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Abstract—We present a two-stage stochastic programming
model for committing reserves in systems with large amounts
of wind power. We describe wind power generation in terms of
a representative set of appropriately weighted scenarios, and we
present a dual decomposition algorithm for solving the resulting
stochastic program. We test our scenario generation methodology
on a model of California consisting of 122 generators, and we
show that the stochastic programming unit commitment policy
outperforms common reserve rules.

Index Terms—Wind power integration, reserve requirements,
stochastic unit commitment.

I. INTRODUCTION

The large scale integration of wind generation in power
systems presents a significant challenge to system operators
due to the unpredictable and highly variable pattern of wind
power generation. Uncertainty in power system operations is
commonly classified in discrete and continuous disturbances.
Discrete disturbances include generation and transmission line
outages and require the commitment of contingency reserves.
Contingency reserves include spinning reserve, online gen-
erators which can respond within a few seconds, and non-
spinning, or replacement, reserve, which consists of offline
generators that replace spinning reserve a few minutes after
the occurrence of a contingency in order to restore the ability
of the system to withstand a new contingency. Continuous
disturbances most commonly result from stochastic fluctua-
tions in electricity demand. The resulting imbalances require
the utilization of operating reserves which, as in the case of
contingency reserves, are classified according to their response
speed. Regulation reserves are capable of responding within
seconds in order to maintain system frequency, and load
following reserves are re-dispatched in the intra-hour time
frame in order to balance larger scale disturbances that occur
within the hour.

The unpredictable fluctuations of wind power supply are
more naturally categorized as smooth disturbances. Never-
theless, the integration of wind power at a large scale can
create significant power shortages that can result in reliability
events, such as the 1,700 MW wind generation ramp-down
that occurred within three and a half hours in Texas in
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February 2008, and necessitated the curtailment of large indus-
trial customers. Reserve commitment rules have traditionally
differentiated between operating and contingency reserves,
and have worked effectively in practice for standard system
operations. However, the large scale integration of wind power
supply obscures the differentiation between operating reserves
and contingency reserves and necessitates more sophisticated
methods for dispatching and operating reserves.

Stochastic programming lends itself naturally to the task
of optimizing reserve operations due to the fact that reserve
dispatch decisions are optimized endogenously in a stochas-
tic programming formulation. In addition to co-optimizing
generation schedules and reserve requirements, a stochastic
programming model can also be utilized for analyzing the
economic impacts of wind integration and demand response in
power system operations. Therefore, it is an extremely useful
tool both for the purpose of improving system operations
but also for analyzing the economic impacts of large scale
renewable power integration.

Despite its attractive features, the application of stochastic
programming presents two significant challenges. The first is
to develop a methodical approach for selecting and appropri-
ately weighing the scenarios that are input to a stochastic pro-
gramming formulation. The second challenge is to overcome
the computational intractability of the resulting problem. In
this paper we present a methodology for selecting scenarios
in stochastic unit commitment problems with large amounts
of wind power, and a decomposition algorithm for solving
the stochastic program. We validate our scenario selection
methodology by comparing the resulting unit commitment
policy with standard unit commitment approaches.

II. LITERATURE REVIEW

Our work is motivated by the concerns that were raised
in the California ISO 2007 wind integration report [1]. In
that report, the California ISO estimates that the target of
California to reach a renewable integration level of 20% can
increase load following capacity requirements up to 3470 MW,
and ramping-up and ramping-down requirements by up to 40
MW/min for up to 20 minutes, compared to their current
levels. Similarly, in a 2006 British report published by the
UK Energy Research Center [2] over 80% of the studies that
were cited concluded that for wind power integration levels
above 20% an investment in system backup in the range of 5-
10% of installed wind capacity is required in order to balance



the short term (seconds to tens of minutes) variability of wind
power supply. A 2006 study conducted by Enernex for wind
power integration in Minnesota [3] concludes that the cost of
additional reserves and costs related to variability and day-
ahead forecast errors will increase the cost of wind power
production by 2.11 $/MWh (15% penetration) to 4.41 $/MWh
(25% penetration).

Unit commitment models are essential for studying the
impact of wind power integration in power system opera-
tions, due to the fact that operational costs are accurately
modeled in a multistage framework. Sioshansi [4] uses a
deterministic unit commitment model to perform an annual
simulation of wind integration in the ERCOT system, and
accounts for load flexibility and transmission constraints. As
we described above, the additional advantage of stochastic
unit commitment models is the endogenous optimization of
reserve commitment. Consequently, stochastic programming
has been increasingly utilized in wind integration studies [5],
[6], [7], [8]. Our stochastic programming unit commitment
model follows the work of Ruiz et al. [9] in formulating a two-
stage stochastic program, where the first stage of the problem
represents day-ahead unit commitment of slow generators,
and the second stage represents hour-ahead economic dispatch
of the entire system, given the fixed day-ahead schedule of
slow generators. Another appealing feature of the model in
[9] which we adopt in our paper is testing unit commitment
policies against Monte Carlo samples of wind generation
outcomes, instead of the scenario set, since the scenario set
holds limited information regarding the behavior of the wind
generation resource. Ruiz et al. [5] use the general model that
they develop in [9] to estimate the impact of wind power
integration in the system of the Public Service of Colorado.
For the purpose of their annual simulations, Sioshansi [4] and
Ruiz [5] solve the unit commitment problem for each day of
the year. Although this approach provides a complete picture
of annual operations, it is reasonable to expect that much of
the information of the model can be captured by focusing
the analysis on a representative set of days, thereby reducing
computational burden substantially. In particular, we select a
representative weekday and weekend for each season, thereby
focusing our analysis on eight distinct day types. In addition,
we use a decomposition algorithm for solving the stochastic
program. In contrast, the authors in [9] solve the stochastic unit
commitment problem exhaustively as a mixed integer program.
In order to cope with the resulting computational complexity,
the authors use a limited number of scenarios and continuous
variables for the commitment of fast generators [10], [5].

Bouffard et al. [11] introduce a two-stage stochastic pro-
gramming formulation for modeling reserves that utilizes
explicit decision variables for reserves, assuming that reserve
bids as well as energy bids are available to the system operator.
Bouffard and Galiana [7] use the model developed in [11] to
analyze the impact of wind integration on reserve requirements
in a small scale model with 3 generators and a 4-hour horizon
without transmission constraints. Morales et al. [8] utilize a
similar formulation to [7] in order to analyze reserve require-
ments in the presence of wind power. By aggregating generator
unit commitment variables and utilizing a scenario reduction

technique, they are able to solve the IEEE 1996 reliability test
system with transmission constraints. In contrast to [8], [7],
[11], we focus on a central unit commitment problem where
the ISO strives to minimize operating costs. Therefore, we do
not consider reserve bids in our model, since these bids are
not associated with an intrinsic cost for generators and should
therefore not affect the ISO decision for dispatching resources.

As we mentioned in the introduction, stochastic unit com-
mitment models present computational challenges due to their
large scale. A common approach to deal with these challenges
is the utilization of decomposition techniques. Such decompo-
sition techniques are used by Takriti et al. [12], who use the
progressive hedging algorithm of Rockafellar and Wets [13] in
order to decompose the stochastic unit commitment problem
to single scenario subproblems. Carpentier et al. [14] employ
an augmented Lagrangian algorithm for solving a multistage
stochastic unit commitment problem. Shiina and Birge [15]
also employ decomposition by devising a column generation
algorithm in order to decompose a multistage stochastic unit
commitment problem to single generator subproblems. A
heuristic decomposition approach was recently proposed by
Zhang et al. [16]. In this paper we employ a Lagrangian relax-
ation algorithm, in which a first-stage subproblem schedules
slow generators and, given these schedules, a set of second-
stage subproblems are solved for committing fast generators
and dispatching all resources. As we describe in section B of
the appendix, the advantage of the proposed decomposition is
that it allocates computational load evenly among subproblems
and yields a feasible solution and upper bound at every step. In
addition, it is possible to parallelize the algorithm by solving
each second-stage subproblem in a separate processor.

The other major challenge of stochastic unit commitment
models is the selection of scenarios and their associated
probabilities. Kuska et al. [17] present stability results on
stochastic programs which motivate an algorithm for scenario
selection that strives to minimize the information that is lost
by the scenario selection process. Dupacova et al. [18] test
the algorithm in the context of unit commitment models with
load uncertainty. Heitsch and Romisch [19] present faster
variants of the algorithm. Morales et al. [20] develop an
alternative algorithm which resembles the one in [19], but uses
a different metric for measuring distances between probability
measures. Although there is sound theoretical justification for
the algorithm proposed in [19], it suffers from two practical
drawbacks for the purposes of our analysis: the algorithm
is not consistent with the moments of the wind time series,
and the modeler cannot explicitly specify scenarios that are
believed to significantly influence the performance of the unit
commitment schedule. In this paper we propose an alternative
scenario selection method which addresses these drawbacks.

We test our scenario selection methodology against deter-
ministic reserve rules in a model of the California ISO system
consisting of 122 generators and imports from the Western
Electricity Coordinating Council (WECC) [21]. We focus our
comparison on two types of deterministic reserve rules. The
first rule commits reserves by requiring that total reserve in the
system is at least a certain fraction of forecast peak load, where
the proportionality factor is chosen optimally within a range of



reasonable values. The second rule that we test is inspired by
a recent report published by the National Renewable Energy
Laboratory [22]. The authors propose a heuristic approach for
committing spinning reserves, the 3+5 rule, which requires
the system to carry hourly spinning reserve no less than 3%
of hourly forecast load plus 5% of hourly forecast wind power.
This rule is adapted in our model and we present the results
of our comparison in section V.

III. THE MODEL
A. Unit Commitment

The stochastic unit commitment model is described by the
following minimization problem. Section A of the appendix
describes the nomenclature used in the formulation of the
problem.
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The objective in Eq. 1 minimizes startup, minimum load
and fuel costs. As we described in section II, the stochastic
model is a two-stage problem. The first stage of the model
represents a day-ahead unit commitment, where the schedules
of slow generators are specified. The decisions that are made
in this stage cannot be altered once the uncertainty in the
system is manifested. The second stage of the model corre-
sponds to hour-ahead operations, and decisions can be adjusted

according to the scenario that is realized. In the second stage
we decide about the commitment schedule of fast generators,
and the production plans of all generators. The objective of the
stochastic model is to minimize the expected sum of day-ahead
commitment costs and hour-ahead commitment and dispatch
costs. We also assume the existence of a dummy load with a
very high marginal value and no operational constraints, which
corresponds to load shedding.

The market clearing constraint in Eq. 2 requires that supply
matches net demand. Net demand is indexed by scenario
because it is uncertain, due to the uncertainty of wind gen-
eration. The constraints of Egs. 3, 4 specify the minimum and
maximum operating capacity limits of each generator. Egs. 5,
6 model the ramping constraints of each generator. Minimum
up and down times are modeled in Egs. 7-10, following [23].
Note that the integrality of the startup variables vy can be
relaxed in order to reduce the size of the resulting branch
and bound tree, which reduces computation time. Egs. 11,
12 are necessary for relaxing the integrality of the startup
variables. Eqgs. 13, 14 model the state transition of the startup
variables. The nonanticipativity constraints on the commitment
and startup variables are given in Eqgs. 15, 16.

The deterministic unit commitment problem generates a unit
commitment policy that serves as a benchmark for comparing
the performance of the stochastic model. The formulation
follows [4].
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Egs. 21 and 22 are modified maximum capacity constraints
which account for the possibility of generators providing
reserves. As in [4], we assume that reserve offers reduce the
available generation capacity for energy. Eq. 26 corresponds to
a total reserve requirement, and Eq. 27 corresponds to a fast
reserve requirement. There is a day-ahead wind generation
forecast which determines forecast net demand. In order
to isolate the impact of wind power on operating reserve
requirements, we do not model contingency reserves.
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Fig. 1. Net load for each type of day.

B. Economic Dispatch

After the commitment schedule of the slow generators has
been determined from the solution of the unit commitment
models presented above, the economic dispatch problem is
solved. The economic dispatch model is derived from the
model presented in Egs. 19 - 28, with the following exceptions:
there are no reserve requirements; the commitment variables
of the slow generators are fixed to the values that were
determined from the solution of the unit commitment problem;
the model is run against samples of wind power generation
which are generated according to the wind power model that
we describe in the next section; finally, the set of generators G
is reduced to the set of generators that were either producing
or committed for reserve in the unit commitment model.

As we mentioned in section II, in contrast to [4] and [5]
we focus on eight representative types of days, instead of
solving the unit commitment problem for all days of the
year. Thus, we are able to avoid resorting to heuristics [10]
in order to reduce the computational burden of the analysis,
while extracting most of the relevant information from the
model. We specify a different type of day for each season, and
also differentiate between weekdays and weekends. Hence, the
eight types of days include winter weekdays, winter weekends,
spring weekdays, and so forth. Each type of day is identified
by its forecast net load profile (excluding wind). We note that
we have not modeled load forecast uncertainty in our model.
The net load profile for each type of day is shown in Fig. 1.
For each type of day we solve the unit commitment problem,
which yields a corresponding commitment schedule for slow
generators. The Monte Carlo simulations of economic dispatch
are then performed, under the presumption that the type of day,
therefore the net load excluding wind, is known in advance.
For each type of day, we perform economic dispatch for 250
outcomes of wind generation in order to obtain an accurate
estimate of the expected performance of each unit commitment
policy.

C. Wind Generation

A major difficulty with modeling wind power production
is that the mapping of wind speed to wind power production
is highly nonlinear. In order to overcome this difficulty, we
model wind speed instead of wind power. Given a wind speed

model, we follow the approach of Brown et al. [24] and Torres
et al. [25] of using the power curve to model wind power
output. However, due to the fact that we are modeling wind
production for the entire state, we cannot use the power curve
of a single wind generator. Instead, we estimate the aggregate
power curve of the entire state by fitting a piecewise linear
approximation of average wind speed in the entire state to total
power production. The estimated power curve is superimposed
on the data sample in Fig. 2 for one of the two wind integration
levels that we are considering in our study. The power curve
resembles that of a typical wind generator, although it is
smoother due to the geographical diversity of wind generator
sites.

As we describe in detail in section V-A, we model two cases
of wind integration, a moderate integration level of 6,688 MW
and a deep integration level of 14,143 MW. In order to fit the
wind speed data, we experimented with various parametric
distributions that are suggested in [24], and found the inverse
Gaussian distribution to provide the best fit to the wind speed
data. The fit is shown in Fig. 3. Once we determine a fit to
the wind speed data, we can transform wind speeds to obtain
a Gaussian distribution for the transformed data set:

vy = N~ (Fra(v)), (29)

where N~1(.) is the inverse of the cumulative distribution
function of the normal distribution and F7¢ is the cumulative
function of the inverse Gaussian distribution. This is analogous
to the wind speed data transformation in Eq. 1 of [24], section
2.1 of [25] and Eq. 2 of [26] for transforming Weibull-
distributed data to Gaussian data, as well as the nonparametric
transformation that is used in Egs. 8, 9 of [27].

In order to remove diurnal and seasonal effects we follow
the methodology that is suggested in [24], [25] and [27].
In particular, we calculate the sample mean and variance
of transformed wind speeds for each hour of each month,
and normalize our data by subtracting the hourly mean and
dividing by the hourly standard deviation:

/
Vg — Mmt

Omt

vy = , (30)
where fi,,; and o, are the mean and standard deviation of v}
for hour ¢ of month m. The resulting data set v}’ is modeled
by a third order autoregressive model:

2
vy o= oRvl g+ ow, 31)
k=0

where w is a standard normal random variable, ¢;, ¢ €
{1, 2,3}, are the coefficients of the autoregressive model and
o is the variance of the underlying noise. The coefficients
of the third order autoregressive model and the variance of
the underlying noise are obtained by solving the Yule-Walker
equations [28]. Different parameters of the autoregressive
model are calculated for the two different cases of wind
integration that we study, as we describe in section V-A.
Once we obtain a third order autoregressive model for the
residual of the transformed wind data series, we can work
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in the opposite direction to simulate wind speed and wind
power supply. We use a random number generator to generate
residuals through Eq. 31, add back diurnal and seasonal effects
by inverting Eq. 30, and transform the resulting process to
wind speed by inverting Eq. 29. The resulting process is
approximately distributed according to the inverse Gaussian
distribution. The fit of our wind speed model to wind speed
data for the 14% wind integration case that we study in the
results section is shown in Fig. 3. Wind power production is
then simulated by using the power curve in Fig. 2. The fit of
our model to the data-set for the 14% wind integration case is
shown in Fig. 4. The deviations in the fit arise from the fact
that the wind speed distribution is not exactly inverse Gaussian
and also due to the fact that the power curve cannot exactly
reproduce the behavior of the scatter plot in Fig. 2, which
is produced by aggregating data from hundreds of locations.
Once we have constructed a wind power production model it
is used both for generating wind scenarios, as we will describe
next, but also for generating samples for the Monte Carlo
simulation of economic dispatch.

IV. SCENARIO GENERATION

The challenge of selecting scenarios for the stochastic
unit commitment problem is to discover a small number of
representative daily wind time series that properly guide the
stochastic program to produce a unit commitment schedule
that improves average costs, as compared to a unit commitment
schedule determined by solving a deterministic unit commit-
ment model.
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The basic tradeoff that needs to be balanced in dispatching
fast reserves is the flexibility that fast units offer in utilizing
wind generation versus their higher operating costs. Fast
generators are fueled by gas, which has a relatively high
marginal cost. In addition, the startup and minimum load costs
of these units are similar to those of slow units, however their
capacity is smaller; hence, their startup and minimum load cost
per unit of capacity is greater than that of slow generators. The
advantage of largely relying on fast units is that the system
is capable of discarding less wind power, which results in
significant savings in fuel costs. Unlike fast generators which
can shut down in short notice in the case of increased wind
power generation, slow generators cannot back down from
their minimum generation levels and therefore require the
waste of excess wind energy in order to stay online.

As we describe in section II, despite the theoretical jus-
tification of the scenario reduction algorithms proposed in
[17], [19], the algorithms are not guaranteed to preserve the
moments of hourly wind generation. Due to the predominant
role of fuel costs in the operation of the system, the accurate
representation of average wind supply in the case of large-scale
wind integration is crucial for properly guiding the weighing
of scenarios. Moreover, the modeler cannot specify certain
scenarios which are deemed crucial. For example, in the
case of wind integration, the realization of minimum possible
wind output throughout the entire day needs to be considered
explicitly as a scenario. Otherwise, there is the possibility of
under-committing resources and accruing overwhelming costs
from load shedding in economic dispatch. Therefore, it is
desirable to develop a scenario selection method which allows
us to include such a scenario in the scenario set.

In order to overcome the drawbacks that arise from imple-
menting the algorithms proposed in [17], [19], we adopt an al-
ternative approach. We generate a large number of wind power
samples from the autoregressive model described in section III,
and select a subset of wind time series a® € RY s € S, based
on a set of prescribed criteria which are deemed important.
We then assign weights to each scenario such that the first
moments of hourly wind output are matched as closely as
possible. That is, we solve the following problem:
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where p; is the average wind for hour ¢ for the day type that
is being considered. The lower bound in Eq. 34 is included in
order to ensure that all scenarios are considered, albeit with a
small weight.

In the results that we present in section V we use eleven
criteria to select the set of wind time series. The criteria
are the following: the series closest to the sampled mean;
the series resulting in net load with the greatest variance;
the series resulting in net load with the least variance; the
series resulting in net load with the greatest morning up-ramp;
the series resulting in net load with the greatest evening up-
ramp; the series resulting in net load with the greatest sum
of hourly absolute differences; the series resulting in net load
with the greatest min-to-max within the day; the series with
the least aggregate wind output throughout the day; the series
with the greatest aggregate wind output throughout the day;
the series resulting in the greatest observed net load peak;
and the series resulting in net load with the greatest observed
change within one hour. All of these criteria are considered
to capture either typical behavior of wind output, or certain
anomalous features that need to be explicitly accounted for
when scheduling reserves.

V. RESULTS
A. Data

We have used a model of the California ISO with imports
from WECC which is developed by the authors in [21]. In
contrast to the model that is used in [21], we do not model
transmission constraints. We collapse the import schedules of
22 thermal generators outside the California ISO, the export to
the Sacramento Municipal Utility District, and the production
data from three biomass facilities, six hydroelectric generators
and two geothermal facilities in [21] to a single fixed quantity
bid. We do not use the wind production data from [21] since
our model contains a much more detailed representation of
wind production. Since the model in [21] reflects import,
hydroelectric, geothermal and biomass production data for a
six-month period from May 1, 2004, to October 1, 2004, we
replicate the data for the remaining six months of the year
in order to produce an entire year of data. This extrapolation
is justified by the fact that the average production profiles of
all these resources are almost identical for the three seasons
that are covered by the data-set. Since we are using 2006
wind production data from the NREL database, we also use
load data from the same year, which is publicly available at
the CAISO Oasis database. The average load in the system is
27,298 MW, with a minimum of 18,412 MW and a peak of
45,562 MW. The net load profile for each type of day, which

TABLE 1
GENERATION MIX FOR THE TEST CASE

Type No. of units | Capacity (MW)
Nuclear 2 4,499
Gas 86 18,745.6
Coal 6 285.9
Oil 5 252
Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal 2 1,193
Wind (7.1% pen.) | 5 6,688
Wind (14% pen.) 10 14,143
Fast thermal 82 9,156.1
Slow thermal 40 19,225.4
TABLE II

LOCATIONS AND CAPACITY OF WIND POWER (MW)

County Existing | 7.1% wind | 14% wind
Tehachapi 722 4,262 7,181
Clark - - 1,500
Solano 327 827 910
San Gorgonio | 624 624 1,152
San Diego - - 1,527
Humboldt - - 218.2
Imperial - - 547.9
Altamont 954 954 968
Monterey - - 118
Pacheco 21 21 21
Total 2,648 6,688 14,143

needs to be served by thermal generators and wind power, is
shown in Fig. 1.

The wind data used in this study is sourced from the
National Renewable Energy Laboratory 2006 western wind
database. The entire data set is used for calibrating the autore-
gressive model. The locations of the wind generation sites that
are used for the study represent a moderate integration target
of 6,688 MW, based on the data presented in the CAISO report
[1], and a deep integration target of 14,143 MW, corresponding
to the 2010 California generation interconnection queue [29].
There is a total of 2,648 MW of wind power currently
connected in the California system. The locations of the wind
parks for each wind integration case are presented in table II.
Wind data was sourced from the NREL database according to
the locations that are described in table II. The wind power
production model is described in detail in section III-C. The
penetration level for the moderate integration case is 24.5%
of average load capacity and 7.1% of average energy demand,
while the penetration level for the deep integration case is
51.8% of average load capacity and 14.0% of average energy
demand. In order to identify the two wind integration cases
that are analyzed in our study, we label them by their energy
penetration level.

We use a finer model for thermal generators within CAISO,
with 122 generators, compared to the model in [21], which
uses 23 aggregated thermal generators. The value of lost load
is set to 5,000 $/MW-h. The number of generators and the
capacity for each fuel type are shown in table 1. The last
two rows of table I describe how the fossil fuel generation
mix is partitioned into fast and slow generators. The set
of fast generators consists of generators with a capacity no
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greater than 250 MW, amounting to a total capacity of 9,156.1
MW. The entire thermal generation capacity of the system is
28,381.5 MW.

B. Relative Performance of Stochastic Policy

In this section we compare the performance of the stochastic
unit commitment policy with a clairvoyant policy, as well as
with common reserve rules. The clairvoyant policy commits
reserves with advance knowledge of wind production for each
day. The common reserve rules that we consider, peak-load-
based unit commitment and the 3+5 rule, are explained in the
last paragraph of section II.

In Fig. 5 we present average cost performance of peak-
load-based unit commitment for various levels of total reserve
requirements. We see that the optimal reserve requirement for
the moderate wind integration level lies at 20% of maximum
load, whereas for the deep integration level it lies at 30%
of maximum load, and slightly exceeds the policy that com-
mits 40% of maximum load. Reserve requirements that are
exceedingly low result in significant load shedding, whereas
exceedingly high reserve requirements result in high fuel costs
due to the excessive rejection of wind power.

The lowest possible cost that any unit commitment policy
can attain is determined by the performance of a clairvoyant
policy, which can anticipate wind generation in advance of
unit commitment. In tables III, IV we compare the cost
performance of the clairvoyant policy, the stochastic policy,
the 3+5 rule and the best peak-load-based policy for the two
different wind integration cases. The column with bold figures,
which corresponds to the stochastic policy, contains absolute

TABLE III
DAILY COST OF OPERATIONS FOR EACH DAY TYPE - 7.1% WIND

Cost (3) A Cost ($) | A Cost (3) | A Cost ($)
Stoch Clair 20% peak 3+5
WinterWD 5,970,040 -21,816 20,484 39,747
SpringWD 6,003,520 -37,218 -2,147 14,870
SummerWD | 11,272,575 -62,634 102,183 110,793
FallWD 8,081,245 -39,921 15,751 21,618
WinterWE 3,166,890 -32,214 1,346 -3,587
SpringWE 2,642,864 -28,857 -12,622 14,463
SummerWE 7,595,842 -42,179 46,661 46,892
FallWE 5,106,143 -25,350 -1,806 1,002
Total 6,916,442 -38,041 26,733 37,596
improv. (%) -0.55 0.39 0.54
TABLE IV
DAILY COST OF OPERATIONS FOR EACH DAY TYPE - 14% WIND
Cost ($) | A Cost ($) | A Cost ($) | A Cost ($)
Stoch Clair 30% peak 3+5
WinterWD 4,121,453 -169,553 27,642 55,358
SpringWD 3,906,408 -120,016 71,468 103,306
SummerWD | 9,773,670 -111,811 147,861 67,553
FallWD 6,125,650 -89,470 27,721 34,900
WinterWE 1,967,672 -75,346 92,732 3,619
SpringWE 1,482,317 -57,696 113,434 96,514
SummerWE | 6,309,549 -78,993 79,931 39,757
FallWE 3,524,599 -78,288 -2,508 2,443
Total 5,551,907 -108,389 69,309 56,795
improv. (%) -2.08 1.33 1.09
TABLE V

SLOW AND TOTAL CAPACITY (MW) FOR EACH POLICY - 7.1% WIND

Stochastic 345 20% of peak
Day Type Slow Total Slow Total Slow Total
WinterWD | 8,128 14,811 | 8,220 17,358 | 7,946 17,401
SpringWD | 8,041 14,910 | 7,989 17,258 | 7,858 16,855
SummWD | 11,261 | 20,969 | 11,646 | 25,069 | 11,999 | 25,254
FallWD 9,173 15,693 | 9,296 18,531 | 9,377 18,396
WinterWE | 6,044 11,503 | 6,167 14,702 | 6,131 13,626
SpringWE | 5,804 11,183 | 6,276 13,991 | 6,135 14,020
SummWE | 9,018 16,647 | 9,401 21,141 | 9,443 21,076
FallWE 7,187 12,842 | 7,028 16,840 | 6,918 15,907
Total 8,540 15,580 | 8,696 18,729 | 8,648 18,528

cost values. Cost figures corresponding to the other policies are
relative to the stochastic policy costs. The row with total costs
weighs the cost of each day type with its relative frequency in
the year in order to yield annual results. The last row shows the
improvement of the stochastic policy over each other policy,
normalized by the cost of the stochastic policy.

The stochastic policy indeed improves on the deterministic
policies. The relative savings are greater for the case of deep
wind integration. This indicates that the benefits of stochastic
unit commitment are larger as uncertainty increases in the
system. The clairvoyant policy has a significant advantage over
the stochastic policy in the deep integration case, versus the
moderate case, because greater wind integration exacerbates
the level of uncertainty in the system. The 3+5 rule per-
forms better in the deep integration case versus the moderate
integration case, compared to the peak-load-based policy.
The stochastic policy yields 41% of the potential benefits of
having perfect knowledge of the future compared to the best
deterministic policy for the 7.1% wind integration case, and
34% of the benefits for the 14% wind case.



TABLE VI
SLOW AND TOTAL CAPACITY (MW) FOR EACH POLICY - 14% WIND

Stochastic 345 30% of peak
Day Type Slow Total Slow Total Slow Total
WinterWD | 7,012 15,160 | 7,014 14,856 | 6,779 14,837
SpringWD | 7,818 14,845 | 6,810 15,889 | 6,643 15,506
SummWD | 10,858 | 20,766 | 11,033 | 24,809 | 11,555 | 25,591
FallWD 8,608 16,476 | 8417 18,557 | 8,493 19,143
WinterWE | 5,630 11,746 | 5,569 14,815 | 5,353 12,010
SpringWE | 5,553 11,639 | 5,670 11,637 | 5,239 12,151
SummWE | 8,759 17,799 | 8,873 20,956 | 8,804 21,686
FallWE 6,904 12,823 | 6,632 15,349 | 6,687 16,044
Total 8,041 15,866 | 7,848 17,716 | 7,840 17,827

We present the total fossil fuel capacity and the average slow
generator capacity that is committed for each day type and
each policy in tables V, VI. For the stochastic unit commitment
formulation, this table includes the capacity of those slow
generators that are committed for at least one hour of the
day, or those fast generators that are committed for at least
one hour for at least one scenario. For the deterministic unit
commitment formulation, this table includes those generators
which are required to supply power, slow reserves or fast
reserves for at least one hour of the day. The last line of
these tables presents total capacity, which is calculated by
weighing the results of each day type by the frequency of
occurrence of the respective day type. We note that in the 7.1%
wind case, the stochastic unit commitment policy tends to
commit less total capacity, and less slow capacity. In contrast,
in the 14% wind case, the stochastic policy commits more
slow capacity and less total capacity. It is interesting to note
that the stochastic policy achieves savings with respect to the
deterministic policies both in the case where it commits more,
as well as less capacity. In the cases where the stochastic
policy commits less slow capacity (e.g. summer weekends),
the savings result from peak load periods during which the
deterministic policies incur large startup costs by committing
an excessive amount of slow reserves in order to satisfy reserve
requirement constraints. In the cases where the stochastic
policy commits more slow capacity (e.g. spring weekdays)
the deterministic policies commit less capacity because they
underestimate the potential fuel and minimum run savings.
This is due to the fact that the deterministic policies optimize
for expected wind supply, instead of averaging the cost savings
of insuring against fast capacity dispatch for various wind
supply outcomes. Due to the fact that fuel and minimum
run costs are convex for the system under consideration,
deterministic policies underestimate savings from committing
slow reserves.

We also present the daily amount of wind that is shed in
tables VII, VIII. In contrast to the results presented in [5],
the average wind that is wasted from the clairvoyant policy is
less. The losses in the 7.1% wind case are negligible, and the
stochastic policy sheds less wind compared to the deterministic
policies, which is consistent with the observations in [5]. In
the contrary, losses from the stochastic unit commitment policy
in the 14% wind case are slightly greater due to the fact that
the average slow capacity that is committed in the stochastic
policy is greater than the average slow capacity committed

TABLE VII
DAILY MWH OF WIND SHED FOR EACH POLICY - 7.1% WIND

Stoch | Clair 3+5 20% peak
WinterWD 5 7 9 10
SpringWD 0 0 0 0
SummerWD 0 0 0 0
FallWD 0 0 0 0
WinterWE 3,034 | 3,000 | 3,004 3,033
SpringWE 1,641 | 1,648 | 2,145 2,136
SummerWE 0 0 0 0
FallWE 0 0 0.2 0.2
Total 335 333 369 371
TABLE VIII
DAILY MWH OF WIND SHED FOR EACH POLICY - 14% WIND
Stoch Clair 3+5 30% peak
WinterWD 8,970 7,460 9,446 9,429
SpringWD 8,641 5,438 8,240 8,205
SummerWD 542 453 463 486
FallWD 1,746 1,248 1,697 1,696
WinterWE 28,920 | 19,721 | 28,901 28,870
SpringWE 32,261 | 19,330 | 32,344 32,040
SummerWE 3,886 3,324 3,731 3,705
FallWE 8,427 5,654 8,376 8,389
Total 8,803 6,038 8,783 8,753
TABLE IX

DAILY COST SAVINGS COMPARED TO NO-WIND CASE (%).

Integration | Savings ($) | Min load | Fuel | Load shed | Startup
7.1% wind | 1,952,606 8.7 90.4 | 0.0 0.9
14% wind | 3,613,132 7.2 924 | 0.0 0.4

in the deterministic policies. Hence we observe that, in order
to reduce fuel and startup costs in the 14% wind case, the
stochastic policy commits more reserves and sheds slightly
more wind power.

C. Impact of wind integration level

In table IX we categorize the cost savings resulting from
wind integration. The second column shows the total cost
savings for each case of wind integration relative to the case
where no wind is integrated. The deep integration case results
in almost twice as much savings. The remaining columns refer
to the percentage of cost savings that result from each type
of cost. Cost savings mainly originate from fuel costs. Load
shed costs are insignificant. There are also minor savings from
startup costs. For the 14% wind case, the startups required to
cope with wind variability tend to reduce the benefits of startup
costs.

VI. CONCLUSION

We have developed a two-stage stochastic unit commitment
model for determining reserve requirements in the presence
of wind power. We have presented a method for generating
and weighing the scenarios that are used in the stochastic
unit commitment model and we have evaluated our scenario
generation methodology by Monte Carlo simulation of unit
commitment and economic dispatch. Our stochastic unit com-
mitment schedule is shown to outperform peak-load-based
reserve schedules, as well as the 3+5 rule proposed in [22]. Our
model is also used to assess the sensitivity of operating costs in



wind integration levels. We have omitted various constraints of
the unit commitment problem in order to closely analyze our
scenario generation methodology. For example, we have not
included transmission constraints or import constraints. This
is work which we wish to pursue in future research.

APPENDIX
A. Nomenclature for unit commitment problems

Sets
G: set of all generators
G: subset of slow generators
G subset of fast generators
S set of scenarios
T': set of time periods
Decision variables
Uge: commitment of generator g in scenario s, period ¢
Vgst: Startup of generator g in scenario s, period ¢
Dgst: production of generator g in scenario s, period ¢
wg¢: commitment of slow generator g in period ¢
Zgy: startup of slow generator g in period ¢
sg¢: slow reserve provided by generator g in period ¢
fqt: fast reserve provided by generator g in period ¢
Parameters
Ts: probability of scenario s
K4: minimum load cost of generator g
Sy startup cost of generator g
Cy: marginal cost of generator g
D,;: net demand! in scenario s, period ¢
P; , P, minimum and maximum capacity of generator g
R;, R, : minimum and maximum ramping of generator g
UT,: minimum up time of generator g
DT,: minimum down time of generator g
N: number of periods in horizon
Treq: total reserve requirement
Fleq: fast reserve requirement

B. Decomposition algorithm for stochastic unit commtiment

We present a decomposition algorithm for solving the
problem presented in Eqs. 1 - 18. By dualizing the constraints
of Egs. 15, 16 we get the following Lagrangian:

L= Z Z ZWS(Kgugst + Sgvgst + Cypyst)

geG seSteT

+ Z Z Z '/Ts(ﬂlgst(ugst - wgt) + VgSt(ngt - Z!]t))

gEGs seSteT
(35

The first subproblem is, for each scenario,

min Z Z s (Kgugst + SgVgst + CyDgst)
geG teT

+ Z Z Ts (Mgstugst + Vgstvgst)

geGs teT
s.t.

(36)

(2) = (6),(9), (10), (12), (14)

pgst Z Oavgst Z Oyugst S {07 1}79 S Gut € T (37)

INet demand refers to demand minus wind

Note that if we did not impose Eq. 12, the previous prob-
lem would have been unbounded, therefore this constraint is
necessary for the proposed algorithm. The second subproblem
becomes:

min — Z Z Z Ts(LgstWgt + VgstZgt)

gEGS sES teT (38)
s.t.
(7),(8),(11), (13)
wgr €{0,1},29¢ > 0,9 € G5, t €T (39)
The updating of the dual variables is as follows:
lfllgcjt1 :ul;st + T (wlgt - u’;st)a (40)
1/5;;1 = V;“st + akﬂs(zst - vlgst). 41)

The step size rule follows [30] and [31] and is given by

AL — L)

PIEACRERIAEEE ATIEEAE
g,s,t

where X is a constant parameter, L}, is the value of Eq. 35
at the optimal solution, L is an upper bound on the optimal
solution, and wuj, vy, wy,, 25, are optimal solutions at the
k-th step.

We could have restricted ourselves to relaxing only Eg.
15. The advantage of also relaxing Eq. 16 is that the first
subproblem is smaller, since the constraints on the unit com-
mitment of the slow generators become a part of the second
set of subproblems. An additional advantage of this choice of
decomposition is that, at each step, the slow generator unit
commitment solutions of the first subproblem can be used for
generating a feasible solution to the original problem. As a
result, at each step of the algorithm we obtain an upper bound
on the optimal solution, as well as a feasible schedule. This
should be contrasted to the case where we restrict ourselves
to relaxing only Eq. 15.

The stochastic unit commitment algorithm was implemented
in AMPL. The mixed integer programs were solved with
CPLEX 11.0.0 on a DELL Poweredge 1850 server (Intel Xeon
3.4 GHz, 1GB RAM). The first and second subproblem were
run for 200 iterations. For the last 100 iterations, the problem
of Egs. 1-18 was run with z4, wgt, g € G, t € T fixed to their
optimal values, in order to obtain a feasible solution and an
upper bound for the stochastic unit commitment problem of
Eqgs. 1-18. The average elapsed time for this entire process
was 5,685 seconds. The mip gap for the first and second
subproblem was set to €3 = 1%, and the mip gap for obtaining
a feasible schedule was set to €5 = 0.1%. The sum of the
optimal solutions of the first and second subproblem yield a
lower bound LB on the optimal cost, whereas the optimal
solution of the feasibility run results in an upper bound U B.
The average gap, UBL’BLB , that we obtained was 0.80%.
However, to estimate an upper bound on the optimality gap we
also need to account for the mip gap €; that we introduce in
the solution of the first and second subproblem. The average

upper bound on the optimality gap, %, is 1.75%.

o = (42)

*
gst»
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