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Abstract—Priority service pricing is a promising approach for
mobilizing residential demand response, by offering electricity
as a service with various levels of reliability. Higher levels of
reliability correspond to higher prices. Proper pricing guarantees
that consumers self-select a level of reliability that corresponds
to the reliability that the system can offer. However, the tradi-
tional theory for menu design is based on numerous stringent
assumptions, which may not be respected in practice, such as
well-behaved convex cost functions for generators. In this paper,
we design a priority service menu as the equilibrium solution to
a Stackelberg game, which is modeled as a bi-level optimization
problem involving a vertically integrated utility and consumers.
We reformulate the equilibrium as a mixed-integer problem. As a
consequence of this approach, we can integrate the menu design
problem within a day-ahead unit commitment model. This allows
us to design a menu which exactly meets the profit requirements
of a firm. The approach is illustrated on a toy numerical example
as well as a large-scale model of the Belgian power market.

Index Terms—demand response, priority service pricing, bi-
level optimization, ADMM, dual decomposition

NOMENCLATURE
A. Sets
L, L Set of consumers and its cardinality
T, T Set of time periods and its cardinality
I,1 Set of options and its cardinality
Q Set of scenarios
g Set of generators

B. Parameters

O, Dynamic profile of consumption

Vi Valuation of consumer [ [€/MWh]

D, Average demand of consumer [ [MW]

V B; Valuation breakpoint, : = 0...1 [€/MWh]

Vi Average valuation of group ¢ [€/MWh]

D; Demand of group ¢ [MW]

K Slop of demand function

I, Profit target [€]

I+ Upper bound on prices in the menu [€/MWh]

P, Probability of scenario w

St.w Solar production at hour ¢ in scenario w [MW]
Wi o Wind production at hour ¢ in scenario w [MW]
Higi Inferred consumer subscription decision
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C. Variables

e Price of option i [€/MWh]

T Reliability of option ¢ [%]

i, Binary decision of consumer [ for option ¢

Yii Auxiliary variable to represent 7; - ;

wy; Auxiliary variable to represent 7; - £ ;

51, The subscription quantity of consumer ! under op-
tion i [MW]

Y Lagrange multiplier

S; The total subscription quantity under option : [MW]

di t.w Supply to option ¢ at hour ¢ in scenario w [MW]

Ctw Total costs at hour ¢ in scenario w [€]

Dg,t,w Production of generator g at hour ¢ in scenario w
[MW]

Mgt  Start up decision of generator g at hour ¢ in scenario
w

Ng.tw Shut down decision of generator g at hour ¢ in
scenario w

Og,t,w Unit commitment decision of generator g at hour ¢
in scenario w

m Compact form of myg ¢, similarly for n, o, p, c,
d,y,~, r, T pand v

S Compact form of s; ;

D. Functions

Rt o Cost function including production costs, startup
and minimum load costs

fow Constraints of unit commitment problems, includ-
ing minimum up and down times, ramp rates and
production limits

SW Social welfare function

CcS Consumer surplus function

I. INTRODUCTION

The mobilization of demand-side resources is an essen-
tial requirement for enabling the large-scale integration of
renewable resources. These resources can be instrumental in
mitigating numerous system and market operation challenges
resulting from the integration of renewable resources. On a
short-term operational basis, demand-side flexibility can serve
towards balancing the system on an instantaneous basis [1],
and can contribute towards resolving numerous operational
challenges related to the integration of renewable resources
(e.g. ramping, the negative correlation of renewable supply
with demand, and the wear and tear of thermal units due to
startups). In the long term, price-responsive consumers can
contribute towards signaling scarcity in capacity and flexibility
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[2]. This is an essential step towards tackling the missing
money problem [3] by properly remunerating conventional
resources that offer valuable services to the system.

A. Demand Response Potential

There exist numerous economic studies in the literature
which demonstrate the value of mobilizing demand-side flex-
ibility. Studies by Faruqui et al. [4], [S] demonstrate the
benefits of dynamic pricing in terms of preventing peak
capacity investments. Recent studies by [6] support these
observations by quantifying the economic value of flexibility
(including the flexibility of distributed loads) at approximately
8 billion British pounds per year for the UK alone. These
savings result from reduced short-term fuel costs, lower long-
term investment costs in power generation capacity, and the
deferral of avoidable reinforcements of the transmission and
distribution grid.

A recent study by Gils [7] has demonstrated that the resi-
dential sector is a significant source of demand-side flexibility.
Serendipitously, some of the most energy-intensive appliances
in households are also among the most flexible, in the sense
that deferring or interrupting them may have minor impacts on
the perceived quality of service. Such appliances include dish
washers, laundry machines, dryers, and in the future possibly
electric vehicles.

Although residential demand response presents very promis-
ing opportunities, it has failed to deliver its promise in
electricity markets [2]. The development of adequate business
models for engaging flexible consumers [8] is an essential
step in successfully enlisting demand-side flexibility in system
operations. In the two extremes of the wide spectrum of
options for mobilizing demand response [9], one identifies
price-based methods and quantity-based methods. Real-time
pricing, the golden standard of price-based methods, suffers
from the fact that it places an excessive information overhead
on residential consumers, who lack the attention span and
economic incentives to voluntarily engage in the process of
procuring electricity in real time. On the other hand, quantity-
based methods such as direct load control are perceived as
being excessively intrusive.

B. Priority Service Pricing

The approach which is considered in this paper is the quality
differentiation of electricity service, which can be viewed
as a compromise between price and quantity-based methods
that attempts to combine the best of both worlds. Quality-
differentiated service traces its theoretical origins in non-linear
pricing [10], and is inspired by success stories in the telecom-
munications and information technology sectors. The promise
of this approach as a viable paradigm for massively scalable
demand response is exemplified by the notable amount of
research that has been conducted recently in variations of the
basic concept [11]-[16].

The idea of quality differentiation is to treat electricity as
a service, with different levels of quality, as opposed to a
commodity that is procured in a time-varying real-time price.
Higher quality implies a higher price, in an analogous way to

how monthly Internet subscriptions with a larger bandwidth
demand a higher price.

Priority service pricing [17], which is the most basic form
of quality differentiated pricing and the focus of this paper,
has been applied in different industries [18]. “For example,
in transportation systems, railways offer express and regular
freight services. The postal system offers priority and regular
mail services. Most service industries provide some form of
priority service in order to reduce waiting times for customers
with high waiting costs. Other examples include computer
service bureaus, job shops, and express toll roads.” In power
service, an early example of priority service pricing was the
Pacific Gas and Electric tariff for large industrial customers
that included explicit options for curtailable and interruptible
power service [10].

In this study, we focus on the application of interruptible
power service to residential consumers, since the residential
sector arguably places the greatest premium on simple service
offerings that do not require excessive attention overhead.
The idea is to offer residential consumers a menu of price—
reliability pairs for strips of power.

Households decide how to allocate devices to strips. One
way to implement this allocation is by tagging plugs with
colors that correspond to reliability levels in the home [2],
either manually or automatically through a home energy
router. Thus, households enroll to an electricity service with
an intuitive interpretation, while preserving control on their
household consumption. The necessary control and communi-
cation technology for implementing priority service pricing
requires a means of tagging plugs according to reliability
levels, an ability to monitor slices of different reliability in
real time (e.g. 5-to-15 minute intervals), and an energy router
that can receive control signals from a utility and relay them
to plugs with the appropriate reliability tags [2], or undertake
the color tagging on its own.

By selecting plans, consumers reveal their valuation for
power. These valuations can be aggregated and bid into the
wholesale electricity market. This promotes price discovery
and an efficient allocation of resources under tight system con-
ditions, which are expected to occur increasingly frequently in
the future due to the integration of renewable resources.

C. Contribution

An important challenge of priority service is the pricing of
different menu options. In order to appreciate the challenge,
consider two extremes. In one extreme, an aggregator prices
all levels of reliability at a very low price. In this case,
all consumers enroll to the option with the highest level of
reliability. This is undesirable, since the aggregator would
neither be able to deliver the promised level of reliability,
nor to discriminate consumers according to their valuation.
On the other extreme, if the aggregator prices all levels of
reliability at an excessively high price, then no consumers
enroll voluntarily. The theory for designing a menu optimally
has been developed by [17] and relies on strong assumptions.
The appeal of the theory is that it only requires aggregate
statistical information about the population, which is becoming
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increasingly available through real-world demand response
pilots [5], [19]-[21].

There has been further development of priority service
pricing based on the seminal paper of Chao [17], including
menus differentiated by duration and reliability, and menus
that account for capacity expansion [22]. Chao [23] extends
the consumer model to a two-stage model, consisting of a
subscription stage and an actual consumption decision stage
if service is curtailed. Campaign [24] considers a profit-
maximizing aggregator in a competitive setting. However,
the aforementioned models involve stringent assumptions, are
more difficult to implement in practice, and rely on closed-
form solutions that do not exploit the capabilities of powerful
commercial optimization solvers.

In this paper we revisit Chao’s theory and extend it to a more
realistic set of assumptions. In doing so, we couple the menu
design problem with production simulation models based
on unit commitment. Embedding the menu design problem
with unit commitment allows us to override a number of
weaknesses of the traditional theory, and creates numerous ad-
vantages from an analysis standpoint. (i) We are able to clarify
exactly what the service of a certain reliability level means'.
(ii) We are able to introduce profit targets that the menu should
achieve seamlessly in our model, which are essential for cost-
benefit analyses of smart meter deployment [5]. (iii) Coupling
realistic models of demand response with unit commitment,
which has been attempted in past literature under less realistic
settings such as real-time pricing or fixed retail pricing [25]-
[27], is essential for capturing the operational benefits of
demand response (mitigation of ramping constraints, reduction
of non-convex costs related to startup and min load, etc.).
(iv) The temporal coupling in the production model (due to
min up/down time constraints, and ramp rates) is captured
and correspondingly, the consumers are modeled as being
dynamic explicitly. (v) The framework that we develop allows
us to revisit various generalizations of quality differentiated
service, including menus that are differentiated by duration and
reliability [28] and menus that account for capacity expansion
[22].

II. MODELING THE MENU DESIGN PROBLEM AS A
STACKELBERG EQUILIBRIUM

In what follows, we will cast the menu design problem
as a Stackelberg game. The leader in the Stackelberg game
is the producer who designs the menu. The followers are
the consumers, who react to the menu offered by the leader.
The information asymmetry arises from the fact that the
followers have private knowledge of their fype, whereas the
leader is limited to statistical information about the distribution
of types in the population (e.g. from market surveys). The
interesting aspect of the model is that the leader integrates the
optimal reaction of the followers to the menu design problem.
This gives rise to a mathematical program with equilibrium
constraints. Although such problems are generally challenging,

'Five minutes of interruption every hour and one month of straight
interruption every year imply large differences for consumer comfort, even if
both are characterized by a reliability of 11/12.

Producer
m? n7 07 p7 d7 r? 7T

Consumers
S

Fig. 1. Interaction between the producer and consumers in the bi-level model.

we exploit the specific structure of the game in order to cast
the problem as a mixed integer linear program. This allows us
to incorporate realistic production constraints to the problem,
which are absent from the traditional literature on priority
service pricing. We thus arrive to a model that integrates menu
design with unit commitment.

A high-level description of the bi-level model is provided
in Egs. (1)-(5). The model is further illustrated in Fig. 1.

max SW(m,n,o,p,d) (D
m,n,o,p,d,r,7m

subject to: (m,n,o0,p,d) € X )

r = ¢(d,s") (3

H* = w(mvoapa5*7ﬂ-) (4)

s* € argmax{CS(r,7):s €S} (5

The variables m, n, o, p correspond to startup and shut-
down decisions, unit commitment and power generation. The
subscription quantity of each consumer to each option is
indicated by s, while the supply to each option is indicated
by d. The reliability and price of the menu options is denoted
by r and 7, respectively. The profit target of the producer? is
denoted by II,.

The function SW in Eq. (1) is the objective of the producer,
which is to maximize social welfare. Eq. (2) defines the
technical constraints of the producer. Constraint (3) expresses
the fact that the price menu which is designed by the producer
needs to deliver a promised level of reliability r, which is
affected by how consumers react to the offered menu through
their subscription decision s*. Condition (4) further requires
that the menu be designed in such a way that the profit target
II, is reached. Consumers decide on their subscription by
maximizing their surplus C'S, as indicated by Eq. (5).

In what follows, we introduce the lower-level consumer
model and the upper-level producer model in detail. We then
present the bi-level model and its reformulation as an MILP.

A. The Consumer Model

The starting point of nonlinear pricing is to capture infor-
mation asymmetry by assigning a type to consumers [10]. This
is private information, in the sense that the producer cannot
know a priori the type of a given consumer (although this

2Nonlinear pricing theory typically considers the setting of a regulated
monopoly that needs to recover certain amount of costs, such as investment
costs, by imposing a target on the profit, see chapter 5 of [10] for details.
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Dy, =D;-0,

Fig. 2. A consumer of type [ follows a load profile D; ;. Since loads are
assumed to be synchronized, this profile can be expressed as D; ; = D; -6y,
where O is the dynamic profile of the system and D; is the average electricity
consumption of type I.

information is revealed to the producer after the consumers
self-select their preferred menu option). In priority service
pricing, types correspond to valuation for power.

Before presenting the consumer model, we point out two
strong assumptions® that are typically employed in the priority
service pricing literature [28] regarding the demand side of
the model. The first assumption is that the priority ranking of
consumers for power remains constant over time. The second
assumption is that loads are synchronized.

Given the above assumptions, we arrive to the following
consumer model. Given a set of consumer types, £, a con-
sumer of type [ € L is characterized by a valuation V;, which
represents the priority ranking of a consumer, and remains con-
stant over the whole horizon according to the first assumption®,
in order to arrive to a single menu. Without loss of generality,
we order consumers as V; < V1. In period ¢, the consumer
of type [ requires D; ; units of power, where D;; = D, 0,.
Here, D; corresponds to the average load of type | and ©
corresponds to the dynamic profile of consumption 3. This
dynamic profile is identical for all consumers and the same
as the load profile of the residential sector, due to our second
assumption that loads are synchronized. The synchronization
of loads can be relaxed, however that would place significant
additional information requirements on the producer to know
the dynamic profile of each different type. The load profile
of the residential sector is a time series indicating the hourly
electricity consumption of the residential sector. The concept
is depicted in Fig. 2. By definition, ), - ©; = T, where T
is the number of time periods over which we are designing
the menu.

As a follower, the consumer selects service options from a
menu with a set of options Z. Each of the options corresponds

3These assumptions are approximations, and they entail a certain loss of
information, which is the price to pay for the simplicity of the offered menu. If
these assumptions were true, then priority service pricing could be reproduced
equivalently by having agents submit their valuation for power once and for
all to the aggregator (see section III of [17] for a discussion on the equivalence
between priority service pricing and spot pricing).

4Note that this is an approximate model of consumers that is employed by
the producer in order to design the menu. The true behavior of consumers
corresponds to valuations that evolve dynamically, and possibly in a non-
synchronized fashion. Such valuations could be elicited by real-time pricing
auctions, however the entire motivation of this work is that the complexity of
real-time pricing as a means of eliciting the true valuation information places
a prohibitive informational overhead on residential consumers, and priority
service pricing corresponds to a second-best alternative.

5The introduction of © is inspired by [28] . This enables us to generalize
the consumer model to a dynamic setting explicitly, so that the temporal
coupling on the production side can be captured.

to a unit of electricity consumption with reliability r; and
price ;. Reliability r; is defined as the fraction of energy
offered to option ¢, divided by the energy requested under
option ¢. More specifically, denote the subscription quantity
to option ¢ as s; and the supply to this option at period
t and scenario w as d; .. In choosing option 7, consumer
[ essentially procures s;; - ©, following a profile ©;, so
that the energy that is requested under option ¢ is given
as ) ,c78i - Oy The energy that is actually offered to
option i is calculated as »_ o Po ) o7 ditw, Where P,
is the probability of scenario w. Thus, r; is expressed as
Yowea Pod ierditw/ Y e Si - O This is the origin of
constraint (23), which we present later.

Since m; is the hourly price of option ¢, the total payment
of subscribing for a unit of power under option ¢ for the entire
horizon I" of the contract amounts to 7; - 1.

Concretely, given r; and 7; from the upper level producer
model, the optimization problem of the consumer of type [
can be described as follows:

max Vi-» > rios; 0= Y siiomi- T (6)

Sl,i

teT i€l €T
subject to :Z s1i-0: < Dy )
i€l
814 2> 0,ieZ 3)

The variable s;; indicates the amount of power that con-
sumer [ allocates to option i. The first term in the objec-
tive function indicates the benefit of a risk-neutral consumer
for this profile. The second term in the objective function
corresponds to the payment that needs to be submitted to
the producer in order to secure this service. Constraint (10)
requires that the total subscription of the consumer should not
exceed the load of the consumer. Since »_,.©; = T and
Dy = D; - O, we can rewrite the model equivalently as

(CP) : max Z(Vl ST Si — Sl ) )
Shi T
(1) :> s <Dy (10)
i
s1:>0,i€T (11)

We wish to use the optimality conditions of this problem
as constraints of the producer problem. We do this in order
to capture the fact that, when designing a menu, the producer
accounts for the optimal reaction of the consumers. In com-
plementarity form, these conditions will be problematic. Since
CP, is an LP, we wish to express the optimality conditions of
the consumer problem as a collection of primal feasibility, dual
feasibility, and strong duality conditions [29], [30], and we
further exploit the special structure of the consumer problem
so as to describe the optimal subscription of the consumer as
a binary variable. As we illustrate later in the paper, this is
essential for our MILP formulation of the bilevel problem.
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The dual of (C'P;) can be expressed as:

(CDy) : min ;- Dy (12)

"
m=zri-Vi—m,i €1
v =0

13)
(14)
The interpretation of ~; is that it captures the surplus that

the consumer achieves by selecting the best option. Strong
duality requires that

vi-Dp = 5 Ti'sz,i"/}—g T+ S1,4-

i€l i€L

(15)

Eq. (15) involves bilinear terms when it is treated as a con-
straint of the reformulated single-level problem, which cannot
be dealt with by MILP solvers. We override this problem by
showing that the optimal decision of the consumer is binary.
Proposition 1: There exists §; = (5;,,7 € Z) with §,; €
{0, D;} which attains the optimal objective function value.
Proof: The KKT conditions of (C'P;) are given by

0<s; L—ri - Vi+m+v=>0
US’YZJ-El—ZSl,iZO

%

(16)
a7)

There are two cases to be considered:

Case 1: If D; — Do sy; > 0, then ; = 0, which implies
that consumer [ derives zero benefits at the optimal solution,
so 5;; = 0 for all 4 € 7 is optimal.

Case 2: If Dy — Y ,c7sf; = 0, then it suffices to show
that if two options are ‘active’ (in the sense that s > 0) then
they have an equal payoff, and can therefore be equivalently
replaced by a single option. Applying this argument for all
options that are active gives the desired conclusion: consider
any two options ¢ and j for which s, > 0 and s7; > 0.
Then —r; - Vi + 7+ =0and —r; - V; +7; + v =0, and
substituting out -y, we have r; - Vi —m; =7r; -V, — ;. A

The above proposition implies that s; ; can be expressed as
81 = D, - pu,i» Where p ; € {0, 1} are binary variables. Thus,
Eq. (15) is rewritten as

M :Zri'ﬂl,i'vl —Zm'uz,i-

i€l 1€EL

(18)

Combined with McCormick envelopes, this reformulation
will allow us to cast the lower-level optimality conditions
of the Stackelberg game as a set of mixed integer linear
constraints. This will be detailed in section II-C.

B. The Producer Model

We follow the standard literature on priority service pricing
[10], [17], [28] in assuming a vertical setup where the producer
who is responsible for aggregating demand response also owns
the production assets of the system. An interesting extension
of the present work is to use our mathematical programming
reformulation in order to analyze aggregator competition and
decentralization of the production decisions. This extension is
out of the scope of the present paper.

As a leader of the Stackelberg game, the producer seeks
to price reliability so that residential consumers self-select

reliability levels which are consistent with the generation
mix of the system. Information asymmetry implies that the
producer does not know, at the menu design stage, the type (i.e.
the valuation) of an individual consumer. Instead, the producer
has access to the distribution of types in the population. This is
exactly the demand function of the system. For the derivation
of constraint (25), we will specifically assume an affine de-
mand function of the form D(v) = —K -v-+b. Note, however,
that the priority service model is not limited to affine demand
functions. We use a discrete approximation of the demand
function, with the valuation breakpoints6 VB; ¢t =0...1),
with the valuation of the first breakpoint corresponding to
V By = 0 €/ MWh. These breakpoints separate consumers into
I groups and (VB;_; + V B;)/2 corresponds to the average
valuation of consumer group i € Z, while K -(VB; —VB;_1)
corresponds to the load (in MW) of group ¢ € Z.Given a
choice of options by individual consumers, s;;, the producer
problem then becomes:

(PP g, 2 P~ esm0.p)
o weN teT
+005- (VBiy + V) diy) (19)
1€L
subject to:
fg,w(m7n707p)§07geg7weg (20)
S divw = DotwtStwt+WiwteT,weQ Q21
€L g€eg
di,wgsr@t,ieI,teT,weQ (22)
Teri-si=Y PuY ditwicl (23)
weN teT
T-> si-mi—» PuY hiw(m,o,p) =TI, (24)
i€T we teT
si=K-(VB; —VB;_1),icT (25)
Y st =siiel (26)
lel
di,t,wapg,t,wzoaiEI)QEQatETaweQ (27)
mg7t,w7ng7t,waog7t,w S {07 1}79 S g,t (S T,w (S Q (28)

The goal of the producer is to maximize welfare by using the
available production assets of the system. The cost is expressed
by the function h;,, and can include production costs as
well as non-convex costs related to startup and minimum
load. The variables m, n, o, p correspond to startup and
shutdown decisions, unit commitment and power generation.
The set of generators is denoted as G. The generator constraints
are expressed by the function f, ., and can include standard
constraints of unit commitment problems, such as minimum up
and down times, ramp rates, startup profiles, production limits,
and so on. The quantity of consumers signed up under option ¢
is indicated by s;. Their hourly supply is d; ¢ .,. Constraint (21)

®In determining these breakpoints, we follow the standard priority service
literature by assuming that these values are determined exogenously. An
interesting extension of our model would be to treat V B; as decision
variables, however the producer model presented later would then involve
bilinear terms. We leave this extension as an area of future research.
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describes demand and supply balance. Note that uncertainty in
the model corresponds to a set of solar and wind production
scenarios, with the corresponding output of these resources
denoted by S, and W;,,. Constraint (22) requires that the
supply to consumers be limited by their subscription decisions.
Constraint (23) determines the reliability of option ¢ as the
fraction of energy offered to option ¢, divided by the energy
requested under option ¢. The producer seeks to achieve a
profit target II,, as indicated in constraint (24). Constraint
(25) implies that the subscription quantity of each option is
equal to the estimated demand of the corresponding demand
group’. The subscription quantity of each option is equal to the
sum of the subscription quantity of consumers in this option,
as indicated by (26). One single menu is designed for the
whole horizon, but the model can be easily adapted to offer
monthly/seasonal menus.

C. The Bi-Level Model

Given a choice s}, of menu options by consumer types,
the producer model is a welfare maximizing commitment
and dispatch of the system, of the sort encountered in the
standard unit commitment literature. The delicate task of the
producer is to offer a price menu (r;,7;) so that consumers’
reaction sy, is compatible with the estimated grouping of
consumers indicated by V B;, while achieving its profit target.
We thus revisit the mathematical programs of section II-A and
section II-B in order to develop the full bi-level formulation.
Concretely, we are interested in expressing the following
bilevel problem in MILP form:

(Bilewvel) : . er’rrlli}ré’p’mm Z P, Z (htyw(m, 0,p)
Y weN teT
~3705-(VBi_y + VBy) - di,w) (29)
i€T
subject to:(20) — (28) (30)
sii € argnslax{z Z(Vl ST SLi O — s
MoteTiez
> s1i < Diysi; >0,i € T} 31

ieT

We reduce the bilevel problem to a single level by appending
the equilibrium constraints of the Stackelberg followers to
the leader problem. We do so by treating s;;, r; and m; as
variables, and describing the behavior of s;; as a function
of (m;,r;) through the primal feasibility, dual feasibility, and
strong duality conditions of section II-A.

The primal feasibility constraints (10) and (11) and the dual
feasibility constraints (13) and (14) can be inserted directly to
the bi-level formulation. Instead, the strong duality constraint
(18) becomes a bilinear non-convex constraint when r; and ;
are treated as decision variables.

"This constraint makes sure the average valuation of consumers in option
iis 0.5 - (VB;—1 + VB;), which is consistent with (19). Note that we
implicitly require that the designed menu induces all consumers to select a
specific option in the menu. An interesting extension of the present model
which we leave for future research is the possibility of designing the menu
such that it intentionally induces certain consumers to not select any option
from the menu.

In order to overcome this challenge, we express constraint
(18) equivalently by its McCormick envelope. We do so by
noting that the reliability variable is naturally bounded in the
interval 0 < r; < 1, and by imposing a price limit on the menu
offering, 0 < m; < IT*. This allows us to express 7; - fi;; by
a new variable y; ;, and r; - p;; by a new variable w; ;. The
strong duality constraint (18) for every type [ € L can then
be rewritten as follows:

M= sz,i Vi *Zyz,z‘

i el
Y <O g, v >0, g <

v >0y +m — 100

wys < i, wig >0, wyg <oy,

Wy > Wi+ 1 — 1.

We thus arrive to a reformulation of the equilibrium condi-
tions of the lower level as a mixed integer linear set. However,
this reformulation results in a significant increase of binary
variables and constraints, which results in prohibitive run times
for realistic-scale problems. We overcome this challenge by
(i) using the structure of the lower-level problem in order to
propose a set of valid cuts, and (ii) noting that the variables
t1,; are then implied by the constraints of the problem. We
first recall theorem 1 of [17]:

Proposition 2: Consider two consumers with valuation
V. and V,, respectively, and denote the optimal choice of
reliability and the corresponding price as 7*(V,,) = > ;7 7i -
Pois T (Vi) = D iez Ti + - If Vi >V, then we have
* (Vi) = r*(Vp,) and 7*(V,,) > 7*(V4,). In other words,
consumers with higher valuation select more reliable plans
and pay more.

Proposition 2 yields the following set of valid cuts:

I I
Zm,i < Z/‘l-%l,i’ l=1.L-1, kecT
i=k i=k

These conditions can be understood as follows. Given a
consumer of type [ and a consumer of type [ + 1 recall from
section II-A that we order consumers by increasing valuation,
ie. Vi < Vi41), type | + 1 subscribes to an option which is
at least of the same quality as that of [, because of the higher
valuation of type [+ 1. This implies that the value of 1 appears
in the sequence {y414,¢ € Z} no later than it does for the
sequence {y 4,4 € I}, counting from 1.

The second observation which allows us to arrive to a com-
putationally tractable model is the observation that a unique
solution of the variables fi; ; is gained from the following set
of constraints and the proof is available from [31].

wi€{0,1},le Liiel

Z/tl7i:1,l6£

i€l

> Dipi=K-(VBi=VBi),iel

el

I I

>omi €Y g, 1=1.L-1,k=1.1-1
i=k i=k



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. XX, NO. XX, XX 2019

where the first constraint has been established by proposition
1, the second constraint is implied by condition (25) and the
fact that the lowest valuation breakpoint is V' By = 0 €/ MWh,
the third constraint is condition (25), and the fourth constraint
is derived from proposition 2. Note that this observation
implies that the variables f; ; of the bi-level model can be re-
placed by fixed values fi; ;. Effectively, the collection of these
four conditions is an assignment of the highest consumers of
highest type to the options of highest reliability. Even though
t,; 1s implied by these conditions, the challenge of designing
a price menu that will induce consumers to self-select the
corresponding options remains. Achieving this consistency is
the goal of the reformulated single level problem, which can
be written as follows:
(MILP) : min
di,t,w,M,0,0,P,Ct, 0,70, T3 W0 YL,i 7Y

SRy (CW ~3705-(VBi_y + VBy)- dm,w)

weN teT €L

(32)
subject to:
fg,w(m7n707p)§07gegaweg (33)

Zdi,t,w = Zpg,t,w + St,w + Wt,wyt S T,w €N

€T g€eg
(34)
di,t,w <K- (VBL — VB'i—l) . ®t,i el,te T,(.d €
(35)
di,t,wapg,t,w203i61796gat€T7weQ (36)

Mg tws Mg tws Ogtw €10,1}, g€ G, t €T, weQ
37

Ctw = htw(m,o,p),t € T,we (38)

W): T-> wi-Di=Y Py digw=0i€T (39)
el weN teT
N: T3> iD= Y PuY crw— 1L =0 (40)
€T leC weQ  teT
v <IF - lelicel (41)
i <mi,leLliel (42)
yi >y +m -t leLliiel (43)
wy <fg,le€Lied (44)
w; <ri,leliiel (45)
w; > Wi +ri—Lleliel (46)
yy>ri - Vi—m,leLlLiel 47)
W= wiVi—=Y yileL (48)
i€l i€L
Yuis Wi, Y, Ti T > 0,0 € Li €T (49)

In this new formulation, s; has been substituted out. Constraint
(35) is the result of substituting constraint (25) in constraint
(22). Note that, in constraint (38), we introduce a new set of
free variables ¢, ,, for representing the cost k., (m, 0, p). Al-
though redundant from a modeling standpoint, these variables
will be useful for decomposing the problem, as described in
the following section.

III. DECOMPOSITION BY ADMM

The bilevel model is reformulated as a single-level MILP,
which can potentially be solved by commercial solvers. How-
ever, the case study of the Belgian market in section IV-B
cannot be solved directly, due to the renewable production
scenarios. Therefore, in this section we propose a heuristic
based on ADMM [32] in order to decompose the problem. The
idea of the decomposition is to relax the coupling constraints
(39) and (40) so that the unit commitment problem of each
scenario can be tackled independently.

A. ADMM Formulation

Concretely, we define C; as the set of constraints (33) -
(38) that relate to the unit commitment part of the problem
and C as the set of constraints (39) - (49) that relate to
the consumer problem. We define x; = (m,n,o,p,c,d)
and x2 = (y,w,~,r,m, ) . Our goal in using an ADMM
algorithm is to decompose the overall problem to a part that
relates to the unit commitment, and to a part that relates to the
consumer. The general idea of the approach is to create copies
of d; ., denoted as d” and d~, that are shared between so-
called z-updates (the x updates involve unit commitment prob-
lems that are decomposable by scenario) and z-updates (the
z updates implicate the consumer variables). In creating these
clones of the original variables, we can move the complicating
constraint (39) to the consumer sub-problem, and decouple
the unit commitment sub-problem by scenario. In the same
spirit, in order to relax constraint (40), we create copies of the
variable c,, ; that we denote by c¢” and c respectively. These
variables are handled by the unit commitment problems (z-
updates) and the consumer problems (z-updates) respectively.
The general concept is explained in chapter 5 of [32]. An
illustration of the algorithm on a toy example is presented in
the appendix.

In abstract form, we left-multiply x; by a matrix A of
appropriate dimension, which gives us Ax; = (c,d) and we
create a copy z of Ax;. The problem (MILP) can thus be
rewritten in a stylized form as follows :

min  f(x1) (50)
subject to: x; € C; (5D
(x2,2) € Co (52)

Ax; —z=0 (53)

We can define an indicator function g of Cy, and the problem
is rewritten as

min  f(x1) + g(x2,2) (54
x1€C1,%x2,2
subject to: Ax; —z =0 (55)

The ADMM iterations can then be expressed as follows:

)i arg min (£(x1) + (p/2)]|Axy — 2" + v [3)
X1 1

(56)
(x5H 2P 1) = T, (AxE T 4 ub) (57)
uf = uh 4 AT g (58)
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Fig. 3. The application of ADMM as a heuristic for decomposing the
reformulated MIP.

where Il¢ is the projection operator on the set C and u are the
scaled dual variables. For our specific problem, each element
of Ax; —z = 0 implicates only variables of a given month
and scenario, therefore the regularization term in (56) can
be decoupled by month and scenario, which is the original
motivation for using a decomposition method.

The scheme is further illustrated in Fig. 3. The light gray
blocks correspond to constraints C; and the dark gray block
corresponds to constraints Co. Note that the unit commitment
problem in each scenario is decomposed into 12 independent
monthly unit commitment problemsg, which are solved in
parallel, so that there are 12-|Q2| unit commitment subproblems
in total. The yellow block updates the x; variables. The green
block is used for updating (x2,z). The variables u are then
used for updating the yellow blocks in the next iteration.

B. Convergence

In practice, the dual residual and primal residual are used
to check the convergence of ADMM for a convex problem.
However, the model presented in this paper is non-convex.
Therefore, residuals are not a proper indication of convergence
in this case, since there is no reason to expect that they should
eventually vanish. Instead, we determine the convergence by
checking the gap between an upper bound and lower bound
of the problem. We derive the upper and lower bound as part
of our algorithmic implementation.

1) Upper Bounding by Recovery of Primal Feasible Solu-
tions: The idea of the upper bounding method is to fix the unit
commitment part of the problem, and seek a menu design and
a set of consumer choices that are consistent with the fixed
unit commitment decisions. In doing so, we fix the majority of
variables of the original problem, and are left with a relatively
light MILP that can potentially yield a feasible solution and an
upper bound. Even though there is no convergence guarantee
for ADMM when applied to this model, at the end of each
ADMM iteration we can fix part of the solution, i.e., x;, and
solve the following problem (PR):

(PR) : (x2,2z) € Co
Ax] —z=0

(59
(60)
If (PR) is feasible, we obtain an upper bound as f(x7),

otherwise the upper bound returned from the iteration in
question is +o0o. Note that there is no theoretical guarantee

8Boundary effects are handled by wrapping the monthly commitment
problem around itself.

that we can find a feasible solution to (PR). But practically
in the case study presented later, we can find a good upper
bound after some ADMM iterations. This is because in later
iterations, the solution from the unit commitment part of the
problem evolves, so that the total cost and price region defined
by the consumer choice constraints change, which enable the
profit constraint feasible.

2) Lower Bounding by Dual Decomposition: The following
computation is performed once at the outset of the problem,
in order to yield a lower bound, before launching the ADMM
algorithm. We relax constraints (39) and (40) in problem
(MILP) by using the corresponding dual variables v and A,
so that the whole problem is decomposed into the following
dual subproblems.

Dual subproblem - producer in scenario w:

L omin Py (hw(m,o.p)- (61)
" teT
> 05 (VBia +VB) - dige)  (62)
i€T
=D Vi Py dige (63)
= teT
~ APy Y hiu(m,o0,p) (64)
teT
subject to: (33) — (37) (65)
Dual subproblem - consumer:
i T > 66
Ti777iagll,1'irlﬂJl,'i7'Yl ;V gwh : ( )
AT "y D= AIL (67)
i€ leL
subject to: (41) — (49) (68)

This is a standard scenario decomposition of the problem.
Many algorithms are available for solving the dual decompo-
sition, such as the sub-gradient method [33], [34], the cutting
plane method [35], and bundle methods [36]. In our study,
we adopt a standard cutting plane method which is suitable
for low-dimensional spaces. Note that, in the implementation
of the dual decomposition, the unit commitment problem of
each scenario is also decomposed by month. The maximum
of the dual function which is obtained from the cutting plane
method (which is the sum of the objective values of the dual
sub-problems) is a lower bound of (MILP). We can compare
this lower bound to the upper bound obtained from the primal
feasible solution recovery in order to decide when to terminate
the algorithm.

IV. CASE STUDIES

In this section, we present two illustrations of the model.
The first one is a toy example used for validation, which
compares the closed-form solution provided by priority service
pricing theory [17] to the solution of the bi-level model. The
second case study is a realistic model of the Belgian power
system. For this realistic case study, we compare priority
service pricing to real-time pricing and an optimal flat tariff
in terms of social welfare, and we analyze the interruption
patterns of priority service pricing.
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A. A Toy Example

Consider a system with the demand function D(v) =
1620 — 4v. The system consists of two generators. The first
generator is reliable and has a marginal cost of 65.1 €/MWh,
and a capacity of 295 MW. The other generator is unreliable.
It is operational with a probability P; = 83.3% and is out of
service with a probability P, = 16.7%. The second generator
has a capacity of 1880 MW and a marginal cost of 0 € /MWh.

Consider the breakpoints VB, = 0, VB; = 331.25,
V By = 405 €/MWh. In this case, 1325 MW subscribe to
the first option, and 295 MW subscribe to the second option.
The closed-form solution [17] prescribes the following service
menu:

r=383.3%

r =100%

0 €/MWh,
m(r) =
55.3 € /MWh,

The profit of the producer amounts to 13106.3 €.

In order to implement the bi-level model in this toy example,
we discretize the demand function into 1620 consumer types.
Given a profit target of 13106.3 €, the model yields a price
menu which is identical to that of [17] within one significant
digit. If we increase the profit requirement of the firm to
15000 €, we obtain the following price menu from the bi-
level model:

r=281.5%

61.3 €/MWh, r=100%

0.1 €/MWh,
(r) =
Note that the increased profit target of the producer is largely
covered by increasing the price of the second option.

B. The Belgian Power System Model

This section presents a case study of the Belgian system
in a forward-looking scenario of the year 2050. A full-year
horizon and one-hour resolution is considered.

The conventional generator fleet of the model consists of
55 units. The installed capacity of each technology follows
the projected capacity of the year 2050 according to the EU
2050 reference scenario [37]. The technical specifications of
the units are available from the website of the Belgian TSO
Elia [38]. The installed capacity of conventional generators,
which totals 15784 MW, can be broken down as follows: gas
(14965 MW), oil (10 MW), biomass (542 MW), and waste
(267 MW). The long-term maintenance schedule of units is
accounted for by derating the maximum capacity of the units
by a certain availability ratio. The availability ratio follows the
hourly profiles of 2015 [38].

Wind and solar production profiles corresponding to the
years 2013 to 2017 and import profiles for the year 2015
with hourly resolution are collected from [38]. These profiles
are scaled up according to the projected value of the year
2050, according to the EU 2050 reference scenario [37]. Ten
scenarios of wind and solar production are created, in order

to better characterize uncertainty in renewable production’.
The projected ratio of renewable energy production to total
energy production for 2050 is 27.4%, with the peak production
amounting to 11690 MW. The projected peak load in 2050
amounts to 18700 MW. It is worth noting that, during some
hours, curtailment of renewable production could occur.

The pumped hydro storage in Belgium has a pumping
capacity amounting to 1200 MW, while the energy storage
capacity of pumped hydro amounts to 5700 MWh. Pumped
hydro resources are assumed to have a roundtrip efficiency of
76.5% [39].

The total load profile of year 2015 is also available from
[38]. We split this profile into a residential, industrial and
commercial load, according to synthetic load profiles [40]. The
load profiles are scaled up to the year 2050 according to the
EU 2050 reference scenario [37].

Industrial and commercial demand is assumed to be in-
elastic. Hourly demand functions for residential consumers
are assumed to be linear, and are calibrated by assuming an
elasticity of —0.5 at the historically observed demand quantity
and price for each hour of the data'”.

1) Price Menu Designed According to Chao’s Theory: The
original theory of priority service pricing relies on a convex
cost function, i.e. an economic dispatch model which does not
account for startup costs, minimum load costs and minimum
capacity constraints of generators. Ignoring these conditions
may result in a mismatch between promised and delivered
reliability.

In table I we present the results of the menu designed
according to the theory of Chao [17]. We have discretized
the menu into 5 options. The price and reliability of each
option are presented in the first two columns of table I. The
fourth and fifth column indicate the average valuation and
total demand of each group of types within a given option.
Based on this information, a piece-wise constant demand
function is used as an input to the true unit commitment
model of the Belgian system. The realized reliability of each
option is indicated in the third column of the table. We
observe a significant deviation between promised and delivered
reliability, especially for the first two options.

2) Performance of the ADMM Algorithm: Fig. 4 presents
the convergence of dual decomposition based on the cutting
plane method. The lower bound that is obtained by dual
decomposition amounts to - 5767.5 million.

ADMM is implemented in Julia and we utilize 120 CPUs
on the CECI cluster [41] in order to solve the model, with
one CPU being dedicated to each subproblem in the x-update
of ADMM. Gurobi is chosen as the solver and the MIP gap
is set to be 0.1%. The run time for 30 iterations of the
algorithm amounts to 2.7 hours. The first feasible solution is

91n order to preserve seasonal effects, the scenarios of wind and solar power
production are created as follows. In the case of solar, we shuffle the days
within the same week. For example, the days in the first week of 2013-2017
are regarded as samples of the same day (35 in total), and then we randomly
draw one day from this set. The hourly load factor (production divided by
installed capacity) of this day is used in order to derive the production profile
of the first day in 2050. For wind, we shuffle the months in the same season.

10According to the Tempo program of EDF, the estimated elasticity is
between -0.18 to -0.79 [5].
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TABLE I
PRICE MENU FOR THE EXAMPLE OF SECTION IV-B BASED ON CHAO’S
THEORY.
Price Reliability Realized Vi
(€/MWh) | (%) Reliability (%) | (€/Mwh) | Di (MW)

0.0 21.6 0.6 31.7 436.8
46.0 94.2 93.2 116.9 739.1
52.8 98.2 97.8 231.3 839.9
57.3 99.7 99.7 353.1 839.9
58.3 100.0 100.0 450.5 504.0

& 5700 s ,

S . lower bound

% B | joeoxces objective value of master

(0] B

‘5 -5750 1

R

=
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& -5800 1

2
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< 5850 : :
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Fig. 4. Convergence of the cutting plane method. The solid curve presents the
evolution of the lower bound of the dual function. The dotted curve presents
the evolution of the objective value of the master problem in the cutting plane
method. A valid cut that limits the objective value of the master problem
under -5700.5 million (which is the performance of a flat tariff) is added to
the master problem in order to stabilize the first few iterations.

TABLE 11
THE PRICE MENU OBTAINED BY ADMM.
Reliability (%) | Realized Reliability (%) | Price (€/MWh)
5.3 5.3 0.0
92.9 92.9 55.6
97.8 97.8 64.0
99.7 99.7 69.6
100.0 100.0 70.6

obtained at the 16th iteration and the corresponding objective
value amounts to -5763.4 million. The absolute gap of the
algorithm, compared with the lower bound, is 4.1 million,
which accounts for 0.34% of the operating costs of serving
residential consumers'!. The required run time for 16 iterations
amounts to 1.3 hours. The best solution is achieved at the 27th
iteration, with an objective of -5763.5 million. Note that this is
very close to the objective function value of the 16th iteration.
3) Welfare Comparison: This section compares the results
of priority service pricing with those of the optimal flat tariff
and of real-time pricing. Note that the results are based on the
assumption of synchronized profiles and the analysis of the
case with unsynchronized profiles is available from [31].
Table II presents the promised reliability, realized reliability
and price that are obtained from solving the model using our
proposed algorithm. It is observed that there is no deviation be-
tween the promised reliability and realized reliability, which is

1'\We consider this gap as being acceptable, based on typical optimality
gaps that are used in the stochastic unit commitment literature [33], [34],
[42] that are in the order of 1%.

TABLE III
ECONOMIC PERFORMANCE OF PRIORITY SERVICE PRICING (PSP), FLAT
TARIFFS (FT) AND REAL-TIME PRICING (RTP).

. Social Consumer| Consumer Producer | Producer
Policy| welfare | Benefits | Net Benefits Profits Costs
M <€) M <€) M <€) M <€) M <€)
FT 5700.5 6876.8 5234.5 466.1 1176.2
PSP 5763.4 6952.0 5297.4 466.1 1188.6
RTP 5782.3 6992.4 5515.1 267.2 1210.2

in stark contrast to the results of table I that are obtained from
traditional priority service pricing theory. This is a powerful
aspect of integrating menu design with unit commitment. We
further test our model out of sample by running it against 1000
scenarios that are drawn from the same distribution, but do
not correspond to the scenarios used in the bilevel model. We
find that the realized reliability levels amount to 5.9%, 93.4%,
97.8%, 99.7% and 100.0%, and are therefore very close to the
in-sample reliability levels.

Table III compares the economic performance of priority
service pricing, flat tariffs and real-time pricing. It is observed
that priority service pricing increases social welfare by 1.1%
compared to the welfare achieved by a flat tariff. This corre-
sponds to 77.1% of the welfare gains that can be achieved from
moving from a flat tariff to real-time pricing. The producer
profit under the flat tariff is set as the target profit of the bi-
level model. We can achieve this profit target exactly when
solving the bi-level model.

4) Interruption Patterns: A powerful feature of our pro-
posed model is that it reveals the interruption patterns as-
sociated with a given level of reliability. These interruption
patterns are the direct output of our model, in particular they
correspond to the d; 4, variables. This illuminates the impact
of different options on the discomfort that is experienced by
households. In Fig. 5 we present the interruption pattern for 1
kW of supply into the four most reliable options of table II.

To illustrate the usefulness of this model, note that although
option 2 corresponds to a reliability level of 92.9% (which, if
evenly distributed, implies an interruption frequency of 4.4
minutes per hour), around hour 1000 of the simulation, loads
under this option experience a continuous interruption of 20
hours. The severity of such continuous interruptions needs to
be carefully accounted for by utilities, and cannot be furnished
by the classical theory of priority service pricing [17]. We note
that the excessive stress that the system experiences around
hours 500, 1000 and 7000 is driven by three factors: high
industrial and commercial demand, low renewable production
and low availability of conventional generators due to main-
tenance.

V. CONCLUSIONS AND FUTURE WORK

We reformulate priority service pricing as a bi-level opti-
mization problem. Our model couples the problem of menu
design with unit commitment. We are thus able to extend the
classical theory of priority service pricing [17] by including
non-convex costs and constraints in the production simulation
model. We further develop a decomposition algorithm for solv-
ing the problem heuristically, and illustrate its effectiveness on
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Fig. 5. Interruption pattern of 1 kW power in the most reliable four options
for the case study of section IV-B.

a realistic case study of the Belgian electricity market. Our
study of the Belgian power system demonstrates that priority
service pricing can reap 77.1% of the gains of real-time pricing
by using a menu with 5 options.

There are various directions that can be considered in
future research. We have outlined various improvements to
detailed aspects of the model, such as the endogenous deter-
mination of breakpoints and relaxing the requirement that all
consumer types choose an option. Moreover, the framework
that we develop here can be used for revisiting a host of
other nonlinear pricing applications that can be found in the
literature, but are currently limited to closed-form solutions
that do not exploit the power of commercial solvers [22]-[24],
[28]. We are specifically interested in an extension of priority
service pricing to multilevel demand subscription, which is
a price menu with both capacity and energy charges [28],
and a comparison of its performance to the menu presented
in this paper. Another direction of interest is to apply the
bi-level approach in order to incorporate capacity expansion
planning considerations in the design of the menu [22], so as
to guarantee that the promised reliability can be delivered on
a daily or weekly basis. Finally, we are interested in using
the interruption patterns of the proposed model as input to an
energy router problem [43] that assesses the impact of priority
service pricing on specific devices within a home.

VI. APPENDIX - A Toy EXAMPLE TO ILLUSTRATE
ADMM

Consider a system with £ consumers, whose valuation is
indicated by V;, [ € L, and whose power demand is uniformly
equal to D. We design a menu with a single option, assuming
that the total target subscription is D = K - (VB; — V By)
with valuation breakpoints V By and V B;. Suppose that the
system consists of one generator, which is operational with
a probability of P; and is out of service with a probability
P,. The generator is assumed to have a capacity of P,y and
a marginal cost of M C. The profit target is II,. The overall
model can be formulated as follows:

min P1'61+P2'62
dy,d2,c1,c2,m,m

—0.5-(VBy+VBy) - (Py-di + Py -ds) (69)

subject to: 0 < dy < Pax (70)
do =0 (71
di <D (72)
cg=MC-dy (73)
ca =0 (74)
r D—(P-di+Py-ds)=0 (75)
7-D—(P-c1+ Py-co) =11, (76)
r-Vi—m>0,lel 77
0<r<i1 (78)
o<m<mt (79)

where d; denotes the supply in scenario w; and ds in
scenario wo. The objective (69) minimizes the negative of
social welfare. Constraints (70) and (71) require that supply be
limited by the available capacity in each scenario. Constraint
(72) requires that the supply be limited by the subscription
quantity. Constraints (75) and (76) are the reliability and
profit constraints, respectively. Constraint (77) guarantees that
consumers obtain a non-negative surplus.

We drop ds and ¢, since they are equal to O and create a
copy of d; and c¢; (we denote the variable and its copy as d,
and d,, c, and c.respectively), yielding

dm,dzl,rcl,igz,r,w Py-c;—P-05-(VBy+VBy)-d, (80)
subject to: 0 < d,; < Pax (81)
d, <D (82)

¢, =MC-d, (83)
r-D—P-d, =0 (84)
w-D—P-c, =1l (85)
r-Vi—w>0,leL (86)
0<r<i 87
0<7m<Ir (88)

de —d, =0 (89)

cy —Cy; =0 (90)

The correspondence between the variables of the model and
the stylized formulation in section III is as follows: x; =
(dg,cz), X2 = (r,7) and z = (d,c.). The function f(x1)
refers to objective (80). The set C; corresponds to constraints
(81) - (83) while the set Co corresponds to constraints (84) -
(88). The equalities Ax; — z = 0 correspond to constraints
(89) and (90). The augmented Lagrangian using scaled dual
variables is written as:

L,(dg,d.,cq,c0ym, T, U1, U2)
=Py -c, —P1-05-(VBy+VBy)-d,
+0/2((de — dz + w)? + (ez — ¢z + u2)?)
The x-update of the update (56) corresponds to solving:

oD
92)

(PX):min Py -¢c, — P1-05-(VBy+VBy)-d, (93)
x,Cx
+ p/2((dz — d’; +u’f)2 + (ex — c’j + ug)2)
%94
subject to: (81) — (83) 95)
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The z-update which corresponds to (57) is:

(PZ): QJin p/2((dET — d, + uk)?
+ (e = e+ ug)?) (96)
subject to: (84) — (88) o7
The u-update which corresponds to (58) is:
upthi= a4 dit - dE! (98)
ub T = b 4 kA (99)

A more detailed description of the toy example with as-
sumed values for parameters is available from [31].

ACKNOWLEDGMENT

This research has been supported by the ENGIE Chair in
Energy Economics and Energy Risk Management and by the
ENGIE-Electrabel ColorPower grant. The authors also want
to thank Dr. Andreas Ehrenmann for the helpfull comments
during the development of this work.

The work is supported via the energy transition funds
project EPOC 2030-2050 organised by the FPS economy,
S.M.E.s, Self-employed and Energy.

Computational resources have been provided by the super-
computing facilities of the Université catholique de Louvain
(CISM/UCL) and the Consortium des Equipements de Calcul
Intensif en Fédération Wallonie Bruxelles (CECI) funded by
the Fond de la Recherche Scientifique de Belgique (F.R.S.-
FNRS) under convention 2.5020.11.

[1]

[2]

[3]

[4]
[5]

[10]
[11]

[12]

REFERENCES

P. Pinson and H. Madsen, “Benefits and challenges of electrical de-
mand response: A critical review,” Renewable and Sustainable Energy
Reviews, vol. 39, pp. 686—699, 2014.

A. Papalexopoulos, J. Beal, and S. Florek, “Precise mass-market energy
demand management through stochastic distributed computing,” IEEE
Transactions on Smart Grid, vol. 4, no. 4, pp. 2017 — 2027, August
2013.

S. Stoft, Power System Economics. IEEE Press and Wiley Interscience,
2002.

A. Faruqui and S. George, “The value of dynamic pricing in mass
markets,” The Electricity Journal, vol. 15, no. 6, pp. 45-55, 2002.

A. Faruqui, D. Harris, and R. Hledik, “Unlocking the 53 billion euro
savings from smart meters in the EU: How increasing the adoption of
dynamic tariffs could make or break the EU’s smart grid investment,”
Energy Policy, vol. 38, no. 10, pp. 6222-6231, 2010.

G. Strbac, M. Aunedi, D. Pudjianto, F. Teng, P. Djapic, R. Druce,
A. Carmel, and K. Borkowski, “Value of flexibility in a decarbonised
grid and system externalities of low-carbon generation technologies,”
Imperial College London and NERA Economic Consulting, Tech. Rep.,
2015.

H. C. Gils, “Assessment of the theoretical demand response potential in
europe,” Energy, vol. 67, pp. 1-18, 2014.

C. Campaign and S. Oren, “Firming renewable power with demand re-
sponse: An end to end aggregator business model,” Journal of Regulatory
Economics, vol. 50, no. 1, pp. 1-37, 2016.

S. Borenstein, M. Jaske, and A. Rosenfeld, “Dynamic pricing, advanced
metering and demand response in electricity markets,” University of
California Energy Institute, Tech. Rep. 105, October 2002.

Robert, Nonlinear pricing. Oxford University Press, 1993.

K. Margellos and S. Oren, “Capacity controlled demand side man-
agement: A stochastic pricing analysis,” IEEE Transactions on Power
Systems, vol. 31, no. 1, pp. 706-717, 2016.

M. Negrete-Pincetic, A. Nayyar, K. Poolla, F. Salah, and P. Varaiya,
“Rate-constrained energy services in electricity,” IEEE Transactions on
Smart Grid, 2016.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

W. Chen, L. Qiu, and P. Varaiya, “Duration-deadline jointly differen-
tiated energy services,” in IEEE 54th Annual Conference on Decision
and Control (CDC), 2015.

A. Nayyar, M. Negrete-Pincetic, K. Poolla, and P. Varaiya, “Duration
differentiated energy services with a continuum of loads,” IEEE Trans-
actions on Control of Network Systems, vol. 3, no. 2, pp. 182-191, 2016.
E. Bitar and Y. Xu, “Deadline differentiated pricing of deferrable electric
loads,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 13-25, 2017.
E. Bitar and S. Low, “Deadline differentiated pricing of deferrable
electric power service,” in IEEE 51st Annual Conference on Conference
on Decision and Control (CDC), 2012.

H.-P. Chao and R. Wilson, “Priority service: Pricing, investment and
market organization,” The American Economic Review, vol. 77, no. 5,
pp. 899-916, December 1987.

S. Rao and E. Petersen, “Optimal pricing of priority services,” Opera-
tions Research, vol. 46, no. 1, pp. 46-56, 1998.

R. Dhulst, W. Labeeuw, B. Beusen, S. Claessens, G. Deconinck, and
K. Vanthournout, “Demand response flexibility and flexibility potential
of residential smart appliances: Experiences from large pilot test in
Belgium,” Applied Energy, vol. 155, pp. 79-90, 2015.

W. Cardinaels and 1. Borremans, “Linear: Demand re-
sponse for families,” Linear consortium, Tech. Rep., 2014.
[Online]. Available: http://www.linear-smartgrid.be/sites/default/files/

Linear%?20Final%20Report%20-%201r2.pdf

R. Stamminger and V. Anstett, “The effect of variable electricity tariffs
in the household on usage of household appliances,” Smart Grid and
Renewable Energy, vol. 4, no. 4, 2013.

P. Joskow and J. Tirole, “Reliability and competitive electricity markets,”
RAND Journal of Economics, vol. 38, no. 1, pp. 60-84, Spring 2007.
H.-p. Chao, “Competitive electricity markets with consumer subscription
service in a smart grid,” Journal of Regulatory Economics, vol. 41, no. 1,
pp. 155-180, 2012.

C. Campaigne and S. S. Oren, “Firming renewable power with demand
response: an end-to-end aggregator business model,” Journal of Regu-
latory Economics, vol. 50, no. 1, pp. 1-37, 2016.

R. Sioshansi, “Modeling the impacts of electricity tariffs on plug-
in hybrid electric vehicle charging, costs and emissions,” Operations
Research, vol. 60, no. 3, pp. 506-516, May-June 2012.

R. Sioshansi and W. Short, “Evaluating the impacts of real time pricing
on the usage of wind power generation,” IEEE Transactions on Power
Systems, vol. 24, no. 2, pp. 516-524, May 2009.

A. Papavasiliou and S. S. Oren, “Large-scale integration of deferrable
demand and renewable energy sources in power systems,” IEEE Trans-
actions on Power Systems, vol. 29, no. 1, pp. 489—499, January 2014.
H. P. Chao, S. S. Oren, S. A. Smith, and R. B. Wilson, “Multi-level
demand subscription pricing for electric power,” Energy Economics, pp.
199-217, 1986.

A. L. Motto, J. M. Arroyo, and F. D. Galiana, “A mixed-integer Ip
procedure for the analysis of electric grid security under disruptive
threat,” IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1357—
1365, 2005.

L. P. Garcés, A. J. Conejo, R. Garcia-Bertrand, and R. Romero, “A
bilevel approach to transmission expansion planning within a market
environment,” [EEE Transactions on Power Systems, vol. 24, no. 3, pp.
1513-1522, 2009.

Y. Mou, “A bi-level optimization formulation of priority service pricing
appendix,” July 2019. [Online]. Available: https:/sites.google.com/site/
yutingmouchina/source-code/priorityservice

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1-122, 2011.

A. Papavasiliou, S. S. Oren, and R. P. O’Neill, “Reserve requirements
for wind power integration: A scenario-based stochastic programming
framework,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp.
2197-2206, November 2011.

A. Papavasiliou and S. S. Oren, “Multi-area stochastic unit commitment
for high wind penetration in a transmission constrained network,”
Operations Research, vol. 61, no. 3, pp. 578-592, May / June 2013.
K. Kim and V. M. Zavala, “Algorithmic innovations and software for
the dual decomposition method applied to stochastic mixed-integer
programs,” Mathematical Programming Computation, pp. 1-42, 2018.
C. Sagastizabal, “Divide to conquer: decomposition methods for energy
optimization,” Mathematical programming, vol. 134, no. 1, pp. 187-222,
2012.



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. XX, NO. XX, XX 2019

(371

[38]

(391

[40]
[41]

[42]

[43]

European Commission, “EU reference scenario 2016,” Tech. Rep.,
October 2016. [Online]. Available: https://ec.europa.eu/energy/en/
data-analysis/energy-modelling

(2017, January) Grid data. [Online]. Available: http://www.elia.be/en/
grid-data/data-download

A. Papavasiliou and Y. Smeers, “Remuneration of flexibility using
operating reserve demand curves: A case study of Belgium,” The Energy
Journal, pp. 105-135, 2017.

Synergrid. (2017, October) Synthetic load profiles. [Online]. Available:
http://www.synergrid.be/index.cfm?PagelD=16896

CECI, “Clusters at CECI,” March 2019. [Online]. Available: http:
/Iwww.ceci-hpc.be/clusters.html

A. Papavasiliou, S. S. Oren, and B. Rountree, “Applying high perfor-
mance computing to transmission-constrained stochastic unit commit-
ment for renewable energy integration,” IEEE Transactions on Power
Systems, vol. 30, no. 3, pp. 1109-1120, 2015.

C. Gérard and A. Papavasiliou, “A comparison of priority service
versus real-time pricing for enabling residential demand response,”
in 2019 IEEE Power & Energy Society General Meeting (PESGM),
2019, to appear. [Online]. Available: https://perso.uclouvain.be/anthony.
papavasiliou/public_html/Gerard2019.pdf

Yuting Mou received the Bachelors and Masters de-
grees in electrical engineering from Jilin University,
and Zhejiang University, China, in 2012 and 2015,
respectively. He is currently a PhD student at the
Louvain Institute of Data Analysis and Modeling
(LIDAM), Université catholique de Louvain, Bel-
gium.

Anthony Papavasiliou (M’06) received the B.S.
degree in electrical and computer engineering from
the National Technical University of Athens, Greece,
and the Ph.D. degree from the Department of In-
dustrial Engineering and Operations Research at the
University of California at Berkeley, Berkeley, CA,
USA. He holds the ENGIE Chair and the Francqui
Foundation Research Professorship 2018-2021 at
the Université catholique de Louvain, Louvain-la-
Neuve, Belgium, and is a member of the Louvain
Institute of Data Analysis and Modeling (LIDAM).

B
=

Philippe Chevalier received an engineering de-
gree in applied math from UCLouvain and a PhD
degree from the Operations Research Center at
Massachusetts Institute of Technology. He is full
professor at UCLouvain in Belgium and teaches at
the Louvain School of Management. He served as
president of the Louvain Institute of Data Analysis

and Econometrics (CORE). He serves as president of

and Modeling in economics and statistics (LIDAM)
“ /} and president of the Center for Operations Research

N-SIDE. His main research interest are in stochastic

models for Supply Chain Management and Energy networks.



