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In this paper, we formulate in a game-theoretic framework three coordination schemes for analyzing
DSO-TSO interactions. This framework relies on a reformulation of the power flow equations by introduc-
ing linear mappings between the state and the decision variables. The first coordination scheme, used
as a benchmark, is a co-optimization problem where an integrated market operator activates jointly re-
sources connected at transmission and distribution levels. We formulate it as a standard constrained op-
timization problem. The second one, called shared balancing responsibility, assumes bounded rationality
of TSO and DSOs which act simultaneously and is formulated as a non-cooperative game. The last one
involves rational expectation from the DSOs which anticipate the clearing of the transmission market by
the TSO, and is formulated as a Stackelberg game. For each coordination scheme, we determine condi-
tions for existence and uniqueness of solutions. On a network instance from the NICTA NESTA test cases,
we span the set of Generalized Nash Equilibria solutions of the decentralized coordination schemes. We
determine that the decentralized coordination schemes are more profitable for the TSO and that rational
expectations from the DSOs gives rise to a last-mover advantage for the TSO. Highest efficiency level is
reached by the centralized co-optimization, followed very closely by the shared balancing responsibility.
The mean social welfare is higher for the Stackelberg game than under shared balancing responsibility.
Finally, under imperfect information, we check that the Price of Information, measured as the worst-case
ratio of the optimal achievable social welfare with full information to the social welfare at an equilib-
rium with imperfect information, is a stepwise increasing function of the coefficient of variation of the
TSO and reaches an upper bound.
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1. Introduction uncertainty. On the demand side, demand response services that

can be made available by commercial and residential consumers

Distributed energy resources are supply and demand-side
resources that are connected to low-voltage electric power sys-
tems. On the supply side, these resources include distributed
renewable resources such as solar photovoltaic panels deployed
on rooftops, which are characterized by a significant amount of
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are characterized by a significant level of flexibility. The significant
amount of Distributed Energy Resources (DERs) which have re-
cently been integrated in power systems implies increasing degree
of uncertainty but also increasing amount of flexibility in power
system operations, thereby presenting both a challenge and an op-
portunity for power system operations and power market design.
In particular, the active management of DERs raises a challenge
about the extent of coordination between Transmission System
Operators (TSOs), which are responsible for managing high-voltage
transmission systems, and Distribution System Operators (DSOs),
which are responsible for managing medium and low-voltage
grids. Whereas DSO operations have traditionally been passive,
there is a clear opportunity from proactively managing DERs
in order to better deal with the unpredictable generation from
Renewable Energy Sources (RES), whose penetration is constantly
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increasing (Hvelplund, 2006), and in order to offer a variety of
other services to the high and low voltage grid.

At the European Union (EU) level, TSOs have been the only
one procuring flexibility services connected to the distribution
networks, while the role of DSOs is limited to validate that such
flexibility can indeed be provided. The TSO dominant position
(DSOs being only very weakly represented) has been the main
trigger for the debates around TSO-DSO coordination within
Europe (Hadush & Meeus, 2018). In a first attempt to provide
solutions, DSOs have been proposing to improve TSO-DSO co-
ordination by introducing concepts such as the ‘traffic light’ in
Germany, that signals the distribution network state to the mar-
ket (Hadush & Meeus, 2018). Many European projects have also
proposed technical solutions to enhance TSO-DSO coordination
(for example, evolvDSO ! introduced an interval constrained and
sequential power flow approach, SmartNet? has been studying
potential TSO-DSO coordination schemes). Moreover, the Council
of European Energy Regulators (CEER) has put forward principles
that should set the trajectory of future TSO-DSO relationship
and related regulated arrangements in the areas of governance,
network planning and system operations. In a second attempt to
provide solutions, DSOs have started to actively manage congestion
in their networks. But, since the same flexibility resources could
also be potentially used for congestion management and voltage
control by the TSOs, conflicts might arise due to the misalignment
of TSOs, DSOs, and market players’ actions. Even though in many
EU countries there are no rules in place that allow DSOs to acti-
vate flexibility services to redispatch the system at the distribution
level, the Clean Energy Package® presents clear provisions that
will enable DSOs to procure flexibility services, and is expected to
generate new schemes for TSO-DSO coordination.

This paper is specifically focused on the participation of DERs
in Ancillary Services markets (Gerard, Rivero, & Six, 2017). This
goal raises both computational as well as institutional challenges.
From a computational perspective, the challenge is to optimize the
real-time deployment of a huge number of resources connected to
the distribution grid in order to provide balancing and congestion
management services. From a market perspective, contracting
DER-based ancillary services may complicate market clearing
procedures and coordination due to the amount and complexity
of the bids, as well as the associated coordination requirements
and incentives of market participants (Bose, Cai, Low, & Wierman,
2014; Le Cadre, 2017; 2018; Xu, Cai, Bose, & Wierman, 2015). A
simulator of TSO-DSO interactions over large-scale transmission
and distribution networks, allowing nodes to provide complex bids
for their flexibility activations, has been developed within Smart-
Net. The simulator outcome is not amenable to any analytical
interpretation of the results; contrary to this paper, in which we
provide analytical conditions for the existence and uniqueness of
coordination schemes outcomes and quantify for each coordination
scheme the profitability, efficiency and reserve activation levels,
under full and imperfect information, on a simplified instance. To
that extent, our work can be seen as complementary.

2. Literature review and contributions

In this section, we position our contribution with respect to
the power system literature on decentralized power system oper-

1 evolvDSO, FP7 funded project which aims to develop methodologies and
tools for new DSO roles for efficient RES integration in distribution networks
https://www.edsoforsmartgrids.eu/projects/edso-projects/evolvdso/

2 SmartNet, H 2020 funded project, which aims to provide optimized instruments
and modalities to improve the coordination between the grid operators at national
and local level http://smartnet-project.eu/

3 Clean Energy Package, Eurelectric position https://www.eurelectric.org/
policy-areas/clean-energy-package/

ations and reserve provisioning, and to the equilibrium modeling
literature that will provide us solution concepts that will guide
our comparison of the efficiency of the decentralized coordina-
tion schemes with respect to the centralized scheme used as
benchmark.

2.1. Hierarchical versus distributed power system operations

The need to integrate an increasing share of variable and
unpredictable energy sources (such as wind and solar photovoltaic
power) and the development of DERs is shifting the classical
centralized market design to new market designs involving more
decentralization and less communication between the agents
(London, Chen, Vardi, & Wierman, 2017; Molzahn et al.,, 2017).
In decentralized systems, operations/computations are performed
in local markets and information based on local optimization
problems output is shared only locally, generally in the form
of messages exchanged between agents belonging to the same
local market/energy community (Kraning, Chu, Lavaei, & Boyd,
2014; London et al., 2017; Molzahn et al., 2017). Two categories of
decentralized designs emerge: hierarchical and distributed designs.

The first category, hierarchical design, involves agents in local
markets which perform operations/computations independently
and simultaneously and interact with other agents, known as cen-
tralized controllers, at a higher level in the hierarchical structure.
Such a hierarchical interaction can be backwards in Stackelberg
game settings (leader-follower type models) under the assump-
tion that the leaders anticipate the rational reaction of the local
market agents seen as followers (Dempe & Dutta, 2012; Dempe,
Kalashnikov, Perez-Valdes, & Kalashnykova, 2015; Le Cadre, 2017;
2018; Xu et al., 2015; Yao, Adler, & Oren, 2008). In that case,
the leaders incorporate explicitly in their optimization problems,
the rational reaction functions of the followers. The closed form
expression of these latter are obtained by solving first the follow-
ers’ optimization problems at the lower level of the Stackelberg
game, considering as fixed the decision variables of the leaders.
The leaders, at the upper level, then incorporate the followers’
rational reaction functions, expressed as functions of the leaders’
decision variables only, directly in their optimization problems,
therefore proceeding backwards. Alternatively, the hierarchical
interaction can be forwards in case of decentralized control algo-
rithms (Gregoratti & Matamoros, 2015; Matamoros, Gregoratti, &
Dohler, 2012; Papavasiliou, 2017; Salehisadaghiani & Pavel, 2016),
assuming that a centralized controller coordinates the outputs
of the local optimization problems based on the locally reported
information (Kraning et al., 2014; Sorin, Bobo, & Pinson, 2018).

The second category encompasses distributed designs where
each agent communicates with its neighbors, but there is no cen-
tralized controller. This latter design is classically used to model
peer-to-peer interactions in communication networks (Benjaafar,
Kong, Li, & Courcoubetis, 2018; Le Cadre & Bedo, 2016; Sorin et al.,
2018) or markets involving local energy communities (Gregoratti
& Matamoros, 2015; Hvelplund, 2006; Le Cadre, Pagnoncelli,
Homem-de Mello, & Beaude, 2019). For this second category, com-
munity detection relying on structured data becomes an important
issue.

Decentralized market designs may avoid costly communication
between the agents. A drawback is that all the agents may not
have access to the same information due to current privacy con-
straints which may limit data exchange. In the literature, a number
of distributed approaches, characterized by the degree of access
to information, have been developed. A distributed approach in
which each local market solves a local optimization problem in
an iterative fashion by exchanging some (limited) information
with the others is proposed in Gregoratti and Matamoros (2015),
Matamoros et al. (2012), and Sorin et al. (2018). From an infor-
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mation and communication technology (ICT) perspective, a fully
decentralized market design provides a robust framework since if
one node in a local market is attacked or in case of failures, the
whole architecture should remain in place and information could
find other paths to circulate from one point to another, avoiding
malicious nodes/corrupted paths. From an algorithmic point of
view, such a setting enables the implementation of algorithms that
preserve privacy of the local market agents (requiring from them
to not share more than their dual variables - e.g., local prices - up-
dates). This also creates high computational challenges, especially
if the number of local local markets/peers is high. Furthermore,
such algorithms that derive from decomposition-coordination
approaches (Gregoratti & Matamoros, 2015; Matamoros et al.,
2012; Sorin et al., 2018) do not enable strategic behaviors of the
local markets/peers. Depending on the market design, strategic
behaviors of the local markets/peers can be quite complex; these
latter can group together, self-organizing in complex coalitional
structures, etc. The analysis of incentives for coalition formation
and their relative stability is a current active research area in
coalitional game theory (Le Cadre et al., 2019), which is out of the
scope of this paper.

With the goal to typologize the optimization problems associ-
ated with new power system designs, we replace the contribution
of this work with respect to Le Cadre (2017, 2018) and Le Cadre
and Bedo (2016). In Le Cadre and Bedo (2016), we focus on the
distribution level and consider a set of aggregators (service suppli-
ers), which supply power to local energy communities. In the local
energy community, the demand can be covered by the community
own RES-based generation or by buying the missing quantity to an
aggregator. The aggregator can buy energy from generators having
a portfolio including a mix of RES-based and conventional gen-
erations, but faces double uncertainty coming from the uncertain
demand level in the local energy community and the uncertain
production levels from the generators. Local energy demand and
RES-based generation learning strategies are implemented based
on regret minimization. We prove in Le Cadre and Bedo (2016) that
the aggregators have incentives to share their information and
align on a single forecasting strategy instead of learning without
communication with the other aggregators. In Le Cadre and Bedo
(2016), we focus on establishing theoretical bounds on learning
algorithms convergence, and distribution and transmission net-
works are not explicitly modeled. In Le Cadre (2017, 2018), we
analytically compare centralized and decentralized market designs
involving a national (global) and local market operators, strategic
generators having market power and bidding sequentially in local
markets, to determine which design is more efficient for the pro-
curement of energy. In the centralized design, used as benchmark,
the national market operator optimizes the exchanges between
local markets and the generators’ block bids. In the decentralized
design, generators act as Stackelberg game leaders, anticipating
the local market prices and the flows on the transmission lines.
We determine that the decentralized design is as efficient as the
centralized one with high share of RES-based generation and that
information on local RES-based generation has a limited impact
on the efficiency of the decentralized market design. In Le Cadre
(2017, 2018), the transmission network is modeled through a
simplified linear DC power flow model, which represents an ap-
proximation of Kirchhoff's laws. Distribution level constraints are
ignored in the provision of DER-based generation. In this paper,
similarly to Le Cadre and Bedo (2016) and Le Cadre (2017, 2018), a
game-theoretic framework is introduced, and local energy commu-
nities are considered at the DSOs’ levels. But, the focus is on the
quantification of the inefficiency resulting from the decentraliza-
tion of the TSO and DSO decisions. Furthermore, in contrast to our
previous work, learning strategies of operational parameters and
network topology that could be implemented by TSO and DSOs

are not considered, though they could constitute an interesting
extension of this work. In this paper, distribution networks are
modeled with more sophistication by approximating the distribu-
tion power flow equations using second order cone programming
(SOCP) relaxation and explicitly incorporating operational network
parameters in the constraints, which clearly complexify the TSO-
DSO game resolution and is not amenable to analytical solution
interpretation, by comparison with Le Cadre (2017, 2018).

2.2. Provision of reserves from DERs

Whereas the aforementioned literature focuses broadly on the
dispatch of resources in power systems, there has been an increas-
ing concern about the real-time balancing of the system through
the activation of reserves (Caramanis, Ntakou, Hogan, Chakrabortty,
& Schoene, 2016; Gerard et al., 2017), which is the specific focus
of this paper. Power system operations are characterized by a
significant degree of uncertainty, which stems from forecast errors
as well as component failures (Papavasiliou & Oren, 2013). The
need of instantaneously balancing supply and demand in order
to prevent system instabilities, compounded by the uncertainty
involving real-time operations, implies that power systems need
to carry a notable amount of spare capacity, referred to as reserve,
which can be activated in short notice (a few seconds to minutes,
depending on the specific definition of reserves in different mar-
kets) in order to ensure power balance. This capacity is reserved in
sequential or multiproduct auctions in advance of real-time oper-
ations (Papavasiliou & Smeers, 2017). This process is referred to as
reservation of reserve capacity. The capacity is then dispatched in
real time in order to provide balancing services to the system. The
latter process is referred to as reserve activation. Our interest in
this paper is how this reserve can be offered by resources located
at the distribution grid, given the inherent flexibility of these
resources but also the significant degree of distributed renewable
supply which suggests that local imbalances may better be dealt
with by local flexible resources as opposed to centralized reserves
made available by the TSO at the high-voltage grid.

From an optimization standpoint, the novel aspect of the
provision of reserves from DERs is the fact that in so providing
these reserve services, distributed resources need to respect power
flow constraints for which a linear model is not adequate. Such
constraints represent the fact that voltage limits on distribution
nodes need to be respected, and current and complex power flow
limits on lines also need to be within acceptable bounds.

An approach for overcoming this challenge was recently ar-
ticulated by Caramanis et al. (2016). The major innovation of the
authors is to introduce a reserve ‘flow’ variable which ensures
the deliverability of reserves to the transmission system, while
respecting the aforementioned voltage and flow constraints. The
authors argue that a workable market for reserve provision from
DERs requires the simultaneous clearing of real power, reactive
power, and reserve capacity.

The representation of the aforementioned power flow con-
straints requires, in principle, a non-convex nonlinear model
of power flow. Extensive research has recently been focused
on developing and analyzing convex relaxations of the optimal
power flow problem, with special focus on second order cone
programming (SOCP) relaxations (Kocuk, Dey, & Sun, 2016) which
provide an acceptable tradeoff between modeling accuracy and
computational scalability. We apply specifically the branch flow
SOCP relaxation (Farivar & Low, 2013), which was also employed in
Caramanis et al. (2016). Our motivation for doing so is the fact that
the relaxation is shown to be exact under fairly tenable conditions
in radial networks. Given our focus on distribution systems, which
are typically radial, we decide to follow (Caramanis et al., 2016) in
employing the branch flow SOCP relaxation.
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2.3. Equilibrium modeling of TSO-DSO coordination

Although the market design set forth by Caramanis et al.
(2016) articulates a clear path towards the integration of DER in
ancillary services markets, alternative hierarchical designs have
been considered, with varying degrees of DSO involvement in
market clearing, ranging from minimal to maximal DSO involve-
ment in operations. These hierarchical designs are motivated
by a variety of reasons, including communication bottlenecks,
optimization bottlenecks, as well as institutional constraints (in
particular, the fact that operators are not willing to share infor-
mation and the trading of reactive power is not well understood
among practitioners). Although computational and communica-
tion bottlenecks have largely been alleviated by recent work on
distributed and peer to peer optimization of large-scale optimal
power flow (Kraning et al., 2014; Peng & Low, 2014), institutional
constraints prevail. Moreover, the introduction of binary activation
variables in DER offers weakens the value of the aforementioned
SOCP relaxations, and the resulting algorithms can then only be
employed as heuristics. In either case, it then becomes relevant
to investigate alternative models of TSO-DSO interactions that
incorporate decentralized decision models.

Although it can be argued that a hierarchical organization of
TSO-DSO coordination can closely or even perfectly replicate the
outcome of full optimization if the market design is properly cho-
sen, recent proposals of TSO-DSO coordination seem to permit the
emergence of market incompleteness (Gerard et al., 2017). Such
incompleteness results in operational inefficiencies, which may be
inevitable in a realistic setting bound by institutional constraints.
The relevant question, then, becomes which of these imperfect
designs results in fewer efficiency losses. We focus on two specific
schemes proposed in the literature (Gerard et al., 2017): shared
balancing responsibility, and local (ancillary services) markets.
We approach the first scheme as a simultaneous non-cooperative
game, whereby we assume ‘bounded rationality’ on behalf of the
TSO and DSO. Under ‘bounded rationality’, DSOs and TSO deter-
mine the reserves to activate on their networks simultaneously.
We approach the second scheme as a sequential Stackelberg game,
assuming DSOs with ‘rational expectations’ (Le Cadre, Papavasiliou,
& Smeers, 2015; Yao et al., 2008) on the reaction of the TSO. In the
first stage of the sequential Stackelberg game, the DSOs anticipate
the future reaction of the follower (TSO) (which will play in the
second stage) when determining the reserves to activate on their
networks and send a signal based on this activation to the TSO,
which reacts optimally in the second stage.

The solutions of both models of interaction are interpreted
as Generalized Nash Equilibria. A Generalized Nash Equilibrium
is the solution concept used to analyze non-cooperative games
where the utility functions and the feasibility set of constraints
of one agent depends on all the other agents’ actions (Facchieni
& Kanzow, 2007; Fudenberg & Tirole, 1991; Harker, 1981). In the
context of our work, the utility functions of the DSOs and TSO
are not coupled, in the sense that each utility function depends
only on the agent’s own decision variables and random distur-
bances realizations, but the TSO and DSOs’ optimization problems
are coupled through the shared physical constraints imposed
by the interface nodes which belong to both transmission and
distribution networks and the limits of the available resources. A
similar approach has been employed by Oggioni, Smeers, Allevi,
and Schaible (2012) in order to quantify the impact of the degree
of coordination between two TSOs operating in interconnected
areas in the case of congestion management. In our work, the
focus is rather on balancing coordination in ancillary services
markets. Also close to our work, the impact of different degrees
of coordination both in time and in space (inter-regional) of
day-ahead and balancing markets, operated by regional TSOs,

is studied in Delikaraoglou, Morales, and Pinson (2016). On the
temporal dimension, cases of imperfect and full coordination for
the market clearing are modeled as sequential and stochastic inte-
grated optimization problems. Imperfect spatial coordination may
arise in form of differentiated prices or quantities, in case TSOs
can only activate resources that are physically located in their own
networks. Market incompleteness, resulting from spatial quantity
differentiation of even missing market for certain services, may
constitute another source of imperfect coordination. In our work,
we focus on TSO-DSO coordination, and introduce distribution
network power flow and operational constraints.

2.4. Paper contributions

In this paper, we focus on three coordination schemes that
present different ways of organizing the coordination between the
TSO and DSOs in terms of activating reserves. We give an overview
of these three coordination schemes:

(i) The first scheme is a perfectly coordinated global market,
where the TSO and DSOs jointly coordinate the activation of
resources located in both the transmission as well as distri-
bution grid, while taking into account both transmission and
distribution grid constraints. The resulting co-optimization
problem (Papavasiliou, 2017), formulated as a standard con-
strained optimization problem in Section 5.1, requires full
coordination of the market parties and perfect information
on the networks topology and operational parameters. It will
be used as a benchmark to assess the performance of decen-
tralized market designs.

(ii) The second scheme is a decentralized market design with
‘bounded rational’ agents, in the sense of agents which do
not anticipate the reactions of one another through an ex-
plicit reaction function. In this scheme, we assume that
the DSO clears its local market by activating local reserves
(solar PV power generations, demand response flexibilities)
and assuming a desired injection by the TSO, taking into
account local distribution grid constraints and offering a
defined distribution grid capacity for the TSO needs. On
its side, the TSO clears the global market by activating
resources connected to the transmission grid and aggre-
gated reserves activated by the DSOs, taking into account
transmission grid constraints and distribution grid capacities
allowed by the DSOs. We model this scheme as a (simul-
taneous) non-cooperative game in Section 5.2. The shared
balancing responsibility game is analyzed under perfect and
imperfect information on the operational parameters and
network topology.

(iii) The third scheme is a decentralized sequential market in-
volving ‘rational expectation’ from the leaders. Under this
design, the DSOs activate reserve strategically, with the aim
of minimizing their activation costs, while forming rational
expectations regarding the actions of the other DSOs and
the TSO. Each DSO activates reserves taking into account lo-
cal distribution grid constraints, and sends a signal based on
their local activation to the TSO. The TSO then activates re-
sources connected to the transmission grid and aggregated
distribution system reserves, taking into account transmis-
sion grid constraints. In this coordination scheme, the DSOs
act first, anticipating the behavior of the other DSOs and
the TSO. This market design is formulated as a Stackelberg
game involving DSOs (multi-leaders) and a TSO (follower) in
Section 5.3.

The goal of this paper is to compare the efficiency of these
three coordination schemes, relying on Generalized Nash Equilib-
rium as solution concept. There exists a wide literature in power
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system economics that considers game theoretic approaches to
analyze simple models of transmission markets (Borenstein, Bush-
nell, & Stoft, 2000; Boucher & Smeers, 2001; Oggioni et al., 2012;
Yao et al., 2008). Following this trend, we propose in this paper
to use game theoretical approaches to analyze transmission and
distribution markets interactions, on simple models.

The implementation of these new TSO-DSO coordination
schemes at the EU level, in a multi-area setting, will require to
avoid the disclosure of sensitive intra-area data between the TSO
and DSOs. Ideally, this coordination might be done by a centralized
controller in case (i), or by the TSO and DSOs in cases (ii), (iii)
assuming full information on operational parameters and network
topologies, but the restriction imposed by new data privacy rules
calls for methods with limited amount of information sharing
(Halilbasic, Chatzivasileiadis, & Pinson, 2017). In a first approach,
we will assume that the TSO and DSOs have full information on
the operational parameters and network topology of all the TSO
and DSOs, in cases (i), (ii), and (iii). Case (ii) will be refined by
assuming that the agents have only imperfect information about
the other agents’ network characteristics, requiring to introduce
forecasts of the state variables. The impact of incomplete infor-
mation in the shared balancing responsibility game is formally
quantified through the Price of Information (Pol), that we evaluate
as a function of the coefficients of variation of the TSO and DSOs.
We choose the Pol because it is an appropriate measure of the
efficiency loss imposed by new data privacy rules, by comparison
with the idealized paradigm (i) with full information and an inte-
grated market operator coordinating the TSO and DSOs’ decisions.
We now highlight the practical and methodological contributions
of our work.

From a practical point of view, our work provides game-
theoretic approaches to model and interpret strategic interactions
between TSO and DSO under full and imperfect information.
Game-theoretic approaches have been applied in transmission
markets (Borenstein et al., 2000; Boucher & Smeers, 2001; Oggioni
et al., 2012) and our contribution is to extend what has been done
by also considering distribution market. By using toy examples to
illustrate our theoretical setting, we aim at furnishing quantitative
insights on TSO-DSO coordination. Again, illustration through
small test cases helped to understand crucial mechanisms when
only transmission markets were examined (Borenstein et al., 2000;
Boucher & Smeers, 2001; Oggioni et al., 2012). While centralized
approaches where the TSO has control over all the network have
to be dropped out (Kristov, De Martini, & Taft, 2016) and knowing
the ongoing debate at EU level on the roles of TSOs and DSOs, the
outcome of our game-theoretic models of TSO-DSO coordination
schemes enters the scope of these issues of concern.

From a methodological point of view, we classify the power
flow variables in state and decision (control) variables, the
evolution of which determine the state outcome following the
framework of (Basar & Olsder, 1999). To that purpose, we re-
formulate the power flow equations to identify linear mappings
between the state and the decision (control) variables. We then
prove formally that our power-flow equation reformulation is
equivalent to the initial problem. The framework introduced by
Basar and Olsder for dynamic games with information is not
classically used in the bilevel optimization literature, the goal
being here to consider the impact of information on the equilib-
rium output. This framework is mandatory for the introduction of
more complex information structures for TSO-DSO interactions, as
generically defined in Section 3.3, i)-ii). In the paper, we consider
full and imperfect information. Finally, the framework is also
mandatory for us to characterize analytical conditions for the ex-
istence and uniqueness of solutions for each coordination scheme,
which constitutes another methodological contribution of our
work.

2.5. Article organization

The article is organized as follows. In Section 3, we introduce
the transmission and distribution network structures (3.1), the de-
cision variables, states and utility functions of the agents (3.2), and
the general setting of strategic form game with chance move (3.3).
Power flow equations are reformulated in Section 4, highlighting
relationships between state and decision variables. Coordination
schemes are formulated as optimization problems in Section 5 and
conditions for existence and uniqueness of solutions are detailed.
In particular, the shared balancing responsibility game is analysed
in a context of imperfect information on the operational parame-
ters and network topology. The set of Generalized Nash Equilibria
is spanned using random sampling and the impact of information
is analyzed in Section 7. We conclude in Section 8.

Notation

Sets

A set of agents

a generic agent

A_q all the agents in A except a

X (full) state space

Uq control set of agent a

Ia information set of agent a

Ta(y-a) set of permissible strategies for agent a

Q action set of Nature

N set of n local (distribution) markets

DN set of distribution nodes for local market k

TN set of transmission nodes

L set of transmission lines

Noo set of nodes at the interface

¢; set of children of node i

FSa agent a constraint set

ScNE set of Generalized Nash Equilibria

Parameters and functions

a(.) agent a utility function

P, () price in transmission node n

o, Bn transmission node n price parameters

P(.) locational marginal price in distribution node i

o, Bi locational marginal price P(.) parameters

Dy day-ahead demand in node n, i

(@) TSO activation cost in node n

Dn real power production cleared in day ahead
in transmission node n

151? real power consumption cleared in day ahead
in distribution node i

: real power generation cleared in day ahead

in distribution node i

G demand-side activation cost in distribution node i

Cf () supply-side activation cost in distribution node i

SW(.) social welfare

K distribution tree depth

Magj adjacency matrix

Mine incidence matrix

Gi shunt conductance of node i

B; shunt susceptance of node i

R; resistance of distribution line i

Si complex power flow limit over distribution line i
X; reactance of distribution line i

TG flow thermal limit of transmission line [

RE. RS reserve capacity for generator, consumer
at distribution node i

Ql.*/’ reactive power upper | lower capacity limit
at distribution node i

Ry reserve capacity at transmission node n

g4(.) gradient of mq(.)

Ja agent a Jacobian block matrix of g,(.)

ne, ot mean, standard deviation of agent a forecast error
on the set of agents in A_, state variables

Variables

Uq action of agent a

X (full) state variable

Ya observation of agent a

Ya agent a strategy
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Yea combination of strategies of all the agents structure, each DSO seeks to activate local resources so as to
A In Aexcepta o d resolve local grid issues at the lowest possible cost. In a sequential
Pn reserve activation in transmission node n market design, each DSO activates its resources and communicates

On bus angle of transmission node n . . T A N
NN real power supply-side, demand-side an aggregate signal to the TSO which indicates which of its local

reserve activation at distribution node i resources can also be activated by the TSO. The TSO, which is
qi net (unsigned) reactive power withdrawal in charge of balancing market clearing at the transmission level

at distribution node i o and has no access to detailed distribution network information,
v; voltage magnitude squared at distribution . . . . ..

or interface node i determines which resources to activate in the transmission and
1 real power flow over transmission line ! distribution systems, taking the signal of the DSO as being fixed.
fP real power flow over distribution line i We propose to formalize such decentralized designs (either
. from i to its ancﬂesmf “°d3. bution line i simultaneous or sequential) as a game in strategic form between
y reactive power flow over distribution line i the TSO and DSOs. Towards that end, we need to specify the
I; current magnitude squared on distribution line i N A
ADy () real power imbalance realization in node n network structure, the set of agents in the game, the set of options

€l agent a forecast error on the set of agents in A_q
state variables

Conventions

M transpose of matrix M
M? MTM for any matrix M
Ker(M) matrix M Kernel
Im(M) matrix M Image
card(A) cardinality of set A

Xn n th element of vector x

diag(x) square matrix having vector x on its diagonal
and 0 for off-diagonal coefficients
1 Identity matrix

3. Market structure and agents

The focus of our paper is the activation of operating reserves.
We therefore focus on the so-called balancing market, the role of
which is to activate reserves. We will focus on upward reserve ac-
tivation in our model, meaning that reserves are called to increase
their real power production. Specifically, producers offer upward
reserve by increasing their power production at a marginal cost
of Cl.g, and consumers offer upward reserve by decreasing their
power production at a marginal cost of C{. The balancing market is
preceded by a forward auctioning of energy and reserves*, which
determines the set-point real power production/consumption of
resources p, as well as the amount of reserve capacity Rf/ ¢ that
each reserve resource can make available. In real time, random
demand disturbances occur at the transmission network, ADp(w),
where n is a transmission node, as well as the distribution
network, AD;(w), where i is a distribution node.

We consider three categories of agents operating in the
balancing market:

» DSOs which operate local distribution balancing markets.

o A TSO which operates a transmission balancing market.

» Fringe producers and consumers. These are represented on ag-
gregate through marginal cost and marginal benefit functions
respectively. For the sake of simplicity, we assume that only
producers offer reserve at the transmission level, whereas both
producers and consumers can offer reserve at the distribution
level, thereby reflecting the fact that distribution systems may
typically host flexible demand (e.g., electric vehicles).

In a centralized market, an integrated market operator con-
tracts DERs directly from generators and consumers connected
to the transmission and distribution grids, taking into account
grid constraints. Such a centralized market can be formulated as
a standard optimization problem under network constraints. This
design will be used as a benchmark throughout the paper.

The motivation of a decentralized market structure, which
we consider as an alternative to the above centralized design, is
to minimize the amount of information that the TSO needs to
account for when activating reserves. In a decentralized market

4 This auctioning may be performed simultaneously or sequentially, without any
impact on our analysis.

available to each agent, and the way that the payoffs of agents
depend on the options that they choose.

3.1. Network structure

We consider a set N :={1,...,n} of n local (distribution) mar-
kets. The set of distribution nodes in local market k is denoted as
DNy, where keN.

The set of transmission nodes is denoted as TN. The set of
transmission lines is denoted L.

The set of nodes at the interface of the transmission and
distribution grids is denoted as N. Only transmission resources
can bid in these nodes. We assume that there is no overlapping
between the interface nodes of two DSOs, so that TSO can share
resources with multiple DSOs, whereas two DSOs do not share
any common resource. This network structure can be justified by
assuming a ‘local (distribution) market-to-grid’ market structure,
in which DSOs, by the intermediate of aggregators, provide ser-
vices to a microgrid that is connected to a larger grid operated
by the TSO (Parag & Sovaccool, 2016). Other designs could be
envisaged in an extension of our work, like ‘peer-to-peer’ models,
in which DSOs interconnect directly with one another by the
intermediate of aggregators, buying and selling energy services,
e.g., sharing resources all together; ‘islanded microgrids’, in which
local (distribution) markets behave as independent standalone
microgrids, e.g., sharing resource neither with the TSO nor with
the other DSOs, etc. (Parag & Sovaccool, 2016).

The distribution networks follow a radial structure as pictured
in Fig. 1. This means that each local network can be represented
as a tree. Consequently, in each local market k € N, we denote by i
a line entering node i € DN.

3.2. Decision variables, states and utility functions

Our game-theoretic setting is inspired from the electrical
engineering models (Farivar & Low, 2013; Papavasiliou, 2017), that
we reformulate in the framework introduced by Basar and Olsder
(1999). Adopting system theory terminology, we differentiate the
variables into two categories: we call x the (full) state of the game,
while urgp, (Upso, k)ken are the TSO and DSOs’ decision variables.

The TSO optimizes the reserve activation at each transmission
node. Its decision variables are stored in a vector:

Urso = (APn)nernun,. -

The DSO optimizes the reserve activation, reactive power injec-
tion/consumption, and voltage at each distribution node. Similarly
to the TSO, the decision variables of the DSO in the local market
ke N are stored in a vector:

(Ap?)ielDNk
(ADPS)icon,
(GDicpn,
(V) icpn,

Upso.k = s Vk e N.
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Fig. 1. Example of a meshed transmission network and distribution networks with radial structure. The transmission network consists of three nodes in blue (transmission
network being restricted to its interface nodes only, N), and each transmission node is the root of a distribution tree with 5 distribution nodes (source: NICTA NESTA test
case Coffrin et al.). Note that there is no redundancy between the transmission and distribution node numbering. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

The (full) state variable x contains state variable characterizing
the TSO (f})jer. (Bn)neTnun,, and state variables characterizing the

DSOs (fP)icomkens (FDienmykens (i)ienmy ke’

(fl)le]L
(fip)ieDNk,keN
x=| (fDicon, ken
() icon, keN
(@n) nernium.,

The analytical expressions of the state variables as functions of
the TSO and DSOs’ decision variables will be made explicit in

Section 4. We can already say that the state variables contain:

The power flows over transmission lines, (f})cr., which will be
expressed through Eq. (25) as a linear matrix equation in the
TSO and DSOs’ decision variables.

The real and reactive power flows over distribution lines,
(fP)icony ken> and, (ficow, ken: Which will be obtained in Eqgs.
(18) and (19) as linear functions of the DSOs’ decision variables.
The current magnitude over distribution lines, (I)iepy, ken-
which will be expressed in Eq. (17) as a linear function of the
DSOs’ decision variables.

The bus angles at transmission nodes, (6y)netnun,,, Which can
be obtained as a linear function of the TSO and DSOs’ decision
variables in Eq. (31).
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We assume that the energy unit price at each node in the trans-
mission network n € TNUN, is represented with P, : Ry — Ry
that specifies how much the energy provider is willing to pay to
supply one more power unit to the consumers. D, + ADy(w) is the
aggregated demand in node n, D, being the demand ordered in the
day ahead market and ADp(w) the imbalance in real time. We as-
sume a linear relation between price in transmission and interface
nodes and aggregated demand (Xu et al.,, 2015; Yao et al., 2008):

Py(Dy + ADp(w)) = oty — Bn(Dn + ADy(w)),

with o >0 and B, >0.

Similarly to the transmission network, in the distribution nodes,
we assume a linear relation between price at distribution nodes
P, : Ry — R; and the difference between the sum of real power
consumption and imbalance, and real power reserve activation:

P,»(ﬁf + ADi (@) — Apf) —a- B (155 + AD () — Ap‘,?),

with ;>0 and B;>0.

Following Hobbs and Rijkers (2004) and Munoz, Wogrin,
Oren, and Hobbs (2018), we model the TSO and DSOs as profit-
maximizer agents which behave strategically by activating re-
sources on their network, in real time (e.g., on the balancing
market). The goal of the TSO is to maximize its profit defined
as the difference between the revenue generated from the total
demand at each of its nodes and the cost of reserve activation in
the transmission network in real time. The objective function of
the TSO takes the following form:

7150 (X, (Ua)gea, @)
= Z [Pa(Dn + ADy(@)) (Pn + Apn) — Gi(Apy)]. (1)

neTNUNy,

Similarly, the DSO operating in local balancing market k<N aims
at maximizing its profit defined as the difference between the
revenue paid by the energy provider to supply the total consumer
demand at nodes in its distribution network and the cost resulting
from the activation of generation reserves and demand response.
Its objective function can be written as follows:

7pso .k (X, (Ua)gea, @)

= Y [R(P; + ADi(@) — AP (pF + APS)

ieDN,
—CH(ApP) —C(APD]. (2)

Note that the agents’ objective functions are independent of the
state variables x, and that there is no coupling between their
utility functions, in the sense that each utility function depends
only on the agent’s own decision variables and on the random
disturbances realization w. As such, in what follows, we will write
7 1so(urso, @) and 7psg, (Upso,, @), Vk € N. Also, note that the spe-
cial case o = B =0,Vn e TNUN,, and o; = B;, Vi e DN, Vk e N
coincides with a situation where TSO and DSOs minimize their
activation costs (Mezghani, Papavasiliou, & Le Cadre, 2018).

We will assume that the cost functions are strictly convex and
of the form: Gy(Apn) =cnAp3.cn>0,Yne TNUNy, CE(ApS) =
cf(Apl?)z, € >0, C;.g(Ap‘,fg) = Uig(Ap?)Z, cf’ > 0,Vie DN, Vk e N.

3.3. Strategic form game with chance moves

The game incorporates a chance move, with possible alterna-
tives for Nature being w € 2. At the beginning of the game, Nature
picks a state defined by a realization of the uncertain demand
disturbances at transmission nodes and real time imbalances at
distribution and interface nodes. Nature actions influence the
evolution of the state of the game. In each state of Nature, the
TSO and DSOs, whose information sets include the state of Nature,

compete through a discrete time game involving the N DSOs,
each operating a local (distribution) market, and the TSO (Basar &
Olsder, 1999), which involves:

o A set of agents A := {DSOy, k € N} U {TSO}. A generic agent will
be denoted as a € A.

¢ An infinite set X, called the (full) state space of the game, to
which the state of the game x belongs.

e An infinite set Ug, defined for each agent a € A, which is called
the action (control) set of agent a € A. Its elements are the per-
missible actions u, of agent a.

e A set Yq, defined for each agent a € A, called the observation

set of agent a, to which the observation y, of agent a belongs.

A function hy : X — Yq, defined for each agent a € A, so that

Ya=ha(x),a €A, (3)

which is the state-measurement (observation) equation of
agent a concerning the value of the (full) state x.

* A finite set I, defined for each a € A as a subset of {y,,a’ € A}
which determines the information gained by agent a € A. Spec-
ification of I, characterizes the information structure of agent
a.

o A pre-specified class I'q(y_q) of mappings yq : I — Uz which
are the permissible strategies of agent a. All the other agents
have the possibility to influence agent a strategy through y_,.
The class I'q(y_q) of all such mappings y, is the strategy set
(space) of agent a.

o A finite or infinite set 2, which denotes the action set of Na-

ture. Any permissible action w of Nature is an element of €.

A utility function 7g : X x x4 Uy x £ — R defined for each

agent a € A. Egs. (1) and (2) give explicit expressions for TSO

and DSOs’ utility functions.

In the following, we will consider two information structures:

i) Perfect information I, = {x}, Va € A,
ii) and, imperfect information Iy = {ys = hqa(x)}, Va € A.

For each fixed card(A)-tuple of permissible strategies {y, e
T'a(y-a),a € A}, the strategic and extensive form game descrip-
tions lead to a unique set of vectors {ug := ya(la),la € I, a € A}
because of the causal nature of the information structure (Basar
& Olsder, 1999). By abuse of notation, in the rest of the paper, we
will refer to u, and y4(.) without distinction.

4. Reformulation of power flow constraints

Later in the paper, we optimize the strategies of the agents
so that the closed-loop system gives rise to an equilibrium. This
requires first to introduce explicit relationships between state and
decision variables (Basar & Olsder, 1999). To that purpose, we
propose a reformulation of the power flow equations.

4.1. DSO distribution network power flows

For the sake of simplicity in what follows, we focus on a
single distribution network DN, but this can be easily extended
to N independent local (distribution) markets coupled by the
intermediate of the global grid, as assumed in Section 3.1.

In this section we will derive the DSO’s active and reactive
power flows and current magnitude squared as linear functions of
the DSO’s decision variables. We first state the SOCP relaxation of
the power flow equations (Farivar & Low, 2013):

fP= 3" f7 = pf+ Apf — pS+ Apf - G
jeg;

— Y " I;R; — ADi(w), Vi € DN, (4)

je<;
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. as i, j- element 1., = 1 if i € ¢; and O otherwise, for i e DN and
q_ q_ _g e X
fi Z f] = —0i + B Z jX;. Vi € DN, (5) J € Nw. Note that thJe voltage is assumed to be the same at all the
e Jeti nodes in the interface, i.e., v; = Vs, Vi € DN.
Vi = Vjjice, + 2(Riff + Xif!) — Li(RF + X7), Vi € DN, (6) Eq. (15) can be rewritten to give:
. Ul =20(R)(A ApP° + pg— p¢ — AD
-20X)q— (- Mg + 2d(R)diag(G)

(F*+ (FH* < vl VieDN,  (A3) (8) — 20 (X)diag(B))v + Hu... (16)
. where we set W := (diag(R)(2M + I)diag(R) + diag(X)(2M +

(P — bR+ (f7 — IX)? <2 Vie DN, (ha) (9) (diag(R) M+ Deliag(R) + dias0(

The variables of the so-called branch flow model presented
above are real (Ap‘:?’, Apf) and reactive (q;) power injections, real
( fip) and reactive ( fiq) power flows, and the magnitude squared
of voltage phasors (v;) and angle phasors (I;). Constraints (4) and
(5) express the balance of real and reactive power at each dis-
tribution node. Constraints (6) and (7), introduced by Farivar and
Low (2013), correspond to the SOCP relaxation of the power flow
constraints. Constraints (8) and (9) impose complex power flow
limits along each distribution node.

Let Mgqj € Mat(DN,DN) denote the adjacency matrix of
the oriented graph composed by the distribution network DN,
where Mgg;(i, j) = 1 if there exists an oriented link connecting
node i € DN to node j € DN, and 0 otherwise. Then we can rewrite
the system of Eqs. (4) into the matrix form:

(I — Mggj) fP = Ap® + Ap® — diag(G)v — Myg;diag(R)!

+ p& — p¢ — AD(w), (10)
where, by convention, diag(G) is the diagonal matrix having on its
diagonal elements G;,i € DN, and diag(R) is the diagonal matrix
having on its diagonal elements R;, i € DN.

Since the distribution network is an acyclic graph (more pre-
cisely a tree), there exists an integer x € N* such that all paths in
the distribution network have a length strictly lower than k. Then
we can prove easily that Mgdj =0 (Hu & Shing, 2002). As a result,
we have the following relation:

k-1
I+ M) (I = Mgp) =1, (11)
i=1
=
M
and so, using Eq. (11) in Eq. (10) we can conclude that:
P = (I+M)(Ap®+ Ap° — diag(G)v + p& — p¢ — AD(w))
—Mdiag(R)l, (12)
where M := Y ¥ M.
inherited from Eq. (11).
Similarly, the reactive power flows can be derived from the
system of Egs. (5), that we recall below (Farivar & Low, 2013;
Papavasiliou, 2017):

-3 fl=—ai+Bw; - > LX;, (13)

jee; jee;

and using the relation M = (I+M)M,q;

for each node i in the distribution network DN. From Egs. (5) and
(11), we can then obtain the closed form of fI:

f?= I+ M)(—q + diag(B)v) — Mdiag(X)l. (14)

By replacing fip and fiq by the expressions found in Egs.
(12) and (14), we can rewrite the system of Eqs. (6) as:

I- Made +2®(R)diag(G) — 2®(X)diag(B))v — Hv,
=20 [R)(Ap® + Ap° + p8 — p¢ — AD(w)) — 29 (X)q
—(diag(R)(2M + D)diag(R) + diag(X) 2M + Ddiag(X))l, (15)

where & (Mat) := diag(Mat)(I+ M) for any matrix Mat e
Mat (DN, DN) and H = ((lieCj)ieDN.jeNx) is the matrix that contains

Ddiag(X)).
Proposition 1. W is invertible.

Proof of Proposition 1. Using properties of the
determinant operator, we have that: det(W) >
(det (diag(R)?) + det (diag(X)?)) det(2M +1I). In addition, by def-

>0 by definition of R and X
inition of M, we have the relation: det(M) EZ::]] det(Mudj)f.
Since DN is an oriented tree, its adjacency matrix Mg con-
tains a line of zeros because there is no child connected to
its leaves. This implies that det(M,q;) =0 and therefore that
det (W) > (det(diag(R)?) + det (diag(X)?)) > 0. We conclude that
W is invertible. O

As a corollary of Proposition 1, we can express | as a closed
form in Ap8, ApS, q, and v:

I =20 1®R)(APE 4+ APS 4 p& — p¢ — AD(w)) —2¥ 1D (X)q
—Yv+ ¥ 'Hu,, (17)

where we set Y := W1 (] - Mgdj + 2@ (R)diag(G) — 2@ (X)diag(B)).
By substitution of | obtained in Eq. (17) in fP, f4, we obtain
expressions that depend only on Ap8, Ap€, q and v:

fP = [ +M) —2Mdiag(R)¥ 1 ®(R)](ApS + Ap° + p& — p°
— AD(®)) + 2Mdiag(R)W1®(X)q
+ [Mdiag(R)Y — (I + M)diag(G)v
—Mdiag(R)¥~"Hv,., (18)
and
1 =[=U+M) +2Mdiag(X)¥1®(X)]q
+[(I + M)diag(B) + Mdiag(X)Y |v
—2Mdiag(X)W¥ 1 ®(R)(Ap® + AP + p8 — p¢ — AD(w))
—Mdiag(X)¥ 'Hv.,. (19)

By using the previous closed-form expressions of fP, f1 and I,
we can obtain easily an equivalent system of equations depending
only on Aps, Ap¢ q and v in matrix form. We can therefore
conclude that by deciding on variables Ap%, Ap¢, q and v, the
DSO is fixing all the parameters on its network. So we can see
Ap®, ApS, q and v as decision variables, and the power flows and
current magnitude as state variables. The results are summarized
in the proposition below:

Proposition 2. Egs. (4)-(6) enable to express DSO’s active and re-
active power flows fP, fi, and current magnitude squared 1, as linear
functions of the DSO’s decision variables upso defined in Section 3.2.

The physical intuition is that injections of real and reactive
power into a circuit uniquely determine the full state of the circuit.
But our results prove that we need to introduce the magnitude
squared of the voltage phasors v; in the action variables because
the real and reactive power injections alone do not uniquely
determine the state of the circuit. In particular, a unique choice
of real and reactive power injections may imply multiple solutions
of the constraints (4)-(9) (Papavasiliou, 2017). Instead, as we have
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just demonstrated, additionally specifying v; implies a unique
value for the remaining state variables of the circuit.

Following Proposition 2, the DSO distribution network power
flows can be reformulated as a simplified system of equations:

Proposition 3. The system of Egs. (4)-(9) is equivalent to the sys-
tem of Eqs. (7)-(9), where active and reactive power flows fP, f1, and
current magnitude squared 1, are replaced by their linear expressions
as functions of the DSO’s decision variables upsg. The closed-form ex-
pressions of fP, fi, | as functions of upsg are defined in Eqgs. (17)-(19).

4.2. TSO transmission network power flows

Similar to the development of the previous section, in this
section we derive the TSO state variables as functions of the TSO
and DSOs’ decision variables®. The linearized power flow approx-
imation of the TSO transmission constraints can be expressed as

follows:
(p_n'i‘APn)'i‘( Z fi— Z fl)
I|l=(m,n) I|lI=(n,m)

=Dy + ADIS%(w), Vn € TN, (20)

(Pn+ Apn) + Z(fj?ljRj)Jr( Z fi— Z fl)
jeen [|l=(m.n) Il=(n,m)

= Dy + ADISO(w) + Gpvy, Vn € N, (21)
fom = Bn,m(en —0m),Yl=(,m) €L, (22)
-TG < fi <TC VYVl e L. (23)

In this linear approximation of power flow constraints, the
variables are real power injections (Ap), bus voltage phase angles
(0) and real power flows along transmission lines (f). Reactive
power flows are ignored in this approximation, following stan-
dard practice in the literature. Constraints (20), (21) express the
TSO power balance constraints at each transmission node. Con-
straint (22) expresses the relationship between bus angles and
power flows. Constraint (23) expresses the capacity constraints of
transmission lines.

We define an interface connection matrix as:

Mint = ((1je¢,v X 1ieNx)ie'J1’NUNx<je]D>N)s

with its i, j element being equal to 1jcq; x ljcy,,- It is equal to 1 if
je¢; and i e Ny, ie, if node i is an interface node and node j is
one of its children, and O otherwise.

We also introduce the incidence matrix, M;,, of size
card(TNUNy) x card(L), so that M, (n,1) =—-1 if link [ is
leaving node n, M, (n,l) =1 if link [ is entering node n, and
Mjnc(n, 1) = 0 otherwise.

Using these matrices, we can rewrite the TSO power balance
constraints in matrix form as follows:

[7 + Ap + Mincf + Mint (fp - diag(R)l)
=D + AD™% (@) + diag(Gy ) Veo.

Using Eq. (12), fP —diag(R)l can be expressed in closed form
as a function of the decision variables of the TSO and the DSOs:

fP —diag(R)l = (I+ M)[(I — 2diag(R)¥ ' ®(R)) (Ap® + Ap° + pe
— p¢ — AD(w)) + 2diag(R)¥ 1 ®(X)q
+ (diag(R)Y — diag(G))v — diag(R)¥~'Hv..].
(24)

5 Note that, because of the presence of interface nodes, both TSO and DSO deci-
sions impact the TSO state variables. This couples the TSO and DSOs’ optimization
problems.

Then the TSO power balance constraints can be summarized
through the single matrix equation:
f’ + Ap + Mincf
+ M (1 + M)[(I — 2diag(R) ¥~ @ (R)) (Ap® + Ap°)
+ diag(R)W1(2®(X)q — Hvy) + (diag(R)Y — diag(G))v]
- diag(Goo)voo
=D+ AD™%(w) — My (I + M) (I — 2diag(R)¥ " @ (R)) (p2
—p° — AD(w)).

By reshuffling the preceding equation, it is possible to express
Minf as a function of the decision variables of the TSO and DSOs:
Mincf = _ﬁ - Ap

— Mine (I + M)[ (I - 2diag(R)W ' @ (R)) (Ap® + Ap°)

+ diag(R)W ' (2® (X)q — Hvs) + (diag(R) Y — diag(G))v]

+ D+ AD™%(w) — My, (I + M) (I — 2diag(R)¥ ' ® (R)) (p8

— P¢ — AD(w)) + diag(Geo ) Voo (25)

We have thus derived an explicit linear relation between the
transmission flows, f, and the decision variables of the TSO and
DSOs.

Since M, is in general not invertible, it is not possible to
obtain a closed form expression of f as a function of TSO and
DSO’s decision variables in Eq. (25).

To express the TSO feasible set as a function of the TSO and
DSO’s decision variables, we introduce an additional reformulation.
We define the function:
p(Ap, Ap*, Ap.q.v)

i= —Ap — My I + M)[(I — 2diag(R)¥ 1 ®(R)) (Ap% + Ap°)
+2diag(R)W~'®(X)q + (diag(R)Y — diag(G))v], (26)
which is a linear combination of Ap, ApS, Ap¢, q and v. We
further define the function:
pc = P — M (I + M)diag(R)¥ " Hv, — diag(Goo)Vso)
—D — AD™%(w + Mipe (I + M) (I — 2diag(R) W~ & (R)) (p?)
— ¢ — AD(w)). (27)
such that p(.) — pc = M;,.f, following Eq. (25).

Define the matrix B*e Mat(L,TNUNy) such that for
any I=mm)el, B(,n)=Bym, B*(,m)=-Bnn, and
Bi(l,n") =0,Vn’ € TNUNg, ' #n,n’ #m.

We now arrive to the following result, where we reformulate

the TSO feasible set as a function of the TSO and DSO’s decision
variables only:

Proposition 4. The TSO feasible set is equivalently described by the
following set of inequalities:

0 < Ap <Rmnun., (A7 AD) (28)
Pp(Ap, Ap®, Ap©,q.v) — pc € Im(MincB?), (Ao) (29)
—[Minc|TC + pc < p(Ap, Ap®, Ap, q,v)

< |Mine|TC + pc. ()\1_,)\?—) (30)

Proof of Proposition 4. The goal in this proof is to demonstrate
that:

f=B0,
{—TC <f<TC & {gg;
Mincf =p—Lc '

The TSO power flow balance constraints have led us to the refor-
mulation (25). With this reformulation, the feasible set of the TSO
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is delimited by the generator capacity constraints, the relationship
between the bus angles and the power flows, and the transmission
line capacity constraints. The generation capacity constraints cor-
respond to Eq. (28), where Rj is the available reserve capacity of
the generator located in transmission node n. Using the definition
of B, the relationship between bus angles and power flows can be
rewritten as f = B*@. In addition, Eq. (25) implies a set of linear
equations between decision variables and the vector of bus angles
6. More precisely:

M;ncB*60 = p(Ap, Ap8, Ap©, q,v) — pc. (31)

Therefore, there exists at least one feasible vector of bus angles
solution of Eq. (31) for a given set of decision variables Ap, Apé,
ApS, q and v if, and only if, p(.) — pc is in the image of M;,.B.
Since the image of a matrix is orthogonal to the kernel of its
transposed matrix and two orthogonal spaces have an intersec-
tion reduced to the vector O, there exists one feasible vector
of bus angles solution of Eq. (31) if, and only if, p(.) = pc or
(p(.) — pc) ¢ Ker(BTM] ). The case p(.) = pc would correspond
to the very unlikely case where all transmission nodes do not
need power flows from the transmission network to be balanced
in real time, because from Eq. (31) we have that p — pc = My, f,
so p — pc =0 would imply M;,.f =0. We will assume that this
will not be the case. Then there exist bus angles solutions of
Eq. (31) if BTM] (p(.) — pc) #0. which is captured by condi-
tion (29). This latter condition can be rewritten under the form:
(BTM! (o(Ap. Apé, Ap,q.v) — pc))? > 0.

Now, we want to prove that Eq. (30) holds. From the capacity
constraints (23) we have that:

—|Minc| TC < Minc f < [Minc|TC, (32)

where the absolute value of M, is taken element wise. By substi-
tution of Eq. (25) in Eq. (32), we obtain lower and upper bounds
on p(.) so that we have (30). This proves that the TSO feasible set
is included in the set described by (28)-(30).

To prove that the reciprocal is true, we reason by contradiction.
Suppose that we have found Ap, Apg, Ap¢, q and v which verify
(28)-(30). Eq. (29) means that there exists a vector of bus angles
6* such that M;,.B*0* = p(.) — pc. By taking fy = B*6* we obtain
that all vectors f satisfying M;,.f = p(.) — pc can be rewritten as
f = fo+k with keKer(M;,.). Let assume that there is no vector
k € Ker(Mj,) such that —TC < fo + k < TC, i.e., for all ke Ker(Mj,.)
either —TC > fy+k or fy+ k> TC. This is in contradiction with
Eq. (30), because according to Weierstrass extreme value Theorem
every continuous application on a closed interval is bounded and
reaches its lower and upper bounds on this interval. As such fy + k
should belong to the interval [—|M;, |TC; [Mjc|TC]. O

As mentioned at the beginning of Sections 3.1 and 4.1, the
local (distribution) markets are operated independently and are
only interconnected through the global grid, sharing no common
resources with one another. In the description of the optimization
problems associated with each coordination scheme, we focus on a
single local (distribution) market. Considering multiple DSOs oper-
ating local (distribution) markets requires to replicate N times the
DSO optimization problems with parameters calibrated on each
local (distribution) market. The TSO optimization problem remains
the same except that it incorporates decision variables from all
the DSOs and TSO in its coupling constraints. The resulting multi-
leader Stackelberg game can be formulated as an equilibrium
problem with equilibrium constraints (EPEC) (Le Cadre, 2018). KKT
conditions would just incorporate new conditions corresponding
to the new DSOs’ decision variables and their own operational and
power flow constraints, therefore increasing the computational
complexity of the EPEC. Furthermore, difficulties might arise in
case (a) the lower-level optimization problem admits multiple

solutions, requiring to consider optimistic or deterministic ap-
proaches (Dempe & Dutta, 2012; Dempe et al., 2015); in case (b),
the leaders (DSOs) have different valuations of the dual variables
associated with the follower (TSO) complementarity constraints
(Leyffer & Munson, 2010). Regarding case (a), we will prove in
Section 5.3, that the follower’s problem admits a unique solution.
Regarding case (b), various approaches exist like introducing
normalized equilibrium as solution concept (Delikaraoglou et al.,
2016), or duplicate the follower’s complementary constraints in
the KKT system of equations (Leyffer & Munson, 2010). Though
interesting, both approaches generate difficulties of interpretation,
and the second approach can be computationally quite expensive
to deal with, especially if a large number of DSOs is involved. So,
to keep the economic interpretations as simple as possible, we
focus throughout this article on coordination schemes involving a
single DSO. As explained, extensions to a multi-leader-common-
follower game is straightforward, assuming that the follower’s
complementarity constraints are shared among the leaders.

5. TSO-DSO coordination schemes

In the formulation of the three coordination schemes that we
will detail in Sections 5.1-5.3, we replace the state variables fP, fi,
[ by their linear mappings in the TSO and DSO’s decision variables
obtained in Eqgs. (17)-(19), and recalled in Proposition 2. Mathe-
matical description of TSO, DSO feasibility sets can be simplified
relying on Propositions 3 and 4. We will come back to these
simplifications later on in the text.

5.1. Centralized co-optimization problem

For coordination scheme (i), we start by discussing the
motivation for its implementation in 5.1.1, then we detail its
mathematical formulation in 5.1.2, before giving conditions for
existence and uniqueness of a social welfare optimum in 5.1.3.
KKT conditions that will be used to compute the social welfare
optimum in the case study are explicitly given in 5.1.4.

5.1.1. Motivation

The centralized co-optimization problem aims at optimally
coordinating the dispatch of all resources at both transmission and
distribution levels. There is one common market operated jointly
by the TSO and DSOs or by an integrated market operator acting
as a coordinator, for both resources connected at transmission and
distribution levels. This coordination scheme is modeled as a stan-
dard constrained optimization problem with perfect information
on the state variables. We will use this scheme as a benchmark
compared to our decentralized schemes. Indeed, due to privacy
issues and practically large-scale size of the transmission and
distribution networks, this scheme would be extremely difficult
to implement in a real-life setting. The latter aspect requires the
development of efficient decomposition algorithms capable to
handle complex and large scale optimization problems, and to
characterize the associated solution concepts as well as to deal
with convergence issues. Complex bidding in the transmission and
distribution nodes might also incorporate integer variables in the
optimization problem, therefore resulting in challenging problems
for the operations research community. Fig. 2 provides a graphical
representation of TSO-DSO coordination scheme (i).

5.1.2. Formulation

We define the social welfare as the sum of the aggregated
area under the nodal inverse demand functions P,(.),n € TN U Ny
and P(.),i e DNy, ke N, which represents the total consumer
willingness-to-pay, less the sum of all activation costs Cy(.) for the
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Fig. 2. Centralized co-optimization problem envisioned in TSO-DSO coordination
scheme (i). The integrated market operator (that could be alternatively substituted
by the TSO), which operates that scheme, has access to all the information on
the DSOs’ willingness-to-pay, activation cost functions, transmission and distribu-
tion network topologies and power flow equations. The optimal reserve activa-
tions at transmission and distribution nodes, reactive power injection/consumption,
and voltage at each distribution nodes are determined by the integrated market
operator.

TSO and CF(Ap) + C¥(Ap?) for the DSOs:
SW (X, (Ua)gen, ®)

Dn+ADp(w)
= Z |:/(; Pi(tp)dTy _CH(APH)]

NeTNUN,,

22

( B+ AD; (@) AP
keN iepny, \ Y0

R (z)dt - G (Ap) - Cig(AP;-g))-

(33)

The social welfare is independent of the state variables. As
such, we will write SW ((ug)gea, @) in the rest of the paper.

We denote by FStgg and FSpsg the sets defined by the upper
and lower bounds for the decision variables of the TSO and the
DSO respectively, and state variable I. More precisely, a vector
(Ap1, Ap,q,v) € FSpso is such that:

0 < Ap! <Rf,VieDN, (Mg, 2%)
0 < Apf <Rf,VieDN, Az A
Q =¢q;<Q}.VieDN, (Aq.29)
vy <v < f, Ay 2)
0 <, Vi € DN, (A7, A7)

and a vector, Ap € FStsp, is such that constraint (28) is true. Note
that this simplifying notation will be used in each coordination
scheme. It is also important to note that FSyso and FSpgp capture
only the TSO and the DSO operational constraints. In other words,
the power flow constraints are not included in FStso and FSpso
definition. So, this means that FSrso, FSpso define only part of
the TSO and DSO feasibility sets.

With centralized co-optimization as coordination scheme, the
integrated market operator solves an integrated optimization
problem activating reserves at transmission and distribution levels,
determining reactive power injection/consumption, and voltage at
each distribution node ursg € FSts0, Upso € FSpso in state x € X:

SW((uﬂ)aEA’ (1)),

X
Urso€F Sts0.Upso€F Spso.XeX

sit. fi=Bi(6h —6p),¥Yl=(n,m)cl,

> fi-

leL|l=(m,n)
=D, + ADp(w), Vn € TN,

(Pn + Apn) + Z(ff - LiR)) + (

je€n

(Pn + Apn) + (

> )

leL|l=(n,m)

> fi-

leL|l=(m,n)

> f,)=Dn

leL|l=(n,m)
+ ADy(w) + Guvy, VN € Ny,

—— <0, -0 < %,VZ: (n,m) e,

1
Ui = v, + 2(RifP + Xiff) — [;(R? + X?). Vi e DN,
fP =2 = iRy — (B + Ap)

je<;
+ (ﬁlc + ADl(a)) - Aplc) + Giv,- = O,

Vi € DN,

f1 =3 (f] = ;X)) + qi — Bv; = 0, Vi e DN,
jeg;

(fF)? + (f1)* < S}, Vie DN,
(fD* + (f)? < vl;. Vie DN,
(ff = R)?* + (f = 1iX)* < S7.Vie DN.

Propositions 2-4, can be used to reformulate the power flows
in the market operator integrated optimization problem. With
these reformulations, the integrated market operator solves an
integrated optimization problem when activating reserves at
transmission and distribution levels, and determining reactive
power injection/consumption and voltage at each distribution
node ursp € FSts0, Upso € FSpso:

UTSOEJ:STI:(}%Z(SOEFSDSO SW((Ua)aEA, (,()),

s.t. (29), (30),
(7),(8), (9). (34)

Note that in all the optimization problems associated with
the coordination schemes in Sections 5.1-5.3, the TSO and DSO
decision variables are optimized over the sets FStsg and FSpso,
that appear as subscripts below the ‘max’ operator and capture
the TSO and DSO operational constraints, defined at the beginning
of Section 5.1. Power flow equations are reported as explicit
constraints in the optimization problems.

5.1.3. Existence and uniqueness of social welfare optimum

The reformulation of the power flow equations which is intro-
duced in Section 4 defines a new feasible set for the centralized
co-optimization problem (34). This feasible set is defined by
Egs. (29), (30), (7), (8), (9). For the TSO co-optimization prob-
lem to be convex, we need to check whether the constraints of
problem (34) remain convex.

Proposition 5. Using the reformulation of the power flow equations
which is introduced in Section 4, Eqs. (29) and (30) define a convex

set fOT urso, Upso-

Proof of Proposition 5. The
Appendix A.l. O

proof can be found in

Proposition 6. Using the reformulation of the power flow equations
which are introduced in Section 4, Eqs. (7)-(9) define a convex set for

Urso, Upso-

Proof of Proposition 6. The can be found in

Appendix A.2. O

proof

We use the previous result in order to prove the uniqueness of
the solution of the first coordination scheme.
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Proposition 7. The centralized co-optimization problem in (34) ad-
mits a unique solution Ap*, Aps*, Ap.

Proof of Proposition 7. The found in

Appendix A.3. O

proof can be

5.14. KKT Conditions

We introduce Ay as the Lagrange multiplier associated with
Eq. (29), A{.A] as the Lagrange multipliers associated respec-
tively with the left inequality in Eq. (30), ie., —|Mi,|TC+ pc —
p(Ap, ApS, Ap,q,v) <0 and with the right inequality in Eq.
(30), ie., p(Ap, Aps, Ap°,q,v) — |Mjn|TC — pc <0, and we fur-
ther introduce A,, A3, A4 as the Lagrange multipliers associated
with Eqgs. (7), (8), (9) respectively. Note that since Eq. (29) can
be reformulated as (BTMI (po(Ap, Aps, Apc.q.v)— 0c)) >0,
it is always non-binding, therefore Ao =0 (Dempe et al,, 2015).
Note that this does not necessarily implies that the TSO feasi-
ble set is open because it contains Eqgs. (28), (30) which define
closed sets. Furthermore, the objective functions that we optimize
are (strictly) concave on their feasible sets, meaning that their
optimum is reached inside the feasibility set and remains finite.

In the rest of this section, denote by VM the Jacobian ma-
trix of M with respect to Ap, Apé Ap,q,v, which means
VM := (VA[JM VAng VAPCM VqM VyM).

The Jacobian matrix of p(.) with respect to Ap, Apé, Ap©,q,v
is defined by:

VapP = —leard(rmyeard i)
Vapp = =My (I+ M) (I - 2diag(R)¥ ' ®(R)),
Vapp = —Mine (I + M)(I — 2diag(R)W ' ®(R)),

Vg0 = —2Mine (I + M)diag(R)¥ 1 & (X),

Vip = —Min (I + M) (diag(R) Y — diag(G)).
We also define the Jacobian matrices of ff and ff with respect to
Ap, ApsS, Apc,q,v:

VapfP =0,
Vapf? = (I+ M) — 2Mdiag(R)¥ '@ (R),
Vap fP = (I + M) — 2Mdiag(R)¥ ' ®(R),
Vof? = 2Mdiag(R)¥ 1 & (X),
VufP = Mdiag(R)Y — (I + M)diag(G),

and

Vapfi =0,

Vapf! = —2Mdiag(X)V ' ®(R),

Vap f1 = —2Mdiag(X)¥ '@ (R),
Voft = —(I + M) 4 2Mdiag(X) ¥~ ®(X),
Vi f? = (I+ M)diag(B) + Mdiag(X)Y .

We also need to introduce the KKT conditions associated with
sets FSpso, FStso- For the FSrso, we have:

AFSpso:= (Af —Ag)T1000)+ (Af —A;)T(0100)
+ (g = 2)T(0010)
+(f —2)T001) -] VI,

where )Ll?,)nl.*,ie {g.c,q,v}, are the Lagrange multipliers associ-
ated with left and right parts respectively of the upper and lower
bounds on the actions of the DSO and A; is the Lagrange multi-
plier associated with non-negativity constraint on state variable L
Similarly, for FSpso, we obtain:

A]:‘STSO = ()L:r - )‘«;)T,

where A, A} are the Lagrange multipliers associated with the left
and right parts respectively of the upper and lower bounds on the
decision variables of the TSO, in Eq. (28).

To simplify the notation, we define the set of complementarity
constraints associated with each constraint in the set FSpgop as
follows:

0<Apt12; >0,

0<RE—ApELA; >0,

0<Ap°LA; >0,

0<R —Ap°LAf >0,

0<qg-Q Li; >0,

0<Q"—qLlAf=0,

O<v—v LA; >0,

O<vt—vlA} >0,

0<lLXA=>0, (35)

Similarly, the set of complementarity constraints associated with
each constraint in the set FStso writes down as follows:

0<ApLlAi; >0,
O0<R-AplLlAf=>0. (36)

Recalling the analysis made in Appendix A.3, the differentiation
of the social welfare function with respect to Ap, Apé, Ap‘, q,v
gives us:

VapSWT = =2(caAPn)nermon.

VApgSWT = _Z(CigAp‘Ig)isDN’

VaprSWT = —(P(p¢ + ADi(w) — AP icpry — 2(G APy
VSWT =0,
V,SWT = 0.

To compute a social welfare optimum solution of problem
(34), we derive first-order conditions (KKT conditions) for the
centralized co-optimization problem:

LVSW — (A — ANV + 22 [diag(fP)V f? + diag(f)V ]
+A3[2diag(fP)V fP + 2diag(f)V f4 — diag(l) Vv — diag(v) V1]
+Ah[2diag(fP — diag(R)I)(V fP — diag(R) V1)

—2diag(f? — diag(X))(V f? — diag(X)V1)]

+(AFStso AFSpso) =0,

(BTML(p - pc)” > 0,

mnc
0 <Ay L [Min|TC—pc+p >0,
0<A] L—p+|Mj|TC+ pc =0,
0<iy L—(f)?—(f1)*+S* >0,
0 < A3 L —(fP)? - (f9)? + diag(v)! > 0,
0 <Ay L —(fP —diag(R))* — (f7 — diag(X)1)* +S* > 0,
(35), (36).

Note that the feasible sets being convex according to
Propositions 5 and 6 and the social welfare being strictly concave
in Ap, Ap®, Ap¢, the KKT conditions are necessary and sufficient
conditions for an optimum to exist. The TSO and DSO operational
constraints are included in the optimization problem (34), by
assuming that the TSO and DSO'’s decision variables are optimized
over the sets FStsp and FSpso. Since FStso, FSpso define part of
the constraints of the optimization problem (34), the correspond-
ing KKT conditions are considered in the set of KKT conditions
reported just above. Complementarity constraints (35), (36) are
not explicitly reported in the set of first-order conditions to keep
the description at an acceptable level of details. In Section 7, the
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Fig. 3. Graphical representation of TSO-DSO coordination scheme (ii), called shared balancing responsibility (SBR). Each operator handles its own network. The only coupling
comes from the interface with different settings depending on level of information. Decisions are taken simultaneously.

centralized co-optimization problem will be solved as a system of
KKT conditions.

5.2. Shared balancing responsibility

For coordination scheme (ii), we start by discussing the motiva-
tion for its implementation in 5.2.1, then we detail its mathemat-
ical formulation in 5.2.2. Concept of Generalized Nash Equilibrium
is introduced in 5.2.3. TSO and DSO KKT conditions that will be
used to compute Generalized Nash Equilibria in the case study
are explicitly given in 5.2.4 and 5.2.5. Conditions for existence and
uniqueness of Generalized Nash Equilibrium are detailed in 5.2.6.

5.2.1. Motivation

Under shared balancing responsibility, there is a balancing
market for resources connected at the transmission grid, managed
by the TSO. There are separate local balancing markets for re-
sources connected at the distribution grids, managed selfishly by
each DSO. Resources from the distribution grids cannot be offered
to the TSO. DSO grid constraints are integrated in the balancing
market clearing process of the local market operated by each DSO.
This is the simplest decentralized scheme where it is assumed
that the operators have to take their decisions simultaneously
knowing only border decisions (maybe even only partially) of the
other operators. In practice, historical data might help operators
to fix the flow of power at one interface. This scheme is explicitly
mentioned as possible future DSO-TSO coordination scheme at the
EU level, in the SmartNet project (Gerard et al., 2017).

5.2.2. Formulation
TSO and DSO problems remain coupled through the 6 variables
in the interface nodes, as expressed in Eq. (31). Fig. 3 provides

a graphical representation of the shared balancing responsibility
scheme with one TSO and one DSO.

Formally, the TSO solves the following optimization problem in
urso € FStsp and state x € X, assuming that the decision variables
of the DSO, upsg € FSpso, are fixed:

ax Trso (Urso, ),
Urso€FSts0,XeX

st. fi=B/(6,—0p),¥Yl=(n,m) e,

(Pn + Apn) + ( Z fi— Z fl)

leLL|l=(m,n) leL|l=(n,m)
=Dp + ADp(w),Vn € TN,
B+ Ap)+ ) (fF=LRD+C > fi-
Jje€n leL|l=(m,n)
+ADy(w) + Guvy, Y1 € Ny,
1

Z fl)an

leL|l=(n,m)

gen—emgg,‘v’l:(n,m)eL.
I

Simultaneously and independently, the DSO solves the fol-
lowing optimization problem in upgp € FSpsp and state x € X,
assuming that the decision variables of the TSO, ursg € FSts0, are
fixed:

max TTp Upso, @),
Upso €FSpso.XeX SO( SO )

st Vi = va, + 2(RifP + Xiff) — [;(R? + X?). Vi e DN,

(ﬁn+APn)+Z(.f]P_ljRj)+< o i > f1>:Dn

jeey leL|l=(m,n) leL|l=(n,m)
+ ADy(w) 4+ Gpvy, Vn € Ny,
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FP =227 = LRy = (B + Ap§) + (B + ADi(w) — Apf)

jeg;
+G; =0,VieDN,

f1 =3 (f] =1iX)) +q; — Bv; = 0, Vi DN,
Jjeg;

(fP)* + (f)* < S}.Vie DN,

()% + (fH)? < vil;, Vi € DN,

(ff = LR)? + (ff = 1iX;)* < S}, Vie DN.

This second coordination scheme can be formulated as a
simultaneous non-cooperative game involving TSO and DSOs,
with perfect information on the (full) state variables, using
Propositions 2-4.

Formally, the TSO solves the following optimization problem
in ursg € FSts0, assuming that the decision variables of the DSO,
Upso € FSpso, are fixed:

max  7rso(Urso, @),
Urso€FStso

s.t. (29), (30). (37)

Note that the dependence of the TSO constraints on DSO decisions
is captured by the fact that the function p(.) appearing in con-
straints (29) and (30) is a function of both TSO as well as DSO
decisions.

Simultaneously and independently, the DSO solves the fol-
lowing optimization problem in upsp € FSpso, assuming that the
decision variables of the TSO, ursg € FSts0, are fixed:

max  7pso(Upso, ®),
Upso€F Spso

st. (7),(8), (9),
(31). (38)

A classical formulation in non-cooperative game theory, is to
assume that the players in competition operate simultaneously
and independently (Fudenberg & Tirole, 1991; Osborne & Rubin-
stein, 1999). By ‘simultaneously’ is meant that the players operate
with ‘bounded rationality’, e.g., without rational anticipation on
the outcome of the adversaries decisions (by opposition to the
Stackelberg game approach which will be detailed in Section 5.3).
By ‘independently’ is meant that no pre-agreement which could
have resulted in a coalition, is made between the players.

5.2.3. Solution computation: Introducing Generalized Nash
Equilibrium (GNE)

The utility functions 74, a € A, characterize the strategic form
of the game, together with the strategy spaces I'y := {y,4, a € A}.

Let I'y(y—q) be the output of a point to set map which repre-
sents the ability of agents in the set A_, to influence the feasible
strategy set of agent a.

We take a generic point of view to introduce the solution
concept of Generalized Nash Equilibrium (GNE). In this setting,
each agent a <A faces the following optimization problem:

max o (Va, V=a),

s.t. Ya € Da(Y-a).

We introduce the following definition which characterizes
formally GNE:
Definition 1. Harker (1981) (yVE)qen is a GNE if

n.a(yaGNE

Under shared balancing responsibility, the non-cooperative
game occurs simultaneously and the decisions of each agent
determine the state of the game. This means that the information

JYNEY > 0 (Ya, YNE), Ve € Ta(yY-a). a € A.

space of each agent a € A contains the state of the game, i.e.,
Iq = {x},Ya e A.

To compute a GNE solution of the shared balancing responsibil-
ity game (37) and (38), we derive first-order necessary conditions
(KKT conditions) for the TSO and DSO optimization problems.

5.2.4. TSO KKT conditions

Let Ao, A7, Af be the Lagrange multipliers associated with
the TSO constraints in Eq. (29) and the left and right parts of
Eq. (30) respectively. We first note that the TSO utility func-
tion 7myso(.) is strictly concave in Ap, since its Hessian matrix is
Vipﬂrso = —2diag(cn)netnun., < 0 which is negative definite. Then
the feasible sets being convex according to Propositions 5 and 6,
the KKT conditions are necessary and sufficient conditions for an
optimum to exist.

To determine solutions to the TSO optimization problem (37),
we compute the stationarity conditions with respect to Ap assum-
ing that the decision variables of the DSO, i.e.,, Ap%, Ap¢, q and v,
are fixed. This gives us:

~VapTrso+ (A7 =AD" + AFSrs0 =0, (39)
0 < A7 L [Minc|TC = pc + p(Ap, Ap®, Ap°,q,v) > 0, (40)

0 <A L —p(Ap. Ap% AP, q.V) + [Minc| TC + pc = 0,
(29), (36), (41)

where V7150 = (Pa(Dn + ADn(@))netvung, — 2(CnAPn)neTnun,, -

The combination of Eqs. (40) and (41) implies that for any n ¢
TNUNy either A7(n) =0, or Af(n) =0, or A7 (n)=Af(n)=0.
This leads us to distinguish between three cases:

case (i) A7(n)=0 and constraint (41) is binding, ie.,
the line is congested and p(Ap, ApS, Ap,q,v)(n) =
(IMjncITC + pc)(n). Then at the equilibrium ApSNE =
()0(0’ Apg~ Apc~ q. U) - |Minc|TC_ IOC)n =< %}?n(w))

case (ii) Aj(n)=0 and constraint (40) is binding, ie.,
the line is congested and p(Ap, Aps Apt,q,v)n =
(=|Mine|TC + pc)n. Then at the equilibrium ApSNE =
(p(0, ApE, APE, G, V) + [Minc| TC — pc),, > PPotBlu(®@)),

case (iii) Ay(n)=A7(n)=0 (ie, no constraint is binding,
meaning that the line is not congested), then at the equi-
librium ApGNE = H(CntADn(@)

2cn

Therefore, at the equilibrium, depending on the posi-
tion of %ﬂm(‘“)) with respect to (p(0, Aps, Ap,q,v)—
|Minc|TC - IOC)n and (p(O, Apg’ Apc’ q, V) + |Minc|TC - pC)nv we
can fall into one case or another, which also highlights the state
of network regarding line congestion.

The first KKT condition in Eq. (39) also provides economic inter-
pretation, as it implies that the demand in transmission node n is
equal to the inverse demand of the marginal cost summed up with
a price premium linked to the saturation of transmission lines:

Dy + ADp(w) =B [ 2ciApn +AT(0) — A7 ()],
~——— —_—

marginal cost price premium
Vn € TNU Ng.

5.2.5. DSO KKT Conditions

Let A,, A3, A4, A5 be the Lagrange multipliers associated with
Egs. (7), (8), (9), (31) respectively.

In the rest of this section, we denote by VX the Jaco-
bian matrix of X with respect to ApS, Ap, q,v, which means
VX = (VapX VapX VgX ViX).
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To determine solutions of the DSO optimization problem (38),
we compute the stationarity conditions with respect to Apé, Ap°,
g, v, assuming that Ap and 6 are fixed:

— Vpso + 243 diag(fP)V fP + diag(f*)V f9]
+ A1 [2diag(fP)V fP + 2diag(f1)V f? — diag(l) Vv — diag(v) V1]

+ Al [2diag(fP — diag(R))(V fP — diag(R) V)

—2diag(fP — diag(X)1)(V fP — diag(X)VI)]
—)»?Vp-kA]-‘SDso:O, (42)
0<iL—(f")°-(f1*+5*=0. (43)
0 < A3 L —(f")* = (f9)* + diag(v)l = 0, (44)

0 < Aq L —(f? — diag(R)])* — (f? — diag(X)])* + 5> > 0, (45)

A5 € ROATNNS) | My, B*0 = p(Ap, Ap#, Ap,q.v) — pc,
(35), (46)

where the gradient of the DSO utility function Vmpgg can be
expressed as follows:

VapTpso = (B(PS + ADi(@) — Ap§)), o — 2(EADS)icpn.
VapTtpso = ,31‘([;?7+ ADP?) = 2(f AP jepn-

Vg7tpso = 0,

VUnDSO =0.

The stationarity conditions associated with the centralized
co-optimization problem (detailed in Section 5.1.4) do not coincide
with the concatenation of the stationarity conditions associated
with the shared balancing responsibility game (that are detailed
in Sections 5.2.4 and 5.2.5). To compute an equilibrium solution
of the shared balancing responsibility game, we determine the
best response function of each agent (TSO, DSO), assuming that
the decision variable of the other’s is fixed. This is equivalent to
solving in the agents decision variables an optimization problem,
parametrized in the decision variables of the other agent. As such,
for each agent, the system of KKT conditions parametrized in
the other agents decision variables can be used to determine the
best response function of the agent. Then, the intersection of the
best response functions of all the agents (TSO, DSO) give us the
equilibrium solution of the shared balancing responsibility game.

5.2.6. Existence and Uniqueness of Generalized Nash Equilibrium

Proposition 8. Assuming that the TSO and DSO feasible sets are not
empty, there exists a GNE solution of the shared balancing responsi-
bility game (37), (38) if, and only if, 4cfc{ > B;, Vi € DN.

Proof of Proposition 8. Following Propositions 5 and 6, the fea-
sible sets of the TSO and DSO are convex. Furthermore, these sets
are compact. Indeed, constraint (31) implies that constraint (30) is
satisfied. So we can consider the feasible set as the intersection of
all constraints except (30). All these constraints are either closed
balls or closed spaces. So their intersection is a compact set. The
feasible sets of problems (37) and (38) are non-empty, convex, and
compact. Furthermore, the TSO and DSO utility functions are con-
tinuous in ursp and upgp, and the TSO utility function is concave
with respect to its own decision variable. To check that the DSO
utility function is concave with respect to its own decision vari-
ables, we compute the Jacobian of the gradient of the DSO utility

defined as gpso(.) 1= (875‘25;’);) 37(;”50( )) as follows:
Joso = —ZQiag(Cf)iemN diag(ﬂi)ieDN
diag(B:)icon —2diag(c{)icpn )

Computing the determinant of the characteristic polynomial
matrix associated with Jpso in g, we obtain HieDN((—ZCIg—
P (=2¢f = 1) = BE) = [Mieon (CF + 1) (2§ + ) — B) =
]_[,E]D,N(M +2(cg+cf)u +4cfc; — B?). The eigenvalues of Jpso
are the roots of the polynomlal equation in pg. The minimum
is reached in M=—(Cf+C§g)- We conclude that Jpso is negative
semi-definite if, and only if, 4cfc{ > B;, Vi € DN®.

Then, following (Fudenberg & Tirole, 1991), the strategic form
game defined through problems (37) and (38) has a GNE. O

Following (Rosen, 1965), we introduce the Jacobian block ma-
trix J of the pseudo-gradient of the non-negative weighted sum of
the TSO and DSO utility functions with weights equal to 1 defined

as g(\) := 37372‘;(') a’;fggé') *’gDASgS-))T, as follows:
—2diag(cn)nernun,, ' 0 ‘ 0
J= 0 _Zdlag(cig)iGIDN diag(Bi)icon
0 diag(B:)icon —2diag(c{)icpn

Proposition 9. If 4cfc{ > B2, Vi e DN, then the shared balancing re-
sponsibility game has a unique GNE.

Proof of Proposition 9. A sufficient condition guaranteeing that
the positive weighted sum of the TSO and DSO utility func-
tions is diagonally strictly concave is to check that the sym-
metric matrix J+J7 is negative definite. Computing the determi-
nant of the characteristic polynomial matrix associated with J + JT
in y, we obtain (7])card(TNuNo€) Hgazr;i('ﬂ‘NuNw)(LlCn ) HieDN[(4ng +
) (4c§ + ) — 4pB2]. The eigenvalues of J+J7 are the roots of the
polynomial equation. We obtain two different types of values:
Un = —4cp, Vn € TNUN,, other p are solutions of the polyno-
mial equation 2 +4(cf + ) + 16¢ic§ — 482 = 0. The minimum
of this polynomial equation is reached in u = —2(cl?+clg). It ad-
mits two negative roots if, and only if, its value evaluated in zero
is positive, i.e., 4c‘?cf > ﬂiz,‘v’i e DN. Under this condition, the pos-
itive weighted sum of the TSO and DSO utility functions is diago-
nally strictly concave, which implies that there exists a unique GNE
solution of the shared responsibility balancing game. O

5.3. Local markets

For coordination scheme (iii), we start by discussing the
motivation for its implementation in 5.3.1, then we detail its
mathematical formulation in 5.3.2. The bilevel optimization
problem is reformulated as a mathematical program with com-
plementarity (equilibrium) constraints in 5.3.3. Relations with
coordination scheme (ii) are highlighted in 5.3.4.

5.3.1. Motivation

In this coordination scheme, we assume that there are separate
local markets, in each one of them operates a DSO. Resources
from the DSO grids can only be offered to the TSO after the
DSOs have selected resources needed to solve local imbalances
within their periphery. The TSO is responsible for the operation
of its own balancing market, where both resources from the
transmission grid and resources from the distribution grids can
participate. This is motivated by the fact that the RES-based DERs
are not fully used for the moment. Giving the possibility to the
TSO to activate directly DERs is then meaningful for completely
using DERs, directly letting the TSO cover for the cost incurred
by activating the resources it needs. In practice, it can be a way
to avoid the waste of power into the distribution grid, as well
as helping in congestion management, and can be coupled with
flexibility mechanisms like demand response. This scheme makes

6 Note that we have the strict concavity, if 4cfcf > B;, Vi € DN.
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Using resources
of its own net-
work and antic-
ipating the ra-
~ tional reaction
= of the TSO, the
= DSO solves lo-

- cal imbalances.

(2) The TSO
clears the
— O : transmission
market using
tranmission
resources and
available dis-
tribution re-
sources.

DSO \

(1) After
clearing of
the distri-
bution mar-
ket, The DSO
sends a signal
YDSO = UDSO
to the TSO.

Fig. 4. Graphical representation of TSO-DSO coordination scheme (iii), called local markets. On the left part of the figure, the DSO anticipates the rational reaction function
of the TSO by computing backwards urso(upso). The anticipation process takes place prior to the Stackelberg game. On the right part of the figure, the Stackelberg game
involving the DSO and TSO takes place forward. First, the DSO sends a signal ypso = urso to the TSO which, in a second time, reacts rationally by activating transmission
resources and possibly distribution resources if available. The DSO guarantees the feasibility of the dispatch on the distribution grid.

the mathematical link with the ‘local ancillary service market’
proposed in Gerard et al. (2017). A graphical representation of the
scheme is available in Fig. 4. Contrary to the shared balancing
responsibility game introduced in Section 5.2 that we interpret
as a non-cooperative game, with bounded rationality of the TSO
and DSO (implying that they both play at the same time), under
the local markets coordination scheme that we describe in this
section, the DSO is assumed to play first anticipating the rational
reaction of the TSO, which reacts secondly to the signal sent by
the DSO following its rational reaction function.

5.3.2. Formulation

This third coordination scheme can be interpreted as a sequen-
tial game involving the TSO and DSOs. We model the coordination
scheme as a Stackelberg game with multiple leaders (DSOs) and
one follower (TSO). The multi-leader Stackelberg game can be
formulated as an EPEC (Le Cadre, 2018). As recalled just before the
beginning of Section 5, since we assume that the local markets do
not share any resource with each other and to keep the economic
interpretations as simple as possible, we consider a single DSO.
Stackelberg games are generally formulated as Bilevel mathe-
matical Programming Problems (BLPPs) (Dempe & Dutta, 2012;
Dempe et al., 2015). BLPPs are hierarchical optimization problems
combining decisions of two decision makers, the so-called leader
and the so-called follower. The leader acts first, and the follower
reacts optimally on the action of the leader. The goal of the leader
is to find such a selection which, together with the response of
the follower, maximizes its utility function (Dempe et al., 2015).

In this class of problems, the set of decision variables is
partitioned between upsg € FSpsp and ursp € FStso- Given
Upso € FSpso, the vector of TSO decisions ursg is to be chosen as
an optimal solution ursg = ursg(Ypso) of an optimization problem
parametrized in ypso € Ypso, defined as the signal sent by the
DSO to the TSO. This problem is the so-called lower-level problem
of the TSO. The solution ursg(ypso) is called the rational reaction
of the TSO on the signal of the DSO, ypso € Ypso (Basar & Olsder,
1999; Dempe & Dutta, 2012; Dempe et al., 2015). Knowing this
reaction, the bilevel problem reads as an optimization problem for
the DSO in Upso € FSpso only.

The general formulation of the BLPP problem in a local market
coordination scheme, can be written down as follows:

max 7pso (Upso, @),
Upso € FSpso,Urso (Ypso ). XeX

St Vi=Up + 2(R,'fip —|—Xifl-q) — II(RIZ +Xi2)’ Vi e DN,

> fi-

leLL|l=(m,n)

(Bn+ Apn) + ) (ff = LiR) + (

Jjen

> fz)=Dn

leL|l=(n,m)
+ ADy(w) + Gpvy, VN € Ny,

F7 = S~ Ry — (B + AP + (5 + ADi(@) — APY)

jeg;
+Gv; =0,
Vi € DN,
fiq — Z(qu —1;Xj) +q; — Bjv; =0, Vi e DN,
jeg;

(f)? + (f1)? < S%.Vie DN,
(fH?* + (fH? < vil;, Vi e DN,
(fF —iR)?* + (f — IiX;))* < S}, Vi e DN,

urso(Ypso) = arg  max 7150 (Urso. @),
Urso€FS1s0,XeX

st. fi=Bi(6n—6p),Vl=(n,m)el,

(Pn+ Apn) + ( Z fi—- Z fl) =Dy + ADp(w),

leL|l=(m,n) leL|l=(n,m)
Vn e TN,
(Pn + Apn) + Z(ff—ljRj)-i-( > - ), fl)
jeey leL|l=(m,n) leL|l=(n,m)

=Dy + ADp(w) + Guvp, V1 € Ny

Note that in the BLPP formulation, we have kept urso(¥pso) in
the decision variables at the upper-level. The reason for it is that,
in all generalities, the lower-level problem may have multiple so-
lutions. The leaders (DSOs) being not allowed to force the follower
(TSO) to take the one or the others of its optimal solutions. Hence,
the leaders cannot predict the true value of their utility functions
until the follower has communicated its choice. To overcome this
difficulty, two approaches have been suggested in Dempe and
Dutta (2012) and Dempe et al. (2015): in an optimistic approach,
the leader supposes that the follower is willing to support him,
i.e,, that the follower will select a solution ugso(ypsg) Which is the
best from the point-of-view of the leader. On the contrary, in a
pessimistic approach, the leader is to bound the damage resulting
from an undesirable selection of the follower, i.e., it is assumed
that the follower will select a solution ursg(ypsg) which is the
worst from the point-of-view of the leader.
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In the following, we will assume that ypso = upgp, i.e., the TSO
observes the actions chosen at the upper level by the DSO, but
more complex formulations with feedback functions capturing
partial observation of upgy might be considered.

Using Propositions 2-4, it is possible to reformulate the BLPP
as the following bilevel optimization problem in upgg € FSpso, the
TSO optimization problem being nested at the lower-level:

7pso (Upso, @),
Upso€F Spso,rso (Upso)

s.it. (7). (8),(9),

(31,
urso(Upsp) € arg max mrso(Urso, @),
urso€FStso
s.t. (29), (30). (47)

Bilevel optimization problems are non-concave programming
problems with an implicitly determined feasible set. In our prob-
lem, assuming that the decision variables of the DSO are fixed, the
feasibility set of the follower (TSO) optimization problem is convex
according to Proposition 5. Furthermore, the TSO utility function
is parametric in the DSO’s decision variables Ap8, Ap¢, q, v, and
strictly concave in Ap. We can conclude that the lower-level
problem admits a unique point-to-set solution Ap*(Ap$, Ap©,q,v)
(also called rational reaction or reaction function) and the bilevel
problem is well defined (Dempe & Dutta, 2012).

We replace the lower-level problem with its KKT conditions
from Section 5.2.4. This results in a mathematical program with
complementarity (equilibrium) constraints (MPCC) (Dempe &
Dutta, 2012; Dempe et al., 2015; Yao et al., 2008) that we describe
in the next section.

5.3.3. MPCC reformulation

The BLPP problem (47) is reformulated as an MPCC, replacing
the TSO problem with its KKT conditions (39), (40), (41), (36),
(29). The MPCC can be written down as:

max  7pso((Ua)gen, @),
Upso€F Spso.Urso

s.t. (7),(8),(9).
€2))
(39). (40), (41). (36). (29). (48)

Since the TSO and DSO utility functions are concave, the KKT
conditions are necessary and sufficient to determine an optimum
for the BLPP (47).

The constraints corresponding to the lower-level problem of
BLPP provide closed form expressions for the TSO reaction function
Ap*(.), which can be expressed as a parametric function of Ap8,
ApS, g, v. Following Section 5.2.4, we obtain Apj, equals:

(@) (p(0, Ap%, Ap©, q,v) — |Minc|TC — pc),

.. Py (Dy 4+ ADp(w
ir Ont AU (0, Aps. AP q.0) ~ MiclTC ~ o),
n

(ii) (p(0, Ap%, ApC, q, V) + [Minc|TC — pc),

.o P.(Dy + ADy (@

if Ot BDUO) 0, Aps. AP q.0) + IMiclTC ~ o),
n

Pn(Dn + ADn(w))

otherwise.
2¢y

(i)

Another difficulty is that bilevel programming BLPP is not a
special case of MPCC in general (Dempe & Dutta, 2012). This is not
obvious and concerns local solutions. For global and local optimal
solutions of the MPCC to correspond to global and local optimal
solutions of the BLPP (47), we need to check that the lower-level
problem satisfies Slater’s constraint qualification (Dempe & Dutta,
2012), i.e., that there exists a reaction function Ap*(.) such that
all the nonlinear constraints for the nested optimization problem

are slack. Since the only nonlinear constraint is constraint (29),
this is true in our case. For this case where Slater’s constraint
qualification is verified, global and local optimal solutions of MPCC
(48) coincide with global and local optimal solutions of the BLPP
(47). In other words, MPCC (48) is an equivalent reformulation of
BLPP (47).

To solve the MPCC associated with the BLPP, we aggregate
the KKT conditions associated with the DSO’s and the TSO’s
optimization problems, which, in general, form a mixed non-linear
complementarity problem. Similarly to Yao et al. (2008), we have
assumed that the day-ahead demand and marginal activation cost
functions are linear, so the problem becomes a linear complemen-
tarity problem, as soon as we remove constraint (29). The BLPP is
then solved as a linear complementarity problem, assuming that
constraint (29) is met. If, a posteriori, the equilibrium solution
violates (29), the algorithm solving the linear complementarity
problem is re-run with different initial conditions.

5.3.4. Relationship with the shared balancing responsibility game

To find the optimum for the DSO and TSO in this case, we
have the same KKT conditions as in Section 5.2.5 except that Vp,
is replaced by 0 when we are in case (i) and (ii) and that the
constraints corresponding to the lower-level problem of BLPP are
replaced by the closed form expression of Ap*(.).

Applying backwards induction to the local market game is
the same as applying the concept of dominance, i.e., eliminating
sequentially dominated strategies, taking into account sequential
rationality. Refinements of GNE which incorporate sequential
rationality are called Subgame Perfect GNE (Fudenberg & Tirole,
1991; Osborne & Rubinstein, 1999). So a Subgame Perfect GNE is a
strategy profile that specifies a GNE in every subgame, i.e., part of
the extensive form of the local market game that constitutes itself
a well-defined extensive form game (Basar & Olsder, 1999).

We cannot obtain closed form expressions for the GNE so-
lutions of the shared balancing responsibility and local market
games because of the conic constraints introduced by the SOCP
relaxations in the DSO optimization problems.

6. Imperfect information setting

All the coordination schemes introduced in Sections 5.1-5.3 are
formulated in a perfect information setting, i.e., all the agents have
access to the (full) state x. In many cases, however, not all infor-
mation is common knowledge because some agents may choose to
hide or only partially disclose their private information, to avoid
the disclosure of sensitive intra-area data (Halilbasic et al., 2017).
In these cases, information asymmetry might appear between the
agents, which may impact their strategies. In this section, we con-
sider a specific information structure. We assume that the state-
measurement (observation) function defined in Section 3.3 takes
the following form: yrso = hrso(x) = X + €750 and ypgo = hpso (x) =
x+ €S0 where €0, €DSO can be interpreted as noises; there-
fore falling in the imperfect information setting described in
Section 3.3 ii). The fact that TSO and DSO get noisy observations
of the state can come from errors in the sensor measurements on
the transmission and distribution networks, or from strategic com-
munication mechanisms through which the agents get incentives
to bias their reported measures (Le Cadre & Bedo, 2016).

6.1. TSO forecast of the state variable

The TSO observes perfectly (i.e., without noise in the measure-
ment) the power flows on its own transmission network, (f});cr,
but does not know a priori the operational parameters R, X, G,
B and distribution network topology characteristics Mgj, k& of the
DSO that determine the DSO state. This means that the TSO needs
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to forecast the active and reactive power flows and current magni-
tude on the distribution network (DSO state), to solve the KKT con-
ditions 5.2.4 that determine its best response to the DSO strategy.

From Egs. (18) and (19), the DSO active and reactive power
flows can be expressed as linear functions of the DSO decision
variables. Since the TSO does not observe the DSO state, we intro-
duce forecasts of the TSO related to the active and reactive power
flows and current squared magnitude on the DSO distribution
network. Let €[50 = (eiTSO‘p eiTSO‘q eiTSO'l) ~ N (u]%0:6159) be the
forecast error made by the TSO when estimating the DSO network
state, and u[50 and 0,750 are the mean and the standard deviation
associated with random variable €70 in distribution node i. We
set:

fP = fp 4 elsor

= diag(vuosofp)uDSO
+([I + M) — 2Mdiag(R)W '@ (R)](p& — p* — AD(w))
—Mdiag(R)W 'Hvy) + €T50P, (49)

fq = fa + €TS0.4
= diag(Vu,g, f)upso — (2Mdiag(X)¥ ' d(R) (p8
—p¢ — AD(®)) + Mdiag(X)¥~"Hvy,) + €504, (50)

i: I+ ETSO,I
= diag(Vuy,Dupso
+2UTO(R) (pg — p¢ — AD(w)) + W Hus | + €01 (51)

Note that Vi, fP9 is the gradient of f» 9 restricted to the DSO
decision variables, i.e., it does not contain V 5,f" 9. The gradient of
the DSO current squared magnitude V[ is defined by:

VApgl :2\11*1CI)(R),
Vapl=20-1$(R),
Vol = 2010 (X),
Vil =-T.

This implies that the (full) state variables as observed by the
TSO now take the form:

R (fl )le]L
(.&p)ieﬂ)Nk,keN

Y1so =
(.&q)ieDNk,keN

()icoN, ken

6.2. DSO forecast of the state variable

Similarly to the TSO, the DSO may observe only partially the
state variable. The DSO observes perfectly the active and reactive
power and current magnitude on the distribution network (i.e.,
without noise measurement), fP, fI, I, but needs to forecast the
flow on the transmission network (TSO state), to solve the KKT
conditions 5.2.5 that determine its best response to the TSO
strategy. To that purpose, we introduce the following form for
the forecast of the DSO related to the power flow on the TSO
transmission network:

fi=fi+ePOvieL, (52)
with €9 ~ N (u>%;0250), uP° and o0 are the mean and
the standard deviation associated with random variable €0 in
transmission line [

This implies that the state variables as observed by the DSO
now take the form

(fl )le]L
(f,'p)ie]IDNk,keN
(fDicon, ken
() iepn, keN

Ypso =

6.3. Shared balancing responsibility with imperfect information

Under shared balancing responsibility, the TSO solves in Ap the
system defined by the KKT conditions of Eqs. (39)-(41), (29), tak-
ing as parameters the decisions variables of the DSO ApS, Ap‘, q,v
obtained from the KKT conditions (42)-(46). Since the TSO has
imperfect information about the (full) state variable, we need
to consider these equations all together and to incorporate the
forecasts of the TSO. To compute the TSO best response function,
Eqs. (42)-(45) are updated by replacing fP, f4, | by fp,fq,f as
defined in Eqgs. (49)-(51). A graphical representation of the scheme
is available in Fig. 3.

Simultaneously and independently, the DSO solves in
Ap®, Ap,q,v the system defined by the KKT conditions Eqgs.
(42)-(46), taking as parameters the decisions variables of the TSO,
Ap, obtained from the KKT conditions (39)-(41), (29). Since the
DSO has imperfect information about the (full) state variable, we
need to consider these equations all together and to incorporate
the forecasts of the DSO. Eq. (25) is changed into:

Mincf =p—pPc— MinceDSO?
which implies that Eq. (29) needs to be updated as follows:
(BTME (p(Ap, AP, APF, q,v) — pc — Minc€®®))” > 0.

mc

Egs. (40) and (41) are updated as follows:
—[Minc| TC + pc + Minc€™® < p(Ap, Ap®, ApS, q,v)
= |Minc|TC + pc + MinceDSO~

The intersections of the best responses of the TSO,
urso(upso, €799), and DSO, upso(ursg, €P50), furnish the GNE,
which are parametrized in the errors of the TSO and DSO €759,
€DS0_ Let Sgyr be the set of GNE solutions of the shared balancing
responsibility game with imperfect information. In Section 7 we
will characterize the impact of TSO and DSO uncertainty on the
efficiency of the shared balancing responsibility game.

7. Numerical illustrations

The three coordination schemes are tested on a meshed trans-
mission network made of three interface nodes numbered from
1 to 3. Each one of these interface nodes is itself the root of
a tree capturing a distribution network containing 5 nodes, as
pictured in Fig. 1. Operational parameters are calibrated based
on a NICTA NESTA test case (Coffrin, Gordon, & Scott, 2017). The
data sets used in this section are available online’. We only run
tests on this stylized example for different reasons: (a) equilibrium
problems are computationally difficult to tackle, (b) we want to
provide a preliminary efficiency analysis on each scheme before
potentially selecting the ones that should be considered for large
scale instances, (c) the assumptions made on the network (meshed
transmission network with DC power flow and radial distribution
network with SOCP relaxation) are common and largely used in
the literature (Caramanis et al., 2016; Kocuk et al., 2016; Peng &
Low, 2014). We aim at proving concepts and showing how the
schemes work in practice in this work. Large scale instances are
then not considered here.

7.1. GNE spanning using random sampling: Quantifying the TSO and
DSOs’ remunerations

In this section, we evaluate the remuneration of the TSO and
DSOs. Since GNEs obtained as output of shared balancing responsi-
bility and local market coordination schemes might not be unique,
this requires to span the set of GNE solutions.

7 GitHub https://github.com/helene83/CS-Games
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110 T T ; T T ; T In Fig. 6(a), we have represented the TSO reserve activation
' ' level, quantified as the sum of the reserves activated on the TSO
e S network and at the interface nodes Y.y . Apn. and the DSO
reserve activation level, quantified as the sum of the reserves
90} activated on the DSO network ;. py(Apf+ Apf), evaluated at
: : : : the social optimum in red, GNE solutions of the shared balancing
L S R SR responsibility game in blue, and local market in green. For all the
‘g’ ; coordination schemes, the level of activated reserves is higher on
g 70 E the DSO network than on the TSO network; this can be explained
. : by the fact that in our NICTA NESTA test case, activation costs of
60 ; DERs are assumed to very low (close to zero because coming from
: : : P% RES-based generators) whereas conventional generators’ activation
50 anmanainnaaitannina nnaii & sibiRanieaean ........... costs on the TSO network are quite hlgh Logically, Under co-
0% social welfare optimization, the integrated market operator activates a very low
40| #*% GNE for shared balancing amount of reserves on the transmission network and a large quan-
BEm GNE for bilevel tity of reserves on the distribution network. Furthermore, more
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Fig. 5. GNE found by a parametrization approach, using random sampling. In red,
we have represented 7 150, 7T pso evaluated at the social optimum; in blue and green,
T 150, Tpso evaluated in the set of GNE solutions of the shared balancing responsi-
bility and local market game respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Following the approach in Nabetani, Tseng, and Fukushima
(2011), we span the set of GNE by randomly sampling the
Lagrange multipliers A = (Ao, A7, AT, A2, A3, Ag, As).

We proceed as follows. We start with an initial guess
A0 ufe) uds,. In practice, we set A°=0 and we define ul,
and “?so as vectors containing the midpoints of the intervals
defined by the feasibility sets FSpso and FStso. Then, by min-
imization of the gradient of the Lagrangian function under
feasibility constraints in each coordination scheme, we update
A*, Upgo, U and compute 775 (Ufgy) and 7pso(Ujyg,). The algo-
rithm is repeated (Facchieni & Kanzow, 2007) for updated initial
guesses A, U, Upgy, Where A is sampled randomly according to a
uniform density function, until a stopping criterion is met.

In Fig. 5, we have represented the TSO and DSO utility functions
evaluated in each coordination scheme outcome. In red, the utility
functions are evaluated in the social welfare optimum obtained as
output of the centralized co-optimization problem (34). As proven
in Proposition 7, there exists a unique solution of the centralized
co-optimization problem. In blue, the utility functions are evalu-
ated in the set of GNE solutions of the shared balancing respon-
sibility game (37) and (38)%. Finally, in green, the utility functions
are evaluated in the set of GNE solutions of the local market game
(47) formulated as a bilevel optimization problem. We observe
that for the TSO it is more advantageous to behave as a follower
when the DSO anticipates its follower resource activation strategy
than to compete simultaneously with the TSO through a shared
balancing responsibility game. This situation might be interpreted
as a last-mover advantage for the TSO (Mas-Colell, Whinston,
& Green, 1995; Osborne & Rubinstein, 1999). Furthermore, the
joint activation of reserves on transmission and distribution grids
through co-optimization leads to a lower profit for the TSO than
under the two other decentralized coordination schemes.

7.2. Social welfare and reserve activation levels
In this subsection, we compare the three coordination schemes

based on other meaningful criteria to assess their relative effi-
ciency, such as social welfare and reserve activation levels.

8 Note that as the conditions of Proposition 9 are not checked in our data set,
there is no guarantee of uniqueness of GNE in this test case.

reserves are activated on the TSO network under local market
coordination scheme than under shared balancing responsibility
coordination scheme. This can be interpreted as a by-product of
the last-mover advantage for the TSO, which gives rise to higher
profitability for the TSO than the shared balancing responsibility
game as highlighted in Section 7.1. In Fig. 6(b), we have repre-
sented the social welfare as function of the total reserve activated
by TSO and DSO evaluated in the social optimum in red, GNE solu-
tions of the shared balancing responsibility game in blue and local
market in green. We observe that the centralized co-optimization
coordination scheme guarantees the highest level of efficiency
in terms of resource allocation, giving rise to the highest social
welfare with 200 €, followed very closely by the best equilibrium
of the shared balancing responsibility game with 199 €. The local
market coordination scheme gives rise to a lower social welfare
than the centralized co-optimization coordination scheme with
values between 147 € and 153 €. However, on average (e.g., with
equiprobability of all the equilibria), the local market coordination
scheme provides a higher social welfare with an average value of
150 €, than the shared balancing responsibility with 143 €.

Using our test case to assess the relative merits of our three
coordination schemes, we summarize their comparison below:

The local market coordination scheme gives rise to higher prof-
itability for the TSO than the shared balancing responsibility co-
ordination scheme.

The joint activation of reserves on transmission and distribution
networks through co-optimization leads to lower profit for the
TSO than under the two other coordination schemes.

» More reserves are activated on the TSO network under local
market coordination scheme than under the two other coordi-
nation schemes; the centralized co-optimization scheme giving
rise to very low amount of reserves activated on the TSO net-
work compared to the activation level on the DSO network.
The social welfare is the highest when evaluated at the op-
timum of the centralized co-optimization problem, followed
very closely by the highest value of the social welfare evalu-
ated in the GNEs solutions of the shared balancing responsibil-
ity game. This means that the shared balancing responsibility
game can reach an efficiency level very close to the central-
ized co-optimization problem, while enabling the introduction
of strategic behaviors from the TSO and DSOs.

The local market coordination scheme leads to a lower level
of efficiency than the centralized co-optimization coordination
scheme, which can be explained by the last-mover advantage
of the TSO, which activates reserves on its network that are
far more expensive than RES-based DERs in the distribution
network. However, on average, the local market coordination
scheme reaches a mean social welfare value higher than the
shared balancing responsibility game.
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Fig. 6. Reserve activation levels measured as the sum of the reserves activated by the TSO and DSO on the transmission and distribution networks in Fig. 6(a) at the social
optimum in red, GNE solutions of the shared balancing responsibility game in blue, and local market in green; social welfare as function of the total reserve activated by TSO
and DSO evaluated in the social optimum in red, GNE solutions of the shared balancing responsibility game in blue and local market in green in Fig. 6(b). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

7.3. Impact of Information

Since the operational parameters and network topology are typ-
ically not shared (common knowledge) among TSO and DSOs, due
to partial information disclosure or privacy constraints (Halilbasic
et al., 2017), this leads the TSO and DSO to have their own fore-
casts of the state variable, i.e., yr5o for the TSO and ypso for the
DSO, which may not coincide between them and with the true
(full) state value. In Egs. (49)-(52), the uncertainty of the TSO and
DSO on the state variable is captured through an error modeled as
a random variable. Without loss of generality, we assume that the
mean and standard deviation of the TSO error are the same for
the active power, reactive power, and current magnitude forecasts,

and that these parameters coincide at all nodes, i.e., ,u,.TSO*”/q/l =

uT30 Vi e DN and a,.TSO’p/q” =070 Vi e DN. We also assume that
the mean and standard deviation of the DSO forecast errors are
the same at all lines, i.e., uP50 = uP0 Vi e L, P50 = ¢P0 Vi e L.
Following (Robu, Vinyals, Rogers, & Jennings, 2017), we character-
ize each agent by its coefficient of variation, which is the ratio of
its mean over standard deviation. The coefficients of variation are
thus r for the TSO, and Zg% for the DSO. We consider u™0 >0

and P9 > 0 as being fixed in the numerical illustrations.

Given a fixed mean, a large standard deviation means that the
distribution of the forecast errors in the state tends to be flat.
It may decrease assuming that the other agents disclose some
information on their own state.

We now want to quantify the impact of the coefficient of
variation of each agent on the GNE set, Sgyg, in the context of
imperfect information. To that end, we introduce the Price of
Information (Pol) as a variant of the Price of Anarchy (Nisan,
Roughgarden, Tardos, & Vazirani, 2007), as an efficiency measure.
The Pol is the worst-case ratio of the optimal achievable social
welfare with perfect information to the social welfare at an
equilibrium with imperfect information:

SW (¥fso- Yiso)

Pol := — .
MMy g0, ypsoeSene SW(VTSO, VDSO)

The Pol measures the worst-case loss arising from insufficient
ability to control and coordinate the actions of selfish agents
resulting from decentralization and lack of information disclosure

1.26
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Fig. 7. Price of Information (Pol) as a function of the TSO coefficient of variation

o™ TS50 2
s M0 = 10-.

caused by privacy constraints. The inefficiency loss is minimized
when the Pol is the smallest and approaches 1.

Running simulations on the network considered in the previous
section, we observe that the coefficient of variation of the DSO
has a limited impact on the Pol. Intuition behind it is that in the
DSO optimization problem, (7)-(9) contain only decision variables
of the DSO while (31) is shared between TSO and DSO but the 6
value does not affect directly the DSO utility function. So we focus
on the coefficient of variation of the TSO. We notice in Fig. 7 that
the Pol is a stepwise increasing function of the TSO coefficient of
variation and that the Pol reaches an upper-bound value of 1.255.
Furthermore, the loss of efficiency caused by decentralization is
limited in full information (Pol = 1.177), i.e., for €750 = P50 = 0,

8. Conclusion

In this paper, we have formulated three coordination schemes
involving DSOs and a TSO as mathematical programs. The first
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coordination scheme is a centralized co-optimization problem
where an integrated market operator activates jointly resources
connected at the transmission and distribution levels. We for-
mulate it as a standard constrained optimization problem. The
second coordination scheme, called shared balancing responsi-
bility, assumes bounded rationality of the DSOs and TSO, which
activate simultaneously their resources taken as given the other
agents’ decision variables. It is formulated as a (simultaneous)
non-cooperative game. In the last coordination scheme, we intro-
duce some rational expectation from the DSOs which anticipate
the TSO market clearing. We model this third local market scheme
as a multi-leader Stackelberg game, that we formulate as a bilevel
mathematical optimization problem. For each scheme, we deter-
mine conditions for existence and uniqueness of solutions. We also
reformulate the multi-leader Stackelberg game as a mathematical
program with complementarity constraints (MPCC), which does
not coincide with the shared balancing responsibility game in
general. We run a numerical illustration on a network calibrated
on NICTA NESTA test cases and span the set of Generalized Nash
equilibrium solutions of the decentralized coordination schemes.
We observe that the decentralized coordination schemes are more
advantageous in terms of profit maximization for the TSO than the
centralized co-optimization, and that a Stackelberg game setting
(with rational expectation from the DSOs) gives higher profits
for the TSO than a non-cooperative game setting with bounded
rational agents. Regarding the efficiency level in terms of resource
allocation, the centralized co-optimization of transmission and
distribution network resources reaches the highest value, followed
very closely by the shared balancing responsibility game. The third
coordination scheme gives lower values, which can be explained
by the last-mover advantage of the TSO which activates conven-
tional generation reserves on its network which are fare more
expensive than RES-based generations available on the distribu-
tion network. Finally, assuming that the agents have imperfect
information on the (full) state variable, we check numerically that
the Price of Information, measured as the worst-case ratio of the
optimal achievable social welfare with prefect information to the
social welfare at an equilibrium with imperfect information, is an
increasing stepwise function of the TSO coefficient of variation
and that it reaches an upper-bound threshold value.

Appendix A
Al. Proof of Proposition 5

We have proven that Eq. (29) is true if, and only if, p(.) — poc
is in the image of M;,.B*. By definition, the image of M;,.B* is a
convex space. This proves that Eq. (29) defines a convex set in
Uurso, Upso-

From Eq. (26), it is straightforward to check that p(.)
is linear in Ap, ApS, Apf q, v. Then, for any &£e[0; 1],
pElx+(A-8y)=EpXx)+(1-&)p(y). So we can show eas-
ily that £x+ (1 — &)y satisfies Eq. (30). Therefore, Eq. (30) also
defines a convex set in ursg, Upso.

Therefore, the Cartesian product of the convex sets defined by
Egs. (29) and (30), is itself a convex set.

A2. Proof of Proposition 6

Introduce the mapping z (fl!”(z))2 + (fl.q(z))z. fP and f{ are
linear in each component of z= (Ap8, Ap, q,v). So the mapping
is the sum of two convex functions, themselves compositions of
convex functions and linear functions. Therefore, the mapping is
convex in z. Consider zy, z which verify Eq. (7). We want to prove
that for any & €[0; 1], £z; + (1 — &)z, also verifies Eq. (7). This is

straightforward, indeed:

Pz + (1 -6)2)" + fl(Ez + (1 - )z)
<Eff@)?+ (1 -6 (2)* +Ef(z21)* + (1 = &) fl(z2)*,
by convexity of the mappingz (fl.p(z))2 + (ff @)%,
<SP+ (1-&)S?2 =52

This proves that Eq. (7) defines a convex set in z.

Similarly, consider the mapping z~ (ff @) + (ff @) -
vili(z). The mapping z+— —1;l;(z) gives rise to a gra-
dient function of the form g,(z):=(2¥-1®dR)V -
29T RW22Y1dX)w2Yv)T. For any 2z, 23 € FSpso,
g0 @) i (22) = 8(U D(R)2v1 1 + 41D (X)) 110, +
4Y2pyyv, >0 under the assumption that V7> 0,Vie DN. This
implies that the function —g, is monotonic, ie., that the map-
ping z+ —1;lj(z) is convex. Then the mapping z+ (fip(z))2+
(fl.q(z))2 —1;li(2) is convex as the sum of two convex functions. It
is straightforward to prove that Eq. (8) defines a convex set using
the same reasoning as for Eq. (7).

To prove that Eq. (9) defines a convex set, introduce the map-
ping 2> (fP(2) - Rli(@)* + (f1@) - Xili(2))*. fP(2) - Rili(z) and
fiq (2) — Xl;(z) are linear in each component of z = (Ap$, ApS, q,v).
We have recalled that the composition of a convex function with a
linear function remains convex. Therefore, the mapping is convex
in z. It is straightforward to prove that Eq. (8) defines a convex set
using the same reasoning as for Eq. (7).

Therefore, the Cartesian product of the convex sets define by
Eqgs. (7)-(9) is a convex set.

A3. Proof of Proposition 7

Using the results of Propositions 5 and 6, the feasible set of the
optimization problem (34) is convex. Furthermore, differentiating
the social welfare function with respect to Ap, ApS, Ap‘,q,v we
obtain:

VAPSWT = —2(CnApn)ne’J1‘NUNx’

VapSW! = =2(AP),

VapSW! = —(B(p{ + ADi(@) = AP))); = 2(F AP o
V,SW' = 0,
V,SWT = 0.

Differentiating a second time the social welfare with respect to
Ap, Apé, Ap¢, we obtain the Hessian matrix of the social welfare,
which is null except on its diagonal which contains negative coef-
ficients —2(cn)neTnuNL, » —2((‘?)i€DN, —(Bi + 2¢{)iepn- We infer that
SW is strictly concave with respect to these variables. Therefore, it
admits a unique optimum Ap*(q,v), Ap¥*(q,v), Ap™(q,v). q and
v are determined by the constraints of problem (34) but are not
necessarily unique.
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