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Abstract—The increasing integration of renewable resources
in electricity markets has increased the need for producers to
correct their trading position close to real time in order to
avoid volatile real-time prices. The closest option to delivery
time in European markets is to trade in the continuous intraday
market. This market is therefore an attractive trading outlet
for assets that target at extracting value from their flexibility.
Trading in this market is challenging due to the multistage
nature of the problem, its high uncertainty and the fact that
decisions need to be reached rapidly, in order to lock in profitable
trades. We model the trading problem of a storage unit in the
Markov Decision Process framework. We present an approach
based on policy function approximation for tackling the problem.
We provide relevant parameters for defining our policy, and
demonstrate the effectiveness of our approach by comparing
it to the rolling intrinsic policy on real historical data. Our
proposed approach outperforms the rolling intrinsic policy, which
is commonly employed in practice for storage units, by increasing
profitability by 17.8% on out-of-sample testing for a storage with
perfect round-trip efficiency and by 13.6% for a storage unit with
a round-trip efficiency of 81%.

Index Terms—Markov decision processes, policy function ap-
proximation, reinforcement learning, continuous intraday mar-
ket.

I. INTRODUCTION

Following the introduction of the climate and energy pack-
age in Europe [1], the integration of renewable energy in
Germany has increased from 18.2% in 2010 to 32.2% in
2016 [2]. These renewable resources increase the variability of
supply in the market, and consequently increase the need for
correcting system dispatch closer to real time. An interesting
option for such corrections is to trade in the continuous
intraday market (CIM), which explains the recent increase of
liquidity in this market. Specifically, traded volumes in the
German CIM have increased from 10 TWh in 2010 to 45 TWh
in 2016 [3]. This market is therefore becoming an interesting
option for fast-moving assets, such as batteries or pumped
hydro storage, to extract value from their flexibility.

Several papers analyze the optimization of bidding strategies
in different electricity markets. In [4], the authors consider
trading in the day-ahead market and covering their position
in imbalance for a wind power producer. This work has been
extended in [5] in which the authors also consider bidding
in the intraday market. In [6], the authors develops a trading
strategy for a wind power producer who trades in the day-
ahead market, followed by settlement in the real-time market.
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The authors account for the impact of the dependence between
the wind production error and the real-time price on the trading
strategy of the wind farm.

A certain body of the literature focuses specifically on
storage units. The operation of storage units in the context
of a US-style centralized unit commitment has been studied
in the literature using unit commitment models such as in [7]
and [8]. Nevertheless, these models are out of scope in an EU
context, where resource owners self-commit and self-schedule
individual resources at the nomination stage which follows the
clearing of the portfolio-based day-ahead market. In the EU
context, the authors in [9] focus on the interaction of trading
strategies in the day-ahead market and the balancing market,
while the interaction between day-ahead and intraday auctions
has been analysed in [10].

The strategies developed for these markets cannot be applied
directly to the CIM due to the continuous format of this
market, which differs from the day-ahead auction or the
intraday auction. Indeed, in auctions the producer has one
chance to submit bids. Instead, in the CIM, the producer is
afforded a certain amount of time in order to observe the offers
submitted by other participants. Moreover, in the CIM, buy
and sell prices for the same delivery time may evolve over the
horizon of trading. Due to these particularities, the CIM has
received separate treatment in the literature.

The specific literature about the CIM can be classified into
the three following categories.

(i) The first category of papers focuses on modeling the
price evolution in the CIM. This includes literature that focuses
on the explanatory variables for the evolution of the price [11],
[12], and on the factors that influence the liquidity and the bid-
ask spread [13]. In [14] the authors develop a Hawkes process
for modeling the arrival of orders. A model for the simulation
of the CIM based on data from the European Power Exchange
is proposed in [15].

(ii) The second category of papers focuses on optimal
trading strategies, and assumes that the intraday prices fol-
low a given parametric model. Trading for a pumped hydro
storage facility is presented in [16] and [17]. The first paper
discusses the optimization problem of pumped hydro storage
trading, where it is assumed that traders can access a forward
curve. The second paper studies the problem of trading in
the CIM and in the balancing market. Other papers develop
trading strategies for other types of asset. In [18], the authors
consider trading in the CIM for balancing the forecast error of
renewable energy. The authors assume that the intraday price
follows a geometric Brownian motion. A trading strategy for a
thermal power plant is developed in [19], where it is assumed



that the intraday price follows an additive Brownian motion.
This price is further influenced by the most recent trades of
the producer.

(iii) The third strand of literature focuses on developing
trading strategies, without placing assumptions on the para-
metric distribution of the data. In [20] the authors propose
a heuristic trading method for wind power producers. The
authors in [21] consider the problem of trading without assets
in the CIM in order to cover a position in the imbalance
market. The authors model the problem as a one-stage MDP,
and solve it using policy functions. Related to MDP, two
papers have modelled the problem of trading for a storage
unit in the CIM using MDP [22], [23]. The first one relies on
value function approximation. The second one resorts to policy
function approximation in the form of a threshold policy in
order to simplify the problem.

In the present paper, we consider a generalization of the
problem that is presented in [23], where we additionally
account for round-trip efficiency losses of storage units. The
contributions of this paper are the following: (i) We cast the
intraday market trading problem for a storage unit in the MDP
framework. (ii) We employ policy function approximation in
order to arrive at a computationally tractable problem formu-
lation. More precisely, we use a threshold policy according
to which we seek a sell threshold above which we accept to
sell power, and a buy threshold below which we accept to
buy power. (iii) We propose a parametrization of the trading
thresholds that accounts for several effects, in order to arrive
at a policy that outperforms a benchmark policy referred
to as rolling intrinsic. (iv) We analyse the results at higher
trading frequency than the one considered in [23]: whereas
in [23] the results are derived using hourly frequency, in the
present publication we consider a frequency of 5 minutes for
learning and 1 second for testing out of sample. Moreover,
we demonstrate through experiments the important role of
frequency on the training and evaluation of trading strategies.

Section II describes the operation of the continuous intraday
market and how we simulate it. Section III explains how to
model the trading problem faced by a storage unit in the MDP
framework. In section IV, we introduce the idea of a threshold
policy, in order to arrive to a tractable problem for optimizing
over policies. We also recall the REINFORCE algorithm for
optimizing the policy function parameters. Section V presents
the factors that we propose in order to adapt the threshold pol-
icy. In section VI, we present a test case which demonstrates
the effectiveness of our approach on German market data, and
we analyze how our proposed policy fares relative to rolling
intrinsic. Finally, in section VII we conclude the paper and
propose directions for further research.

II. CONTINUOUS INTRADAY ELECTRICITY MARKETS
OPERATION

In this section, we describe the operation of a continuous
intraday market. We base our description on the German
market, which is representative of the operation of electricity
markets in Central Europe.

Fig. 1: The sequence of operations in a typical central Euro-
pean short-term electricity market

A. Short-term electricity market description

In Fig. 1 we describe the timing of the different short-
term electricity markets in a typical central European power
exchange. We use indicative values for the German market.
Short-term market trading commences with the day-ahead
market at 12 noon, the day before electricity delivery (D-1)
[24]. Subsequently, the intraday auction takes place at 3PM on
D-1 [25]. Following the conclusion of the intraday auction, the
continuous intraday market (which is a separate process from
the intraday auction) commences at 3 PM for hourly products
and at 4 PM for quarter-hourly products [26]. The CIM closes
30 minutes before delivery. Finally, the imbalance is cleared
at the imbalance price [27].

In this paper, we consider trading only in the continuous
intraday market. In the CIM, at any moment, the traders have
access to an order book. This order book is the list of all
available bids on the CIM. At any moment, a trader can submit
new bids or accept (partially or fully) existing bids. The bids
available on the market have 4 characteristics: (i) a delivery
time, which is the moment at which the power should be
injected to or withdrawn from the grid; (ii) the type of bid
(sell/buy): a sell (resp. buy) bid corresponds to an offer from
a counter-party to sell (resp. buy) power; (iii) the price of a
bid (in e/MWh); and (iv) the quantity of a bid (in MWh).

We are interested in the development of trading strategies
for a storage asset owner. A storage unit is an especially
interesting asset to consider in the context of intraday trading,
since it offers the possibility to procure power from relatively
cheap sell bids, store the power, and sell it back to subsequent
buy bids that place a greater valuation on the procured power.
We consider the following simplifications in the sequel:

1) The trading strategies that we develop are balanced.
This implies that, at the closing time of the continuous
intraday market, the position of the storage unit should
be feasible. We thus adhere to German regulation [27],
which requires that the producer can only be in imbalance
if this imbalance is caused by an unpredictable event1

(forecast error, outages). Practically, this implies that if
we do not have any energy stored in our reservoir, we
cannot sell power and cover it in the imbalance market.

1Note that US market operations differ in this respect due to central
dispatch, which allows the system operator to actively manage resources in
real time in order to increase trading surplus, as opposed to requiring them
to remain in balance at all costs.



2) We only accept bids that are already present in the market,
as opposed to also placing bids in the market. Adding
the option of placing bids would complexify our Markov
Decision Process in 2 ways: (i) We would have to add to
our state all the bids that we have placed on the market
at previous time steps. (ii) We would need to extend our
action space in order to decide on suppressing the bids
that we have placed at previous time steps.

3) In practice, CIM bids are categorized into more complex
products, referred to as continuous bids, all-or-none bids,
block bids, iceberg bids, and so on [26]. For our case
study, we assume that all the data that we have access
to corresponds to continuous bids. This implies that we
can accept fractions of bids. There are two reasons for
adopting this simplification: (i) The information about the
type of bids (continuous, integer, block) is not disclosed
in the German market data set that we use for our case
study. (ii) Practitioners have indicated to us that the
impact of this restriction is minor, because most of the
bids are continuous bids. To a certain extent, the more
complex products have been inherited from the products
that are available in the day-ahead market. A major reason
for the existence of these complex products in the day-
ahead market is in order to provide the option for a
producer to account for complex unit commitment con-
straints. This interest is more limited in the CIM, because
the commitment variables have to be decided several
hours before delivery, through the so-called nomination
procedure.

4) We only consider hourly products in our paper, as op-
posed to also considering quarterly products that refer to
delivery within a specific 15-minute interval.

5) We assume that our producer is risk-neutral. The reason
for this is that the daily average profit obtained for
our storage unit is around 6400 e, whereas the profit
for the worst day is approximately −500 e. Typical
energy companies have the financial ability to absorb
this potential loss for several days without any problem.
Therefore, the company can only focus on maximizing
its long-term profit, which will be obtained by being risk
neutral on a daily basis.

6) We assume that, no matter which bid we accept in the
market, we do not influence the bids that the other actors
will place later in the market. This simplification has
been adopted in order to simplify the problem, and is
completely in line with the state of the art on the topic of
intraday trading in electricity markets [16], [20]. More-
over, we have assessed the validity of this assumption in
the electronic supplement2.

B. Market simulation

In order to simulate the evolution of the order book, we
consider 4 types of events:

1) Open: the appearance of a trade
2) Cancel: the disappearance of a trade

2The electronic supplement is available at the following link: https://sites.
google.com/site/gillesbertrandresearch/publications/app-transaction-2019

3) Acceptance: the acceptance of a certain quantity of a bid
4) Trading: the moment when we decide which bids we

accept.
The simulation of the market can now be described as

follows. At the beginning of the simulation, we rank all the
events, which are included in the set Event, chronologically.
We then iterate on this set: for each new event j, we classify
it in one of the 4 categories and we update the order book as
described in the following procedure.

L = []

for j ∈ Event
if j ∈ Open

Add bid j to L
elseif j ∈ Close

Remove bid j from L

elseif j ∈ Acceptance
Reduce partially accepted quantity from bid j

elseif j ∈ Trading
Launch the trading algorithm
Remove the bids that we have accepted from L

end
end

III. MODELLING THE INTRADAY TRADING PROBLEM
USING THE MDP FRAMEWORK

Having defined how to simulate the market, we can now
analyse the trading problem. The decision problem is to de-
cide, at different moments of the Continuous Intraday Market,
which bids should be accepted in order to maximize the
future expected profit of our storage unit. In the rest of the
paper, we refer to a general storage unit. This storage unit is
characterized by a certain charging and discharging efficiency.
These settings create the basis for representing a battery, a
simplified model of a pumped storage hydro unit, or certain
types of demand response. The main trade-off for our decision
problem is the following: Do we want to trade power at the
current price and lock in the profit? Or is it worth waiting
for a potential future bid the price of which would be more
advantageous, despite the risk that the current favorable bids
may disappear? Our decision problem falls under the scope
of multistage optimization under uncertainty, because we need
to arrive to decisions knowing that recourse actions can be
adopted in an uncertain future. A common way to approach
this class of problems is by using the Markov Decision Process
framework. In order to characterize an MDP, we need to model
the state variables, the action variables, the reward and the state
transition function.

A. State variables

In order to reach a decision at time step t, we require 3
ingredients in our state St: (i) The offers available in the
continuous intraday market at time step t. This data is available



in the market order book. (ii) A variable vt−1,d,∀d ∈ D which
indicates the capacity that would be stored in the storage unit
at delivery hour d if we were only executing the trades decided
at time step t−1 or earlier. This value can be easily computed
based on the results of all the trades that we have realized
in the past. (iii) Exogenous data that we anticipate should
influence our decision. Some examples of these exogenous
parameters include the remaining time before market closure,
and the price of the intraday auction. The full list of these
parameters, and the way in which we use them, is discussed
in Section V.

B. Action variables

In order to model our action At, we require one action
variable at,d for each delivery time d. This action indicates
how much we wish to sell at time step t. In theory, this variable
can be continuous. But, in order to reduce the size of the action
space, we will discretize this variable into 2n + 1 potential
actions:

at,d ∈ {−qn, · · · ,−q1, 0, q1, · · · qn}

C. Reward

The total reward obtained from the CIM at time step t is
equal to the sum of the rewards obtained for every delivery
hour:

Rt(St, At) =
∑
d∈D

rev(at,d),

where the reward for delivery hour d at time step t is computed
as the integral of the demand curve pt,d from 0 to at,d:

rev(at,d) =

∫ at,d

0

pt,d(z)dz.

D. State transition function

In the case of the intraday trading problem, we assume that
there exists a state transition function but that it is unknown
(since we do not place any assumptions on the evolution
of intraday prices). This prohibits us from using methods
such as policy iteration or value iteration. Nevertheless,
Reinforcement Learning techniques are perfectly suitable for
such a setting. Indeed, the idea of Reinforcement Learning
techniques is to gain knowledge about the environment by
running episodes of the task (in our case, each episode
corresponds to a day of trading). Note that the round-trip
efficiency of a storage unit is part of this transition function,
which we do not model explicitly.

IV. POLICY FUNCTION APPROXIMATION

We are interested in an optimal policy for trading. A policy
is a function which is a distribution over actions for every state
of the MDP. The policy should be selected among a set of

policies Π, such that we maximize the future expected reward
in Eq. (1)

max
π∈Π

T∑
t=1

E [Rt(St, A
π(St))] , (1)

where Aπ(St) is the action taken if we are in state St and we
follow the policy π.

In our case, we have infinite states, since the prices for the
different delivery times are continuous. Therefore, the problem
of finding an optimal policy becomes infinite-dimensional
[28], [29]. Thus, the problem as expressed in its initial
formulation is intractable.

In order to obtain an approximate solution to the problem,
we resort to policy function approximation. The idea of policy
function approximation is to express the policy πθ(a|s) with
respect to a parameter vector θ, and to optimize over this θ:

πθ(a|s) = P[At = a|St = s; θ].

We thus restrict the policy domain, which implies that we
will obtain a policy which may be sub-optimal, which is the
cost of restricting our search over θ. The remainder of this
section explains how we calibrate the weights θ on the basis
of repeated episodes of trading and how we implement a
threshold policy for our trading problem.

A. REINFORCE algorithm

In order to optimize the parameter vector θ, we use the
REINFORCE algorithm:
• Initialize θ
• for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT } ∼
πθ(a|s)

for t = 1 : T-1 do

θ = θ + γt∇θlog(πθ(a|s))gt (2)

end
end

The REINFORCE algorithm adapts the parameter vector
θ so as to maximize expected rewards from a certain policy,
based on repeated episodes of the decision process. An episode
corresponds to one day of trading. The episode commences at
the first trading interval of the day. Given a state s1, we select
an action based on our policy function, we collect a reward r2,
and we arrive at the state s2. This process is repeated until the
end of the trading day. When the episode is finished, we update
θ using Eq. (2), where gt is the profit from t until the end of
the episode T . It has been proven in [30] that the REINFORCE
algorithm is effectively a stochastic gradient algorithm. It is
therefore guaranteed to converge under standard stochastic
approximation conditions for decreasing step-sizes γt.

B. Threshold policy

We focus on a policy which is parametrized by buy and
sell price thresholds. The threshold policy that we investigate
in this paper accepts sell bids if their price is below a buy
threshold, and accepts buy bids if their price is above a
sell threshold. Our focus on threshold policies is justified



by several factors: (i) Optimal inter-temporal arbitrage in a
deterministic setting is achieved by a threshold policy, as
proved in [23]. This result has been extended to a three-stage
stochastic program in the electronic supplement of this paper.
(ii) Threshold policies have also been proven to be optimal in a
number of papers in the literature regarding specific instances
of stochastic optimal control problems with uncertain prices
[31]–[33]. (iii) The idea of using a threshold policy in order
to trade for a storage unit has already been proposed in other
settings [34].

We apply a stochastic threshold policy, in order to ensure
sufficient exploration to take place during the learning stage of
the algorithm. Concretely, we propose drawing the sell and buy
thresholds from a Gaussian distribution. Therefore, we define
our policy parameter, θ, as θ = (µX , σX , µY , σY ),where the
buy threshold for delivery hour d, Xd, is drawn according
to a normal distribution with parameters3 (µX , exp(σX)), and
the sell threshold for delivery hour d, Yd, is drawn according
to a normal distribution with parameters (µY , exp(σY )). We
draw one independent threshold per delivery hour d, therefore
an action at delivery time d1 is independent of the action at
delivery time d2. By independence, the distribution of actions
over all future delivery hours can be expresses as:

πθ(a|s) =
∏
d∈D

πdθ (a|s)

In order to illustrate how the stochastic threshold is im-
plemented, we consider the example of Fig. 2. at delivery
hour d. (i) The solid black decreasing function (solid line)
corresponds to the buy bids that are available in the order
book for delivery hour d. This data is available in the order
book at the time we are deciding on whether or not to accept a
bid. The demand curve is associated with the lower x-axis. (ii)
The bell curve represents the probability density function of
the threshold. This curve can be computed based on the current
vector parameter θ. The bell curve is associated with the upper
x-axis. With these two elements, we illustrate how we use the
threshold policy in order to arrive at decisions. Consider, for
instance, the action Sell 10 MWh: if the sell threshold that we
draw is between the price associated to a sell quantity of 15
MWh and the price associated to a sell quantity of 5 MWh,
we sell 10 MWh. The probability of this action corresponds
to the light grey surface πdθ (10|s). This probability can also
be computed mathematically, as illustrated below:

πdθ (10|s) , Pr(at,d = 10)

= Pr(p(15) ≤ Yd ≤ p(5))

= Pr(Yd ≤ p(5))− Pr(Yd ≤ p(15))

= Φ(p(5);µY , exp(σY ))− Φ(p(15);µY , exp(σY ))

where Φ(·;µ, σ) indicates the cumulative distribution function
of the normal distribution with mean µ and standard deviation
σ. In order to apply the REINFORCE4 algorithm, we also

3We use exp(σX) and not σX directly in order to ensure that the standard
deviation remains positive.

4We present an example of all the computations needed in order to realize
one iteration of the REINFORCE algorithm in the electronic supplement.

need to compute the policy derivatives for the different actions.
These derivatives can be computed analytically as illustrated
below for the derivative of the probability of the action Sell
10 MWh with respect to µY :

∂πdθ (10|s)
∂µY

=
∂Φ(p(5);µY , exp(σY ))

∂µY

− ∂Φ(p(15);µY , exp(σY ))

∂µY
= −φ(p(5);µY , exp(σY ))

+ φ(p(15);µY , exp(σY ))

where φ(·;µ, σ) denotes the probability density function of the
normal distribution with mean µ and standard deviation σ.

Fig. 2: Threshold policy for the hydro problem if we consider
four possible actions: sell 0, 10, 20 or 30 MWh. The bell curve
indicates the probability density function of the sell threshold.
The two light grey segments and the two dark grey segments
of the bell curve indicate the probability of each of the four
actions. The solid black decreasing function corresponds to
the buy bids that are available in the order book.

V. FACTORS DRIVING THE OPTIMAL THRESHOLD

In the previous section, we have developed a basic threshold
policy for trading in the CIM. This simple threshold policy
does not achieve satisfactory performance in practice, because
it is not sufficient to maintain the same threshold for every time
step of every day. This suggests that the threshold should be
further dependent on certain factors that are pertinent towards
an adaptive trading strategy. In this section, we propose a
number of such factors and explain the reason for which
we consider them. Then, we explain how the REINFORCE
algorithm can be adapted in order to incorporate these factors.

A. Delivery time

The need for using different thresholds depending of the
delivery hour is illustrated in Fig. 3. This graph represents
the CIM price (which we define as the center of the bid-ask
spread) for the 24 different delivery hours. The cross represents



the price of buying energy at the 6th hour, while the dot is
the price of buying energy at the 17th hour. These two prices
are equal, however the buying decision should be different.
Indeed, the price corresponding to the cross is not interesting,
because the same amount of power could have been procured
and stored at the reservoir at a lower price at hour 4. On
the contrary, the price corresponding to the dot is interesting,
because it corresponds to a local minimum price. Thus, in hour
17 we can buy power, in order to sell that power back at a
later delivery time.
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Fig. 3: The delivery time of an order impacts its threshold:
buying power at 30 e/MWh is not worthwhile in hour 6, but
it is worthwhile in hour 17.

Having argued that it is necessary to employ different
thresholds for different delivery times, our idea is to define
regimes for which the threshold mean should be the same.
We will define these regimes based on the intraday auction
price curve, which conveys a significant amount of information
about the CIM price.

We present an example of these regimes based on the intra-
day auction price curve, for one precise day of our dataset, in
Fig. 4. These graphs illustrate that the buy threshold switches
at the maximum of the price curve, since any power that we
buy between two maxima can be sold at the second maximum.
Similarly, the sell threshold switches at the minimum of the
price curve, because any power that we sell between two
minima can be bought at the first minimum.

The introduction of regimes impacts the parameter vector
θ. Since we introduce different thresholds for the different
regimes, µX and µY are now indexed by the regime k,
and are thus denoted as µkX and µkY . In the remainder of
this section, we will express these threshold means5 µkX and
µkY as a function of 10 parameters, which we denote as
(αs1,αb1,αs2,αb2,αs3,αb3,αs4,αb4,αs5,αb5). We will then show how the
REINFORCE algorithm can be used in order to learn the
values of the parameter vector α.

B. Intraday auction curve

Our motivation for using the intraday auction curve as a
feature for determining thresholds is illustrated in Fig. 5, where
we present the CIM price for two different trading days. From
this graph it is clear that it is not possible to set a single

5In contrast to the mean, we do not make the standard deviation dependent
on exogenous parameters. This is due to the fact that the standard deviation
is only used in order to ensure sufficient exploration in the learning phase.
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Fig. 4: Buy regime (left), and sell regime (right) based on the
intraday auction price.

threshold which would perform well for both days, because
the average level of the curves is different. In order to set an
appropriate base level for the thresholds, we use the intraday
auction price. The idea is that the price of previous markets
can provide an indication about the state of the market, and
thus support the forecast of the price for subsequent market-
clearing stages. This observation has been inspired by: (i)
reference [35], where the authors find a strong correlation
between the day-ahead market and the balancing market; and
(ii) reference [9], where the authors use the day-ahead price
in order to forecast the imbalance price.
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Fig. 5: Continuous intraday market price for two different
days. The curves correspond to different average values, there-
fore different thresholds need to be applied for an effective
threshold strategy.

Motivated by this observation, we propose an adaptation of
the thresholds as follows:

µkX ← pmin,k + αs1(pmax,k − pmin,k)

µkY ← pmax,k − αb1(pmax,k − pmin,k)

where pmin,k is the minimum of the kth buy regime of the
intraday auction curve, pmax,k is the maximum of the kth sell
regime of the intraday auction curve, and αs/b1 are the weights
that will be optimized using the REINFORCE algorithm.

The idea behind this parametrization is that pmin,k (resp.
pmax,k) is a reasonable starting point for the buy (resp. sell)
threshold because it is the best price that could have been
obtained in the intraday auction for regime k. Then, with the
parameter αs1 (resp. αb1) we allow the REINFORCE algorithm
to determine to what extent the threshold should move from
pmin,k (resp. pmax,k) to pmax,k (resp. pmin,k), based on learning
from repeated episodes. In order to apply the REINFORCE
algorithm for learning the parameter vector α, we need to



compute the derivative of our policy with respect to α. The
derivative can be computed using the chain rule, as we show in
Eq. (3) for the derivative of αb1, for delivery hour d in regime
k.

∂πdθ (a|s)
∂αb1

=
∂πdθ (a|s)

∂θ

T
∂θ

∂αb1

=
∂πdθ (a|s)
∂µkY

(pmin,k − pmax,k) (3)

C. Quantity already traded

The intuition for this adaptation is that, at any stage of the
trading process, if we have already bought a large quantity of
power and have not sold it yet, we wish to avoid the risk of
ending up with unsold power. Note that we assume that there
is no residual value for leftover water in the reservoir at the
end of the horizon, which is consistent with the fact that we
have an interest in entering a new day with an empty reservoir
and filling the reservoir up with cheap power that is available
during the night hours.

In order to capture this effect, we add a penalty in order to
accept buying at a lower price and to accept selling at a lower
price:

µkX ← µkX − αs2 · vend

µkY ← µkY − αb2 · vend

where vend is the volume that we would obtain at the last
delivery period with the trades that we have already engaged
in. This adjustment of the thresholds implies that, moving for-
ward, we become less selective about selling power and more
selective about buying power, until the reservoir eventually
becomes empty.

D. Remaining time before market closure

Whenever the producer has not sold all the energy stored in
its reservoir close to the maximum of a regime, the producer
should become less selective in the price it asks. This is due
to the fact that there are few subsequent opportunities to trade,
and the currently observed price is possibly the best price that
the producer can secure for the trade. Similarly, whenever the
producer has not bought up to the capacity of its reservoir as
it is approaching the minimum of a regime, it should become
less selective with the price that it asks for buying power. This
approach is inspired by the theory of the optimal stopping
problem [36], [37].

We capture this effect by varying the threshold means as
follows:

µkX ← µkX + αs3
pmax,k − pmin,k

2
exp(αs4(t− T sk )) (4)

µkY ← µkY − αb3
pmax,k − pmin,k

2
exp(αb4(t− T bk)) (5)

where t is the current time step, T bk is the delivery time of the
maximum of the kth sell regime, and T sk is the delivery time
of the minimum of the kth buy regime.

We employ 4 coefficients in Eqs. (4) and (5): (i) α
s/b
3

determines the strength of this effect; and (ii) αs/b4 determines
how smoothly the threshold adapts with respect to the gate
closure time. A large value for α

s/b
4 would decrease the

selectivity very close to the delivery time. On the contrary,
a small value for αs/b4 would decrease the selectivity more
smoothly with respect to the remaining time.

E. Relative value of observable bids

The motivation for this factor is to account for the coupling
among the bids of different delivery hours, due to the fact
that the battery can only store a finite amount of energy.
Concretely, we wish to avoid accepting a bid even though
the order book includes a bid at an adjacent delivery period
that can be traded for a better price. In order to account for
this inter-dependency, we penalize the bids that would not be
accepted by the rolling intrinsic method. The rolling intrinsic
policy is a myopic method for trading in continuous markets.
This method has already been used as a benchmark in the
literature [22], [23], and was originally proposed by [38] in
the context of trading gas. The idea of the method is to trade
so as to maximize the instantaneous reward at each time step
[28]. In the context of our problem, the rolling intrinsic method
will select the subset of trades which can be absorbed by the
reservoir without exposing the unit to imbalances, and will
do so by maximizing the profit of the current time step. This
myopic policy can be written as an optimization problem at
every time step of trade. The optimization model is developed
in the electronic supplement.

Concretely, the adjustment to our algorithm is illustrated
in Fig. 6. The figure corresponds to the case in which rolling
intrinsic sells 20 MWh for delivery period d. When this occurs,
we wish to decrease the probability of selecting the action of
selling 30 MWh, and reallocate it to the probability of selling
20 MWh. To this end, we introduce an auxiliary Gaussian
distribution with a mean of µkY + αb5 and with a standard
deviation of exp(σY ). We compute the probability of the action
Sell 30 MWh by using a threshold drawn from the auxiliary
Gaussian distribution, which is indicated with the black bell
curve in the figure. This decreases the probability of the action
Sell 30 MWh, relative to the probability that would have been
obtained from the original bell curve of Fig. 6. The difference
in probability mass is transferred to the last action that is
accepted by rolling intrinsic (Sell 20 MWh), as illustrated in
Fig. 6. As we can see in the figure, the higher the value of
αb5, the less likely we are to choose the action that is not
selected by rolling intrinsic. The computation of the closed-
form expression for πdθ (a|s) and its derivative is presented in
detail in the electronic supplement.

F. Preventing imbalances

As we explain in the introduction, we are only interested in
developing trading strategies that do not result in imbalance,
given the amount of water that is currently stored in the
reservoir. In order to remove actions that result in imbalances,
we re-assign their probability to the closest action which does
not result in an imbalance, using the same idea as in section



Fig. 6: Illustration of the probability reallocation that relies
on the auxiliary Gaussian distribution, as described in section
V-E.

V-E. In this case, the parameter αb5 is replaced by a constant
M which is sufficiently large in order to ensure that an action
which would result in an imbalance is never selected.

G. Adapting with respect to round-trip efficiency

In order to account for round-trip efficiency, we present an
example that illustrates the concept of perceived efficiency,
which distinguishes whether we are planning to cover a bid
financially or physically. Suppose that we have two delivery
hours, a charging efficiency ηin of 0.9 and a discharging
efficiency ηout of 0.9. Suppose that we have already bought
20 MWh for the first delivery hour at the previous time step.
Therefore, the quantity that would be stored is 18 MWh for
both delivery times. If we want to sell power at the second
delivery time, we can only sell 16.2 MWh, because we have
to apply the discharge efficiency. We define the perceived
efficiency for this order as 16.2

18 = 0.9. On the contrary, if
we want to sell at the first delivery time, we can sell 20
MWh, because this operation will simply cancel the previous
purchase of 20 MWh. This is a purely financial operation. We
thus define the perceived efficiency for this order as 20

18 = 1.11.
In order to account for this effect in the threshold

parametrization, we use the same idea as in section V-E.
• We determine a certain baseline for the mean of the

Gaussian distribution of our buy and sell threshold, which
corresponds to the case in which we are accepting a cer-
tain quantity that serves as a purely financial transaction.
We then adapt the thresholds as follows:

µkX ←
1

ηout
µkX

µkY ← ηinµ
k
Y

This adaptation is coherent with the intuition presented in
the example. Indeed, if we are canceling a position that
we have previously taken in the market, we can accept a
less interesting price (i.e. accepting a lower sell / higher

buy threshold), because the perceived efficiency is higher
than 1.

• The mean of the auxiliary Gaussian represents the case
in which we are opening a new position. Therefore, the
auxiliary Gaussian distribution mean will be equal to: (i)
ηin ·ηout ·µX for the buy threshold; and (ii) µY

ηin·ηout
for the

sell threshold. This is also coherent with the example,
because we are requesting a more selective price if we
are opening a new position than if we are engaging in a
purely financial transaction, since the perceived efficiency
is less good. Note that this adaptation does not add any
new parameters in the learning algorithm.

VI. CASE STUDY

In this section we present results from the implementation
of the proposed policy on the German continuous intraday
market. The data for the German CIM has been procured from
the European Power Exchange (EPEX), and spans two years.
For the purpose of the case study, we place ourselves in the
position of a storage asset owner who manages a unit with a
maximum storage capacity of 200 MWh. We assume that, on
July 19, the owner adopts our strategy and has at its disposal
market data since the beginning of the year6. Therefore, we
use the 200 first days of 2015 as training set, and the last 165
days of 2015 and the 366 days of 2016 as a test set.

A. Learning process

We aim at learning the optimal threshold, so as to apply our
threshold policy with a frequency of 1 second. We consider
1 second as a sufficiently high frequency for testing the algo-
rithm in the continuous intraday market because, as observed
in Table I, if we trade every second, we will observe 98.3%
of the offers. This means that almost all of the offers remain
in the market for at least one second, before being matched
with competing offers on the platform.

In order for the learning stage of the algorithm to be
computationally tractable, we gradually refine the learning
frequency from hourly steps to 15-minute steps and ultimately
to 5-minute steps7, as indicated in Fig. 7. In this figure,
1 iteration corresponds to 4 repetitions of the 200 days of
learning, which amounts to 800 episodes. These episodes are
executed in parallel on an HPC cluster using 8 CPUs for 40
hours8.

A potential issue for our learning phase is that the RE-
INFORCE algorithm is a stochastic algorithm. Therefore,
different runs can produce different results. In order to test
the sensitivity of our results, we have conducted an experiment

6Note that data which extends too far back in time may not be as useful,
due to the rapid structural evolution of the market (increase in renewable
energy integration, changes in market design, etc.).

7We decide to switch to a higher learning frequency when the profit appears
to stabilize. This is due to the fact that there is no reason to run the algorithm
until full convergence for the hourly frequency, because it is not the problem
we are interested in (the order data arrives at much higher frequency than
hourly).

8We have performed an analysis on the computational scalability of our
learning process. The main message of the study is that the run time increases
linearly with respect to the trading frequency. The complete numerical analysis
has been added in the electronic supplement.



Length of time step Percentage of offers observed
1 hour 25.7

15 minutes 41.5
5 minutes 56
1 minute 74.8

15 seconds 86.7
5 seconds 92.2
1 second 98.3

TABLE I: Percentage of offers that are observed as a function
of frequency of accessing the market data.
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Fig. 7: Evolution of profit as a function of iterations of the
REINFORCE algorithm.

in which we run 6 different realizations of the REINFORCE
algorithm at hourly frequency and compare the evolution of the
alpha parameters and the profit. We find that the different runs
exhibit a very similar performance. The complete experiment
is available in the electronic supplement of the paper.

B. Out-of-sample testing

In this section, we present the results obtained by our
threshold policy on out-of-sample data. More precisely, we
apply the θ parameter vector learned on the 200 first days
of 2015 on the remainder of 2015 and to the entire year of
2016. We compare these results with the ones obtained by the
rolling intrinsic method, which is described in section V-E. .
We present the results in Table II. (i) Column 1 represents the
trading frequency. (ii) Column 2 refers to the method that we
use: ”Threshold” refers to the method developed in this paper,
”Rolling” refers to rolling intrinsic, ”GM” is the policy that
has been developed in [23] and ”Threshold without αi” is the
policy learned by the REINFORCE algorithm if we fix αsi and
αbi to 0. (iii) Column 3 refers to the round-trip efficiency of
the considered storage unit. (iv) Column 4 refers to the data
that are used for the test. It can either be in-sample (the 200
first days of 2015) or out-of-sample (the remainder of 2015
and 2016). (v) Column 5 contains the average profit. From
this table, 5 main observations can be made: (i) our threshold
policy outperforms rolling intrinsic; (ii) our threshold policy is
more suited for high frequency than the one presented in [23];
(iii) our threshold policy also outperforms rolling intrinsic for a
non perfect round-trip efficiency; (iv) the results in and out-of-
sample are very similar; and (v) the most important parameters
are α3 α4 and α5. In the remainder of this section, we will
analyse these five observations in more details.

a) Superiority of the threshold policy compared to
rolling intrinsic: By observing rows 4 and 5 of the table,

Trading
frequency Method Efficiency

Used
data

Profit
mean

1 hour Threshold 1 out 5374
1 hour Rolling 1 out 4591
1 hour GM 1 out 4776

1 second Threshold 1 out 6405
1 second Rolling 1 out 5438
1 second GM 1 out 5186
1 second Threshold 0.81 out 3762
1 second Rolling 0.81 out 3311
1 second Threshold 1 in 6605
1 second Rolling 1 in 5694

1 hour
Threshold

without α1 1 out 5362

1 hour
Threshold

without α2 1 out 5375

1 hour
Threshold

without α3 and α4 1 out 4652

TABLE II: Profit mean [e/day]

we observe that the average profit difference amounts to
17.8%. Moreover, the proposed threshold policy achieves a
higher profit in 77.4% of the days. In Fig. 8, we present the
daily profit difference between the threshold and the rolling
intrinsic policy. The figure demonstrates that the extra profit is
a cumulative effect of multiple days of superior performance,
as opposed to being the result of a few isolated days in which
the threshold policy performed significantly better.

Fig. 8: Distribution of the difference between the profit of the
threshold policy and the rolling intrinsic policy

In Fig. 9, we illustrate one of the effects that justifies the
superior profit of the threshold policy. This graph indicates
whether power has been traded for the different delivery times
and time steps. An empty dot indicates that we have bought
power, whereas a solid dot indicates that we have sold power.
The left graph illustrates one of the weaknesses of rolling
intrinsic: at each time step where there are empty dots, there
are also solid dots. This implies that the method only considers
buying power if it can sell it directly (except if it can buy
power at a negative price). This is due to the fact that the
method maximizes the profit of the current time step, and
ignores future trading opportunities which may arrive but have
not yet been observed. On the contrary, the threshold method
procures power at the beginning of the horizon, but may
turn down offers for selling power if the sales price is not
sufficiently attractive. Thus, the threshold method may wait in
order to sell the power later, counting on the possibility that
at a later moment there will be offers arriving in the market



with a higher willingness to pay than the currently available
offers.
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Fig. 9: Bid acceptance patterns for 1 day of trading for the
rolling intrinsic (left) and threshold method (right).

b) Comparison of our threshold policy and the GM
policy at high frequency: We compare the influence of
the trading frequency on the performance of three different
methods: (i) the threshold policy presented in the present
paper; (ii) the rolling intrinsic policy; and (iii) the GM policy.
Note that the GM policy does not incorporate the parameters
αs5 and αb5 in the parametrization of the threshold. From rows
1-6 of the table, we observe that the profit increases with
respect to the trading frequency for all the methods. This is
expected, since an increase in the trading frequency increases
the number of offers that we observe and use for trading.
However, this profit increase is smaller for the GM policy.
In order to interpret this result, Figs. 10 and 11 compare the
evolution of five different policies: (i) rolling intrinsic with an
hourly trading frequency; (ii) rolling intrinsic with a trading
frequency of 15 seconds; (iii) rolling intrinsic with a trading
frequency of 1 second; (iv) a threshold policy with a trading
frequency of 1 second; and (v) the GM policy with a trading
frequency of 1 second.

In Fig. 10, we observe that two factors contribute to the
profit. (i) The first factor is the profit that results from the
significant arbitrage possibilities of the storage unit. These
arbitrage opportunities can be anticipated. These profits cor-
respond to the large jump of the rolling intrinsic method. (ii)
The second factor corresponds to the profits that result from
trades of smaller volume, which are not visible at the outset of
the trading day. These profits correspond to the small increase
of the profit of the rolling intrinsic policy, following the large
jump. It is worth noting that these small increases are almost
insignificant when trading at an hourly time step, but become
very important at a higher trading frequency.

This analysis highlights that, when trading at a higher fre-
quency, we require a trading strategy that is effective at captur-
ing the value of both predictable large arbitrage opportunities
and less predictable small opportunities. In Fig. 11 we observe
that the threshold policy attains similar performance to rolling
intrinsic in terms of capturing small arbitrage opportunities.
This is represented by the right graph, where we observe that
the two curves follow a similar pattern towards the end of the
day. On the contrary, the GM policy is not able to capture these
small arbitrage opportunities, which is clear from the fact that
the profit remains constant at the end of the day. Note that the
GM policy parametrization does not include any information

about the prices available for the other delivery hours. The
problem is that, for these small arbitrage opportunities, a bid
is not interesting only due to its price but also because if we
accept it along with a bid with another delivery time, we can
directly secure a positive profit using our storage unit.

On the other hand, the main difference between our thresh-
old policy and rolling intrinisc mainly rests on the fact that the
threshold policy is better suited for trading for big arbitrage
opportunities. This is illustrated by the fact that the large jump
of the threshold policy is higher than that of rolling intrinsic.
The rolling intrinsic policy buys and sells prematurely in the
beginning of the day, whereas the threshold policy holds back
until more favorable trades can be locked in.
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Fig. 10: Profit evolution for one day of trading for the rolling
intrinsic method for various trading frequencies.
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Fig. 11: Profit evolution for one day of trading for the full day
(left) and a zoom in on the end of the day (right).

c) Threshold performance for a non perfect roundtrip
efficiency: In this section, we present the results for a storage
unit with a charging efficiency of 0.9 and a discharging
efficiency of 0.9. Our aim is to verify that our threshold
policy is also suitable for an asset with an imperfect round-
trip efficiency. The results are presented in rows 7 and 8 of
the table. As before, we compare the results obtained by our
threshold policy with the ones obtained by rolling intrinsic
on the same data. The proposed threshold policy achieves
a higher profit in 64.6% of the days. The average profit
difference amounts to 13.6%. In Fig. 12 we present the daily
profit difference. These results are relatively close to the ones
obtained for a storage unit with a perfect round-trip efficiency.
The results thus suggest that our policy is also suitable for the
case with round-trip efficiency losses.



Fig. 12: Distribution of the difference between the profit of
the threshold policy and the rolling intrinsic policy in the case
with round-trip efficiency losses.

d) Stability of the method with respect to change in the
data: In rows 5 and 10 of the table, we compare the profit
obtained by rolling intrinsic in-sample and out-of-sample. We
observe that the profit is slightly higher in-sample than out-of-
sample. Thus, the performance under in-sample data is slightly
more favourable than under out-of-sample data. In rows 4 and
9, we observe that our threshold policy also achieves a slightly
higher profit in-sample. Note that the difference between the
two methods amounts to 911 e in-sample and 966 e out-
of-sample. Thus, our method is observed to achieve a robust
performance against out-of-sample data.

e) Importance of the different parameters: In order to
test the influence of each element of the threshold parametriza-
tion, we have launched the REINFORCE algorithm by can-
celling each of the parameters one by one. Then we apply the
learned policy out-of-sample. More precisely, we have realized
3 simulations: (i) we optimize the policy while fixing αs1 and
αb1 to 0; (ii) we optimize the policy while fixing αs2 and αb2
to 0; and (iii) we optimize the policy while fixing αs3, αb3, αs4
and αb4 to 0. The reason for fixing both α3 and α4 together is
that cancelling one will cancel the other automatically.

We have not considered the case in which we set αs5 and
αb5 to 0, because the importance of this parameter is already
discussed extensively when analysing the GM policy. The
results are presented in the last three rows of Table II and
will be analysed in detail in the remainder of the section.

1) Without αs1 and αb1: We observe that the profit is
slightly better if we include αs1 and αb1 compared to the
case in which we set them to 0. This suggests that these
parameters help, but their impact is not decisive9.

2) Without αs2 and αb2: We observe that the profit with
and without αs2 and αb2 is almost identical. This suggests
that this parameter could be discarded without hurting the
profitability of the policy.

3) Without αs3, αb3, αs4 and αb4: In this case, we observe
a big drop in the profit, compared to the initial case. By
further investigating the obtained parameters, we observe
that the algorithm converges to a high value of αs1 and
αb1. This implies that the sell threshold will be low
and the buy threshold will be high. Simultaneously, the

9Notice that we have realized the same experiment at a frequency of 1
minute, and the extra profit was more significant (around 0.83%).

algorithm increases the parameters αs5 and αb5 to a very
high value. The consequence of this behaviour will be
that the policy will aim at accepting every possible bid
that is also accepted by rolling intrinsic. This indicates
that this policy is attempting to mimic the rolling intrinsic
policy. In order to confirm this intuition, we present in
Fig. 13 the profit difference between the rolling intrinsic
policy and this policy. We observe that the values are
concentrated around 0, which confirms our intuition that
the algorithm is attempting to mimic rolling intrinsic.

Fig. 13: Distribution of the difference between the profit of the
rolling intrinsic policy and the profit of the threshold policy
without parameters αs/b3 and αs/b4

VII. CONCLUSIONS AND PERSPECTIVES

In this paper we tackle the problem of intraday trading for
storage units. We model the problem using Markov Decision
Processes. We focus on policies that are parametrized on price
thresholds, and we optimize the resulting policy functions
using the REINFORCE algorithm. We introduce and justify a
collection of factors that can be used for adapting the trading
threshold to system conditions. We compare our threshold
policy to the rolling intrinsic method on the German continu-
ous intraday market. We demonstrate that the threshold policy
performs significantly better than rolling intrinsic, and analyze
the results in order to explain the performance difference.
In future work, we are interested in improving the policy
functions by adding more explanatory variables of the price
thresholds such as renewable forecasts or generator outages.
We also aim at developing trading strategies in the Continuous
Intraday Market for renewable sources with uncertain real-time
production.
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