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a b s t r a c t 

In this paper, we formulate in a game-theoretic framework three coordination schemes for analyzing 

DSO-TSO interactions. This framework relies on a reformulation of the power flow equations by introduc- 

ing linear mappings between the state and the decision variables. The first coordination scheme, used 

as a benchmark, is a co-optimization problem where an integrated market operator activates jointly re- 

sources connected at transmission and distribution levels. We formulate it as a standard constrained op- 

timization problem. The second one, called shared balancing responsibility, assumes bounded rationality 

of TSO and DSOs which act simultaneously and is formulated as a non-cooperative game. The last one 

involves rational expectation from the DSOs which anticipate the clearing of the transmission market by 

the TSO, and is formulated as a Stackelberg game. For each coordination scheme, we determine condi- 

tions for existence and uniqueness of solutions. On a network instance from the NICTA NESTA test cases, 

we span the set of Generalized Nash Equilibria solutions of the decentralized coordination schemes. We 

determine that the decentralized coordination schemes are more profitable for the TSO and that rational 

expectations from the DSOs gives rise to a last-mover advantage for the TSO. Highest efficiency level is 

reached by the centralized co-optimization, followed very closely by the shared balancing responsibility. 

The mean social welfare is higher for the Stackelberg game than under shared balancing responsibility. 

Finally, under imperfect information, we check that the Price of Information, measured as the worst-case 

ratio of the optimal achievable social welfare with full information to the social welfare at an equilib- 

rium with imperfect information, is a stepwise increasing function of the coefficient of variation of the 

TSO and reaches an upper bound. 

© 2018 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

Distributed energy resources are supply and demand-side

esources that are connected to low-voltage electric power sys-

ems. On the supply side, these resources include distributed

enewable resources such as solar photovoltaic panels deployed

n rooftops, which are characterized by a significant amount of
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ncertainty. On the demand side, demand response services that

an be made available by commercial and residential consumers

re characterized by a significant level of flexibility. The significant

mount of Distributed Energy Resources (DERs) which have re-

ently been integrated in power systems implies increasing degree

f uncertainty but also increasing amount of flexibility in power

ystem operations, thereby presenting both a challenge and an op-

ortunity for power system operations and power market design.

n particular, the active management of DERs raises a challenge

bout the extent of coordination between Transmission System

perators (TSOs), which are responsible for managing high-voltage

ransmission systems, and Distribution System Operators (DSOs),

hich are responsible for managing medium and low-voltage

rids. Whereas DSO operations have traditionally been passive,

here is a clear opportunity from proactively managing DERs

n order to better deal with the unpredictable generation from

enewable Energy Sources (RES), whose penetration is constantly
under the CC BY-NC-ND license. 
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increasing ( Hvelplund, 2006 ), and in order to offer a variety of

other services to the high and low voltage grid. 

At the European Union (EU) level, TSOs have been the only

one procuring flexibility services connected to the distribution

networks, while the role of DSOs is limited to validate that such

flexibility can indeed be provided. The TSO dominant position

(DSOs being only very weakly represented) has been the main

trigger for the debates around TSO-DSO coordination within

Europe ( Hadush & Meeus, 2018 ). In a first attempt to provide

solutions, DSOs have been proposing to improve TSO-DSO co-

ordination by introducing concepts such as the ‘traffic light’ in

Germany, that signals the distribution network state to the mar-

ket ( Hadush & Meeus, 2018 ). Many European projects have also

proposed technical solutions to enhance TSO-DSO coordination

(for example, evolvDSO 

1 introduced an interval constrained and

sequential power flow approach, SmartNet 2 has been studying

potential TSO-DSO coordination schemes). Moreover, the Council

of European Energy Regulators (CEER) has put forward principles

that should set the trajectory of future TSO-DSO relationship

and related regulated arrangements in the areas of governance,

network planning and system operations. In a second attempt to

provide solutions, DSOs have started to actively manage congestion

in their networks. But, since the same flexibility resources could

also be potentially used for congestion management and voltage

control by the TSOs, conflicts might arise due to the misalignment

of TSOs, DSOs, and market players’ actions. Even though in many

EU countries there are no rules in place that allow DSOs to acti-

vate flexibility services to redispatch the system at the distribution

level, the Clean Energy Package 3 presents clear provisions that

will enable DSOs to procure flexibility services, and is expected to

generate new schemes for TSO-DSO coordination. 

This paper is specifically focused on the participation of DERs

in Ancillary Services markets ( Gerard, Rivero, & Six, 2017 ). This

goal raises both computational as well as institutional challenges.

From a computational perspective, the challenge is to optimize the

real-time deployment of a huge number of resources connected to

the distribution grid in order to provide balancing and congestion

management services. From a market perspective, contracting

DER-based ancillary services may complicate market clearing

procedures and coordination due to the amount and complexity

of the bids, as well as the associated coordination requirements

and incentives of market participants ( Bose, Cai, Low, & Wierman,

2014; Le Cadre, 2017; 2018; Xu, Cai, Bose, & Wierman, 2015 ). A

simulator of TSO-DSO interactions over large-scale transmission

and distribution networks, allowing nodes to provide complex bids

for their flexibility activations, has been developed within Smart-

Net. The simulator outcome is not amenable to any analytical

interpretation of the results; contrary to this paper, in which we

provide analytical conditions for the existence and uniqueness of

coordination schemes outcomes and quantify for each coordination

scheme the profitability, efficiency and reserve activation levels,

under full and imperfect information, on a simplified instance. To

that extent, our work can be seen as complementary. 

2. Literature review and contributions 

In this section, we position our contribution with respect to

the power system literature on decentralized power system oper-
1 evolvDSO, FP7 funded project which aims to develop methodologies and 

tools for new DSO roles for efficient RES integration in distribution networks 

https://www.edsoforsmartgrids.eu/projects/edso-projects/evolvdso/ 
2 SmartNet, H 2020 funded project, which aims to provide optimized instruments 

and modalities to improve the coordination between the grid operators at national 

and local level http://smartnet-project.eu/ 
3 Clean Energy Package, Eurelectric position https://www.eurelectric.org/ 

policy-areas/clean-energy-package/ 

b  

h  

s  

o  

t  

w  

a  

w  

M  

Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
tions and reserve provisioning, and to the equilibrium modeling

iterature that will provide us solution concepts that will guide

ur comparison of the efficiency of the decentralized coordina-

ion schemes with respect to the centralized scheme used as

enchmark. 

.1. Hierarchical versus distributed power system operations 

The need to integrate an increasing share of variable and

npredictable energy sources (such as wind and solar photovoltaic

ower) and the development of DERs is shifting the classical

entralized market design to new market designs involving more

ecentralization and less communication between the agents

 London, Chen, Vardi, & Wierman, 2017; Molzahn et al., 2017 ).

n decentralized systems, operations/computations are performed

n local markets and information based on local optimization

roblems output is shared only locally, generally in the form

f messages exchanged between agents belonging to the same

ocal market/energy community ( Kraning, Chu, Lavaei, & Boyd,

014; London et al., 2017; Molzahn et al., 2017 ). Two categories of

ecentralized designs emerge: hierarchical and distributed designs.

The first category, hierarchical design, involves agents in local

arkets which perform operations/computations independently

nd simultaneously and interact with other agents, known as cen-

ralized controllers, at a higher level in the hierarchical structure.

uch a hierarchical interaction can be backwards in Stackelberg

ame settings (leader-follower type models) under the assump-

ion that the leaders anticipate the rational reaction of the local

arket agents seen as followers ( Dempe & Dutta, 2012; Dempe,

alashnikov, Perez-Valdes, & Kalashnykova, 2015; Le Cadre, 2017;

018; Xu et al., 2015; Yao, Adler, & Oren, 2008 ). In that case,

he leaders incorporate explicitly in their optimization problems,

he rational reaction functions of the followers. The closed form

xpression of these latter are obtained by solving first the follow-

rs’ optimization problems at the lower level of the Stackelberg

ame, considering as fixed the decision variables of the leaders.

he leaders, at the upper level, then incorporate the followers’

ational reaction functions, expressed as functions of the leaders’

ecision variables only, directly in their optimization problems,

herefore proceeding backwards. Alternatively, the hierarchical

nteraction can be forwards in case of decentralized control algo-

ithms ( Gregoratti & Matamoros, 2015; Matamoros, Gregoratti, &

ohler, 2012; Papavasiliou, 2017; Salehisadaghiani & Pavel, 2016 ),

ssuming that a centralized controller coordinates the outputs

f the local optimization problems based on the locally reported

nformation ( Kraning et al., 2014; Sorin, Bobo, & Pinson, 2018 ). 

The second category encompasses distributed designs where

ach agent communicates with its neighbors, but there is no cen-

ralized controller. This latter design is classically used to model

eer-to-peer interactions in communication networks ( Benjaafar,

ong, Li, & Courcoubetis, 2018; Le Cadre & Bedo, 2016; Sorin et al.,

018 ) or markets involving local energy communities ( Gregoratti

 Matamoros, 2015; Hvelplund, 2006; Le Cadre, Pagnoncelli,

omem-de Mello, & Beaude, 2019 ). For this second category, com-

unity detection relying on structured data becomes an important

ssue. 

Decentralized market designs may avoid costly communication

etween the agents. A drawback is that all the agents may not

ave access to the same information due to current privacy con-

traints which may limit data exchange. In the literature, a number

f distributed approaches, characterized by the degree of access

o information, have been developed. A distributed approach in

hich each local market solves a local optimization problem in

n iterative fashion by exchanging some (limited) information

ith the others is proposed in Gregoratti and Matamoros (2015) ,

atamoros et al. (2012) , and Sorin et al. (2018) . From an infor-
 of transmission-distribution system operator coordination, Euro- 
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ation and communication technology (ICT) perspective, a fully

ecentralized market design provides a robust framework since if

ne node in a local market is attacked or in case of failures, the

hole architecture should remain in place and information could

nd other paths to circulate from one point to another, avoiding

alicious nodes/corrupted paths. From an algorithmic point of

iew, such a setting enables the implementation of algorithms that

reserve privacy of the local market agents (requiring from them

o not share more than their dual variables - e.g., local prices - up-

ates). This also creates high computational challenges, especially

f the number of local local markets/peers is high. Furthermore,

uch algorithms that derive from decomposition-coordination

pproaches ( Gregoratti & Matamoros, 2015; Matamoros et al.,

012; Sorin et al., 2018 ) do not enable strategic behaviors of the

ocal markets/peers. Depending on the market design, strategic

ehaviors of the local markets/peers can be quite complex; these

atter can group together, self-organizing in complex coalitional

tructures, etc. The analysis of incentives for coalition formation

nd their relative stability is a current active research area in

oalitional game theory ( Le Cadre et al., 2019 ), which is out of the

cope of this paper. 

With the goal to typologize the optimization problems associ-

ted with new power system designs, we replace the contribution

f this work with respect to Le Cadre (2017, 2018) and Le Cadre

nd Bedo (2016) . In Le Cadre and Bedo (2016) , we focus on the

istribution level and consider a set of aggregators (service suppli-

rs), which supply power to local energy communities. In the local

nergy community, the demand can be covered by the community

wn RES-based generation or by buying the missing quantity to an

ggregator. The aggregator can buy energy from generators having

 portfolio including a mix of RES-based and conventional gen-

rations, but faces double uncertainty coming from the uncertain

emand level in the local energy community and the uncertain

roduction levels from the generators. Local energy demand and

ES-based generation learning strategies are implemented based

n regret minimization. We prove in Le Cadre and Bedo (2016) that

he aggregators have incentives to share their information and

lign on a single forecasting strategy instead of learning without

ommunication with the other aggregators. In Le Cadre and Bedo

2016) , we focus on establishing theoretical bounds on learning

lgorithms convergence, and distribution and transmission net-

orks are not explicitly modeled. In Le Cadre (2017, 2018) , we

nalytically compare centralized and decentralized market designs

nvolving a national (global) and local market operators, strategic

enerators having market power and bidding sequentially in local

arkets, to determine which design is more efficient for the pro-

urement of energy. In the centralized design, used as benchmark,

he national market operator optimizes the exchanges between

ocal markets and the generators’ block bids. In the decentralized

esign, generators act as Stackelberg game leaders, anticipating

he local market prices and the flows on the transmission lines.

e determine that the decentralized design is as efficient as the

entralized one with high share of RES-based generation and that

nformation on local RES-based generation has a limited impact

n the efficiency of the decentralized market design. In Le Cadre

2017, 2018) , the transmission network is modeled through a

implified linear DC power flow model, which represents an ap-

roximation of Kirchhoff’s laws. Distribution level constraints are

gnored in the provision of DER-based generation. In this paper,

imilarly to Le Cadre and Bedo (2016) and Le Cadre (2017, 2018) , a

ame-theoretic framework is introduced, and local energy commu-

ities are considered at the DSOs’ levels. But, the focus is on the

uantification of the inefficiency resulting from the decentraliza-

ion of the TSO and DSO decisions. Furthermore, in contrast to our

revious work, learning strategies of operational parameters and

etwork topology that could be implemented by TSO and DSOs
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
re not considered, though they could constitute an interesting

xtension of this work. In this paper, distribution networks are

odeled with more sophistication by approximating the distribu-

ion power flow equations using second order cone programming

SOCP) relaxation and explicitly incorporating operational network

arameters in the constraints, which clearly complexify the TSO-

SO game resolution and is not amenable to analytical solution

nterpretation, by comparison with Le Cadre (2017, 2018) . 

.2. Provision of reserves from DERs 

Whereas the aforementioned literature focuses broadly on the

ispatch of resources in power systems, there has been an increas-

ng concern about the real-time balancing of the system through

he activation of reserves ( Caramanis, Ntakou, Hogan, Chakrabortty,

 Schoene, 2016; Gerard et al., 2017 ), which is the specific focus

f this paper. Power system operations are characterized by a

ignificant degree of uncertainty, which stems from forecast errors

s well as component failures ( Papavasiliou & Oren, 2013 ). The

eed of instantaneously balancing supply and demand in order

o prevent system instabilities, compounded by the uncertainty

nvolving real-time operations, implies that power systems need

o carry a notable amount of spare capacity, referred to as reserve,

hich can be activated in short notice (a few seconds to minutes,

epending on the specific definition of reserves in different mar-

ets) in order to ensure power balance. This capacity is reserved in

equential or multiproduct auctions in advance of real-time oper-

tions ( Papavasiliou & Smeers, 2017 ). This process is referred to as

eservation of reserve capacity. The capacity is then dispatched in

eal time in order to provide balancing services to the system. The

atter process is referred to as reserve activation. Our interest in

his paper is how this reserve can be offered by resources located

t the distribution grid, given the inherent flexibility of these

esources but also the significant degree of distributed renewable

upply which suggests that local imbalances may better be dealt

ith by local flexible resources as opposed to centralized reserves

ade available by the TSO at the high-voltage grid. 

From an optimization standpoint, the novel aspect of the

rovision of reserves from DERs is the fact that in so providing

hese reserve services, distributed resources need to respect power

ow constraints for which a linear model is not adequate. Such

onstraints represent the fact that voltage limits on distribution

odes need to be respected, and current and complex power flow

imits on lines also need to be within acceptable bounds. 

An approach for overcoming this challenge was recently ar-

iculated by Caramanis et al. (2016) . The major innovation of the

uthors is to introduce a reserve ‘flow’ variable which ensures

he deliverability of reserves to the transmission system, while

especting the aforementioned voltage and flow constraints. The

uthors argue that a workable market for reserve provision from

ERs requires the simultaneous clearing of real power, reactive

ower, and reserve capacity. 

The representation of the aforementioned power flow con-

traints requires, in principle, a non-convex nonlinear model

f power flow. Extensive research has recently been focused

n developing and analyzing convex relaxations of the optimal

ower flow problem, with special focus on second order cone

rogramming (SOCP) relaxations ( Kocuk, Dey, & Sun, 2016 ) which

rovide an acceptable tradeoff between modeling accuracy and

omputational scalability. We apply specifically the branch flow

OCP relaxation ( Farivar & Low, 2013 ), which was also employed in

aramanis et al. (2016) . Our motivation for doing so is the fact that

he relaxation is shown to be exact under fairly tenable conditions

n radial networks. Given our focus on distribution systems, which

re typically radial, we decide to follow ( Caramanis et al., 2016 ) in

mploying the branch flow SOCP relaxation. 
 of transmission-distribution system operator coordination, Euro- 
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2.3. Equilibrium modeling of TSO-DSO coordination 

Although the market design set forth by Caramanis et al.

(2016) articulates a clear path towards the integration of DER in

ancillary services markets, alternative hierarchical designs have

been considered, with varying degrees of DSO involvement in

market clearing, ranging from minimal to maximal DSO involve-

ment in operations. These hierarchical designs are motivated

by a variety of reasons, including communication bottlenecks,

optimization bottlenecks, as well as institutional constraints (in

particular, the fact that operators are not willing to share infor-

mation and the trading of reactive power is not well understood

among practitioners). Although computational and communica-

tion bottlenecks have largely been alleviated by recent work on

distributed and peer to peer optimization of large-scale optimal

power flow ( Kraning et al., 2014; Peng & Low, 2014 ), institutional

constraints prevail. Moreover, the introduction of binary activation

variables in DER offers weakens the value of the aforementioned

SOCP relaxations, and the resulting algorithms can then only be

employed as heuristics. In either case, it then becomes relevant

to investigate alternative models of TSO-DSO interactions that

incorporate decentralized decision models. 

Although it can be argued that a hierarchical organization of

TSO-DSO coordination can closely or even perfectly replicate the

outcome of full optimization if the market design is properly cho-

sen, recent proposals of TSO-DSO coordination seem to permit the

emergence of market incompleteness ( Gerard et al., 2017 ). Such

incompleteness results in operational inefficiencies, which may be

inevitable in a realistic setting bound by institutional constraints.

The relevant question, then, becomes which of these imperfect

designs results in fewer efficiency losses. We focus on two specific

schemes proposed in the literature ( Gerard et al., 2017 ): shared

balancing responsibility, and local (ancillary services) markets.

We approach the first scheme as a simultaneous non-cooperative

game, whereby we assume ‘bounded rationality’ on behalf of the

TSO and DSO. Under ‘bounded rationality’, DSOs and TSO deter-

mine the reserves to activate on their networks simultaneously.

We approach the second scheme as a sequential Stackelberg game,

assuming DSOs with ‘rational expectations’ ( Le Cadre, Papavasiliou,

& Smeers, 2015; Yao et al., 2008 ) on the reaction of the TSO. In the

first stage of the sequential Stackelberg game, the DSOs anticipate

the future reaction of the follower (TSO) (which will play in the

second stage) when determining the reserves to activate on their

networks and send a signal based on this activation to the TSO,

which reacts optimally in the second stage. 

The solutions of both models of interaction are interpreted

as Generalized Nash Equilibria. A Generalized Nash Equilibrium

is the solution concept used to analyze non-cooperative games

where the utility functions and the feasibility set of constraints

of one agent depends on all the other agents’ actions ( Facchieni

& Kanzow, 2007; Fudenberg & Tirole, 1991; Harker, 1981 ). In the

context of our work, the utility functions of the DSOs and TSO

are not coupled, in the sense that each utility function depends

only on the agent’s own decision variables and random distur-

bances realizations, but the TSO and DSOs’ optimization problems

are coupled through the shared physical constraints imposed

by the interface nodes which belong to both transmission and

distribution networks and the limits of the available resources. A

similar approach has been employed by Oggioni, Smeers, Allevi,

and Schaible (2012) in order to quantify the impact of the degree

of coordination between two TSOs operating in interconnected

areas in the case of congestion management. In our work, the

focus is rather on balancing coordination in ancillary services

markets. Also close to our work, the impact of different degrees

of coordination both in time and in space (inter-regional) of

day-ahead and balancing markets, operated by regional TSOs,
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
s studied in Delikaraoglou, Morales, and Pinson (2016) . On the

emporal dimension, cases of imperfect and full coordination for

he market clearing are modeled as sequential and stochastic inte-

rated optimization problems. Imperfect spatial coordination may

rise in form of differentiated prices or quantities, in case TSOs

an only activate resources that are physically located in their own

etworks. Market incompleteness, resulting from spatial quantity

ifferentiation of even missing market for certain services, may

onstitute another source of imperfect coordination. In our work,

e focus on TSO-DSO coordination, and introduce distribution

etwork power flow and operational constraints. 

.4. Paper contributions 

In this paper, we focus on three coordination schemes that

resent different ways of organizing the coordination between the

SO and DSOs in terms of activating reserves. We give an overview

f these three coordination schemes: 

(i) The first scheme is a perfectly coordinated global market,

where the TSO and DSOs jointly coordinate the activation of

resources located in both the transmission as well as distri-

bution grid, while taking into account both transmission and

distribution grid constraints. The resulting co-optimization

problem ( Papavasiliou, 2017 ), formulated as a standard con-

strained optimization problem in Section 5.1 , requires full

coordination of the market parties and perfect information

on the networks topology and operational parameters. It will

be used as a benchmark to assess the performance of decen-

tralized market designs. 

(ii) The second scheme is a decentralized market design with

‘bounded rational’ agents, in the sense of agents which do

not anticipate the reactions of one another through an ex-

plicit reaction function. In this scheme, we assume that

the DSO clears its local market by activating local reserves

(solar PV power generations, demand response flexibilities)

and assuming a desired injection by the TSO, taking into

account local distribution grid constraints and offering a

defined distribution grid capacity for the TSO needs. On

its side, the TSO clears the global market by activating

resources connected to the transmission grid and aggre-

gated reserves activated by the DSOs, taking into account

transmission grid constraints and distribution grid capacities

allowed by the DSOs. We model this scheme as a (simul-

taneous) non-cooperative game in Section 5.2 . The shared

balancing responsibility game is analyzed under perfect and

imperfect information on the operational parameters and

network topology. 

(iii) The third scheme is a decentralized sequential market in-

volving ‘rational expectation’ from the leaders. Under this

design, the DSOs activate reserve strategically, with the aim

of minimizing their activation costs, while forming rational

expectations regarding the actions of the other DSOs and

the TSO. Each DSO activates reserves taking into account lo-

cal distribution grid constraints, and sends a signal based on

their local activation to the TSO. The TSO then activates re-

sources connected to the transmission grid and aggregated

distribution system reserves, taking into account transmis-

sion grid constraints. In this coordination scheme, the DSOs

act first, anticipating the behavior of the other DSOs and

the TSO. This market design is formulated as a Stackelberg

game involving DSOs (multi-leaders) and a TSO (follower) in

Section 5.3 . 

The goal of this paper is to compare the efficiency of these

hree coordination schemes, relying on Generalized Nash Equilib-

ium as solution concept. There exists a wide literature in power
 of transmission-distribution system operator coordination, Euro- 
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N

ystem economics that considers game theoretic approaches to

nalyze simple models of transmission markets ( Borenstein, Bush-

ell, & Stoft, 20 0 0; Boucher & Smeers, 20 01; Oggioni et al., 2012;

ao et al., 2008 ). Following this trend, we propose in this paper

o use game theoretical approaches to analyze transmission and

istribution markets interactions, on simple models. 

The implementation of these new TSO-DSO coordination

chemes at the EU level, in a multi-area setting, will require to

void the disclosure of sensitive intra-area data between the TSO

nd DSOs. Ideally, this coordination might be done by a centralized

ontroller in case (i) , or by the TSO and DSOs in cases (ii) , (iii)

ssuming full information on operational parameters and network

opologies, but the restriction imposed by new data privacy rules

alls for methods with limited amount of information sharing

 Halilbasic, Chatzivasileiadis, & Pinson, 2017 ). In a first approach,

e will assume that the TSO and DSOs have full information on

he operational parameters and network topology of all the TSO

nd DSOs, in cases (i) , (ii) , and (iii) . Case (ii) will be refined by

ssuming that the agents have only imperfect information about

he other agents’ network characteristics, requiring to introduce

orecasts of the state variables. The impact of incomplete infor-

ation in the shared balancing responsibility game is formally

uantified through the Price of Information (PoI), that we evaluate

s a function of the coefficients of variation of the TSO and DSOs.

e choose the PoI because it is an appropriate measure of the

fficiency loss imposed by new data privacy rules, by comparison

ith the idealized paradigm (i) with full information and an inte-

rated market operator coordinating the TSO and DSOs’ decisions.

e now highlight the practical and methodological contributions

f our work. 

From a practical point of view, our work provides game-

heoretic approaches to model and interpret strategic interactions

etween TSO and DSO under full and imperfect information.

ame-theoretic approaches have been applied in transmission

arkets ( Borenstein et al., 20 0 0; Boucher & Smeers, 2001; Oggioni

t al., 2012 ) and our contribution is to extend what has been done

y also considering distribution market. By using toy examples to

llustrate our theoretical setting, we aim at furnishing quantitative

nsights on TSO-DSO coordination. Again, illustration through

mall test cases helped to understand crucial mechanisms when

nly transmission markets were examined ( Borenstein et al., 20 0 0;

oucher & Smeers, 2001; Oggioni et al., 2012 ). While centralized

pproaches where the TSO has control over all the network have

o be dropped out ( Kristov, De Martini, & Taft, 2016 ) and knowing

he ongoing debate at EU level on the roles of TSOs and DSOs, the

utcome of our game-theoretic models of TSO-DSO coordination

chemes enters the scope of these issues of concern. 

From a methodological point of view, we classify the power

ow variables in state and decision (control) variables, the

volution of which determine the state outcome following the

ramework of ( Ba ̧s ar & Olsder, 1999 ). To that purpose, we re-

ormulate the power flow equations to identify linear mappings

etween the state and the decision (control) variables. We then

rove formally that our power-flow equation reformulation is

quivalent to the initial problem. The framework introduced by

asar and Olsder for dynamic games with information is not

lassically used in the bilevel optimization literature, the goal

eing here to consider the impact of information on the equilib-

ium output. This framework is mandatory for the introduction of

ore complex information structures for TSO-DSO interactions, as

enerically defined in Section 3.3 , i)-ii). In the paper, we consider

ull and imperfect information. Finally, the framework is also

andatory for us to characterize analytical conditions for the ex-

stence and uniqueness of solutions for each coordination scheme,

hich constitutes another methodological contribution of our

ork. 
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
.5. Article organization 

The article is organized as follows. In Section 3 , we introduce

he transmission and distribution network structures (3.1) , the de-

ision variables, states and utility functions of the agents (3.2) , and

he general setting of strategic form game with chance move (3.3) .

ower flow equations are reformulated in Section 4 , highlighting

elationships between state and decision variables. Coordination

chemes are formulated as optimization problems in Section 5 and

onditions for existence and uniqueness of solutions are detailed.

n particular, the shared balancing responsibility game is analysed

n a context of imperfect information on the operational parame-

ers and network topology. The set of Generalized Nash Equilibria

s spanned using random sampling and the impact of information

s analyzed in Section 7 . We conclude in Section 8 . 

otation 

Sets 

A set of agents 

a generic agent 

A −a all the agents in A except a 

X (full) state space 

U a control set of agent a 

I a information set of agent a 

�a (γ−a ) set of permissible strategies for agent a 

� action set of Nature 

N set of n local (distribution) markets 

DN k set of distribution nodes for local market k 

TN set of transmission nodes 

L set of transmission lines 

N ∞ set of nodes at the interface 

C i set of children of node i 

FS a agent a constraint set 

S GNE set of Generalized Nash Equilibria 

Parameters and functions 

πa (. ) agent a utility function 

P n (. ) price in transmission node n 

αn , βn transmission node n price parameters 

P i (. ) locational marginal price in distribution node i 

αi , βi locational marginal price P i (. ) parameters 

D n,i day-ahead demand in node n, i 

C n (. ) TSO activation cost in node n 

p̄ n real power production cleared in day ahead 

in transmission node n 

p̄ c 
i 

real power consumption cleared in day ahead 

in distribution node i 

p̄ g 
i 

real power generation cleared in day ahead 

in distribution node i 

C c 
i 
(. ) demand-side activation cost in distribution node i 

C g 
i 
(. ) supply-side activation cost in distribution node i 

SW (. ) social welfare 

κ distribution tree depth 

M adj adjacency matrix 

M inc incidence matrix 

G i shunt conductance of node i 

B i shunt susceptance of node i 

R i resistance of distribution line i 

S i complex power flow limit over distribution line i 

X i reactance of distribution line i 

T C l flow thermal limit of transmission line l

R g 
i 
, R c 

i 
reserve capacity for generator, consumer 

at distribution node i 

Q + / −
i 

reactive power upper / lower capacity limit 

at distribution node i 

R n reserve capacity at transmission node n 

g a (. ) gradient of πa (. ) 

J a agent a Jacobian block matrix of g a (. ) 

μa , σ a mean, standard deviation of agent a forecast error 

on the set of agents in A −a state variables 

Variables 

u a action of agent a 

x (full) state variable 

y a observation of agent a 

γa agent a strategy 
 of transmission-distribution system operator coordination, Euro- 
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e  

w  

(  

v  

w

 

n

u

 

t  

t  

k

γ−a combination of strategies of all the agents 

in A except a 


p n reserve activation in transmission node n 

θn bus angle of transmission node n 


p g 
i 
, 
p c 

i 
real power supply-side, demand-side 

reserve activation at distribution node i 

q i net (unsigned) reactive power withdrawal 

at distribution node i 

v i voltage magnitude squared at distribution 

or interface node i 

f l real power flow over transmission line l

f p 
i 

real power flow over distribution line i 

from i to its ancestor node 

f q 
i 

reactive power flow over distribution line i 

l i current magnitude squared on distribution line i 


D n (ω) real power imbalance realization in node n 

εa agent a forecast error on the set of agents in A −a 

state variables 

Conventions 

M 

T transpose of matrix M

M 

2 M 

T M for any matrix M

Ker(M) matrix M Kernel 

Im (M) matrix M Image 

card(A ) cardinality of set A 

x n n th element of vector x 

diag(x ) square matrix having vector x on its diagonal 

and 0 for off-diagonal coefficients 

I Identity matrix 

3. Market structure and agents 

The focus of our paper is the activation of operating reserves.

We therefore focus on the so-called balancing market, the role of

which is to activate reserves. We will focus on upward reserve ac-

tivation in our model, meaning that reserves are called to increase

their real power production. Specifically, producers offer upward

reserve by increasing their power production at a marginal cost

of C 
g 
i 
, and consumers offer upward reserve by decreasing their

power production at a marginal cost of C c 
i 
. The balancing market is

preceded by a forward auctioning of energy and reserves 4 , which

determines the set-point real power production/consumption of

resources p̄ , as well as the amount of reserve capacity R 
g/c 
i 

that

each reserve resource can make available. In real time, random

demand disturbances occur at the transmission network, 
D n ( ω),

where n is a transmission node, as well as the distribution

network, 
D i ( ω), where i is a distribution node. 

We consider three categories of agents operating in the

balancing market: 

• DSOs which operate local distribution balancing markets. 
• A TSO which operates a transmission balancing market. 
• Fringe producers and consumers. These are represented on ag-

gregate through marginal cost and marginal benefit functions

respectively. For the sake of simplicity, we assume that only

producers offer reserve at the transmission level, whereas both

producers and consumers can offer reserve at the distribution

level, thereby reflecting the fact that distribution systems may

typically host flexible demand (e.g., electric vehicles). 

In a centralized market, an integrated market operator con-

tracts DERs directly from generators and consumers connected

to the transmission and distribution grids, taking into account

grid constraints. Such a centralized market can be formulated as

a standard optimization problem under network constraints. This

design will be used as a benchmark throughout the paper. 

The motivation of a decentralized market structure, which

we consider as an alternative to the above centralized design, is

to minimize the amount of information that the TSO needs to

account for when activating reserves. In a decentralized market
4 This auctioning may be performed simultaneously or sequentially, without any 

impact on our analysis. 

u

Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
tructure, each DSO seeks to activate local resources so as to

esolve local grid issues at the lowest possible cost. In a sequential

arket design, each DSO activates its resources and communicates

n aggregate signal to the TSO which indicates which of its local

esources can also be activated by the TSO. The TSO, which is

n charge of balancing market clearing at the transmission level

nd has no access to detailed distribution network information,

etermines which resources to activate in the transmission and

istribution systems, taking the signal of the DSO as being fixed. 

We propose to formalize such decentralized designs (either

imultaneous or sequential) as a game in strategic form between

he TSO and DSOs. Towards that end, we need to specify the

etwork structure, the set of agents in the game, the set of options

vailable to each agent, and the way that the payoffs of agents

epend on the options that they choose. 

.1. Network structure 

We consider a set N := { 1 , . . . , n } of n local (distribution) mar-

ets. The set of distribution nodes in local market k is denoted as

N k , where k ∈ N . 

The set of transmission nodes is denoted as TN . The set of

ransmission lines is denoted L . 

The set of nodes at the interface of the transmission and

istribution grids is denoted as N ∞ 

. Only transmission resources

an bid in these nodes. We assume that there is no overlapping

etween the interface nodes of two DSOs, so that TSO can share

esources with multiple DSOs, whereas two DSOs do not share

ny common resource. This network structure can be justified by

ssuming a ‘local (distribution) market-to-grid’ market structure,

n which DSOs, by the intermediate of aggregators, provide ser-

ices to a microgrid that is connected to a larger grid operated

y the TSO ( Parag & Sovaccool, 2016 ). Other designs could be

nvisaged in an extension of our work, like ‘peer-to-peer’ models,

n which DSOs interconnect directly with one another by the

ntermediate of aggregators, buying and selling energy services,

.g., sharing resources all together; ‘islanded microgrids’, in which

ocal (distribution) markets behave as independent standalone

icrogrids, e.g., sharing resource neither with the TSO nor with

he other DSOs, etc. ( Parag & Sovaccool, 2016 ). 

The distribution networks follow a radial structure as pictured

n Fig. 1 . This means that each local network can be represented

s a tree. Consequently, in each local market k ∈ N , we denote by i

 line entering node i ∈ DN k . 

.2. Decision variables, states and utility functions 

Our game-theoretic setting is inspired from the electrical

ngineering models ( Farivar & Low, 2013; Papavasiliou, 2017 ), that

e reformulate in the framework introduced by Ba ̧s ar and Olsder

1999) . Adopting system theory terminology, we differentiate the

ariables into two categories: we call x the (full) state of the game,

hile u TSO , ( u DSO , k ) k ∈ N are the TSO and DSOs’ decision variables. 

The TSO optimizes the reserve activation at each transmission

ode. Its decision variables are stored in a vector: 

 T SO = (
p n ) n ∈ TN ∪ N ∞ . 

The DSO optimizes the reserve activation, reactive power injec-

ion/consumption, and voltage at each distribution node. Similarly

o the TSO, the decision variables of the DSO in the local market

 ∈ N are stored in a vector: 

 DSO,k = 

⎛ 

⎜ ⎝ 

(
p g 
i 
) i ∈ DN k 

(
p c 
i 
) i ∈ DN k 

(q i ) i ∈ DN k 
(v i ) i ∈ DN k 

⎞ 

⎟ ⎠ 

, ∀ k ∈ N. 
 of transmission-distribution system operator coordination, Euro- 
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Fig. 1. Example of a meshed transmission network and distribution networks with radial structure. The transmission network consists of three nodes in blue (transmission 

network being restricted to its interface nodes only, N ∞ ), and each transmission node is the root of a distribution tree with 5 distribution nodes (source: NICTA NESTA test 

case Coffrin et al. ). Note that there is no redundancy between the transmission and distribution node numbering. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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The (full) state variable x contains state variable characterizing

he TSO ( f l ) l∈ L , (θn ) n ∈ TN ∪ N ∞ 

and state variables characterizing the

SOs ( f 
p 
i 
) i ∈ DN k ,k ∈ N , ( f 

q 
i 
) i ∈ DN k ,k ∈ N , (l i ) i ∈ DN k ,k ∈ N : 

 = 

⎛ 

⎜ ⎜ ⎝ 

( f l ) l∈ L 
( f p 

i 
) i ∈ DN k ,k ∈ N 

( f q 
i 
) i ∈ DN k ,k ∈ N 

(l i ) i ∈ DN k ,k ∈ N 
(θn ) n ∈ TN ∪ N ∞ 

⎞ 

⎟ ⎟ ⎠ 

. 

he analytical expressions of the state variables as functions of

he TSO and DSOs’ decision variables will be made explicit in

ection 4 . We can already say that the state variables contain: 
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
• The power flows over transmission lines, ( f l ) l∈ L , which will be

expressed through Eq. (25) as a linear matrix equation in the

TSO and DSOs’ decision variables. 
• The real and reactive power flows over distribution lines,

( f 
p 
i 
) i ∈ DN k ,k ∈ N , and, ( f 

q 
i 
) i ∈ DN k ,k ∈ N , which will be obtained in Eqs.

(18) and (19) as linear functions of the DSOs’ decision variables.
• The current magnitude over distribution lines, (l i ) i ∈ DN k ,k ∈ N ,

which will be expressed in Eq. (17) as a linear function of the

DSOs’ decision variables. 
• The bus angles at transmission nodes, (θn ) n ∈ TN ∪ N ∞ 

, which can

be obtained as a linear function of the TSO and DSOs’ decision

variables in Eq. (31) . 
 of transmission-distribution system operator coordination, Euro- 
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We assume that the energy unit price at each node in the trans-

mission network n ∈ TN ∪ N ∞ 

is represented with P n : R + → R + 
that specifies how much the energy provider is willing to pay to

supply one more power unit to the consumers. D n + 
D n (ω) is the

aggregated demand in node n , D n being the demand ordered in the

day ahead market and 
D n ( ω) the imbalance in real time. We as-

sume a linear relation between price in transmission and interface

nodes and aggregated demand ( Xu et al., 2015; Yao et al., 2008 ): 

P n (D n + 
D n (ω)) = αn − βn (D n + 
D n (ω)) , 

with αn > 0 and βn ≥ 0. 

Similarly to the transmission network, in the distribution nodes,

we assume a linear relation between price at distribution nodes

P i : R + → R + and the difference between the sum of real power

consumption and imbalance, and real power reserve activation: 

P i 

(
p̄ c 

i 
+ 
D i (ω) − 
p c i 

)
= αi − βi 

(
p̄ c 

i 
+ 
D i (ω) − 
p c i 

)
, 

with αi > 0 and β i ≥ 0. 

Following Hobbs and Rijkers (2004) and Munoz, Wogrin,

Oren, and Hobbs (2018) , we model the TSO and DSOs as profit-

maximizer agents which behave strategically by activating re-

sources on their network, in real time (e.g., on the balancing

market). The goal of the TSO is to maximize its profit defined

as the difference between the revenue generated from the total

demand at each of its nodes and the cost of reserve activation in

the transmission network in real time. The objective function of

the TSO takes the following form: 

πT SO (x, (u a ) a ∈ A , ω) 

= 

∑ 

n ∈ TN ∪ N ∞ 
[ P n (D n + 
D n (ω))( p̄ n + 
p n ) − C n (
p n )] . (1)

Similarly, the DSO operating in local balancing market k ∈ N aims

at maximizing its profit defined as the difference between the

revenue paid by the energy provider to supply the total consumer

demand at nodes in its distribution network and the cost resulting

from the activation of generation reserves and demand response.

Its objective function can be written as follows: 

πDSO,k (x, (u a ) a ∈ A , ω) 

= 

∑ 

i ∈ DN k 
[ P i ( p̄ 

c 
i 
+ 
D i (ω) − 
p c i )( p̄ 

g 
i 
+ 
p g 

i 
) 

−C c i (
p c i ) − C g 
i 
(
p g 

i 
)] . (2)

Note that the agents’ objective functions are independent of the

state variables x , and that there is no coupling between their

utility functions, in the sense that each utility function depends

only on the agent’s own decision variables and on the random

disturbances realization ω. As such, in what follows, we will write

π TSO ( u TSO , ω) and πDSO k 
(u DSO k 

, ω) , ∀ k ∈ N. Also, note that the spe-

cial case αn = βn = 0 , ∀ n ∈ TN ∪ N ∞ 

and αi = βi , ∀ i ∈ DN k , ∀ k ∈ N

coincides with a situation where TSO and DSOs minimize their

activation costs ( Mezghani, Papavasiliou, & Le Cadre, 2018 ). 

We will assume that the cost functions are strictly convex and

of the form: C n (
p n ) = c n 
p 2 n , c n > 0 , ∀ n ∈ TN ∪ N ∞ 

, C c 
i 
(
p c 

i 
) =

c c 
i 
(
p c 

i 
) 2 , c c 

i 
> 0 , C 

g 
i 
(
p 

g 
i 
) = c 

g 
i 
(
p 

g 
i 
) 2 , c g 

i 
> 0 , ∀ i ∈ DN k , ∀ k ∈ N. 

3.3. Strategic form game with chance moves 

The game incorporates a chance move, with possible alterna-

tives for Nature being ω ∈ �. At the beginning of the game, Nature

picks a state defined by a realization of the uncertain demand

disturbances at transmission nodes and real time imbalances at

distribution and interface nodes. Nature actions influence the

evolution of the state of the game. In each state of Nature, the

TSO and DSOs, whose information sets include the state of Nature,
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
ompete through a discrete time game involving the N DSOs,

ach operating a local (distribution) market, and the TSO ( Ba ̧s ar &

lsder, 1999 ), which involves: 

• A set of agents A := { DSO k , k ∈ N} ∪ { T SO } . A generic agent will

be denoted as a ∈ A . 
• An infinite set X , called the (full) state space of the game, to

which the state of the game x belongs. 
• An infinite set U a , defined for each agent a ∈ A , which is called

the action (control) set of agent a ∈ A . Its elements are the per-

missible actions u a of agent a . 
• A set Y a , defined for each agent a ∈ A , called the observation

set of agent a , to which the observation y a of agent a belongs. 
• A function h a : X → Y a , defined for each agent a ∈ A , so that 

y a = h a (x ) , a ∈ A , (3)

which is the state-measurement (observation) equation of

agent a concerning the value of the (full) state x . 
• A finite set I a defined for each a ∈ A as a subset of { y a ′ , a ′ ∈ A }

which determines the information gained by agent a ∈ A . Spec-

ification of I a characterizes the information structure of agent

a . 
• A pre-specified class �a (γ−a ) of mappings γa : I a → U a which

are the permissible strategies of agent a . All the other agents

have the possibility to influence agent a strategy through γ−a .

The class �a (γ−a ) of all such mappings γ a is the strategy set

(space) of agent a . 
• A finite or infinite set �, which denotes the action set of Na-

ture. Any permissible action ω of Nature is an element of �. 
• A utility function πa : X × ×a ′ ∈ A U a ′ × � → R defined for each

agent a ∈ A . Eqs. (1) and (2) give explicit expressions for TSO

and DSOs’ utility functions. 

In the following, we will consider two information structures: 

i) Perfect information I a = { x } , ∀ a ∈ A , 

ii) and, imperfect information I a = { y a = h a (x ) } , ∀ a ∈ A . 

For each fixed card(A ) -tuple of permissible strategies { γa ∈
a (γ−a ) , a ∈ A } , the strategic and extensive form game descrip-

ions lead to a unique set of vectors { u a := γa (I a ) , I a ∈ I a , a ∈ A }
ecause of the causal nature of the information structure ( Ba ̧s ar

 Olsder, 1999 ). By abuse of notation, in the rest of the paper, we

ill refer to u a and γ a (.) without distinction. 

. Reformulation of power flow constraints 

Later in the paper, we optimize the strategies of the agents

o that the closed-loop system gives rise to an equilibrium. This

equires first to introduce explicit relationships between state and

ecision variables ( Ba ̧s ar & Olsder, 1999 ). To that purpose, we

ropose a reformulation of the power flow equations. 

.1. DSO distribution network power flows 

For the sake of simplicity in what follows, we focus on a

ingle distribution network DN , but this can be easily extended

o N independent local (distribution) markets coupled by the

ntermediate of the global grid, as assumed in Section 3.1 . 

In this section we will derive the DSO’s active and reactive

ower flows and current magnitude squared as linear functions of

he DSO’s decision variables. We first state the SOCP relaxation of

he power flow equations ( Farivar & Low, 2013 ): 

f p 
i 

−
∑ 

j∈ C i 

f p 
j 

= p g 
i 
+ 
p g 

i 
− p c 

i 
+ 
p c i − G i v i 

−
∑ 

j∈ C i 

l j R j − 
D i (ω) , ∀ i ∈ DN , (4)
 of transmission-distribution system operator coordination, Euro- 
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f q 
i 

−
∑ 

j∈ C i 

f q 
j 

= −q i + B i v i −
∑ 

j∈ C i 

l j X j , ∀ i ∈ DN , (5) 

 i = v j| i ∈ C j 
+ 2(R i f 

p 
i 

+ X i f 
q 
i 
) − l i (R 

2 
i + X 

2 
i ) , ∀ i ∈ DN , (6) 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ S 2 i , ∀ i ∈ DN , (λ2 ) (7) 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ v i l i , ∀ i ∈ DN , (λ3 ) (8) 

( f p 
i 

− l i R i ) 
2 + ( f q 

i 
− l i X i ) 

2 ≤ S 2 i , ∀ i ∈ DN . (λ4 ) (9) 

The variables of the so-called branch flow model presented

bove are real ( 
p 
g 
i 
, 
p c 

i 
) and reactive ( q i ) power injections, real

 f 
p 
i 

) and reactive ( f 
q 
i 

) power flows, and the magnitude squared

f voltage phasors ( v i ) and angle phasors ( l i ). Constraints (4) and

5) express the balance of real and reactive power at each dis-

ribution node. Constraints (6) and (7) , introduced by Farivar and

ow (2013) , correspond to the SOCP relaxation of the power flow

onstraints. Constraints (8) and (9) impose complex power flow

imits along each distribution node. 

Let M adj ∈ Mat( DN , DN ) denote the adjacency matrix of

he oriented graph composed by the distribution network DN ,

here M adj (i, j) = 1 if there exists an oriented link connecting

ode i ∈ DN to node j ∈ DN , and 0 otherwise. Then we can rewrite

he system of Eqs. (4) into the matrix form: 

(I − M adj ) f 
p = 
p g + 
p c − diag(G ) v − M adj diag(R ) l 

+ p g − p c − 
D (ω) , (10) 

here, by convention, diag ( G ) is the diagonal matrix having on its

iagonal elements G i , i ∈ DN , and diag ( R ) is the diagonal matrix

aving on its diagonal elements R i , i ∈ DN . 

Since the distribution network is an acyclic graph (more pre-

isely a tree), there exists an integer κ ∈ N 

∗ such that all paths in

he distribution network have a length strictly lower than κ . Then

e can prove easily that M 

κ
adj 

= 0 ( Hu & Shing, 2002 ). As a result,

e have the following relation: 

(I + 

κ−1 ∑ 

i =1 

M 

i 
adj ︸ ︷︷ ︸ 

M 

)(I − M adj ) = I, (11) 

nd so, using Eq. (11) in Eq. (10) we can conclude that: 

f p = (I + M)(
p g + 
p c − diag(G ) v + p g − p c − 
D (ω)) 

−Mdiag(R ) l, (12) 

here M := 

∑ κ−1 
i =1 M 

i 
adj 

and using the relation M = (I + M) M adj 

nherited from Eq. (11) . 

Similarly, the reactive power flows can be derived from the

ystem of Eqs. (5) , that we recall below ( Farivar & Low, 2013;

apavasiliou, 2017 ): 

f q 
i 

−
∑ 

j∈ C i 

f q 
j 

= −q i + B i v i −
∑ 

j∈ C i 

l j X j , (13) 

or each node i in the distribution network DN . From Eqs. (5) and

11) , we can then obtain the closed form of f q : 

f q = (I + M)(−q + diag(B ) v ) − Mdiag(X ) l. (14) 

By replacing f 
p 
i 

and f 
q 
i 

by the expressions found in Eqs.

12) and (14) , we can rewrite the system of Eqs. (6) as: 

(I − M 

� 
adj + 2�(R ) diag(G ) − 2�(X ) diag(B )) v − Hv ∞ 

= 2�(R )(
p g + 
p c + p g − p c − 
D (ω)) − 2�(X ) q 

−(diag(R )(2 M + I) diag(R ) + diag(X )(2 M + I) diag(X )) l, (15) 

here �(Mat) := diag(M at)(I + M ) for any matrix Mat ∈
at( DN , DN ) and H = ((1 i ∈ C j ) i ∈ DN, j∈ N ∞ 

) is the matrix that contains
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
s i , j - element 1 i ∈ C j = 1 if i ∈ C j and 0 otherwise, for i ∈ DN and

j ∈ N ∞ 

. Note that the voltage is assumed to be the same at all the

odes in the interface, i.e., v i = v ∞ 

, ∀ i ∈ DN . 

Eq. (15) can be rewritten to give: 

l = 2�(R )(
p g + 
p c + p̄ g − p̄ c − 
D (ω)) 

− 2�(X ) q − (I − M 

T 
adj + 2�(R ) diag(G ) 

− 2�(X ) diag(B )) v + Hv ∞ 

. (16) 

here we set � := (diag(R )(2 M + I) diag(R ) + diag(X )(2 M +
) diag(X )) . 

roposition 1. � is invertible. 

roof of Proposition 1. Using properties of the

eterminant operator, we have that: det(�) ≥
(det(diag(R ) 2 ) + det(diag(X ) 2 )) 
 ︷︷ ︸ 

> 0 by definition of R and X 

det(2 M + I) . In addition, by def-

nition of M , we have the relation: det(M) ≥ ∑ κ−1 
i =1 det(M adj ) 

i .

ince DN is an oriented tree, its adjacency matrix M adj con-

ains a line of zeros because there is no child connected to

ts leaves. This implies that det(M adj ) = 0 and therefore that

et(�) ≥ (d et(d iag(R ) 2 ) + d et(d iag(X ) 2 )) > 0 . We conclude that

is invertible. �

As a corollary of Proposition 1 , we can express l as a closed

orm in 
p g , 
p c , q , and v : 

 = 2�−1 �(R )(
p g + 
p c + p̄ g − p̄ c − 
D (ω)) − 2�−1 �(X ) q 

−ϒv + �−1 Hv ∞ 

, (17) 

here we set ϒ := �−1 (I − M 

T 
adj 

+ 2�(R ) diag(G ) − 2�(X ) diag(B )) .

By substitution of l obtained in Eq. (17) in f p , f q , we obtain

xpressions that depend only on 
p g , 
p c , q and v : 

f p = [(I + M) − 2 Mdiag(R )�−1 �(R )](
p g + 
p c + p̄ g − p̄ c 

−
D (ω)) + 2 Mdiag(R )�−1 �(X ) q 

+ [ Mdiag(R )ϒ − (I + M) diag(G )] v 
− Mdiag(R )�−1 Hv ∞ 

, (18) 

nd 

f q = [ −(I + M) + 2 Mdiag(X )�−1 �(X )] q 

+ [(I + M) diag(B ) + Mdiag(X )ϒ] v 
− 2 Mdiag(X )�−1 �(R )(
p g + 
p c + p̄ g − p̄ c − 
D (ω)) 

− Mdiag(X )�−1 Hv ∞ 

. (19) 

By using the previous closed-form expressions of f p , f q and l ,

e can obtain easily an equivalent system of equations depending

nly on 
p g , 
p c , q and v in matrix form. We can therefore

onclude that by deciding on variables 
p g , 
p c , q and v , the

SO is fixing all the parameters on its network. So we can see

p g , 
p c , q and v as decision variables, and the power flows and

urrent magnitude as state variables. The results are summarized

n the proposition below: 

roposition 2. Eqs. (4) –(6) enable to express DSO’s active and re-

ctive power flows f p , f q , and current magnitude squared l , as linear

unctions of the DSO’s decision variables u DSO defined in Section 3.2 . 

The physical intuition is that injections of real and reactive

ower into a circuit uniquely determine the full state of the circuit.

ut our results prove that we need to introduce the magnitude

quared of the voltage phasors v i in the action variables because

he real and reactive power injections alone do not uniquely

etermine the state of the circuit. In particular, a unique choice

f real and reactive power injections may imply multiple solutions

f the constraints (4) –(9) ( Papavasiliou, 2017 ). Instead, as we have
 of transmission-distribution system operator coordination, Euro- 
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just demonstrated, additionally specifying v i implies a unique

value for the remaining state variables of the circuit. 

Following Proposition 2 , the DSO distribution network power

flows can be reformulated as a simplified system of equations: 

Proposition 3. The system of Eqs. (4) –(9) is equivalent to the sys-

tem of Eqs. (7) –(9) , where active and reactive power flows f p , f q , and

current magnitude squared l , are replaced by their linear expressions

as functions of the DSO’s decision variables u DSO . The closed-form ex-

pressions of f p , f q , l as functions of u DSO are defined in Eqs. (17) –(19) .

4.2. TSO transmission network power flows 

Similar to the development of the previous section, in this

section we derive the TSO state variables as functions of the TSO

and DSOs’ decision variables 5 . The linearized power flow approx-

imation of the TSO transmission constraints can be expressed as

follows: 

( p̄ n + 
p n ) + 

( ∑ 

l | l =(m,n ) 

f l −
∑ 

l | l =(n,m ) 

f l 

)
= D n + 
D 

T SO 
n (ω) , ∀ n ∈ TN , (20)

( p̄ n + 
p n ) + 

∑ 

j∈ C n 

( f p 
j 

− l j R j ) + 

( ∑ 

l | l =(m,n ) 

f l −
∑ 

l | l =(n,m ) 

f l 

)
= D n + 
D 

T SO 
n (ω) + G n v n , ∀ n ∈ N ∞ 

, (21)

f n,m 

= B n,m 

(θn − θm 

) , ∀ l = (n, m ) ∈ L , (22)

−T C l ≤ f l ≤ T C, ∀ l ∈ L . (23)

In this linear approximation of power flow constraints, the

variables are real power injections ( 
p ), bus voltage phase angles

( θ ) and real power flows along transmission lines ( f ). Reactive

power flows are ignored in this approximation, following stan-

dard practice in the literature. Constraints (20) , (21) express the

TSO power balance constraints at each transmission node. Con-

straint (22) expresses the relationship between bus angles and

power flows. Constraint (23) expresses the capacity constraints of

transmission lines. 

We define an interface connection matrix as: 

M int := ((1 j∈ C i 
× 1 i ∈ N ∞ ) i ∈ TN ∪ N ∞ , j∈ DN ) , 

with its i , j element being equal to 1 j∈ C i × 1 i ∈ N ∞ 

. It is equal to 1 if

j ∈ C i and i ∈ N ∞ 

, i.e., if node i is an interface node and node j is

one of its children, and 0 otherwise. 

We also introduce the incidence matrix, M inc , of size

card( TN ∪ N ∞ 

) × card(L ) , so that M inc (n, l) = −1 if link l is

leaving node n , M inc (n, l) = 1 if link l is entering node n , and

M inc (n, l) = 0 otherwise. 

Using these matrices, we can rewrite the TSO power balance

constraints in matrix form as follows: 

p̄ + 
p + M inc f + M int ( f p − diag(R ) l) 

= D + 
D 

T SO (ω) + diag(G ∞ 

) v ∞ 

. 

Using Eq. (12) , f p − diag(R ) l can be expressed in closed form

as a function of the decision variables of the TSO and the DSOs: 

f p − diag(R ) l = (I + M)[(I − 2 diag(R )�−1 �(R ))(
p g + 
p c + p̄ g

− p̄ c − 
D (ω)) + 2 diag(R )�−1 �(X ) q 

+ (diag(R )ϒ − diag(G )) v − diag(R )�−1 Hv ∞ 

] . 

(24)
5 Note that, because of the presence of interface nodes, both TSO and DSO deci- 

sions impact the TSO state variables. This couples the TSO and DSOs’ optimization 

problems. 

T  

m  

Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
Then the TSO power balance constraints can be summarized

hrough the single matrix equation: 

p̄ + 
p + M inc f 

+ M int (I + M)[(I − 2 diag(R )�−1 �(R ))(
p g + 
p c ) 

+ diag(R )�−1 (2�(X ) q − Hv ∞ 

) + (diag(R )ϒ − diag(G )) v ] 
− diag(G ∞ 

) v ∞ 

= D + 
D 

T SO (ω) − M int (I + M)(I − 2 diag(R )�−1 �(R ))( p̄ g 

− p̄ c − 
D (ω)) . 

By reshuffling the preceding equation, it is possible to express

 inc f as a function of the decision variables of the TSO and DSOs: 

 inc f = −p̄ − 
p 

− M int (I + M)[(I − 2 diag(R )�−1 �(R ))(
p g + 
p c ) 

+ diag(R )�−1 (2�(X ) q − Hv ∞ 

) + (diag(R )ϒ − diag(G )) v ] 
+ D + 
D 

T SO (ω) − M int (I + M)(I − 2 diag(R )�−1 �(R ))( p̄ g 

− p̄ c − 
D (ω)) + diag(G ∞ 

) v ∞ 

. (25)

We have thus derived an explicit linear relation between the

ransmission flows, f , and the decision variables of the TSO and

SOs. 

Since M inc is in general not invertible, it is not possible to

btain a closed form expression of f as a function of TSO and

SO’s decision variables in Eq. (25) . 

To express the TSO feasible set as a function of the TSO and

SO’s decision variables, we introduce an additional reformulation.

e define the function: 

(
p, 
p g , 
p c , q, v ) 
:= −
p − M int (I + M)[(I − 2 diag(R )�−1 �(R ))(
p g + 
p c ) 

+ 2 diag(R )�−1 �(X ) q + (diag(R )ϒ − diag(G )) v ] , (26)

hich is a linear combination of 
p , 
p g , 
p c , q and v . We

urther define the function: 

C : = p̄ − M int (I + M) diag(R )�−1 Hv ∞ 

− diag(G ∞ 

) v ∞ 

) 

− D − 
D 

T SO (ω + M int (I + M)(I − 2 diag(R )�−1 �(R ))( p̄ g ) 

− p̄ c − 
D (ω)) . (27)

uch that ρ(. ) − ρC = M inc f, following Eq. (25) . 

Define the matrix B � ∈ Mat(L , TN ∪ N ∞ 

) such that for

ny l = (n, m ) ∈ L , B � (l, n ) = B n,m 

, B � (l, m ) = −B m,n and

 

� (l, n ′ ) = 0 , ∀ n ′ ∈ TN ∪ N ∞ 

, n ′ � = n, n ′ � = m . 

We now arrive to the following result, where we reformulate

he TSO feasible set as a function of the TSO and DSO’s decision

ariables only: 

roposition 4. The TSO feasible set is equivalently described by the

ollowing set of inequalities: 

 ≤ 
p ≤ R TN ∪ N ∞ , (λ−
t , λ

+ 
t ) (28)

(
p, 
p g , 
p c , q, v ) − ρC ∈ Im (MincB 

� ) , (λ0 ) (29)

| M inc | T C + ρC ≤ ρ(
p, 
p g , 
p c , q, v ) 
≤ | M inc | T C + ρC . (λ−

1 , λ
+ 
1 ) (30)

roof of Proposition 4. The goal in this proof is to demonstrate

hat: 
 

f = B 

� θ, 

−T C ≤ f ≤ T C, 

M inc f = ρ − ρC 

⇔ 

{
(29) , 
(30) . 

he TSO power flow balance constraints have led us to the refor-

ulation (25) . With this reformulation, the feasible set of the TSO
 of transmission-distribution system operator coordination, Euro- 
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a  

w  
s delimited by the generator capacity constraints, the relationship

etween the bus angles and the power flows, and the transmission

ine capacity constraints. The generation capacity constraints cor-

espond to Eq. (28) , where R n is the available reserve capacity of

he generator located in transmission node n . Using the definition

f B � , the relationship between bus angles and power flows can be

ewritten as f = B � θ . In addition, Eq. (25) implies a set of linear

quations between decision variables and the vector of bus angles

. More precisely: 

 inc B 

� θ = ρ(
p, 
p g , 
p c , q, v ) − ρC . (31) 

Therefore, there exists at least one feasible vector of bus angles

olution of Eq. (31) for a given set of decision variables 
p , 
p g ,

p c , q and v if, and only if, ρ(. ) − ρC is in the image of M inc B 
� .

ince the image of a matrix is orthogonal to the kernel of its

ransposed matrix and two orthogonal spaces have an intersec-

ion reduced to the vector 0, there exists one feasible vector

f bus angles solution of Eq. (31) if, and only if, ρ(. ) = ρC or

(ρ(. ) − ρC ) / ∈ Ker(B �T M 

T 
inc 

) . The case ρ(. ) = ρC would correspond

o the very unlikely case where all transmission nodes do not

eed power flows from the transmission network to be balanced

n real time, because from Eq. (31) we have that ρ − ρC = M inc f,

o ρ − ρC = 0 would imply M inc f = 0 . We will assume that this

ill not be the case. Then there exist bus angles solutions of

q. (31) if B �T M 

T 
inc 

(ρ(. ) − ρC ) � = 0 , which is captured by condi-

ion (29) . This latter condition can be rewritten under the form:

(B �T M 

T 
inc 

(ρ(
p, 
p g , 
p c , q, v ) − ρC )) 
2 > 0 . 

Now, we want to prove that Eq. (30) holds. From the capacity

onstraints (23) we have that: 

| M inc | T C ≤ M inc f ≤ | M inc | T C, (32) 

here the absolute value of M inc is taken element wise. By substi-

ution of Eq. (25) in Eq. (32) , we obtain lower and upper bounds

n ρ(.) so that we have (30) . This proves that the TSO feasible set

s included in the set described by (28) –(30) . 

To prove that the reciprocal is true, we reason by contradiction.

uppose that we have found 
p , 
p g , 
p c , q and v which verify

28) –(30) . Eq. (29) means that there exists a vector of bus angles
∗ such that M inc B 

� θ ∗ = ρ(. ) − ρC . By taking f 0 = B � θ ∗ we obtain

hat all vectors f satisfying M inc f = ρ(. ) − ρC can be rewritten as

f = f 0 + k with k ∈ Ker ( M inc ). Let assume that there is no vector

 ∈ Ker ( M inc ) such that −T C ≤ f 0 + k ≤ T C, i.e., for all k ∈ Ker ( M inc )

ither −T C > f 0 + k or f 0 + k > T C. This is in contradiction with

q. (30) , because according to Weierstrass extreme value Theorem

very continuous application on a closed interval is bounded and

eaches its lower and upper bounds on this interval. As such f 0 + k

hould belong to the interval [ −| M inc | T C; | M inc | T C] . �

As mentioned at the beginning of Sections 3.1 and 4.1 , the

ocal (distribution) markets are operated independently and are

nly interconnected through the global grid, sharing no common

esources with one another. In the description of the optimization

roblems associated with each coordination scheme, we focus on a

ingle local (distribution) market. Considering multiple DSOs oper-

ting local (distribution) markets requires to replicate N times the

SO optimization problems with parameters calibrated on each

ocal (distribution) market. The TSO optimization problem remains

he same except that it incorporates decision variables from all

he DSOs and TSO in its coupling constraints. The resulting multi-

eader Stackelberg game can be formulated as an equilibrium

roblem with equilibrium constraints (EPEC) ( Le Cadre, 2018 ). KKT

onditions would just incorporate new conditions corresponding

o the new DSOs’ decision variables and their own operational and

ower flow constraints, therefore increasing the computational

omplexity of the EPEC. Furthermore, difficulties might arise in

ase (a) the lower-level optimization problem admits multiple
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
olutions, requiring to consider optimistic or deterministic ap-

roaches ( Dempe & Dutta, 2012; Dempe et al., 2015 ); in case (b),

he leaders (DSOs) have different valuations of the dual variables

ssociated with the follower (TSO) complementarity constraints

 Leyffer & Munson, 2010 ). Regarding case (a), we will prove in

ection 5.3 , that the follower’s problem admits a unique solution.

egarding case (b), various approaches exist like introducing

ormalized equilibrium as solution concept ( Delikaraoglou et al.,

016 ), or duplicate the follower’s complementary constraints in

he KKT system of equations ( Leyffer & Munson, 2010 ). Though

nteresting, both approaches generate difficulties of interpretation,

nd the second approach can be computationally quite expensive

o deal with, especially if a large number of DSOs is involved. So,

o keep the economic interpretations as simple as possible, we

ocus throughout this article on coordination schemes involving a

ingle DSO. As explained, extensions to a multi-leader-common-

ollower game is straightforward, assuming that the follower’s

omplementarity constraints are shared among the leaders. 

. TSO-DSO coordination schemes 

In the formulation of the three coordination schemes that we

ill detail in Sections 5.1 –5.3 , we replace the state variables f p , f q ,

 by their linear mappings in the TSO and DSO’s decision variables

btained in Eqs. (17) –(19) , and recalled in Proposition 2 . Mathe-

atical description of TSO, DSO feasibility sets can be simplified

elying on Propositions 3 and 4 . We will come back to these

implifications later on in the text. 

.1. Centralized co-optimization problem 

For coordination scheme ( i ), we start by discussing the

otivation for its implementation in 5.1.1 , then we detail its

athematical formulation in 5.1.2 , before giving conditions for

xistence and uniqueness of a social welfare optimum in 5.1.3 .

KT conditions that will be used to compute the social welfare

ptimum in the case study are explicitly given in 5.1.4 . 

.1.1. Motivation 

The centralized co-optimization problem aims at optimally

oordinating the dispatch of all resources at both transmission and

istribution levels. There is one common market operated jointly

y the TSO and DSOs or by an integrated market operator acting

s a coordinator, for both resources connected at transmission and

istribution levels. This coordination scheme is modeled as a stan-

ard constrained optimization problem with perfect information

n the state variables. We will use this scheme as a benchmark

ompared to our decentralized schemes. Indeed, due to privacy

ssues and practically large-scale size of the transmission and

istribution networks, this scheme would be extremely difficult

o implement in a real-life setting. The latter aspect requires the

evelopment of efficient decomposition algorithms capable to

andle complex and large scale optimization problems, and to

haracterize the associated solution concepts as well as to deal

ith convergence issues. Complex bidding in the transmission and

istribution nodes might also incorporate integer variables in the

ptimization problem, therefore resulting in challenging problems

or the operations research community. Fig. 2 provides a graphical

epresentation of TSO-DSO coordination scheme ( i ). 

.1.2. Formulation 

We define the social welfare as the sum of the aggregated

rea under the nodal inverse demand functions P n (. ) , n ∈ TN ∪ N ∞ 

nd P i (. ) , i ∈ DN k , k ∈ N, which represents the total consumer

illingness-to-pay, less the sum of all activation costs C n (.) for the
 of transmission-distribution system operator coordination, Euro- 

or.2018.09.043 
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Fig. 2. Centralized co-optimization problem envisioned in TSO-DSO coordination 

scheme ( i ). The integrated market operator (that could be alternatively substituted 

by the TSO), which operates that scheme, has access to all the information on 

the DSOs’ willingness-to-pay, activation cost functions, transmission and distribu- 

tion network topologies and power flow equations. The optimal reserve activa- 

tions at transmission and distribution nodes, reactive power injection/consumption, 

and voltage at each distribution nodes are determined by the integrated market 

operator. 
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TSO and C c 
i 
(
p c 

i 
) + C 

g 
i 
(
p 

g 
i 
) for the DSOs: 

SW (x, (u a ) a ∈ A , ω) 

= 

∑ 

n ∈ TN ∪ N ∞ 

[∫ D n +
D n (ω) 

0 

P n (τn ) dτn − C n (
p n ) 

]

+ 

∑ 

k ∈ N 

∑ 

i ∈ DN k 

(∫ p̄ c 
i 
+
D i (ω) −
p c 

i 

0 

P i (τi ) dτi − C c i (
p c i ) − C g 
i 
(
p g 

i 
) 

)
(33

The social welfare is independent of the state variables. As

such, we will write SW ((u a ) a ∈ A , ω) in the rest of the paper. 

We denote by FS T SO and FS DSO the sets defined by the upper

and lower bounds for the decision variables of the TSO and the

DSO respectively, and state variable l . More precisely, a vector

(
p q , 
p c , q, v ) ∈ FS DSO is such that: 

0 ≤ 
p q 
i 

≤ R 

g 
i 
, ∀ i ∈ DN , (λ−

g , λ
+ 
g ) 

0 ≤ 
p c i ≤ R 

c 
i , ∀ i ∈ DN , (λ−

c , λ
+ 
c ) 

Q 

−
i 

≤ q i ≤ Q 

+ 
i 

, ∀ i ∈ DN , (λ−
q , λ

+ 
q ) 

v −
i 

≤ v i ≤ v + 
i 
, (λ−

v , λ
+ 
v ) 

0 ≤ l i , ∀ i ∈ DN , (λ−
l 
, λ+ 

l 
) 

and a vector, 
p ∈ FS T SO , is such that constraint (28) is true. Note

that this simplifying notation will be used in each coordination

scheme. It is also important to note that FS T SO and FS DSO capture

only the TSO and the DSO operational constraints. In other words,

the power flow constraints are not included in FS T SO and FS DSO 

definition. So, this means that FS T SO , FS DSO define only part of

the TSO and DSO feasibility sets. 

With centralized co-optimization as coordination scheme, the

integrated market operator solves an integrated optimization

problem activating reserves at transmission and distribution levels,

determining reactive power injection/consumption, and voltage at

each distribution node u T SO ∈ FS T SO , u DSO ∈ FS DSO in state x ∈ X : 

max 
u T SO ∈ FS T SO ,u DSO ∈ FS DSO ,x ∈ X 

SW ((u a ) a ∈ A , ω) , 

s.t. f = B (θn − θm 

) , ∀ l = (n, m ) ∈ L , 
l l 

Please cite this article as: H. Le Cadre et al., A game-theoretic analysis
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( p̄ n + 
p n ) + 

( ∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l 

)
= D n + 
D n (ω) , ∀ n ∈ TN , 

( p̄ n + 
p n ) + 

∑ 

j∈ C n 

( f p 
j 

− l j R j ) + 

( ∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l 

)
= D n

+ 
D n (ω) + G n v n , ∀ n ∈ N ∞ 

, 

− T C l 
B l 

≤ θn − θm 

≤ T C l 
B l 

, ∀ l = (n, m ) ∈ L , 

 i = v A i + 2(R i f 
p 
i 

+ X i f 
q 
i 
) − l i (R 

2 
i + X 

2 
i ) , ∀ i ∈ DN , 

f p 
i 

−
∑ 

j∈ C i 

( f p 
j 

− l j R j ) − ( ̄p g 
i 
+ 
p g 

i 
) 

+ ( ̄p c i + 
D i (ω) − 
p c i ) + G i v i = 0 , 

 i ∈ DN , 

f q 
i 

−
∑ 

j∈ C i 

( f q 
j 

− l j X j ) + q i − B i v i = 0 , ∀ i ∈ DN , 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ S 2 i , ∀ i ∈ DN , 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ v i l i , ∀ i ∈ DN , 

( f p 
i 

− l i R i ) 
2 + ( f q 

i 
− l i X i ) 

2 ≤ S 2 i , ∀ i ∈ DN . 

Propositions 2–4 , can be used to reformulate the power flows

n the market operator integrated optimization problem. With

hese reformulations, the integrated market operator solves an

ntegrated optimization problem when activating reserves at

ransmission and distribution levels, and determining reactive

ower injection/consumption and voltage at each distribution

ode u T SO ∈ FS T SO , u DSO ∈ FS DSO : 

max 
 T SO ∈ FS T SO ,u DSO ∈ FS DSO 

SW ((u a ) a ∈ A , ω) , 

s.t. (29) , (30) , 

(7) , (8) , (9) . (34)

Note that in all the optimization problems associated with

he coordination schemes in Sections 5.1 –5.3 , the TSO and DSO

ecision variables are optimized over the sets FS T SO and FS DSO ,

hat appear as subscripts below the ‘max’ operator and capture

he TSO and DSO operational constraints, defined at the beginning

f Section 5.1 . Power flow equations are reported as explicit

onstraints in the optimization problems. 

.1.3. Existence and uniqueness of social welfare optimum 

The reformulation of the power flow equations which is intro-

uced in Section 4 defines a new feasible set for the centralized

o-optimization problem (34) . This feasible set is defined by

qs. (29) , (30), (7), (8), (9) . For the TSO co-optimization prob-

em to be convex, we need to check whether the constraints of

roblem (34) remain convex. 

roposition 5. Using the reformulation of the power flow equations

hich is introduced in Section 4 , Eqs. (29) and (30) define a convex

et for u TSO , u DSO . 

roof of Proposition 5. The proof can be found in

ppendix A.1 . �

roposition 6. Using the reformulation of the power flow equations

hich are introduced in Section 4 , Eqs. (7) - (9) define a convex set for

 TSO , u DSO . 

roof of Proposition 6. The proof can be found in

ppendix A.2 . �

We use the previous result in order to prove the uniqueness of

he solution of the first coordination scheme. 
 of transmission-distribution system operator coordination, Euro- 
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roposition 7. The centralized co-optimization problem in (34) ad-

its a unique solution 
p � , 
p g � , 
p c � . 

roof of Proposition 7. The proof can be found in

ppendix A.3 . �

.1.4. KKT Conditions 

We introduce λ0 as the Lagrange multiplier associated with

q. (29) , λ−
1 
, λ+ 

1 
as the Lagrange multipliers associated respec-

ively with the left inequality in Eq. (30) , i.e., −| M inc | T C + ρC −
(
p, 
p g , 
p c , q, v ) ≤ 0 and with the right inequality in Eq.

30) , i.e., ρ(
p, 
p g , 
p c , q, v ) − | M inc | T C − ρC ≤ 0 , and we fur-

her introduce λ2 , λ3 , λ4 as the Lagrange multipliers associated

ith Eqs. (7) , (8) , (9) respectively. Note that since Eq. (29) can

e reformulated as (B �T M 

T 
inc 

(ρ(
p, 
p g , 
p c , q, v ) − ρC )) 
2 

> 0 ,

t is always non-binding, therefore λ0 = 0 ( Dempe et al., 2015 ).

ote that this does not necessarily implies that the TSO feasi-

le set is open because it contains Eqs. (28) , (30) which define

losed sets. Furthermore, the objective functions that we optimize

re (strictly) concave on their feasible sets, meaning that their

ptimum is reached inside the feasibility set and remains finite. 

In the rest of this section, denote by ∇M the Jacobian ma-

rix of M with respect to 
p, 
p g , 
p c , q, v , which means

M := (∇ 
p M ∇ 
p g M ∇ 
p c M ∇ q M ∇ v M) . 

The Jacobian matrix of ρ(.) with respect to 
p , 
p g , 
p c , q, v
s defined by: 

∇ 
p ρ = −I card( TN )+ card(N ∞ ) , 

 
p g ρ = −M int (I + M)(I − 2 diag(R )�−1 �(R )) , 

 
p c ρ = −M int (I + M)(I − 2 diag(R )�−1 �(R )) , 

∇ q ρ = −2 M int (I + M) diag(R )�−1 �(X ) , 

∇ v ρ = −M int (I + M)(diag(R )ϒ − diag(G )) . 

e also define the Jacobian matrices of f p and f q with respect to

p, 
p g , 
p c , q, v : 

∇ 
p f 
p = 0 , 

 
p g f 
p = (I + M) − 2 Mdiag(R )�−1 �(R ) , 

 
p c f 
p = (I + M) − 2 Mdiag(R )�−1 �(R ) , 

∇ q f 
p = 2 Mdiag(R )�−1 �(X ) , 

∇ v f 
p = Mdiag(R )ϒ − (I + M) diag(G ) , 

nd 

∇ 
p f 
q = 0 , 

 
p g f 
q = −2 Mdiag(X )�−1 �(R ) , 

 
p c f 
q = −2 Mdiag(X )�−1 �(R ) , 

∇ q f 
q = −(I + M) + 2 Mdiag(X )�−1 �(X ) , 

∇ v f 
q = (I + M) diag(B ) + Mdiag(X )ϒ. 

We also need to introduce the KKT conditions associated with

ets FS DSO , FS T SO . For the FS T SO , we have: 

FS DSO : = (λ+ 
g − λ−

g ) 
T (I 0 0 0) + (λ+ 

c − λ−
c ) 

T (0 I 0 0) 

+ (λ+ 
q − λ−

q ) 
T (0 0 I 0) 

+ (λ+ 
v − λ−

v ) 
T (0 0 0 I) − λT 

l ∇ l, 

here λ−
i 
, λ+ 

i 
, i ∈ { g, c, q, v } , are the Lagrange multipliers associ-

ted with left and right parts respectively of the upper and lower

ounds on the actions of the DSO and λl is the Lagrange multi-

lier associated with non-negativity constraint on state variable l .

imilarly, for FS DSO , we obtain: 

FS T SO := (λ+ 
t − λ−

t ) 
T , 
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis
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here λ−
t , λ

+ 
t are the Lagrange multipliers associated with the left

nd right parts respectively of the upper and lower bounds on the

ecision variables of the TSO, in Eq. (28) . 

To simplify the notation, we define the set of complementarity

onstraints associated with each constraint in the set FS DSO as

ollows: 

 ≤ 
p g ⊥ λ−
g ≥ 0 , 

 ≤ R 

g − 
p g ⊥ λ+ 
g ≥ 0 , 

 ≤ 
p c ⊥ λ−
c ≥ 0 , 

 ≤ R 

c − 
p c ⊥ λ+ 
c ≥ 0 , 

 ≤ q − Q 

− ⊥ λ−
q ≥ 0 , 

 ≤ Q 

+ − q ⊥ λ+ 
q ≥ 0 , 

 ≤ v − v − ⊥ λ−
v ≥ 0 , 

 ≤ v + − v ⊥ λ+ 
v ≥ 0 , 

 ≤ l ⊥ λl ≥ 0 , (35) 

imilarly, the set of complementarity constraints associated with

ach constraint in the set FS T SO writes down as follows: 

 ≤ 
p ⊥ λ−
t ≥ 0 , 

 ≤ R − 
p ⊥ λ+ 
t ≥ 0 . (36) 

Recalling the analysis made in Appendix A.3 , the differentiation

f the social welfare function with respect to 
p, 
p g , 
p c , q, v
ives us: 

∇ 
p SW 

T = −2 (c n 
p n ) n ∈ TN ∪ N ∞ , 

 
p g SW 

T = −2 (c g 
i 

p g 

i 
) 

i ∈ DN , 

 
p c SW 

T = −(P i ( p̄ 
c 
i 
+ 
D i (ω) − 
p c i )) i ∈ DN − 2 (c c i 
p c i ) i ∈ DN , 

∇ q SW 

T = 0 , 

∇ v SW 

T = 0 . 

To compute a social welfare optimum solution of problem

34) , we derive first-order conditions (KKT conditions) for the

entralized co-optimization problem: 

∇ SW − (λ−
1 − λ+ 

1 ) 
T ∇ ρ + 2 λT 

2 [ diag( f p ) ∇ f p + diag( f q ) ∇ f q ] 

 λT 
3 [2 d iag( f p ) ∇ f p + 2 d iag( f q ) ∇ f q − d iag(l) ∇v − diag(v ) ∇ l] 

 λT 
4 [2 d iag( f p − d iag(R ) l)(∇ f p − diag(R ) ∇ l) 

2 d iag( f q − d iag(X ) l)(∇ f q − diag(X ) ∇ l)] 

(
FS T SO 
FS DSO ) = 0 , 

(B 

�T M 

T 
inc (ρ − ρC )) 

2 
> 0 , 

 ≤ λ−
1 ⊥ | M inc | T C − ρC + ρ ≥ 0 , 

 ≤ λ+ 
1 ⊥ −ρ + | M inc | T C + ρC ≥ 0 , 

 ≤ λ2 ⊥ −( f p ) 2 − ( f q ) 2 + S 2 ≥ 0 , 

 ≤ λ3 ⊥ −( f p ) 2 − ( f q ) 2 + diag(v ) l ≥ 0 , 

 ≤ λ4 ⊥ −( f p − diag(R ) l) 
2 − ( f q − diag(X ) l) 

2 + S 2 ≥ 0 , 

(35) , (36) . 

Note that the feasible sets being convex according to

ropositions 5 and 6 and the social welfare being strictly concave

n 
p , 
p g , 
p c , the KKT conditions are necessary and sufficient

onditions for an optimum to exist. The TSO and DSO operational

onstraints are included in the optimization problem (34) , by

ssuming that the TSO and DSO’s decision variables are optimized

ver the sets FS T SO and FS DSO . Since FS T SO , FS DSO define part of

he constraints of the optimization problem (34) , the correspond-

ng KKT conditions are considered in the set of KKT conditions

eported just above. Complementarity constraints (35) , (36) are

ot explicitly reported in the set of first-order conditions to keep

he description at an acceptable level of details. In Section 7 , the
 of transmission-distribution system operator coordination, Euro- 

or.2018.09.043 
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Fig. 3. Graphical representation of TSO-DSO coordination scheme ( ii ), called shared balancing responsibility (SBR). Each operator handles its own network. The only coupling 

comes from the interface with different settings depending on level of information. Decisions are taken simultaneously. 
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centralized co-optimization problem will be solved as a system of

KKT conditions. 

5.2. Shared balancing responsibility 

For coordination scheme ( ii ), we start by discussing the motiva-

tion for its implementation in 5.2.1 , then we detail its mathemat-

ical formulation in 5.2.2 . Concept of Generalized Nash Equilibrium

is introduced in 5.2.3 . TSO and DSO KKT conditions that will be

used to compute Generalized Nash Equilibria in the case study

are explicitly given in 5.2.4 and 5.2.5 . Conditions for existence and

uniqueness of Generalized Nash Equilibrium are detailed in 5.2.6 . 

5.2.1. Motivation 

Under shared balancing responsibility, there is a balancing

market for resources connected at the transmission grid, managed

by the TSO. There are separate local balancing markets for re-

sources connected at the distribution grids, managed selfishly by

each DSO. Resources from the distribution grids cannot be offered

to the TSO. DSO grid constraints are integrated in the balancing

market clearing process of the local market operated by each DSO.

This is the simplest decentralized scheme where it is assumed

that the operators have to take their decisions simultaneously

knowing only border decisions (maybe even only partially) of the

other operators. In practice, historical data might help operators

to fix the flow of power at one interface. This scheme is explicitly

mentioned as possible future DSO-TSO coordination scheme at the

EU level, in the SmartNet project ( Gerard et al., 2017 ). 

5.2.2. Formulation 

TSO and DSO problems remain coupled through the θ variables

in the interface nodes, as expressed in Eq. (31) . Fig. 3 provides
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis
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 graphical representation of the shared balancing responsibility

cheme with one TSO and one DSO. 

Formally, the TSO solves the following optimization problem in

 T SO ∈ FS T SO and state x ∈ X , assuming that the decision variables

f the DSO, u DSO ∈ FS DSO , are fixed: 

max 
 T SO ∈ FS T SO ,x ∈ X 

πT SO (u T SO , ω) , 

.t. f l = B l (θn − θm 

) , ∀ l = (n, m ) ∈ L , 

( p̄ n + 
p n ) + 

( ∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l 

)
= D n + 
D n (ω) , ∀ n ∈ TN , 

( p̄ n + 
p n ) + 

∑ 

j∈ C n 

( f p 
j 

− l j R j ) + ( 
∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l ) = D n 

+
D n (ω) + G n v n , ∀ n ∈ N ∞ 

, 

−T C l 
B l 

≤ θn − θm 

≤ T C l 
B l 

, ∀ l = (n, m ) ∈ L . 

Simultaneously and independently, the DSO solves the fol-

owing optimization problem in u DSO ∈ FS DSO and state x ∈ X ,

ssuming that the decision variables of the TSO, u T SO ∈ FS T SO , are

xed: 

max 
 DSO ∈ FS DSO ,x ∈ X 

πDSO (u DSO , ω) , 

.t. v i = v A i + 2(R i f 
p 
i 

+ X i f 
q 
i 
) − l i (R 

2 
i + X 

2 
i ) , ∀ i ∈ DN , 

( p̄ n + 
p n ) + 

∑ 

j∈ C n 

( f p 
j 

− l j R j ) + 

( ∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l 

)
= D n 

+ 
D n (ω) + G n v n , ∀ n ∈ N ∞ 

, 
 of transmission-distribution system operator coordination, Euro- 
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∇

f p 
i 

−
∑ 

j∈ C i 

( f p 
j 

− l j R j ) − ( ̄p g 
i 
+ 
p g 

i 
) + ( ̄p c i + 
D i (ω) − 
p c i ) 

+ G i v i = 0 , ∀ i ∈ DN , 

f q 
i 

−
∑ 

j∈ C i 

( f q 
j 

− l j X j ) + q i − B i v i = 0 , ∀ i ∈ DN , 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ S 2 i , ∀ i ∈ DN , 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ v i l i , ∀ i ∈ DN , 

( f p 
i 

− l i R i ) 
2 + ( f q 

i 
− l i X i ) 

2 ≤ S 2 i , ∀ i ∈ DN . 

This second coordination scheme can be formulated as a

imultaneous non-cooperative game involving TSO and DSOs,

ith perfect information on the (full) state variables, using

ropositions 2 –4 . 

Formally, the TSO solves the following optimization problem

n u T SO ∈ FS T SO , assuming that the decision variables of the DSO,

 DSO ∈ FS DSO , are fixed: 

max 
 T SO ∈ FS T SO 

πT SO (u T SO , ω) , 

.t. (29) , (30) . (37) 

ote that the dependence of the TSO constraints on DSO decisions

s captured by the fact that the function ρ(.) appearing in con-

traints (29) and (30) is a function of both TSO as well as DSO

ecisions. 

Simultaneously and independently, the DSO solves the fol-

owing optimization problem in u DSO ∈ FS DSO , assuming that the

ecision variables of the TSO, u T SO ∈ FS T SO , are fixed: 

max 
 DSO ∈ FS DSO 

πDSO (u DSO , ω) , 

.t. (7) , (8) , (9) , 

(31) . (38) 

A classical formulation in non-cooperative game theory, is to

ssume that the players in competition operate simultaneously

nd independently ( Fudenberg & Tirole, 1991; Osborne & Rubin-

tein, 1999 ). By ‘simultaneously’ is meant that the players operate

ith ‘bounded rationality’, e.g., without rational anticipation on

he outcome of the adversaries decisions (by opposition to the

tackelberg game approach which will be detailed in Section 5.3 ).

y ‘independently’ is meant that no pre-agreement which could

ave resulted in a coalition, is made between the players. 

.2.3. Solution computation: Introducing Generalized Nash 

quilibrium (GNE) 

The utility functions πa , a ∈ A , characterize the strategic form

f the game, together with the strategy spaces �a := { γa , a ∈ A } . 
Let �a (γ−a ) be the output of a point to set map which repre-

ents the ability of agents in the set A −a to influence the feasible

trategy set of agent a . 

We take a generic point of view to introduce the solution

oncept of Generalized Nash Equilibrium (GNE). In this setting,

ach agent a ∈ A faces the following optimization problem: 

ax 
γa 

πa (γa , γ−a ) , 

.t. γa ∈ �a (γ−a ) . 

We introduce the following definition which characterizes

ormally GNE: 

efinition 1. Harker (1981) (γ GNE 
a ) a ∈ A is a GNE if 

a (γ
GNE 

a , γ GNE 
−a ) ≥ πa (γa , γ

GNE 
−a ) , ∀ γa ∈ �a (γ−a ) , a ∈ A . 

Under shared balancing responsibility, the non-cooperative

ame occurs simultaneously and the decisions of each agent

etermine the state of the game. This means that the information
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis
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pace of each agent a ∈ A contains the state of the game, i.e.,

 a = { x } , ∀ a ∈ A . 

To compute a GNE solution of the shared balancing responsibil-

ty game (37) and (38) , we derive first-order necessary conditions

KKT conditions) for the TSO and DSO optimization problems. 

.2.4. TSO KKT conditions 

Let λ0 , λ−
1 
, λ+ 

1 
be the Lagrange multipliers associated with

he TSO constraints in Eq. (29) and the left and right parts of

q. (30) respectively. We first note that the TSO utility func-

ion π TSO (.) is strictly concave in 
p , since its Hessian matrix is

 

2 

p 

πT SO = −2 diag(c n ) n ∈ TN ∪ N ∞ 

< 0 which is negative definite. Then

he feasible sets being convex according to Propositions 5 and 6 ,

he KKT conditions are necessary and sufficient conditions for an

ptimum to exist. 

To determine solutions to the TSO optimization problem (37) ,

e compute the stationarity conditions with respect to 
p assum-

ng that the decision variables of the DSO, i.e., 
p g , 
p c , q and v ,
re fixed. This gives us: 

∇ 
p πT SO + (λ−
1 − λ+ 

1 ) 
T + 
FS T SO = 0 , (39) 

 ≤ λ−
1 ⊥ | M inc | T C − ρC + ρ(
p, 
p g , 
p c , q, v ) ≥ 0 , (40) 

 ≤ λ+ 
1 ⊥ −ρ(
p, 
p g , 
p c , q, v ) + | M inc | T C + ρC ≥ 0 , 

(29) , (36) , (41) 

here ∇ 
p πT SO = (P n (D n + 
D n (ω)) n ∈ TN ∪ N ∞ 

− 2 (c n 
p n ) n ∈ TN ∪ N ∞ 

. 

The combination of Eqs. (40) and (41) implies that for any n ∈
N ∪ N ∞ 

either λ−
1 
(n ) = 0 , or λ+ 

1 
(n ) = 0 , or λ−

1 
(n ) = λ+ 

1 
(n ) = 0 .

his leads us to distinguish between three cases: 

case (i) λ−
1 
(n ) = 0 and constraint (41) is binding, i.e.,

the line is congested and ρ(
p, 
p g , 
p c , q, v )(n ) =
(| M inc | T C + ρC )(n ) . Then at the equilibrium 
p GNE 

n =
(ρ(0 , 
p g , 
p c , q, v ) − | M inc | T C − ρC ) n ≤ P n (D n +
D n (ω)) 

2 c n 
. 

case (ii) λ+ 
1 
(n ) = 0 and constraint (40) is binding, i.e.,

the line is congested and ρ(
p, 
p g , 
p c , q, v ) n =
(−| M inc | T C + ρC ) n . Then at the equilibrium 
p GNE 

n =
(ρ(0 , 
p g , 
p c , q, v ) + | M inc | T C − ρC ) n ≥ P n (D n +
D n (ω)) 

2 c n 
. 

case (iii) λ−
1 
(n ) = λ+ 

1 
(n ) = 0 (i.e., no constraint is binding,

meaning that the line is not congested), then at the equi-

librium 
p GNE 
n = 

P n (D n +
D n (ω)) 
2 c n 

. 

Therefore, at the equilibrium, depending on the posi-

ion of P n (D n +
D n (ω)) 
2 c n 

with respect to (ρ(0 , 
p g , 
p c , q, v ) −
 M inc | T C − ρC ) n and (ρ(0 , 
p g , 
p c , q, v ) + | M inc | T C − ρC ) n , we 

an fall into one case or another, which also highlights the state

f network regarding line congestion. 

The first KKT condition in Eq. (39) also provides economic inter-

retation, as it implies that the demand in transmission node n is

qual to the inverse demand of the marginal cost summed up with

 price premium linked to the saturation of transmission lines: 

 n + 
D n (ω) = P −1 
n [ 2 c n 
p n ︸ ︷︷ ︸ 

marginal cost 

+ λ+ 
1 (n ) − λ−

1 (n ) ︸ ︷︷ ︸ 
price premium 

] , 

 n ∈ TN ∪ N ∞ 

. 

.2.5. DSO KKT Conditions 

Let λ2 , λ3 , λ4 , λ5 be the Lagrange multipliers associated with

qs. (7) , (8), (9), (31) respectively. 

In the rest of this section, we denote by ∇X the Jaco-

ian matrix of X with respect to 
p g , 
p c , q, v , which means

X = 

(∇ 
p g X ∇ 
p c X ∇ q X ∇ v X 
)
. 
 of transmission-distribution system operator coordination, Euro- 
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6 Note that we have the strict concavity, if 4 c g 
i 
c c 

i 
> βi , ∀ i ∈ DN . 
To determine solutions of the DSO optimization problem (38) ,

we compute the stationarity conditions with respect to 
p g , 
p c ,

q , v , assuming that 
p and θ are fixed: 

−∇ πDSO + 2 λT 
2 [ diag( f p ) ∇ f p + diag( f q ) ∇ f q ] 

+ λT 
3 [2 d iag( f p ) ∇ f p + 2 d iag( f q ) ∇ f q − d iag(l) ∇v − diag(v ) ∇ l] 

+ λT 
4 [2 d iag( f p − d iag(R ) l)(∇ f p − diag(R ) ∇ l) 

− 2 d iag( f p − d iag(X ) l)(∇ f p − diag(X ) ∇ l)] 

−λT 
5 ∇ρ + 
FS DSO = 0 , (42)

0 ≤ λ2 ⊥ −( f p ) 2 − ( f q ) 2 + S 2 ≥ 0 , (43)

0 ≤ λ3 ⊥ −( f p ) 2 − ( f q ) 2 + diag(v ) l ≥ 0 , (44)

0 ≤ λ4 ⊥ −( f p − diag(R ) l) 
2 − ( f q − diag(X ) l) 

2 + S 2 ≥ 0 , (45)

λ5 ∈ R 

card(T N∪ N ∞ ) ⊥ M inc B 

� θ = ρ(
p, 
p g , 
p c , q, v ) − ρC , 

(35) , (46)

where the gradient of the DSO utility function ∇πDSO can be

expressed as follows: 

∇ 
p g πDSO = (P i ( p̄ 
c 
i 
+ 
D i (ω) − 
p c i )) i ∈ DN − 2(c g 

i 

p g 

i 
) i ∈ DN , 

∇ 
p c πDSO = βi ( p̄ 
g 
i 
+ 
p g 

i 
) − 2 (c c i 
p c i ) i ∈ DN , 

∇ q πDSO = 0 , 

∇ v πDSO = 0 . 

The stationarity conditions associated with the centralized

co-optimization problem (detailed in Section 5.1.4 ) do not coincide

with the concatenation of the stationarity conditions associated

with the shared balancing responsibility game (that are detailed

in Sections 5.2.4 and 5.2.5 ). To compute an equilibrium solution

of the shared balancing responsibility game, we determine the

best response function of each agent (TSO, DSO), assuming that

the decision variable of the other’s is fixed. This is equivalent to

solving in the agents decision variables an optimization problem,

parametrized in the decision variables of the other agent. As such,

for each agent, the system of KKT conditions parametrized in

the other agents decision variables can be used to determine the

best response function of the agent. Then, the intersection of the

best response functions of all the agents (TSO, DSO) give us the

equilibrium solution of the shared balancing responsibility game. 

5.2.6. Existence and Uniqueness of Generalized Nash Equilibrium 

Proposition 8. Assuming that the TSO and DSO feasible sets are not

empty, there exists a GNE solution of the shared balancing responsi-

bility game (37) , (38) if, and only if, 4 c 
g 
i 
c c 

i 
≥ βi , ∀ i ∈ DN . 

Proof of Proposition 8. Following Propositions 5 and 6 , the fea-

sible sets of the TSO and DSO are convex. Furthermore, these sets

are compact. Indeed, constraint (31) implies that constraint (30) is

satisfied. So we can consider the feasible set as the intersection of

all constraints except (30) . All these constraints are either closed

balls or closed spaces. So their intersection is a compact set. The

feasible sets of problems (37) and (38) are non-empty, convex, and

compact. Furthermore, the TSO and DSO utility functions are con-

tinuous in u TSO and u DSO , and the TSO utility function is concave

with respect to its own decision variable. To check that the DSO

utility function is concave with respect to its own decision vari-

ables, we compute the Jacobian of the gradient of the DSO utility

defined as g DSO (. ) := ( 
∂πDSO (. ) 
∂
p g 

∂πDSO (. ) 
∂
p c 

) 
T 
, as follows: 

J DSO = 

(
−2 diag(c g 

i 
) i ∈ DN diag(βi ) i ∈ DN 

diag(βi ) i ∈ DN −2 diag(c c 
i 
) i ∈ DN 

)
. 
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omputing the determinant of the characteristic polynomial

atrix associated with J DSO in μ, we obtain 

∏ 

i ∈ DN ((−2 c 
g 
i 
−

)(−2 c c 
i 
− μ) − β2 

i 
) = 

∏ 

i ∈ DN ((2 c 
g 
i 
+ μ)(2 c c 

i 
+ μ) − β2 

i 
) = 

 

i ∈ DN (μ2 + 2(c 
g 
i 
+ c c 

i 
) μ + 4 c c 

i 
c 

g 
i 
− β2 

i 
) . The eigenvalues of J DSO 

re the roots of the polynomial equation in μ. The minimum

s reached in μ = −(c c 
i 
+ c 

g 
i 
) . We conclude that J DSO is negative

emi-definite if, and only if, 4 c 
g 
i 
c c 

i 
≥ βi , ∀ i ∈ DN 

6 . 

Then, following ( Fudenberg & Tirole, 1991 ), the strategic form

ame defined through problems (37) and (38) has a GNE. �

Following ( Rosen, 1965 ), we introduce the Jacobian block ma-

rix J of the pseudo-gradient of the non-negative weighted sum of

he TSO and DSO utility functions with weights equal to 1 defined

s g(. ) := ( ∂πT SO (. ) 
∂
p 

∂πDSO (. ) 
∂
p g 

∂πDSO (. ) 
∂
p c 

) T , as follows: 

 = 

( −2 diag(c n ) n ∈ TN ∪ N ∞ 0 0 

0 −2 diag(c g 
i 
) i ∈ DN diag(βi ) i ∈ DN 

0 diag(βi ) i ∈ DN −2 diag(c c 
i 
) i ∈ DN 

) 

. 

roposition 9. If 4 c 
g 
i 
c c 

i 
> β2 

i 
, ∀ i ∈ DN , then the shared balancing re-

ponsibility game has a unique GNE. 

roof of Proposition 9. A sufficient condition guaranteeing that

he positive weighted sum of the TSO and DSO utility func-

ions is diagonally strictly concave is to check that the sym-

etric matrix J + J T is negative definite. Computing the determi-

ant of the characteristic polynomial matrix associated with J + J T 

n μ, we obtain (−1) card( TN ∪ N ∞ 

) 
∏ card( TN ∪ N ∞ 

) 
n =1 

(4 c n + μ) 
∏ 

i ∈ DN [(4 c 
g 
i 
+

)(4 c c 
i 
+ μ) − 4 β2 

i 
] . The eigenvalues of J + J T are the roots of the

olynomial equation. We obtain two different types of values:

n = −4 c n , ∀ n ∈ TN ∪ N ∞ 

, other μ are solutions of the polyno-

ial equation μ2 + 4(c c 
i 
+ c 

g 
i 
) μ + 16 c 

g 
i 
c c 

i 
− 4 β2 

i 
= 0 . The minimum

f this polynomial equation is reached in μ = −2(c c 
i 
+ c 

g 
i 
) . It ad-

its two negative roots if, and only if, its value evaluated in zero

s positive, i.e., 4 c 
g 
i 
c c 

i 
> β2 

i 
, ∀ i ∈ DN . Under this condition, the pos-

tive weighted sum of the TSO and DSO utility functions is diago-

ally strictly concave, which implies that there exists a unique GNE

olution of the shared responsibility balancing game. �

.3. Local markets 

For coordination scheme ( iii ), we start by discussing the

otivation for its implementation in 5.3.1 , then we detail its

athematical formulation in 5.3.2 . The bilevel optimization

roblem is reformulated as a mathematical program with com-

lementarity (equilibrium) constraints in 5.3.3 . Relations with

oordination scheme ( ii ) are highlighted in 5.3.4 . 

.3.1. Motivation 

In this coordination scheme, we assume that there are separate

ocal markets, in each one of them operates a DSO. Resources

rom the DSO grids can only be offered to the TSO after the

SOs have selected resources needed to solve local imbalances

ithin their periphery. The TSO is responsible for the operation

f its own balancing market, where both resources from the

ransmission grid and resources from the distribution grids can

articipate. This is motivated by the fact that the RES-based DERs

re not fully used for the moment. Giving the possibility to the

SO to activate directly DERs is then meaningful for completely

sing DERs, directly letting the TSO cover for the cost incurred

y activating the resources it needs. In practice, it can be a way

o avoid the waste of power into the distribution grid, as well

s helping in congestion management, and can be coupled with

exibility mechanisms like demand response. This scheme makes
 of transmission-distribution system operator coordination, Euro- 
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Fig. 4. Graphical representation of TSO-DSO coordination scheme ( iii ), called local markets. On the left part of the figure, the DSO anticipates the rational reaction function 

of the TSO by computing backwards u TSO ( u DSO ). The anticipation process takes place prior to the Stackelberg game. On the right part of the figure, the Stackelberg game 

involving the DSO and TSO takes place forward. First, the DSO sends a signal y DSO = u T SO to the TSO which, in a second time, reacts rationally by activating transmission 

resources and possibly distribution resources if available. The DSO guarantees the feasibility of the dispatch on the distribution grid. 

t  

p  

s  

r  

a  

a  

t  

s  

r  

t

5

 

t  

s  

o  

f  

b  

n  

i  

S  

m  

D  

c  

a  

r  

i  

t

 

p  

u  

a  

p  

D  

o  

o  

1  

r  

t

 

c

u

s

∀

u

s

∀

 

t  

i  

l  

(  

t  

u  

d  

D  

t  

i  

b  

p  

f  

t  

w

he mathematical link with the ‘local ancillary service market’

roposed in Gerard et al. (2017) . A graphical representation of the

cheme is available in Fig. 4 . Contrary to the shared balancing

esponsibility game introduced in Section 5.2 that we interpret

s a non-cooperative game, with bounded rationality of the TSO

nd DSO (implying that they both play at the same time), under

he local markets coordination scheme that we describe in this

ection, the DSO is assumed to play first anticipating the rational

eaction of the TSO, which reacts secondly to the signal sent by

he DSO following its rational reaction function. 

.3.2. Formulation 

This third coordination scheme can be interpreted as a sequen-

ial game involving the TSO and DSOs. We model the coordination

cheme as a Stackelberg game with multiple leaders (DSOs) and

ne follower (TSO). The multi-leader Stackelberg game can be

ormulated as an EPEC ( Le Cadre, 2018 ). As recalled just before the

eginning of Section 5 , since we assume that the local markets do

ot share any resource with each other and to keep the economic

nterpretations as simple as possible, we consider a single DSO.

tackelberg games are generally formulated as Bilevel mathe-

atical Programming Problems (BLPPs) ( Dempe & Dutta, 2012;

empe et al., 2015 ). BLPPs are hierarchical optimization problems

ombining decisions of two decision makers, the so-called leader

nd the so-called follower. The leader acts first, and the follower

eacts optimally on the action of the leader. The goal of the leader

s to find such a selection which, together with the response of

he follower, maximizes its utility function ( Dempe et al., 2015 ). 

In this class of problems, the set of decision variables is

artitioned between u DSO ∈ FS DSO and u T SO ∈ FS T SO . Given

 DSO ∈ FS DSO , the vector of TSO decisions u TSO is to be chosen as

n optimal solution u T SO = u T SO (y DSO ) of an optimization problem

arametrized in y DSO ∈ Y DSO , defined as the signal sent by the

SO to the TSO. This problem is the so-called lower-level problem

f the TSO. The solution u T SO (y DSO ) is called the rational reaction

f the TSO on the signal of the DSO, y DSO ∈ Y DSO ( Ba ̧s ar & Olsder,

999; Dempe & Dutta, 2012; Dempe et al., 2015 ). Knowing this

eaction, the bilevel problem reads as an optimization problem for

he DSO in u DSO ∈ FS DSO only. 

The general formulation of the BLPP problem in a local market

oordination scheme, can be written down as follows: 

max 
 DSO ∈ FS DSO ,u T SO (y DSO ) ,x ∈ X 

πDSO (u DSO , ω) , 

.t. v i = v A i + 2(R i f 
p 
i 

+ X i f 
q 
i 
) − l i (R 

2 
i + X 

2 
i ) , ∀ i ∈ DN , 
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( p̄ n + 
p n ) + 

∑ 

j∈ C n 

( f p 
j 

− l j R j ) + 

( ∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l 

)
= D n 

+ 
D n (ω) + G n v n , ∀ n ∈ N ∞ 

, 

f p 
i 

−
∑ 

j∈ C i 

( f p 
j 

− l j R j ) − ( ̄p g 
i 
+ 
p g 

i 
) + ( ̄p c i + 
D i (ω) − 
p c i ) 

+ G i v i = 0 , 

 i ∈ DN , 

f q 
i 

−
∑ 

j∈ C i 

( f q 
j 

− l j X j ) + q i − B i v i = 0 , ∀ i ∈ DN , 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ S 2 i , ∀ i ∈ DN , 

( f p 
i 
) 2 + ( f q 

i 
) 2 ≤ v i l i , ∀ i ∈ DN , 

( f p 
i 

− l i R i ) 
2 + ( f q 

i 
− l i X i ) 

2 ≤ S 2 i , ∀ i ∈ DN , 

 T SO (y DSO ) = arg max 
u T SO ∈ FS T SO ,x ∈ X 

πT SO (u T SO , ω) , 

.t. f l = B l (θn − θm 

) , ∀ l = (n, m ) ∈ L , 

( p̄ n + 
p n ) + 

( ∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l 

)
= D n + 
D n (ω) , 

 n ∈ TN , 

( p̄ n + 
p n ) + 

∑ 

j∈ C n 

( f p 
j 

− l j R j ) + 

( ∑ 

l ∈ L | l =(m,n ) 

f l −
∑ 

l ∈ L | l =(n,m ) 

f l 

)
= D n + 
D n (ω) + G n v n , ∀ n ∈ N ∞ 

. 

Note that in the BLPP formulation, we have kept u TSO ( y DSO ) in

he decision variables at the upper-level. The reason for it is that,

n all generalities, the lower-level problem may have multiple so-

utions. The leaders (DSOs) being not allowed to force the follower

TSO) to take the one or the others of its optimal solutions. Hence,

he leaders cannot predict the true value of their utility functions

ntil the follower has communicated its choice. To overcome this

ifficulty, two approaches have been suggested in Dempe and

utta (2012) and Dempe et al. (2015) : in an optimistic approach,

he leader supposes that the follower is willing to support him,

.e., that the follower will select a solution u TSO ( y DSO ) which is the

est from the point-of-view of the leader. On the contrary, in a

essimistic approach, the leader is to bound the damage resulting

rom an undesirable selection of the follower, i.e., it is assumed

hat the follower will select a solution u TSO ( y DSO ) which is the

orst from the point-of-view of the leader. 
 of transmission-distribution system operator coordination, Euro- 
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In the following, we will assume that y DSO = u DSO , i.e., the TSO

observes the actions chosen at the upper level by the DSO, but

more complex formulations with feedback functions capturing

partial observation of u DSO might be considered. 

Using Propositions 2 –4 , it is possible to reformulate the BLPP

as the following bilevel optimization problem in u DSO ∈ FS DSO , the

TSO optimization problem being nested at the lower-level: 

max 
u DSO ∈ FS DSO ,u T SO (u DSO ) 

πDSO (u DSO , ω) , 

s.t. (7) , (8) , (9) , 

(31) , 

u T SO (u DSO ) ∈ arg max 
u T SO ∈ FS T SO 

πT SO (u T SO , ω) , 

s.t. (29) , (30) . (47)

Bilevel optimization problems are non-concave programming

problems with an implicitly determined feasible set. In our prob-

lem, assuming that the decision variables of the DSO are fixed, the

feasibility set of the follower (TSO) optimization problem is convex

according to Proposition 5 . Furthermore, the TSO utility function

is parametric in the DSO’s decision variables 
p g , 
p c , q , v , and

strictly concave in 
p . We can conclude that the lower-level

problem admits a unique point-to-set solution 
p � (
p g , 
p c , q, v )
(also called rational reaction or reaction function) and the bilevel

problem is well defined ( Dempe & Dutta, 2012 ). 

We replace the lower-level problem with its KKT conditions

from Section 5.2.4 . This results in a mathematical program with

complementarity (equilibrium) constraints (MPCC) ( Dempe &

Dutta, 2012; Dempe et al., 2015; Yao et al., 2008 ) that we describe

in the next section. 

5.3.3. MPCC reformulation 

The BLPP problem (47) is reformulated as an MPCC, replacing

the TSO problem with its KKT conditions (39), (40), (41), (36),

(29) . The MPCC can be written down as: 

max 
u DSO ∈ FS DSO ,u T SO 

πDSO ((u a ) a ∈ A , ω) , 

s.t. (7) , (8) , (9) , 

(31) 

(39) , (40) , (41) , (36) , (29) . (48)

Since the TSO and DSO utility functions are concave, the KKT

conditions are necessary and sufficient to determine an optimum

for the BLPP (47) . 

The constraints corresponding to the lower-level problem of

BLPP provide closed form expressions for the TSO reaction function


p � (.), which can be expressed as a parametric function of 
p g ,


p c , q , v . Following Section 5.2.4 , we obtain 
p � n equals: 

(i ) (ρ(0 , 
p g , 
p c , q, v ) − | M inc | T C − ρC ) n 

if 
P n (D n + 
D n (ω)) 

2 c n 
< (ρ(0 , 
p g , 
p c , q, v ) − | M inc | T C − ρC ) n , 

(ii ) (ρ(0 , 
p g , 
p c , q, v ) + | M inc | T C − ρC ) n 

if 
P n (D n + 
D n (ω)) 

2 c n 
> (ρ(0 , 
p g , 
p c , q, v ) + | M inc | T C − ρC ) n , 

(iii ) 
P n (D n + 
D n (ω)) 

2 c n 
otherwise . 

Another difficulty is that bilevel programming BLPP is not a

special case of MPCC in general ( Dempe & Dutta, 2012 ). This is not

obvious and concerns local solutions. For global and local optimal

solutions of the MPCC to correspond to global and local optimal

solutions of the BLPP (47) , we need to check that the lower-level

problem satisfies Slater’s constraint qualification ( Dempe & Dutta,

2012 ), i.e., that there exists a reaction function 
p � (.) such that

all the nonlinear constraints for the nested optimization problem
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis
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re slack. Since the only nonlinear constraint is constraint (29) ,

his is true in our case. For this case where Slater’s constraint

ualification is verified, global and local optimal solutions of MPCC

48) coincide with global and local optimal solutions of the BLPP

47) . In other words, MPCC (48) is an equivalent reformulation of

LPP (47) . 

To solve the MPCC associated with the BLPP, we aggregate

he KKT conditions associated with the DSO’s and the TSO’s

ptimization problems, which, in general, form a mixed non-linear

omplementarity problem. Similarly to Yao et al. (2008) , we have

ssumed that the day-ahead demand and marginal activation cost

unctions are linear, so the problem becomes a linear complemen-

arity problem, as soon as we remove constraint (29) . The BLPP is

hen solved as a linear complementarity problem, assuming that

onstraint (29) is met. If, a posteriori, the equilibrium solution

iolates (29) , the algorithm solving the linear complementarity

roblem is re-run with different initial conditions. 

.3.4. Relationship with the shared balancing responsibility game 

To find the optimum for the DSO and TSO in this case, we

ave the same KKT conditions as in Section 5.2.5 except that ∇ρn 

s replaced by 0 when we are in case (i) and (ii) and that the

onstraints corresponding to the lower-level problem of BLPP are

eplaced by the closed form expression of 
p � (.). 

Applying backwards induction to the local market game is

he same as applying the concept of dominance, i.e., eliminating

equentially dominated strategies, taking into account sequential

ationality. Refinements of GNE which incorporate sequential

ationality are called Subgame Perfect GNE ( Fudenberg & Tirole,

991; Osborne & Rubinstein, 1999 ). So a Subgame Perfect GNE is a

trategy profile that specifies a GNE in every subgame, i.e., part of

he extensive form of the local market game that constitutes itself

 well-defined extensive form game ( Ba ̧s ar & Olsder, 1999 ). 

We cannot obtain closed form expressions for the GNE so-

utions of the shared balancing responsibility and local market

ames because of the conic constraints introduced by the SOCP

elaxations in the DSO optimization problems. 

. Imperfect information setting 

All the coordination schemes introduced in Sections 5.1 –5.3 are

ormulated in a perfect information setting, i.e., all the agents have

ccess to the (full) state x . In many cases, however, not all infor-

ation is common knowledge because some agents may choose to

ide or only partially disclose their private information, to avoid

he disclosure of sensitive intra-area data ( Halilbasic et al., 2017 ).

n these cases, information asymmetry might appear between the

gents, which may impact their strategies. In this section, we con-

ider a specific information structure. We assume that the state-

easurement (observation) function defined in Section 3.3 takes

he following form: y T SO = h T SO (x ) = x + εT SO and y DSO = h DSO (x ) =
 + εDSO , where εTSO , εDSO can be interpreted as noises; there-

ore falling in the imperfect information setting described in

ection 3.3 ii). The fact that TSO and DSO get noisy observations

f the state can come from errors in the sensor measurements on

he transmission and distribution networks, or from strategic com-

unication mechanisms through which the agents get incentives

o bias their reported measures ( Le Cadre & Bedo, 2016 ). 

.1. TSO forecast of the state variable 

The TSO observes perfectly (i.e., without noise in the measure-

ent) the power flows on its own transmission network, ( f l ) l∈ L ,
ut does not know a priori the operational parameters R , X , G ,

 and distribution network topology characteristics M adj , κ of the

SO that determine the DSO state. This means that the TSO needs
 of transmission-distribution system operator coordination, Euro- 
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7 
o forecast the active and reactive power flows and current magni-

ude on the distribution network (DSO state), to solve the KKT con-

itions 5.2.4 that determine its best response to the DSO strategy. 

From Eqs. (18) and (19) , the DSO active and reactive power

ows can be expressed as linear functions of the DSO decision

ariables. Since the TSO does not observe the DSO state, we intro-

uce forecasts of the TSO related to the active and reactive power

ows and current squared magnitude on the DSO distribution

etwork. Let εT SO 
i 

= (εT SO,p 
i 

εT SO,q 
i 

εT SO,l 
i 

) ∼ N (μT SO 
i 

;σ T SO 
i 

) be the

orecast error made by the TSO when estimating the DSO network

tate, and μT SO 
i 

and σ T SO 
i 

are the mean and the standard deviation

ssociated with random variable εT SO 
i 

in distribution node i . We

et: 

ˆ f p = f p + εT SO,p 

= diag(∇ u DSO 
f p ) u DSO 

+([(I + M) − 2 Mdiag(R )�−1 �(R )]( p̄ g − p̄ c − 
D (ω)) 

−Mdiag(R )�−1 Hv ∞ 

) + εT SO,p , (49) 

ˆ f q = f q + εT SO,q 

= diag(∇ u DSO 
f q ) u DSO − (2 Mdiag(X )�−1 �(R )( p̄ g 

−p̄ c − 
D (ω)) + Mdiag(X )�−1 Hv ∞ 

) + εT SO,q , (50) 

ˆ 
 = l + εT SO,l 

= diag(∇ u DSO 
l) u DSO 

+[2�−1 �(R )( p̄ g − p̄ c − 
D (ω)) + �−1 Hv ∞ 

] + εT SO,l , (51) 

Note that ∇ u DSO 
f p,q is the gradient of f p , q restricted to the DSO

ecision variables, i.e., it does not contain ∇ 
p f 
p , q . The gradient of

he DSO current squared magnitude ∇ u DSO 
l is defined by: 

∇ 
p g l = 2�−1 �(R ) , 

∇ 
p c l = 2�−1 φ(R ) , 

∇ q l = −2�−1 �(X ) , 

∇ v l = −ϒ . 

This implies that the (full) state variables as observed by the

SO now take the form: 

 T SO = 

⎛ 

⎜ ⎝ 

( f l ) l∈ L 
( ̂  f p 

i 
) i ∈ DN k ,k ∈ N 

( ̂  f q 
i 
) i ∈ DN k ,k ∈ N 

( ̂ l i ) i ∈ DN k ,k ∈ N 

⎞ 

⎟ ⎠ 

. 

.2. DSO forecast of the state variable 

Similarly to the TSO, the DSO may observe only partially the

tate variable. The DSO observes perfectly the active and reactive

ower and current magnitude on the distribution network (i.e.,

ithout noise measurement), f p , f q , l , but needs to forecast the

ow on the transmission network (TSO state), to solve the KKT

onditions 5.2.5 that determine its best response to the TSO

trategy. To that purpose, we introduce the following form for

he forecast of the DSO related to the power flow on the TSO

ransmission network: 

ˆ f l = f l + εDSO 
l , ∀ l ∈ L , (52) 

ith εDSO 
l 

∼ N (μDSO 
l 

;σ DSO 
l 

) , μDSO 
l 

and σ DSO 
l 

are the mean and

he standard deviation associated with random variable εDSO 
l 

in

ransmission line l . 

This implies that the state variables as observed by the DSO

ow take the form 

 DSO = 

⎛ 

⎜ ⎝ 

( ̂  f l ) l∈ L 
( f p 

i 
) i ∈ DN k ,k ∈ N 

( f q 
i 
) i ∈ DN k ,k ∈ N 

⎞ 

⎟ ⎠ 

. 
(l i ) i ∈ DN k ,k ∈ N 

Please cite this article as: H. Le Cadre et al., A game-theoretic analysis
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.3. Shared balancing responsibility with imperfect information 

Under shared balancing responsibility, the TSO solves in 
p the

ystem defined by the KKT conditions of Eqs. (39) –(41) , (29) , tak-

ng as parameters the decisions variables of the DSO 
p g , 
p c , q, v
btained from the KKT conditions (42) –(46) . Since the TSO has

mperfect information about the (full) state variable, we need

o consider these equations all together and to incorporate the

orecasts of the TSO. To compute the TSO best response function,

qs. (42) –(45) are updated by replacing f p , f q , l by ˆ f p , ˆ f q , ̂  l as

efined in Eqs. (49) –(51) . A graphical representation of the scheme

s available in Fig. 3 . 

Simultaneously and independently, the DSO solves in

p g , 
p c , q, v the system defined by the KKT conditions Eqs.

42) –(46) , taking as parameters the decisions variables of the TSO,

p , obtained from the KKT conditions (39) –(41) , (29) . Since the

SO has imperfect information about the (full) state variable, we

eed to consider these equations all together and to incorporate

he forecasts of the DSO. Eq. (25) is changed into: 

 inc f = ρ − ρC − M inc ε
DSO , 

hich implies that Eq. (29) needs to be updated as follows: 

(B 

�T M 

T 
inc (ρ(
p, 
p g , 
p c , q, v ) − ρC − M inc ε

DSO )) 
2 

> 0 . 

qs. (40) and (41) are updated as follows: 

| M inc | T C + ρC + M inc ε
DSO ≤ ρ(
p, 
p g , 
p c , q, v ) 

≤ | M inc | T C + ρC + M inc ε
DSO . 

The intersections of the best responses of the TSO,

 T SO (u DSO , ε
T SO ) , and DSO, u DSO ( u TSO , εDSO ), furnish the GNE,

hich are parametrized in the errors of the TSO and DSO εTSO ,
DSO . Let S GNE be the set of GNE solutions of the shared balancing

esponsibility game with imperfect information. In Section 7 we

ill characterize the impact of TSO and DSO uncertainty on the

fficiency of the shared balancing responsibility game. 

. Numerical illustrations 

The three coordination schemes are tested on a meshed trans-

ission network made of three interface nodes numbered from

 to 3. Each one of these interface nodes is itself the root of

 tree capturing a distribution network containing 5 nodes, as

ictured in Fig. 1 . Operational parameters are calibrated based

n a NICTA NESTA test case ( Coffrin, Gordon, & Scott, 2017 ). The

ata sets used in this section are available online 7 . We only run

ests on this stylized example for different reasons: (a) equilibrium

roblems are computationally difficult to tackle, (b) we want to

rovide a preliminary efficiency analysis on each scheme before

otentially selecting the ones that should be considered for large

cale instances, (c) the assumptions made on the network (meshed

ransmission network with DC power flow and radial distribution

etwork with SOCP relaxation) are common and largely used in

he literature ( Caramanis et al., 2016; Kocuk et al., 2016; Peng &

ow, 2014 ). We aim at proving concepts and showing how the

chemes work in practice in this work. Large scale instances are

hen not considered here. 

.1. GNE spanning using random sampling: Quantifying the TSO and 

SOs’ remunerations 

In this section, we evaluate the remuneration of the TSO and

SOs. Since GNEs obtained as output of shared balancing responsi-

ility and local market coordination schemes might not be unique,

his requires to span the set of GNE solutions. 
GitHub https://github.com/helene83/CS-Games 
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Fig. 5. GNE found by a parametrization approach, using random sampling. In red, 

we have represented π TSO , πDSO evaluated at the social optimum; in blue and green, 

π TSO , πDSO evaluated in the set of GNE solutions of the shared balancing responsi- 

bility and local market game respectively. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Following the approach in Nabetani, Tseng, and Fukushima

(2011) , we span the set of GNE by randomly sampling the

Lagrange multipliers λ = (λ0 , λ
−
1 
, λ+ 

1 
, λ2 , λ3 , λ4 , λ5 ) . 

We proceed as follows. We start with an initial guess

λ0 , u 0 
DSO 

, u 0 
T SO 

. In practice, we set λ0 = 0 and we define u 0 
DSO 

and u 0 
T SO 

as vectors containing the midpoints of the intervals

defined by the feasibility sets FS DSO and FS T SO . Then, by min-

imization of the gradient of the Lagrangian function under

feasibility constraints in each coordination scheme, we update

λ� , u � DSO , u 
� 
T SO and compute πT SO (u � T SO ) and πDSO (u � DSO ) . The algo-

rithm is repeated ( Facchieni & Kanzow, 2007 ) for updated initial

guesses λ, u � 
DSO 

, u � 
T SO 

, where λ is sampled randomly according to a

uniform density function, until a stopping criterion is met. 

In Fig. 5 , we have represented the TSO and DSO utility functions

evaluated in each coordination scheme outcome. In red, the utility

functions are evaluated in the social welfare optimum obtained as

output of the centralized co-optimization problem (34) . As proven

in Proposition 7 , there exists a unique solution of the centralized

co-optimization problem. In blue, the utility functions are evalu-

ated in the set of GNE solutions of the shared balancing respon-

sibility game (37) and (38) 8 . Finally, in green, the utility functions

are evaluated in the set of GNE solutions of the local market game

(47) formulated as a bilevel optimization problem. We observe

that for the TSO it is more advantageous to behave as a follower

when the DSO anticipates its follower resource activation strategy

than to compete simultaneously with the TSO through a shared

balancing responsibility game. This situation might be interpreted

as a last-mover advantage for the TSO ( Mas-Colell, Whinston,

& Green, 1995; Osborne & Rubinstein, 1999 ). Furthermore, the

joint activation of reserves on transmission and distribution grids

through co-optimization leads to a lower profit for the TSO than

under the two other decentralized coordination schemes. 

7.2. Social welfare and reserve activation levels 

In this subsection, we compare the three coordination schemes

based on other meaningful criteria to assess their relative effi-

ciency, such as social welfare and reserve activation levels. 
8 Note that as the conditions of Proposition 9 are not checked in our data set, 

there is no guarantee of uniqueness of GNE in this test case. 
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In Fig. 6 (a), we have represented the TSO reserve activation

evel, quantified as the sum of the reserves activated on the TSO

etwork and at the interface nodes 
∑ 

n ∈ TN ∪ N ∞ 


p n , and the DSO

eserve activation level, quantified as the sum of the reserves

ctivated on the DSO network 
∑ 

i ∈ DN (
p 
g 
i 
+ 
p c 

i 
) , evaluated at

he social optimum in red, GNE solutions of the shared balancing

esponsibility game in blue, and local market in green. For all the

oordination schemes, the level of activated reserves is higher on

he DSO network than on the TSO network; this can be explained

y the fact that in our NICTA NESTA test case, activation costs of

ERs are assumed to very low (close to zero because coming from

ES-based generators) whereas conventional generators’ activation

osts on the TSO network are quite high. Logically, under co-

ptimization, the integrated market operator activates a very low

mount of reserves on the transmission network and a large quan-

ity of reserves on the distribution network. Furthermore, more

eserves are activated on the TSO network under local market

oordination scheme than under shared balancing responsibility

oordination scheme. This can be interpreted as a by-product of

he last-mover advantage for the TSO, which gives rise to higher

rofitability for the TSO than the shared balancing responsibility

ame as highlighted in Section 7.1 . In Fig. 6 (b), we have repre-

ented the social welfare as function of the total reserve activated

y TSO and DSO evaluated in the social optimum in red, GNE solu-

ions of the shared balancing responsibility game in blue and local

arket in green. We observe that the centralized co-optimization

oordination scheme guarantees the highest level of efficiency

n terms of resource allocation, giving rise to the highest social

elfare with 200 €, followed very closely by the best equilibrium

f the shared balancing responsibility game with 199 €. The local

arket coordination scheme gives rise to a lower social welfare

han the centralized co-optimization coordination scheme with

alues between 147 € and 153 €. However, on average (e.g., with

quiprobability of all the equilibria), the local market coordination

cheme provides a higher social welfare with an average value of

50 €, than the shared balancing responsibility with 143 €. 
Using our test case to assess the relative merits of our three

oordination schemes, we summarize their comparison below: 

• The local market coordination scheme gives rise to higher prof-

itability for the TSO than the shared balancing responsibility co-

ordination scheme. 
• The joint activation of reserves on transmission and distribution

networks through co-optimization leads to lower profit for the

TSO than under the two other coordination schemes. 
• More reserves are activated on the TSO network under local

market coordination scheme than under the two other coordi-

nation schemes; the centralized co-optimization scheme giving

rise to very low amount of reserves activated on the TSO net-

work compared to the activation level on the DSO network. 
• The social welfare is the highest when evaluated at the op-

timum of the centralized co-optimization problem, followed

very closely by the highest value of the social welfare evalu-

ated in the GNEs solutions of the shared balancing responsibil-

ity game. This means that the shared balancing responsibility

game can reach an efficiency level very close to the central-

ized co-optimization problem, while enabling the introduction

of strategic behaviors from the TSO and DSOs. 
• The local market coordination scheme leads to a lower level

of efficiency than the centralized co-optimization coordination

scheme, which can be explained by the last-mover advantage

of the TSO, which activates reserves on its network that are

far more expensive than RES-based DERs in the distribution

network. However, on average, the local market coordination

scheme reaches a mean social welfare value higher than the
shared balancing responsibility game. 
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Fig. 6. Reserve activation levels measured as the sum of the reserves activated by the TSO and DSO on the transmission and distribution networks in Fig. 6 (a) at the social 

optimum in red, GNE solutions of the shared balancing responsibility game in blue, and local market in green; social welfare as function of the total reserve activated by TSO 

and DSO evaluated in the social optimum in red, GNE solutions of the shared balancing responsibility game in blue and local market in green in Fig. 6 (b). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.3. Impact of Information 

Since the operational parameters and network topology are typ-

cally not shared (common knowledge) among TSO and DSOs, due

o partial information disclosure or privacy constraints ( Halilbasic

t al., 2017 ), this leads the TSO and DSO to have their own fore-

asts of the state variable, i.e., y TSO for the TSO and y DSO for the

SO, which may not coincide between them and with the true

full) state value. In Eqs. (49) –(52) , the uncertainty of the TSO and

SO on the state variable is captured through an error modeled as

 random variable. Without loss of generality, we assume that the

ean and standard deviation of the TSO error are the same for

he active power, reactive power, and current magnitude forecasts,

nd that these parameters coincide at all nodes, i.e., μT SO,p/q/l 
i 

=
T SO , ∀ i ∈ DN and σ T SO,p/q/l 

i 
= σ T SO , ∀ i ∈ DN . We also assume that

he mean and standard deviation of the DSO forecast errors are

he same at all lines, i.e., μDSO 
l 

= μDSO , ∀ l ∈ L , σ DSO 
l 

= σ DSO , ∀ l ∈ L .

ollowing ( Robu, Vinyals, Rogers, & Jennings, 2017 ), we character-

ze each agent by its coefficient of variation, which is the ratio of

ts mean over standard deviation. The coefficients of variation are

hus σ T SO 

μT SO for the TSO, and 

σ DSO 

μDSO for the DSO. We consider μTSO > 0

nd μDSO > 0 as being fixed in the numerical illustrations. 

Given a fixed mean, a large standard deviation means that the

istribution of the forecast errors in the state tends to be flat.

t may decrease assuming that the other agents disclose some

nformation on their own state. 

We now want to quantify the impact of the coefficient of

ariation of each agent on the GNE set, S GNE , in the context of

mperfect information. To that end, we introduce the Price of

nformation (PoI) as a variant of the Price of Anarchy ( Nisan,

oughgarden, Tardos, & Vazirani, 2007 ), as an efficiency measure.

he PoI is the worst-case ratio of the optimal achievable social

elfare with perfect information to the social welfare at an

quilibrium with imperfect information: 

 oI := 

SW (γ � 
T SO , γ

� 
DSO ) 

min γT SO ,γDSO ∈S GNE 
SW (γT SO , γDSO ) 

. 

he PoI measures the worst-case loss arising from insufficient

bility to control and coordinate the actions of selfish agents

esulting from decentralization and lack of information disclosure
Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
aused by privacy constraints. The inefficiency loss is minimized

hen the PoI is the smallest and approaches 1. 

Running simulations on the network considered in the previous

ection, we observe that the coefficient of variation of the DSO

as a limited impact on the PoI. Intuition behind it is that in the

SO optimization problem, (7) –(9) contain only decision variables

f the DSO while (31) is shared between TSO and DSO but the θ
alue does not affect directly the DSO utility function. So we focus

n the coefficient of variation of the TSO. We notice in Fig. 7 that

he PoI is a stepwise increasing function of the TSO coefficient of

ariation and that the PoI reaches an upper-bound value of 1.255.

urthermore, the loss of efficiency caused by decentralization is

imited in full information ( PoI = 1 . 177 ), i.e., for εT SO = εDSO = 0 . 

. Conclusion 

In this paper, we have formulated three coordination schemes

nvolving DSOs and a TSO as mathematical programs. The first
 of transmission-distribution system operator coordination, Euro- 
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coordination scheme is a centralized co-optimization problem

where an integrated market operator activates jointly resources

connected at the transmission and distribution levels. We for-

mulate it as a standard constrained optimization problem. The

second coordination scheme, called shared balancing responsi-

bility, assumes bounded rationality of the DSOs and TSO, which

activate simultaneously their resources taken as given the other

agents’ decision variables. It is formulated as a (simultaneous)

non-cooperative game. In the last coordination scheme, we intro-

duce some rational expectation from the DSOs which anticipate

the TSO market clearing. We model this third local market scheme

as a multi-leader Stackelberg game, that we formulate as a bilevel

mathematical optimization problem. For each scheme, we deter-

mine conditions for existence and uniqueness of solutions. We also

reformulate the multi-leader Stackelberg game as a mathematical

program with complementarity constraints (MPCC), which does

not coincide with the shared balancing responsibility game in

general. We run a numerical illustration on a network calibrated

on NICTA NESTA test cases and span the set of Generalized Nash

equilibrium solutions of the decentralized coordination schemes.

We observe that the decentralized coordination schemes are more

advantageous in terms of profit maximization for the TSO than the

centralized co-optimization, and that a Stackelberg game setting

(with rational expectation from the DSOs) gives higher profits

for the TSO than a non-cooperative game setting with bounded

rational agents. Regarding the efficiency level in terms of resource

allocation, the centralized co-optimization of transmission and

distribution network resources reaches the highest value, followed

very closely by the shared balancing responsibility game. The third

coordination scheme gives lower values, which can be explained

by the last-mover advantage of the TSO which activates conven-

tional generation reserves on its network which are fare more

expensive than RES-based generations available on the distribu-

tion network. Finally, assuming that the agents have imperfect

information on the (full) state variable, we check numerically that

the Price of Information, measured as the worst-case ratio of the

optimal achievable social welfare with prefect information to the

social welfare at an equilibrium with imperfect information, is an

increasing stepwise function of the TSO coefficient of variation

and that it reaches an upper-bound threshold value. 

Appendix A 

A1. Proof of Proposition 5 

We have proven that Eq. (29) is true if, and only if, ρ(. ) − ρC 

is in the image of M inc B 
� . By definition, the image of M inc B 

� is a

convex space. This proves that Eq. (29) defines a convex set in

u TSO , u DSO . 

From Eq. (26) , it is straightforward to check that ρ(.)

is linear in 
p , 
p g , 
p c , q , v . Then, for any ξ ∈ [0; 1],

ρ(ξx + (1 − ξ ) y ) = ξρ(x ) + (1 − ξ ) ρ(y ) . So we can show eas-

ily that ξx + (1 − ξ ) y satisfies Eq. (30) . Therefore, Eq. (30) also

defines a convex set in u TSO , u DSO . 

Therefore, the Cartesian product of the convex sets defined by

Eqs. (29) and (30) , is itself a convex set. 

A2. Proof of Proposition 6 

Introduce the mapping z �→ ( f 
p 
i 
(z)) 

2 + ( f 
q 
i 
(z)) 

2 
. f 

p 
i 

and f 
q 
i 

are

linear in each component of z = (
p g , 
p c , q, v ) . So the mapping

is the sum of two convex functions, themselves compositions of

convex functions and linear functions. Therefore, the mapping is

convex in z . Consider z 1 , z 2 which verify Eq. (7) . We want to prove

that for any ξ ∈ [0; 1], ξz + (1 − ξ ) z also verifies Eq. (7) . This is
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Please cite this article as: H. Le Cadre et al., A game-theoretic analysis

pean Journal of Operational Research (2018), https://doi.org/10.1016/j.ej
traightforward, indeed: 

f p 
i 
(ξz 1 + (1 − ξ ) z 2 ) 

2 + f q 
i 
(ξz 1 + (1 − ξ ) z 2 ) 

2 

≤ ξ f p 
i 
(z 1 ) 

2 + (1 − ξ ) f p 
i 
(z 2 ) 

2 + ξ f q 
i 
(z 1 ) 

2 + (1 − ξ ) f q 
i 
(z 2 ) 

2 , 

by convexity of the mapping z �→ ( f p 
i 
(z)) 

2 + ( f q 
i 
(z)) 

2 
, 

≤ ξS 2 i + (1 − ξ ) S 2 i = S 2 i . 

his proves that Eq. (7) defines a convex set in z . 

Similarly, consider the mapping z �→ ( f 
p 
i 
(z)) 

2 + ( f 
q 
i 
(z)) 

2 −
 i l i (z) . The mapping z �→ −v i l i (z) gives rise to a gra-

ient function of the form g v l (z) := (−2�−1 �(R ) v −
�−1 �(R ) v 2�−1 �(X ) v 2ϒv ) T . For any z 1 , z 2 ∈ FS DSO ,

 v l (z 1 ) 
T g −v l (z 2 ) = 8(�−1 �(R )) 2 v 1 v 2 + 4 (�−1 �(X )) 

2 v 1 v 2 + 

ϒ2 v 1 v 2 ≥ 0 under the assumption that v −
i 

≥ 0 , ∀ i ∈ DN . This

mplies that the function −g v l is monotonic, i.e., that the map-

ing z �→ −v i l i (z) is convex. Then the mapping z �→ ( f 
p 
i 
(z)) 

2 +
( f 

q 
i 
(z)) 

2 − v i l i (z) is convex as the sum of two convex functions. It

s straightforward to prove that Eq. (8) defines a convex set using

he same reasoning as for Eq. (7) . 

To prove that Eq. (9) defines a convex set, introduce the map-

ing z �→ ( f 
p 
i 
(z) − R i l i (z)) 

2 + ( f 
q 
i 
(z) − X i l i (z)) 

2 
. f 

p 
i 
(z) − R i l i (z) and

f 
q 
i 
(z) − X i l i (z) are linear in each component of z = (
p g , 
p c , q, v ) .
e have recalled that the composition of a convex function with a

inear function remains convex. Therefore, the mapping is convex

n z . It is straightforward to prove that Eq. (8) defines a convex set

sing the same reasoning as for Eq. (7) . 

Therefore, the Cartesian product of the convex sets define by

qs. (7) –(9) is a convex set. 

3. Proof of Proposition 7 

Using the results of Propositions 5 and 6 , the feasible set of the

ptimization problem (34) is convex. Furthermore, differentiating

he social welfare function with respect to 
p, 
p g , 
p c , q, v we

btain: 

∇ 
p SW 

T = −2 (c n 
p n ) n ∈ TN ∪ N ∞ , 

 
p g SW 

T = −2 (c g 
i 

p g 

i 
) 

i ∈ DN , 

∇ 
p c SW 

T = −(P i ( p̄ 
c 
i 
+ 
D i (ω) − 
p c i )) i ∈ DN − 2 (c c i 
p c i ) i ∈ DN , 

∇ q SW 

T = 0 , 

∇ v SW 

T = 0 . 

ifferentiating a second time the social welfare with respect to

p , 
p g , 
p c , we obtain the Hessian matrix of the social welfare,

hich is null except on its diagonal which contains negative coef-

cients −2(c n ) n ∈ TN ∪ N ∞ 

, −2(c 
g 
i 
) i ∈ DN , −(βi + 2 c c 

i 
) i ∈ DN . We infer that

W is strictly concave with respect to these variables. Therefore, it

dmits a unique optimum 
p � (q, v ) , 
p g � (q, v ) , 
p c� (q, v ) . q and

 are determined by the constraints of problem (34) but are not

ecessarily unique. 
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