 scenarios of

4 Combined Heat and Power (CHP) plants can vary their production of electricity only
within a limited range for a given production of heat [21].
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Table 3 Solution time statistics for WECC instances, over 8 representative day types.
All instances use the Polyak stepsize, the IS primal recovery heuristic, and a Dual Share
parameter setting of 0.75.

N
# Solution time [s], avg. (max.)

Cores 2% optimality 1% optimality
30 96 2 580.3 (5 908.2) 3 806.2 (9 279.1)
60 192 2 563.7 (5 593.3) 3 774.2 (8 323.4)
120 384 2 696.5 (5 973.0) 3 876.2 (7 952.6)

renewable production. For all CWE instances, ramp rate constraints within
each hour are declared as delayed constraints. Each scenario subproblem of the
CWE instances is almost one order of magnitude larger, in terms of matrix
size, than the scenario subproblems of the largest instance considered in the
SUC literature [1], see also Table 1.

Numerical experiments on the CWE system were run on the Cab cluster
of the Lawrence Livermore National Laboratory. We configure Xpress to solve
the root node in all subproblems using the barrier algorithm, limit the number
of Xpress threads to 2, set the MIP time limit to 1 hour and 30 minutes, and
set the termination gap of subproblems to 1%. Each process uses 2 cores (1
core per Xpress thread) hence S = #Cores/2 − 1. We set the maximum run
time of the algorithm to 6 hours. Table 3 presents the summarized solution
statistics for the proposed algorithm on the CWE instances. Detailed solution
statistics per day type are reported in Table 10 of appendix E.

Solution times are larger that those observed for the WECC, neverthe-
less they remain within operationally acceptable time frames for day-ahead
scheduling (at most 2 hours and 34 minutes are required for obtaining a solu-
tion within 1% optimality). This increase in overall solution time with respect
to the WECC instances results mostly from the time required for solving dual
scenario subproblems which, as shown in Table 1, is two orders of magnitude
larger than for WECC.

These results largely outperform reported solution times for instances of
the CWE system with up to 16 scenarios [20] (also obtained from [9]), on
the same computing environment (Cab cluster). In these references, scenario
decomposition along with an optimal grouping approach achieved solutions
within 2% of optimality in 15 hours.

6.3 SIPLIB instances

SIPLIB [5] is a collection of SMIPs, provided in SMPS format [28], for test-
ing and developing numerical methods for solving SMIPs. Two-stage SMIP
instances in the SIPLIB collection include a variable count that ranges from
tens up to a few thousand variables. Each scenario subproblem has constraints,
which are much fewer than the industrial-size SUC instances considered in the
previous sections of thie paper. The SIPLIB problems include from 2 up to
2000 scenarios. We conduct numerical experiments using the largest two-stage
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Table 4 Solution time statistics for largest SIPLIB instances. All instances use 1% opti-
mality or 200N iterations as termination criterion (whichever occurs first), Polyak stepsize,
IS primal recovery and 96 cores.

Instance N
Dual

k/N
Solution

LB UB Gap [%]
Share time [s]

dcap233 200 200 0.5 58.3 5.37 -1839.33 -1826.28 0.71
dcap233 300 300 0.5 75.3 10.34 -1655.59 -1639.14 0.99
dcap233 500 500 0.5 200.0 41.75 -1776.39 -1734.02 2.39
dcap243 200 200 0.5 40.0 3.70 -2334.49 -2311.16 1.00
dcap243 300 300 0.5 62.8 7.99 -2574.79 -2551.44 0.91
dcap243 500 500 0.5 146.9 31.59 -2180.31 -2161.58 0.86
dcap332 200 200 0.5 200.0 17.92 -1061.54 -1050.85 1.01
dcap332 300 300 0.5 200.0 27.58 -1274.11 -1241.07 2.59
dcap332 500 500 0.5 200.0 43.44 -1611.07 -1583.60 1.71
dcap342 200 200 0.5 34.4 3.32 -1621.95 -1605.93 0.99
dcap342 300 300 0.5 166.6 21.80 -2084.18 -2063.34 1.00
dcap342 500 500 0.5 167.3 38.31 -1916.31 -1899.54 0.88
sslp.5.25.50 50 0.5 57.2 1.91 121.60 122.83 1.00
sslp.5.25.100 100 0.5 28.6 2.82 127.37 128.65 1.00
sslp.10.50.50 50 0.5 20.0 9.42 364.64 368.29 0.99
sslp.10.50.100 100 0.5 27.1 25.32 354.19 357.77 1.00
sslp.10.50.500 500 0.9 27.2 69.99 349.14 352.65 1.00
sslp.10.50.1000 1000 0.9 20.7 105.90 351.71 355.26 1.00
sslp.10.50.2000 2000 0.9 17.8 180.48 347.26 350.77 1.00

SMIP instances in the SIPLIB collection, which originate from two test sets:
(i) the DCAP test set includes instances with mixed-integer first-stage vari-
ables and binary second-stage variables, and (ii) the SSLP test set includes
instances with binary first-stage variables and mixed-binary second stage vari-
ables. These experiments are run on the Lemaitre3 cluster hosted at the Uni-
versité catholique de Louvain, with Xpress used for solving the root node with
dual simplex and a termination gap of 0.1% for subproblems.

Table 4 presents the solution times and solution quality statistics for the
DCAP and SSLP instances. Here, k/N corresponds to the total number of
coordinate descent iterations normalized by the number of scenarios. For con-
sistency with the rest of the paper, lower bounds LB and upper bounds UB
refer to bounds on the objective values of the respective problems, which are
posed as maximization problems.

We observe that the proposed asynchronous approach fails to achieve the
desired 1% optimality gap required for 4 of the 12 instances. This is highlighted
in boldface in Table 4. From the exact solution to these instances [4], obtained
using a specialized branch-and-bound algorithm described in [6], we know that
this is due to the fact that our heuristics failed to detect a primal candidate
with an acceptable objective function value for dcap233 500, dcap332 300 and
dcap332 500. Instead, for dcap332 200, the proposed asynchronous algorithm
failed to derive a tight upper bound. All other DCAP instances were solved
to the desired tolerance.

Regarding SSLP instances, we arrive at a different observation. While we
were able to achieve the desired optimality tolerance and solve problems with
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Table 5 Variation of solution time with the Dual Share parameter setting, which varies
smoothly between its start value (k = 0) and its value after 200 dual passes over data
(k = 200N). Results in the table correspond to WECC, spring weekdays, for 100 scenarios.
The instance is solved using 96 cores and a Polyak stepsize. Statistics are obtained over 4
runs for each configuration.

Primal Dual Share Solution time [s], avg. (max.)
Recovery k = 0 k = 200N 2% optimality 1% optimality

IS

0.1 0.1 150.5 (168.7) 1731.9 (1821.0)
0.25 0.25 78.9 (82.8) 785.7 (807.8)
0.5 0.5 52.5 (55.6) 441.4 (467.6)
0.75 0.75 67.2 (78.0) 307.4 (333.3)
0.9 0.9 58.1 (72.3) 291.0 (294.2)

LIFO
0.5 0.5 97.5 (120.0) 529.9 (598.3)
0.75 0.75 92.3 (104.5) 479.9 (624.1)

IS
0.75 0.25 50.9 (59.0) 313.9 (334.5)
0.9 0.1 66.8 (77.5) 280.3 (320.2)

up to 2000 scenarios, in terms of solution time the proposed approach is out-
performed by an order of magnitude by the integer L-shaped method presented
in [7].

These results validate the correctness and show the general applicabil-
ity of our asynchronous algorithm. At the same time, they indicate that, for
small-scale problems, enumerative techniques (such as those presented in [6,7])
should be preferred to our asynchronous algorithm. On the other hand, for
large-scale problems, the proposed asynchronous algorithm should be pre-
ferred, as demonstrated in the previous sections.

6.4 Sensitivity of solution times to the allocation of resources

The Dual Share configuration parameter determines how distributed comput-
ing resources are allocated between tasks related to dual iterations or to primal
solution recovery. This can impact the overall performance of the algorithm
significantly, especially when parallel computing resources are limited.

Table 5 shows how variations in the Dual Share affect run time, with all
other parameters remaining constant. We select the WECC spring weekday
instance with 100 scenarios to perform this test. Our choice is due to the fact
that it corresponds to a medium-size instance and has the median solution
time among WECC instances with 100 scenarios.

The configuration using the IS primal recovery heuristic (first 5 rows) ex-
hibits an important improvement in solution time as we increase the Dual
Share. For the LIFO heuristic (6th and 7th row), on the other hand, we ob-
serve only a minor improvement in solution time with the increase of Dual
Share. This shows that averaging scenario subproblem solutions can indeed
generate better candidates than simply using scenario subproblem solutions.
We thus avoid the use of computing power in evaluating the performance of
low-quality primal candidates. This effect was not observed in the 10 and 100-
scenario instances of Table 2 because we used almost twice as many cores as
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scenarios, allowing FIFO, LIFO and RND to carry out a very large number of
candidate evaluations.

Our implementation gives us the freedom to change the Dual Share during
the solution of an instance, allocating fewer or more resources to dual tasks
in ealier iterations. This can be beneficial as the subgradient method achieves
fast improvements during the first iterations, but it becomes slow as it ap-
proaches the optimal solution. Therefore, by starting with a high Dual Share
and gradually decreasing it, we can take advantage of the rapid bound im-
provement during the first iterations and use more computing power in later
stages in order to recover better primal solutions. Rows 8 and 9 present the
results of applying this idea. The improvements with respect to maintaining a
fixed resource allocation, as in all other rows of the table, are modest because
of a combination of factors . During the first iterations, the Polyak stepsize
cannot be computed accurately due to the lack of a good lower bound (see
equation (14)) and the updates tend to overshoot. On the other hand, during
the last iterations, the IS heuristic encounters difficulties in finding new pri-
mal candidates, because the frequency at which we obtain solutions to scenario
subproblems decreases with the Dual Share.

6.5 Parallel computing performance

The performance of a parallel algorithm can be measured against various met-
rics. We focus on (i) how the proposed algorithm compares to a synchronous
algorithm, i.e. an algorithm that uses a synchronous method to carry out dual
iterations, and (ii) how effectively the proposed algorithm scales up with the
number of cores.

Solving the instances used in this work with a fully synchronous algorithm
may require excessive use of computational resources [43]. In order to avoid us-
ing additional computing time for this comparison, we compare the proposed
algorithm to a synchronous algorithm in terms of the idle time of slaves. This
can be estimated using the solution times of subproblems. This information
is already available to us from the experiments of the previous sections. We
consider a synchronous algorithm that solves the dual problem with the sub-
gradient method using min{N,Dual Share×S} slaves (rounded to the closest
integer, if necessary), and that performs primal recovery synchronously us-
ing the remaining slaves. We refer the reader to appendix F for a complete
description of the procedure that we employ for estimating idle times.

Table 6 presents the estimated idle times of slaves for the described syn-
chronous algorithm. Note that idle times generally increase with the number
of cores, since with fewer cores tasks can be stacked. In order to obtain a mea-
sure of the variation of idle times with the number of cores, Table 6 includes
estimates for the synchronous algorithm with (i) the same number of cores as
the asynchronous algorithm, (ii) half the number cores of the asynchronous
algorithm, and (iii) 1 + 2N cores (1 Master, 2N Slaves).
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Table 6 Estimated idle time of slaves when solving SUC using a parallel synchronous
algorithm. Average and maximum over 8 day types.

System N
# Dual Synchronous idle time [%], avg. (max.)

Cores Share Same conditions Half # cores 1 + 2N cores
10 16 0.5 48.0 (53.2) 28.3 (34.5) 54.2 (59.2)

WECC 100 160 0.5 70.6 (80.4) 52.9 (65.0) 74.3 (83.8)
1000 256 0.75 37.6 (57.0) 21.1 (36.9) 85.4 (92.4)
30 96 0.75 36.4 (47.0) 27.1 (33.9) 46.5 (53.9)

CWE 60 192 0.75 43.6 (62.2) 33.4 (47.3) 53.3 (67.2)
120 384 0.75 46.9 (61.2) 36.3 (46.6) 54.7 (65.4)

It can be directly observed that synchronous schemes tend to underutilize
parallel computing infrastructure, leaving cores corresponding to slaves idle
up to 80.4% of the time. For the same problem, the asynchronous algorithm
achieves almost zero idle time (the percentage of time dedicated to solving
mathematical programs never falls below 97%, see Table 8 and 10 for details).
Decreasing or increasing the number of cores does not change this observation
for the synchronous scheme.

In order to determine how well the proposed algorithm scales with respect
to the number of cores, we numerically estimate its parallel efficiency (i.e.
speedup divided by the number of cores) by running the asynchronous algo-
rithm multiple times with different core counts. The estimated efficiency is
presented in Fig. 6. Our baseline is the serial execution of the asynchronous
algorithm, i.e. the method of section 3.1, with delays in the gradient of the
smooth part of the objective and interleaving subgradient evaluation with pri-
mal recovery.

For a small number of cores, low efficiencies result from of the existence of
the Master process, which is not necessary in the serial execution. For instance,
in Fig. 6 with 4 cores, the asynchronous algorithm launches the Master and 3
Slave processes. Even under ideal conditions, this limits the parallel efficiency
to 75%. When the number of cores is between 0.1N and 1.3N , the algorithm
achieves efficiency values above 90%, peaking around 0.3N with 99.0%. This
regime is characterized by very small lags in the dual algorithm, hence a close
to sequential performance, and an effective performance of the primal recovery
heuristic. For more than 1.3N cores, the efficiency decreases as the IS heuristic
experiences difficulties in finding new primal candidates.

7 Conclusions

We propose an asynchronous dual decomposition algorithm for stochastic unit
commitment, in which dual iterations are performed using a block-coordinate
subgradient method, for which we provide convergence guarantees. We also
propose primal recovery heuristics and present a high performance computing
implementation of the algorithm. The algorithm is able to solve all instances
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Fig. 6 Parallel efficiency plot of the asynchronous algorithm. Plot drawn using WECC,
spring weekdays, 100 scenarios, Dual Share 0.75, Polyak stepsize and IS primal recovery,
and 1 process per core (S = # Cores− 1). Wall times are obtained by averaging 4 runs for
each core count presented in the plot.

of WECC and CWE within operationally acceptable time frames and presents
parallel efficiency above 90% when using between 0.1N and 1.3N slaves.

We find that synchronous algorithms dramatically underutilize high perfor-
mance computing infrastructure, resulting in core idle times of up to 80.4%.
This finding underscores the need for designing asynchronous algorithms in
order to tackle industrial scale unit commitment problems.

Future extensions of the present work will focus on the application of the
developed asynchronous decomposition framework for tackling (i) multi-stage
stochastic unit commitment and (ii) detailed deterministic unit commitment
problems over large interconnected power systems. The latter class of problem
includes the exciting prospect of integrating the optimization of transmission
and distribution systems through convex relaxations of AC power flow con-
straints [13].
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Équipements de Calcul Intensif (CÉCI) for granting access and computing time at the
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Appendix

A Formulation of the stochastic unit commitment problem

We model the SUC problem following [44]. Minor extensions have been introduced, in order
to better capture European electricity markets such as the CWE system. The most important
of these extensions is the hybrid time resolution of our model, where commitment decisions
(ON/OFF) follow an hourly resolution (the resolution of the day-ahead market in the CWE),
whereas dispatch decisions (production and power flows) follow a quarterly resolution (the
resolution of real-time balancing in the CWE). Other extensions include piecewise linear
production cost functions, improved ramping formulations following [19], and an improved
modeling of nuclear and CHP power plants.

Our complete SUC model is described in the present section, in order to render the
paper self-contained. We use the following notation.

Sets

T60 hourly periods, T60 =
{1, . . . , 24}

T15 15 minute periods, T15 =
{1, . . . , 96}

N buses
L lines
G thermal generators
GSLOW slow thermal generators

(e.g. coal and CCGT
power plants)

GFAST fast thermal generators
(e.g. natural gas and diesel
turbines)

GSTAT static thermal generators
(e.g. nuclear and CHP
power plants)

L(n,m) lines between buses n and
m, directed from n to m

G(n) thermal generators at node
n

I scenarios
Pg,i feasible operation set of

slow or fast generator g at
scenario i

PSTATg,i feasible operation set of
static generator g at sce-
nario i

Parameters

τ(t) corresponding hour of
quarter t, e.g. τ(5) = 2

Fl thermal capacity, line l
Bl susceptance, line l
n(l),m(l) outgoing and incoming

buses, line l
Dn,t demand at bus n in period

t

P g , P g minimum stable level and
maximum run capacity,
generator g

TLg maximum state transition
level of generator g

Rg maximum ramp of genera-
tor g

Cg(·) production cost function,
generator g

Kg no load cost, generator g
Sg startup cost, generator g
V value of lost load
ζg,i outage indicator, genera-

tor g, Monte Carlo sample
i

ζl,i outage indicator, line l,
Monte Carlo sample i

ξn,i,t renewable supply at bus n,
Monte Carlo sample i, pe-
riod t

πi probability of Monte Carlo
sample i

Variables

vONg,i,τ ,

vSUg,i,τ

commitment and startup,
slow generator g, Monte
Carlo sample i, hour τ

vSTATg,i commitment of static gen-
erator g, Monte Carlo sam-
ple i

pSTATg,i center value of production
band of static generator g,
Monte Carlo sample i

zONg,i,τ ,

zSUg,i,τ

commitment and startup,
fast generator g, Monte
Carlo sample i, hour τ

pg,i,t production of generator g,
at Monte Carlo sample i,
period t

fl,i,t flow through line l, at
Monte Carlo sample i, pe-
riod t

θn,s,t voltage angle, bus n,
Monte Carlo sample i,
period t
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en,i,t load shedding at bus n,
Monte Carlo sample i, pe-
riod t

on,i,t production shedding at
bus n, Monte Carlo sample
i, period t

uONg,τ , u
SU
g,τ commitment and startup,

slow generator g, hour τ
uSTATg commitment of static gen-

erator g
qSTATg center value of production

band of static generator g

The SUC problem aims at capturing the scheduling problem faced by power system
operators in day-ahead planning. The power system has a fleet of thermal generators di-
vided in 3 groups: (i) static generators (nuclear and combined heat-and-power units), (ii)
slow generators (coal and combined-cycle units) and (iii) fast generators (gas and diesel tur-
bines). At day ahead, before knowing the net demand of the system and possible outages,
system operators must decide (i) the ON/OFF status and a production band for static gen-
erators and (ii) the hourly ON/OFF status of slow generators. In real time, after the actual
net demand of the system and outages are realized, system operators must decide (i) the
quarterly production of static generators within the day-ahead band, (ii) the quarterly pro-
duction of slow generators, and (iii) the hourly ON/OFF status and quarterly production
of fast generators, in order to match the net demand at minimum cost.

We formulate SUC using as basis the generic two-stage SMIP formulation (1) – (4),
repeated here for convenience.

max
u,v,w

∑
i∈I

(cTi vi + dTi wi)

s.t. u ∈ U
(vi,wi) ∈ Di, i = 1, . . . , N

vi − u = 0, i = 1, . . . , N

In the case of SUC, the blocks of first- and second-stage variables correspond to:

u :=
(
uON ,uSU ,uSTAT , qSTAT

)
,

vi :=
(
vON(·,i,·), v

SU
(·,i,·), v

STAT
(·,i) ,pSTAT(·,i)

)
∀i ∈ I,

wi :=
(
zON(·,i,·), z

SU
(·,i,·),p(·,i,·), f (·,i,·), θ(·,i,·), e(·,i,·), o(·,i,·)

)
∀i ∈ I.

In words, u is the vector of ON/OFF and startup decisions of slow generators, and ON/OFF
and target production decisions of static generators. vi is the local copy of u for scenario i.
wi is the vector of ON/OFF and startup decisions of fast generators, real-time production
decisions, and power flow decisions under scenario i.

Domain Di enforces the operational limits and physics of the power system under sce-
nario i. Operational limits of slow or fast generator g under scenario i are described by Pg,i,
defined in equation (16).

Pg,i :=
{

(νON , νSU ,ρ) ∈ B|T60| × B|T60| × R|T15|
∣∣∣ νSUg,τ ≥ νONg,τ − νONg,τ−1,

τ∑
σ=τ−UTg+1

νSUg,σ ≤ νONg,τ ,
τ∑

σ=τ−DTg+1

νSUg,σ ≤ 1− νONg,τ−DTg
∀τ ∈ T60;

P g (1− ζg,i) νg,τ(t) ≤ ρg,t ≤ P g (1− ζg,i) νg,τ(t),

ρg,t − ρg,t−1 ≤ TLg − (TLg −Rg)νONg,τ(t−1),

ρg,t−1 − ρg,t ≤ TLg − (TLg −Rg)νONg,τ(t) ∀t ∈ T15
}
∀g ∈ GSLOW ∪GFAST

(16)
The constraints correspond to startup, minimum up time, minimum down time, production
bounds, maximum ramp-up and maximum ramp-down constraints.
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Operational limits of static generator g at scenario i are described by PSTAT , defined
in equation (17).

PSTATg,i :=
{

(νSTAT , ρSTAT ,ρ) ∈ B× R× R|T15|
∣∣∣ P g ≤ ρSTATg ≤ P g ;

P g (1− ζg,i) νSTATg ≤ ρg,t ≤ P g (1− ζg,i) νSTATg ,

ρg,t ≥ ρSTATg − 1/2Hg − (P g − 1/2Hg)(1− ζg,i),

ρg,t ≤ ρSTAT + 1/2Hg − (P g + 1/2Hg)(1− ζg,i) ∀t ∈ T15
}
∀g ∈ GSTAT

(17)
The constraints correspond to limits for target production, ON/OFF limits for actual pro-
duction, and lower and upper band limits for actual production. Note that both the ON/OFF
status and target production for static generators are not indexed by time period, meaning
that they are constant throughout the SUC horizon.

Using the previous definitions for Pg,i and PSTATg,i , we can describe Di as follows:

Di :=
{(
vON(·,i,·), v

SU
(·,i,·), v

STAT
(·,i) ,pSTAT(·,i) , zON(·,i,·), z

SU
(·,i,·),p(·,i,·), f (·,i,·), θ(·,i,·),

e(·,i,·), o(·,i,·)

)
∈ B|G

SLOW ||T60| × B|G
SLOW ||T60| × B|G

STAT |×

R|G
STAT | × B|G

FAST ||T60| × B|G
FAST ||T60| × R|G||T15| × R|L||T15|×

R|N||T15| × R|N||T15|
+ × R|N||T15|

+

∣∣∣(
vON(g,i,·), v

SU
(g,i,·),p(g,i,·)

)
∈ Pg,i ∀g ∈ GSLOW ;(

zON(g,i,·), z
SU
(g,i,·),p(g,i,·)

)
∈ Pg,i ∀g ∈ GFAST ;(

vSTATg,i , pSTATg,i ,p(g,i,·)

)
∈ PSTATg,i ∀g ∈ GSTAT ;

fl,i,t = Bl(1− ζl,i)
(
θn(l),i,t − θm(l),i,t

)
, − Fl ≤ fl,i,t ≤ Fl ∀l ∈ L, t ∈ T15;∑

g∈G(n)

pg,i,t + ξn,i,t +
∑

l∈L(·,n)
fl,i,t + en,i,t =

Dn,t +
∑

l∈L(n,·)
fl,i,t + on,i,t ∀n ∈ N, t ∈ T15

}
,

(18)

Here, we enforce the operational limits of all generators, the DC power flow equations [50],
and active power balance at each bus. Note that we introduce demand and production
shedding variables in all power balance equations, which ensures that SUC formulation has
relatively complete recourse.

We define U as the linear relaxation of the first-stage constraints in Di, i.e. those con-
straints involving only vON

(·,i,·), v
SU
(·,i,·), v

STAT
(·,i) ,pSTAT

(·,i) . Therefore, we can describe U as in

equation (19), which includes only bounds and minimum up- and down time restrictions.

U :=
{(
uON ,uSU ,uSTAT , qSTAT

)
∈ [0, 1]|G

SLOW ||T60|×

[0, 1]|G
SLOW ||T60| × [0, 1]|G

STAT | × R|G
STAT |

∣∣∣
uSUg,τ ≥ uONg,τ − uONg,τ−1,

τ∑
σ=τ−UTg+1

uSUg,σ ≤ uONg,τ ,

τ∑
σ=τ−DTg+1

uSUg,σ ≤ 1− uONg,τ−DTg
∀g ∈ GSLOW , τ ∈ T60;

P g ≤ q
STAT
g ≤ P g ∀g ∈ GSTAT

}

(19)
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Finally, the part of the objective function associated with scenario i can be written as

cTi vi + dTi wi ≡ πi

(∑
g∈G

∑
t∈T15

Cg(pg,i,t) +
∑

g∈GSLOW∪
GFAST

∑
τ∈T60

(
Kgv

ON
g,i,τ + Sgv

SU
g,i,τ

)
+

∑
g∈GSTAT

∣∣T60∣∣KgvSTATg,i +
∑
n∈N

∑
t∈T15

V en,i,t

)
,

This corresponds to variable production costs, fixed and startup costs for slow and fast
generators, fixed costs for static generators, and penalty terms for demand shedding. All
cost components are weighted by the probability of scenario i, πi.

B Proofs

Proof of Prop. 1. By inspection we have that,

E
[
ITJ

(
IJ∇fµ0

(
xk
)

+ g
(
J,xkJ

))∣∣∣xk] =
1

N
∇fµ0

(
xk
)

+
1

N

N∑
j=1

ITj g
(
j,xkj

)
=

1

N
g
(
xk
)
, g
(
xk
)
∈ ∂f

(
xk
)
.

ut

Proposition 4 Let f : X ⊆ Rn → R be a non-differentiable convex function, P be a
partition of {1, . . . , n} and Ip, p ∈ P , be the matrix that maps x ∈ Rn into its p coordinates
(i.e. Ipx contains only the p coordinates of x). For any x ∈ X, define

DP (x) =
{
g ∈ Rn

∣∣∣ ∃gp ∈ ∂f(x) ∀p ∈ P, g =
∑
p∈P

IpgpI
T
p

}
.

Then, ∂f(x) ⊆ DP (x). Furthermore, the inclusion can hold strictly and g ∈ DP (x)\∂f(x)
might not be an approximate subgradient of f at x.

Proof It is trivial to observe that the inclusion holds. We proceed to prove the remaining
claims via an example. Consider f : Rn → R, f(x) = max{x1+x2,−x1−x2} at x = 0 and let
P = {{1}, {2}}. Then, [−1 1]T ∈ DP (x) because [−1 1]T = [1 0] g{1} [1 0]T+[0 1] g{2} [0 1]T ,

with g{1} = [−1 −1] ∈ ∂f(0) and g{2} = [1 1] ∈ ∂f(0). We also have that [−1 1]T /∈ ∂f(0),
which proves that the inclusion can hold strictly. Also, note that there is no ε > 0 such that

f(y) = max{y1 + y2,−y1 − y2} ≥ 0 + [−1 1]y − ε

holds for all y ∈ R, since for any ε the inequality is violated at y = [−ε ε]. Therefore, [−1 1]T

is not an approximate subgradient of f at 0, which concludes the proof.
ut

Proof of Lemma 1. Note that, for the expected direction of update rule (11), we have

N · (xk − y)TE
[
ITJ

(
IJ∇fµ0

(
xk−l(k)

)
+ g
(
J,x

k−`(J,k)
J

))∣∣∣Fk] =

(xk − y)T∇fµ0
(
xk−l(k)

)
+

N∑
j=1

(xkj − yj)T g
(
j,x

k−`(j,k)
j

)
, ∀y ∈ X.

(20)

The first term in the right-hand side of (20) can be expanded as follows:
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(
xk − y

)T∇fµ0 (xk−l(k)) =
(
xk−l(k) − y

)T∇fµ0 (xk−l(k))+
(
xk − xk−l(k)

)T∇fµ0 (xk)−(
xk − xk−l(k)

)T(∇fµ0 (xk)−∇fµ0 (xk−l(k)))
≥ fµ0

(
xk
)
− fµ0 (y)−(

xk − xk−l(k)
)T(∇fµ0 (xk)−∇fµ0 (xk−l(k)))

≥ fµ0
(
xk
)
− fµ0 (y)−∥∥xk − xk−l(k)∥∥

2

∥∥∥∇fµ0 (xk)−∇fµ0 (xk−l(k))∥∥∥
2

≥ fµ0
(
xk
)
− fµ0 (y)− Lµ0

∥∥xk − xk−l(k)∥∥2
2
,

In the second line above we use the convexity of fµ0 ((x − y)T∇fµ0 (x) ≥ fµ0 (x) − fµ0 (y)),
in the third line we use the Cauchy-Schwarz inequality, and in the fourth line we use the
definition of the Lipschitz constant of the gradient of fµ0 . Following a similar reasoning, each
of the terms under the sum on the right hand side of (20) can be expanded as follows:

(xkj − yj)T g
(
j,x

k−`(j,k)
j

)
≥ fj

(
xkj
)
− fj

(
yj)−∥∥xk − xk−`(j,k)∥∥

2

∥∥∥g(j,xkj )− g(j,xk−`(j,k)j

)∥∥∥
2

≥ fj
(
xkj
)
− fj

(
yj)− 2D

∥∥xk − xk−`(j,k)∥∥
2
,

In the second line above we use Assumption 1. Furthermore, Assumptions 1 and 2 allow us
to bound the difference between current and delayed iterates using the stepsize assumptions.
To see this, note the following:

∥∥xk−xk−`(j,k)∥∥
2
≤ C

k−1∑
m=k−`(j,k)

λm ≤ C
k−1∑

m=k−L
λm,

∥∥xk−xk−l(k)∥∥2
2
≤ C2

k−1∑
m=k−L

λ2m,

Using the previous expressions, we arrive to relation (21), which concludes the proof.

N · (xk − y)TE
[
ITJ

(
IJ∇fµ0

(
xk−l(k)

)
+ g
(
J,x

k−`(J,k)
J

))∣∣∣Fk] ≥
f(xk)− f(y)−

C2Lµ0

k−1∑
m=k−L

λ2m + 2CDN

k−1∑
m=k−L

λm

 (21)

ut

Proof of Prop. 2. Let hj = ITj (Ij∇fµ0 (xk−l(k)) + g(j,x
k−`(j,k)
j )) and J be a discrete uni-

form random variable on the set {1, . . . , N}. Then for all k = 1, . . . ,∞ and y ∈ X, we
have

‖xk+1 − y‖22 =
∥∥∥PX[xk − λkhj(k)]− y∥∥∥2

2

≤
∥∥∥xk − λkhj(k) − y∥∥∥2

2

≤ ‖xk − y‖22 − 2λk(xk − y)Thj(k) + λ2kC
2
2 ,

where in the second line we use the nonexpansive property of the projection. Therefore, for
the expectation conditioned on Fk it holds that

E
[
‖xk+1 − y‖22

∣∣Fk] ≤ ‖xk − y‖22 − 2λk(xk − y)TE
[
hJ
∣∣Fk]+ λ2kC

2.

Finally, by substituting E
[
hJ
∣∣Fk] in the last relation using (21) (Lemma 1) we obtain the

desired inequality.
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ut

Proof of Prop. 3. The first two inequalities follow directly from Assumption 3. For the third
inequality, we have

∞∑
k=0

λk

k−1∑
m=k−L

λm ≤ Ĝ2
∞∑
k=0

γk

k−1∑
m=k−L

γm ≤ Ĝ2L
∞∑
k=0

γ2k−L < ∞,

For the last inequality above, we use the fact that {γk} is non-increasing. Therefore,∑k−1
m=k−L γm ≤ Lγk−L ∀k. The same reasoning applies to the fourth inequality of the

present proposition.
ut

Theorem 2 (Supermartingale Convergence Theorem [12, Prop. 4.2])
Let Xt, Yt and Zt, t = 0, 1, 2, . . ., be three sequences of random variables and let Ft,

t = 0, 1, 2, . . ., be sets of random variables such that Ft ⊂ Ft+1 for all t. Suppose that:

(a) The random variables Xt, Yt and Zt are nonnegative, and are functions of the random
variables in Ft.

(b) For each t, we have E[Xt+1|Ft] ≤ Xt − Yt + Zt.
(c) There holds

∑∞
t=0 Zt <∞.

Then, we have
∑∞
t=0 Yt < ∞, and the sequence Xt converges to a non-negative random

variable X with probability 1.

Proof of Theorem 1 From Proposition 2, with y = x∗, we obtain

E
[
‖xk+1 − x∗‖22

∣∣Fk] ≤‖xk − x∗‖22 − 2
λk

N

(
f(xk)− f(x∗)

)
+

λ2kĈ
2 + 2

C2Lµ0
N

λk

k−1∑
m=k−L

λ2m + 4CDλk

k−1∑
m=k−L

λm.

Using Proposition 3 and by the Supermartingale Convergence Theorem (Theorem 2), with
probability 1 and for each x∗ ∈ X∗, we have

∞∑
k=0

λk
(
f(xk)− f(x∗)

)
<∞, (22)

and with probability 1 the sequence
{
‖xk − x∗‖2

}
converges to a random variable. The

rest of the proof follows exactly the proof of [37, Prop. 3.4] (see also [22, Thm. 2]) and it is
repeated here only for the sake of making the material self-contained.
For each x∗ ∈ X∗, let Ωx∗ denote the set of all sample paths for which equation (22)
holds and

{
‖xk − x∗‖2

}
converges. By convexity of f , the set X∗ is convex, so there exist

vectors v0, v1, . . . , vp ∈ X∗ that span the smallest affine set containing X∗, and are such
that vj − v0, j = 1, . . . , p, are linearly independent.
The intersection Ω = ∩pj=1Ωvj has probability 1, and for each sample path in Ω, the

sequences
{
‖xk − vj‖2

}
, j = 0, . . . , p, converge. Thus, with probability 1, {xk} is bounded,

and therefore it has limit points. Furthermore, for each sample path in Ω, by equation (22)
and the relation

∑∞
k=0 λk =∞, it follows that

lim inf
k→∞

= f∗,

implying that {xk} has at least one limit point that belongs to X∗ by continuity of f . For
any sample path in Ω, let x̄ and x̂ be two limit points of {xk} such that x̄ ∈ X∗. Because
the sequences

{
‖xk − vj‖2

}
, j = 0, . . . , p, converge, we must have

‖x̄− vj‖2 = ‖x̂− vj‖2, ∀j = 0, 1, . . . , p.
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Moreover, since x̄ ∈ X∗, the preceding relation can hold only for x̄ = x̂ by convexity of
X∗ and the choice of vectors vj . Hence, for each sample path in Ω, the sequence {xk} has
a unique limit point in X∗, implying that {xk} converges to some optimal solution with
probability 1.

ut

C Technical specifications of computation platforms used for the
numerical experiments

This section list the technical specifications of the computers or high performance computing
clusters used in the numerical experiments presented in this paper. Different clusters were
used as they were available to the authors.

Sierra cluster: hosted at Lawrence Livermore National Laboratory (LLNL). Comprised of
1 944 nodes, each node with 2 × Intel Xeon X5660 processors (6 cores, 12MB cache),
totalling 12 cores per node, and 24GB of RAM. Used only for development and testing.

Cab cluster: hosted at LLNL. Comprised of 1 296 nodes, each node with 2 × Intel Xeon
E5-2670 processors (8 cores, 20MB cache), totalling 16 cores per node, and 32 GB of
RAM. Decommissioned in 2018. Used for results presented in Tables 2, 3, 5, 6, 8 and
10, and Fig. 6.

Quartz cluster: hosted at LLNL. Comprised of 3 018 nodes, each node with 2 × Intel Xeon
E5-2695 processors (18 cores, 45MB cache), totalling 36 cores per node, and with 128
GB of RAM. Used for results presented in Table 7.

Lemaitre3 cluster: hosted at the Consortium des Équipements de Calcul Intensif (CÉCI).
Comprised of 80 nodes, each node with 2 × Intel SkyLake 5118 (12 cores, 16.5MB cache),
totalling 24 cores per node, and 96GB of RAM. Used for results presented in Table 4.

4-core laptop: Asus ROG G750JZ, with Intel Core i7 4700HQ processor (4 cores, 6MB
cache) and 16GB of RAM. Used for results presented in Table 9.

D Comparison against progressive hedging

This section presents a comparison between our asynchronous algorithm and progressive
hedging, as implemented in the software package PySP [54]. We conduct the comparison
using SUC instances for the WECC system with 10 and 100 scenarios. We excluded 1000-
scenario instances from the comparison due to technical difficulties faced by PySP in scaling
to 1000 processes. CWE instances were not considered for the comparison, due to the long
solution times of certain scenario subproblems (up to 12 hours). The performance of our
asynchronous algorithm in these instances benefited significantly from the period relaxation
of the initialization phase 5.3, for which there is no counterpart in PySP.

We use the Quartz cluster hosted at the Lawrence Livermore National Laboratory to
conduct the numerical experiments presented in this section. Each experiment uses 1 + N
processes (1 Master, S = N Slaves), 1 core per process, and solves subproblems using the
Xpress mathematical programming solver (limited to 2 threads). We set the parameters of
progressive hedging following [18]. In particular, we set the termination tolerance to 0.01,
we set the maximum number of iterations to 100, we select the value of ρ using the cost
proportional rule [18], and we use the WW extensions for accelerating convergence [18].
The WW extensions set subproblem optimality gaps dynamically (e.g. initial subproblem
gap: 0.025, final subproblem gap: 0.0001), fix converged variables and break cycles. For our
approach, we use the best configuration found in the experiments presented in Table 2, with
the exception of the optimality gap of subproblems and the Dual Share, which have been
set to 0.005 and 0.75, respectively.

The results of this experimental comparison are presented in Table 7. On average, our
approach terminates 4.35 times faster than progressive hedging. Progressive hedging, in most
cases, achieves solutions within 1% optimality and its solutions are than those provided by
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our approach on ∼1/3 of the instances. The quality of these solutions, however, cannot
be verified within the same progressive hedging algorithm for free (configuring PySP to
compute bounds every 10 progressive hedging iterations increases computation times by
8.5%). Our approach, on the other hand, provides both primal solutions and optimality
gaps continuously, exploiting fully the computational power at its disposal thanks to its
asynchronous nature. Furthermore, we can accelerate the proposed asynchronous algorithm
by allowing it to use more than N parallel workers. For instance, considering an estimate
parallel efficiency of 70% at 2N parallel workers (see Fig. 6), making 2N parallel workers
available to the asynchronous algorithm would make it 40% faster it is at N parallel workers.
By contrast, progressive hedging cannot make use of more than N parallel workers, even if
they are made available to the algorithm.

Overall, these results demonstrate the ability of the proposed asynchronous approach to
solve SUC instances several times faster than the state-of-the-art, while providing optimality
guarantees. At the same time, the good quality of the solutions provided by progressive
hedging suggests directions for the future development of better primal recovery heuristics.

E Detailed results

This section presents solution statistics per instance for the best configurations found. Table
8 presents solution statistics for WECC instances using the Cab supercomputer at LLNL.
Table 9 presents solution statistics for WECC instances using a personal laptop equipped
with an Intel Core i7 (4 cores, 8 threads) and 16GB of memory. Table 10 presents solution
statistics for CWE instances using Cab.

F Estimation procedure for idle times of slaves

F.1 A reference synchronous parallel algorithm

In order to estimate the idle times of slaves in a synchronous algorithm, we first need to
specify the exact algorithm for which we are performing the estimation. We consider a syn-
chronous parallel algorithm for SMIPs based on the Lagrangian decomposition presented in
section 2. This hypothetical synchronous algorithm uses the subgradient method to mini-
mize the dual function, as in [44]. Additionally, the synchronous algorithm uses one of the
primal recovery heuristics presented in section 4 to detect high-quality primal candidates.

Let 1 + S be the number of parallel workers available for executing the synchronous
algorithm over a SMIP with N scenarios. Then, 1 worker will be used as Master, DS =
min{N, round(Dual Share × S)} workers will be used as Dual Slaves, and PS = S − DS
workers will be used as Primal Slaves.

At each iteration k of the subgradient method, the Master uses the Dual Slaves to
evaluate f0(xk) and fi(x

k
i ) for all i = 1, . . . , N , and its respective subgradients. The Master,

then, has at its disposal DS Dual Slaves for performing N+1 > DS evaluations. The Master
performs the required function evaluations using a single queue of dual tasks, leaving the
evaluation of f0(xk) at the end of the queue (f0 is much easier to evaluate than any fi).
At the beginning of the iteration, as all Dual Slaves have no assigned task, the Master
simultaneously assigns the first DS tasks of the dual queue to the Dual Slaves. The next
task in the dual queue is then assigned to the first Dual Slave to finish its current task,
until all tasks are completed, and the Master can perform the subgradient update in order
to obtain xk+1.

Concurrently with carrying out subgradient iterations, the Master uses the Primal
Slaves for evaluating the primal candidates recovered from the scenario subproblems. This
evaluation is carried out sequentially, in the sense that the Master evaluates a candidate only
after completing the evaluation of the previous candidate. However, due to the abundance of
primal candidates, we do not impose any locking mechanism between subgradient iterations
and primal recovery. That is, the synchronous algorithm can proceed to iteration l > k even
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if there are primal candidates derived from iteration k pending of evaluation. The evaluation
of the p-th primal candidate v̄p requires evaluating hi(v̄

p) for all i = 1, . . . , N . If PS < N ,
these evaluations are carried out using a single queue of primal tasks, which operates in an
analogous fashion to the dual queue. Once the evaluation of the p-th candidate is complete,
the Master moves on to the evaluation of the (p+ 1)-th candidate.

The synchronous algorithm terminates once the upper bound (provided by the subgra-
dient method) and the lower bound (provided by primal recovery) are sufficiently close, or
when a certain number of subgradient iterations have been completed.

By design, the synchronous algorithm described above has smaller or equal idle times
for slaves than synchronous decomposition methods present in the literature [18, 30, 44] for
the same number of parallel processes. This is because of the unlocked execution of dual
iterations and primal recovery, which contrasts with the methods in the literature. The
latter methods recover primal solutions after each dual/progressive hedging iteration or
after a predetermined number of dual or progressive hedging iterations. The estimated idle
times of slaves for the synchronous algorithm are, therefore, optimistic approximations for
the methods in the literature.

F.2 Estimation of synchronous idle time using execution data of the
asynchronous algorithm

The idle times of slaves in the synchronous algorithm depend on only two factors: (i) the
solution times of the subproblems (either dual subproblems, f0, fi, or second-stage cost
evaluations, hi) and (ii) the order of these subproblems in their respective queues. We
estimate the idle times of slaves by considering both factors as follows.

We estimate the proportion of idle time for the synchronous algorithm using the recorded
solution times of subproblems in the asynchronous algorithm presented in this paper as
proxies for the solution times of the synchronous algorithm. Specifically, for each subproblem
s solved by the asynchronous algorithm we record (i) its Cs ∈ {Dual ,Primal}, (ii) its
description Ds with Ds ∈ {0, 1, . . . , N} for dual subproblems (indicating which dual function
fi, i = 0, . . . , N was evaluated) and Ds ∈ {1, . . . , P} × {1, . . . , N} for primal subproblems
(indicating which function hi(v

p) was evaluated), and (iii) its evaluation time Ts. These
quantities are organized in an ordered list of tuples L = {(Cs, Ds, Ts), s = 1, 2, . . .}, where
indices s are assigned according to the termination timestamp of each task. We can think
of L as the log of the asynchronous algorithm.

The solution times of second-stage cost evaluations can be directly obtained from L.
The solution times of the dual subproblems for the reference synchronous algorithm are
not readily available, because the asynchronous algorithm does not require to evaluate all
component functions over an iteration or a number of iterations. We assume, then, that
the list L contains at least K > 1 evaluations of each component function fi, and that
the evaluation time of fi in the k-th iteration of the synchronous algorithm, where k < K,
can be approximated by Ts(k) where s(k) indicates the k-th occurrence of (Dual , i, ·) in the
list L. Thus, from the execution of the asynchronous algorithm we obtain estimations for
solution times of subproblems over K dual iterations, and P primal candidate evaluations
of the synchronous algorithm.

In order to account for the unknown order in which these subproblems may appear in
the dual and primal queues of the reference synchronous algorithm, we conduct Monte Carlo
simulations of wall time for dual subproblems and second-stage cost evaluations over their
respective slaves. Note that we can simulate the wall time of dual subproblems separately
from that of second-stage cost evaluations, because these two processes are not locked in
the synchronous algorithm.

Let WS(T , R) be the wall time for executing the set T of tasks using S slaves and
where tasks are launched as slaves become available in the order indicated by the per-
mutation R. Then we can express the expected wall time Wk for the k-th dual itera-
tion with respect to all possible permutations of {1, . . . , N} with equal probability as
ER[Wk] = ER[WDS({f1, . . . , fN , f0}, (R;N + 1))]. We estimate this quantity for each dual
iteration k = 1, . . . ,K using 1000 different Monte Carlo samples of permutations, obtaining
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estimates W̃k. Assuming independence of the ordering between iterations, we can compute
an estimate of the total dual wall time W̃ =

∑K
k=1 W̃k. At the same time, we can compute

the total time actually spent evaluating dual functions TDual by simply aggregating the
solution times of dual subproblems up to iteration K. The proportion of idle time of Dual
Slaves T idle

Dual , then, corresponds to T idle
Dual = 1− (DS · W̃ )/TDual . An analogous procedure is

followed for computing the proportion of idle time in Primal Slaves, T idle
Primal .

Finally, the estimated proportion of idle time of slaves presented in Table 6 is determined
as T idle = DS/S · T idle

Dual + PS/S · T idle
Primal .
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