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A B S T R A C T

This article discusses a new method for the sizing of operating reserves by electric power system operators.
Operating reserves are used by system operators to deal with unexpected variations of demand and generation,
and maintain a secure operation of the system. This becomes increasingly challenging due to the increasing share
of renewable generation based on variable resources. This paper revisits the current sizing method applied in
Belgium, which is based on a static approach that determines the required capacity once a year. The presented
dynamic sizing method determines the required capacity on a daily basis, using the estimated probability of
facing a system imbalance during the next day. This risk is estimated based on historical observations of system
conditions by means of machine learning algorithms. A proof of concept is presented for the Belgian system, and
demonstrates that the proposed methodology improves reliability management while decreasing the average
capacity to be contracted. The method is compliant with European market design, and the corresponding reg-
ulatory framework, and is of particular interest for systems with a high share of renewable generation. For these
reasons a gradual implementation in Belgium towards 2020 has been decided based on the results of this study.

1. Introduction

1.1. Context

In power system operations, the high-voltage System Operator1 is
responsible for maintaining the balance between injections and off-take
in its control zone. Any divergence from this equilibrium results in
frequency deviations which can, in extreme cases, disrupt the system by
causing, among other effects, the disconnection of generation, demand,
or even black-outs. In the liberalized European market, market players
are represented by Balancing Responsible Parties (BRPs) who are in-
dividually responsible for maintaining a balanced portfolio of trading
positions and physical injections/withdrawals of power. Similar to
other TSOs, the Belgian TSO (Elia System Operator, hereafter referred
to as Elia) has established a balancing mechanism according to which
(1) market players are incentivized to maintain and restore the system
balance and (2) the system operator manages remaining imbalances in
the system by means of contracted and non-contracted power reserves

supplied by Balancing Service Providers (BSPs).
Operating reserves represent capacity which can be activated in an

up- or downward direction when requested by the TSO in order to re-
store the system balance. Under current European legislation, the
System Operation Guidelines (SOGL) define Frequency Containment
Reserve (FCR), automatic Frequency Restoration Reserve (aFRR) and
manual Frequency Restoration Reserve (mFRR) (European Commission
2017a). These operating reserves are activated according to a certain
hierarchy, as indicated in Fig. 1. FCR is activated automatically and on
a continuous basis, and its set-point is adjusted up- or downwards as
required so as to stabilize the system frequency in the synchronous area,
e.g. Continental Europe. aFRR is activated automatically and on a
continuous basis, and its set-point is adjusted up- or downwards so as to
handle sudden imbalances in the control area, e.g. Belgium. mFRR can
be activated manually upon the request of the system operator and can
be used to address a major imbalance in the zone managed by the
system operator. In Belgium, mFRR is activated after aFRR and remains
activated until the cause of the system imbalance is resolved. In some
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systems, FRR is supported with Replacement Reserves (RR), which are
slower manually activated reserves meant to partially replace the FRR
after 15min. Generally, market parties are incentivized to restore their
imbalance after 15min, and this mechanism is specified as optional by
the SOGL. It is therefore considered out of the scope of this paper. The
reserve product characteristics and order of activation is described in
the balancing rules, and is governed by European legislation, specifi-
cally the Electricity Balancing Guidelines (EBGL) (European
Commission 2017b).

As inadequate reserve capacity increases the risk of resorting to
emergency measures, such as demand shedding or the curtailment of
generation, the TSO defines the minimum operating reserve capacity
required to maintain the balance in the control zone so as to achieve a
predefined reliability level. This reserve capacity requirement, and in
particular the methodology of its determination, needs to be approved
by the National Regulatory Authority (NRA), and this reserve capacity
is subject to a set of minimum requirements described in the SOGL. In
contrast, the FCR capacity which is needed for maintaining stable fre-
quency is determined on the level of the synchronous area. The ob-
jective of this paper is to present system operators with a novel ap-
proach to size their FRR needs while remaining in line with the
regulatory and legal framework. The method is based on a dynamic
approach, whereby reserve needs are determined on a daily basis, based
on the probability of facing system imbalances, with the goal of the
method being to match reserves to the exact amount of reserve capacity
which is needed in order to maintain reliability. A proof of concept
which demonstrates the effectiveness of the proposed approach has
been published by Elia (2017a).

1.2. Literature review

The sizing of operating reserves has been studied extensively in the

literature, due to its significant impact on system reliability and market
operation. Sizing decisions are driven by two major types of uncertainty
in power system operations. The first type of uncertainty are forced
outages, predominantly generation units and transmission line con-
tingencies. The second type of uncertainty relates to forecast and market
errors, such as demand, photovoltaic or wind power forecast errors,
generator ramps, and set-point deviations related to the mismatch with
day-ahead hourly and intra-day quarter-hourly market products.

Operating reserve sizing methods can be classified in static and
dynamic methods. Static sizing methods, such as the one currently
adopted by Elia (2013), are already compliant with the requirements
defined in Art. 157 of the SOGL. The guidelines require that the sizing
method for FRR in place has to be based on (1) a probabilistic metho-
dology covering the imbalances for at least 99% of the time, taking into
account historic system imbalance observations, and potential factors
that can influence imbalance within the time period considered, and (2)
the size of the dimensioning incident, i.e. the largest component failure,
which acts as a minimum FRR requirement. Static sizing methods
produce a reserve capacity target which remains constant over time (for
example, in Belgium the aFRR and mFRR requirements are until today
revisited on an annual basis), and were originally motivated by the
dominant role of component failures, and simplicity of implementation.
Specific literature focuses on the separation between aFRR and mFRR
(Jost et al., 2015; De Vos et al., 2013; Maurer et al., 2009).

The large-scale integration of renewable resources has overturned
this paradigm, since forecast errors have become an increasingly sig-
nificant source of imbalances, as opposed to contingencies which pose a
relative constant risk for imbalances. In particular, the largest con-
tingency is often considered as the predominant risk that the system
needs to be secured against, i.e. a nuclear generation outage of 1 GW in
Belgium. In contrast forecast errors vary over time depending on var-
ious observable conditions: for example, renewable forecast errors

Fig. 1. Schematic overview of the activation of operating reserves in Belgium (based on the SOGL).
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resulting in a shortage may be systematically smaller in periods for
which the renewable supply is forecasted to be very low, since there is
little margin for error in over-estimating renewable supply under such
conditions. This has motivated dynamic sizing (Bucksteeg et al., 2016;
De Vos and Driesen, 2014), whereby the amount of reserve capacity is
adapted according to observable conditions, e.g. the predicted wind
power generation, such that the same target reliability is achieved as in
static sizing.

Sizing methods can be further classified between bottom-up system
modelling methods and probabilistic methods. Bottom-up system model-
ling methods employ unit commitment and economic dispatch models
in order to determine how many units should be committed at the day-
ahead scheduling stage in order to cope with system uncertainty in real-
time (Dvorkin et al., 2015a, 2015b; Zhou and Botterud, 2014; Zhou
et al., 2013; Bertsimas et al., 2013; Meibom et al., 2011; Papavasiliou
et al., 2011; Ortega-Vazquez and Kirschen, 2009; Tuohy et al., 2009;
Gooi et al., 1999). This decision is determined endogenously in unit
commitment and economic dispatch models, with a typical objective of
minimizing system costs associated to committing the resources up-
front, and then dispatching them in real time in order to balance system
disturbances (with outages and forecast errors being represented en-
dogenously). By contrast, probabilistic methods focus on meeting a re-
liability target by determining a probability distribution function of
capacity shortfall, and setting the operating reserve requirements at the
quantile of the derived distribution which corresponds to the target
reliability.

The simplest probabilistic methods rely on heuristics that relate the
statistical parameters (e.g. the standard deviation) of the probability
distribution of capacity shortfall to a certain reserve requirement
(Holttinen et al., 2012). Parametric methods assume distributions, e.g.
Levy alpha-stable (Bruninx and Delarue, 2014), gamma (Menemenlis
et al., 2012) and Gaussian distributions (Maurer et al., 2009), on the
sources of uncertainty and seek to fit the parameters of these dis-
tributions based on data. More advanced probabilistic sizing methods
implemented in this article rely on machine learning, whereby the goal is
to use kernel density estimation, k-nearest-neighbours (Ohsenbruegge
and Lehnhoff, 2015), quantile regression based on artificial networks
(Jost et al., 2016, 2015), and k-means (Bucksteeg et al., 2016) in order
to predict system imbalances as a function of features.

This paper focuses on dynamic probabilistic methods, which, as
argued in this paper, strike a favourable balance between capturing the
complexity of future power system operations, and simplicity of im-
plementation. On the one hand, heuristic sizing methods remain
widespread in power systems, although they are unlikely to be adequate
for tackling the increasing complexity and uncertainty that power
systems with increasing decentral and renewable generation are coping
with. Only very simplistic dynamic heuristic approaches are known,
such as determining a spinning reserve capacity as percentage of the
hourly load and/or wind forecast (GE Energy, 2010; Papavasiliou and
Oren, 2013). Bottom-up approaches based on unit commitment models
present an interesting alternative. These methods result in challenges
that are well-known and have been discussed extensively in the lit-
erature, including scenario generation, scenario selection, and the re-
solution of the resulting large-scale problems within acceptable time
frames (Papavasiliou and Oren, 2013; Papavasiliou et al. 2011a). There
is growing scientific literature that demonstrates continuous improve-
ments in reducing computation time for these methods by means of
decomposition techniques that can be exploited to solve stochastic unit
commitment models in reasonable time (Feng et al., 2015a, 2015b;
Papavasiliou et al., 2015). Research has also focused on developing unit
commitment models that include uncertainty but are less computa-
tionally intensive (Bruninx and Delarue, 2017; Pandžić et al., 2016). An
appealing aspect of such models is that they are well suited for de-
termining optimal reliability levels, by optimally trading off the pro-
curement cost of reserves with the benefit of additional reliability
(Telson, 1975). Consequently, this can also be used to determine a

dynamic reserve capacity. However, such models require detailed in-
formation regarding the technical and cost characteristics of individual
generators, including information related to fuel cost, start-up cost,
minimum load cost, ramp rates, minimum up and down times. This
should be contrasted to the minimal information employed in the
proposed approach, which requires only power generator capacities in
order to conduct simulations of outage risks. The collection of detailed
data on a unit-level basis presents institutional challenges in European
electricity markets, where resources are bid as portfolios, which implies
that the transmission system operator may not have all the necessary
data which is needed in order to formulate and solve a stochastic unit
commitment model. This should be contrasted to US markets where
individual generator data is typically available to the independent
system operator, and can be used for formulating detailed stochastic
unit commitment models.

1.3. Paper contribution and structure

This paper presents two contributions relative to the state of the art.
Firstly, it presents the design of a mechanism for dynamic sizing of FRR,
which is compliant with the European market framework. Secondly, a
range of implementation methods are compared and tested in a proof of
concept in Belgium for 2020 and 2027, taking into account a realistic
operational context, including all known drivers for system imbalances.

Section 2 describes the dynamic sizing method considered in this
study, including the machine learning methods, used in order to map
the predicted system conditions to the system imbalance risk and the
resulting FRR needs. Section 3 presents the assumptions and data used
for this proof of concept on the Belgian system, while Section 4 dis-
cusses the results. Section 5 presents the conclusions and implications
for the market and regulatory framework.

2. Dynamic sizing methodologies

2.1. The drivers of system imbalances

As the dimensioning of FRR requirements relies on predicting the
risk for system imbalances, identifying the causes of system imbalances
is the basis of designing an accurate probabilistic dimensioning method.
System imbalances result in a deviation of the BRPs from their nomi-
nated position. Although the determination of the drivers of imbalances
is challenging, and a substantial degree of idiosyncratic error cannot be
explained by statistical analysis, it is possible to highlight some of the
factors that contribute to imbalances. An overview is given in Fig. 2 and
explains in further detail the factors that contribute to the two main
categories of uncertainty which were identified in the literature review:
(1) the forecast and market errors and (2) the power plant and trans-
mission asset forced outages.

The market and forecast errors affect the BRPs’ positions, which are
scheduled to cover the forecasted net demand in their portfolio, taking
into account variable renewable generation. Therefore, a forecast error
in generation (i.e. wind and photovoltaic forecast errors) or in demand
can result in a system imbalance, at least when the BRP is not able to
cover this imbalance through intra-day trading or real-time adjustments
in generation, storage or demand offtake, or through other bilateral
trades. On top of these forecast errors, some errors due to the market
design can also lead to deterministic frequency deviation, also referred to
as scheduled leaps (Hirth and Ziegenhagen, 2015), which result from
market deviations, i.e. the mismatch between the hourly granularity of
the market products (in day-ahead as well as intra-day markets) and the
continuous nature of operations. Finally, there remains also a part of
the imbalance which cannot be explained from the factors of Fig. 2, and
is referred to as residual noise or idiosyncratic error.

Forced outages occur when power plants such as nuclear or gas
power units shut down unexpectedly. Following such an event, the
missing generation contributes to the system imbalance. Imbalances
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may also result from the unexpected loss of a transmission asset (e.g. an
HVDC-interconnector) or demand, although the latter has a minor im-
pact on grid operations due to the smaller magnitude of the dis-
turbance. Therefore, outages related to the demand-side are typically
not accounted for in reserve dimensioning in Belgium. Belgium is a
relatively small system, and includes five 1-GW nuclear units. The peak
demand of the system amounts to 13 GW. The installed capacity of wind
power amounted to 2 GW in 2015, while the installed capacity of solar
photovoltaic capacity amounted to 3 GW. Therefore, the potential im-
pact of component failures (especially generator outages) is substantial,
at least in comparison with large countries such as Germany, where
imbalance is largely governed by renewable supply forecast errors.

2.2. Current static sizing methodology in Belgium

In its current ‘static’ method, Elia sizes the FRR needs of the system
once a year, based on historical system imbalances. The process is il-
lustrated in Fig. 3. The system operator develops a time series of si-
mulated system imbalances for the next year. These simulated system
imbalances are derived from historical system imbalances, which are
corrected for forced outage events and for factors which represent fu-
ture expected improvements in the management of system imbalance.
The historical forecast errors of wind power and photovoltaic power

generation are scaled up according to the projected future capacity roll-
out of renewable resources in the Belgian system. A time series of forced
outages is constructed by means of a Monte Carlo simulation, which
accounts for all generating units larger than 100MW based on their
outage probability and duration.

The probability density functions of the two time series (simulated
system imbalances and outages) are convoluted and the resulting
shortfall density function is used for determining the FRR needs. This is
achieved by sizing the FRR needs to a volume which achieves a pre-
defined reliability level. In the case of Belgium the target reliability
level for 2018 is 99.9%. The required FRR capacity is obtained as the
corresponding quantile of the system imbalance probability density
function. This methodology is combined with a deterministic approach
which sets the minimum FRR capacity at the dimensioning incident
level (N-1 criterion), i.e. the maximum deviation in a control area re-
sulting from the most severe power plant outage.

Until 2018, Elia has only dimensioned and procured upward reserve
capacity, although the aFRR is used in both directions. For 2018, Elia
determined a total FRR capacity requirement of 1190MW. It is noted
that Elia prepared a downward dimensioning compliant with SOGL for
2019. The FRR needs are covered with different sources of FRR capa-
city, including reserve sharing with other TSOs, aFRR (contracted sec-
ondary reserve) and mFRR (contracted tertiary reserves). In 2018, the

Fig. 2. System imbalance drivers and related system conditions that affect these imbalance drivers.

Fig. 3. Schematic representation of the static sizing method implemented in Belgium.
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aFRR volume amounted to 139MW, the contracted upward mFRR vo-
lume amounted to 830MW. In 2017, the contracted volume of aFRR
amounted to 143MW, the contracted volume of upward mFRR
amounted to 730MW, and the procurement cost can be determined at
approximately 70 million Euro. This procurement cost is estimated
based on average volumes and prices published on the website of the
TSO.

The current methodology is sensitive to extreme conditions, e.g. the
forecast errors of an offshore wind park on very windy days, and such
conditions impose high operating reserve requirements. However, since
extremely risky conditions are only valid under specific circumstances,
the FRR requirements are overestimated for a large part of the year,
resulting in oversizing and therefore inefficient procurement. Although
the increasing reserve needs resulting from the integration of variable
renewable generation are correctly reflected by the current static sizing
method, under static reserve sizing the reserved capacity is required to
be available throughout the year, even during conditions with lower
imbalance risk. Since this weakness of the present static sizing metho-
dology is expected to increase in future years as increasing amounts of
renewable generation capacity are connected to the system, static sizing
methods are currently scrutinized by practitioners and academics
(Papavasiliou and Oren, 2013).

2.3. General design and implementation of the dynamic sizing methodology

System imbalance drivers are highly dependent on system condi-
tions. If a power plant is in maintenance during a given period, it does
not make sense to account for its potential outage during this period.
Thus, the risk of forced outage is not uniform over time. Similarly, if the
forecasted wind production for a given period is close to zero, the
forecast error can only be such that the generation has been under-
estimated. Therefore, also the forecast and market error risks are not
constant over time.

Dynamic sizing aims at adjusting FRR needs to the expected system
conditions of the next day (e.g. forecast wind power and photovoltaic
generation, power plant schedules). Specifically, dynamic sizing aims at
leveraging the system conditions which are illustrated in Fig. 2 in order
to predict the risk of a system imbalance. In order to obtain the required
up- and downward FRR needs as presented in Fig. 4, the computation of
dynamic sizing requirements is conducted day-ahead before market
closure. Although it should preferably be conducted as close as possible
to real-time, European market design and regulations constrain the
methodology. In contrast to other market designs that are encountered
worldwide, the majority of European energy and reserve markets are
operated by separate entities, which implies that reserves are procured
before market closure, so as to ensure their availability. In practice, this

means that the dimensioning of reserves has to occur several hours
before the day-ahead market closes, in order to facilitate the required
calculations, validations and tendering procedures.

As in the static sizing approach, dynamic sizing aims at estimating
the probability density corresponding to the forecast and market error
risk, which is then convoluted with the estimated probability density
function of forced outage risk. The risk of forced outages is treated se-
parately because forced outages are rare events which implies that the
outage risk density function of the portfolio of units in Belgium cannot
be captured with only a few years of historical data. Recalling that the
target reliability level for 2018 in Belgium is 99.9%, the FRR needs are
determined as the 99.9% percentile of the resulting convoluted dis-
tribution.

The difference between static and dynamic sizing is that dynamic
sizing uses day-ahead forecasted system conditions in order to estimate
the probability distribution of the imbalance risk: on the one hand,
machine learning algorithms are used to estimate the forecast and
market error risk while the forced outage risk relies on a Monte Carlo
simulation with estimated schedules of generation and transmission
assets.

• Regarding the forecast and market errors, these are assumed to be
driven on the one hand by the day-ahead forecasts of demand and
renewable production (since these influence the corresponding
forecast errors) and on the other hand by scheduled leaps, which
were described previously. In addition to these drivers, general in-
formation such as “hour of the day”, “day of the week” or weather
forecasts are also exploited by the dynamic method. Machine
learning algorithms are leveraged to map these forecast system
conditions to a certain probability distribution. The machine
learning algorithm involves two steps: a training (or learning) step
and a prediction step which corresponds to the “training” and
“sizing” step in Fig. 4. The learning step consists of “feeding” the
algorithm with historical data which are used to compute the
parameters of the algorithm. The prediction step consists of using
the trained algorithm to make prediction on a new data set.
• Regarding outage risk, since the dimensioning is conducted before
the day-ahead market closure, the exact schedule of units is not
known. In this study, the main system conditions that are considered
as drivers of outage risk are the maintenance schedules of power
plants and the scheduled import/export flow in the relevant HVDC-
interconnector. The dynamic sizing approach uses this information
as input to the Monte Carlo simulator such that the resulting prob-
ability distribution of capacity shortfall due to outages corresponds
to the actual risk of the system on the day of operations. More
specifically, the Monte Carlo simulator uses a list of power plants as

Fig. 4. Illustration of a possible daily profile of dynamic FRR needs.
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input. Each of these plants is associated with a “probability of
outage”, an “outage impact” (i.e. the impact of the outage on the
imbalance, which is assumed to be equal to the nominal power of
the asset) and an “outage impact duration” (i.e. not the duration of
the outage itself, which can last several months, but the lapse of
time for which the outage impacts the imbalance). All the power
plant outages are assumed to be independent. The Monte Carlo tool
simulates hundreds of years, using an hourly time step, and pro-
duces the outage risk probability distribution as output.

Considering this general methodology, three dynamic dimensioning
approaches have been considered and tested in this study. The first
approach which is considered is a semi-dynamic approach, later de-
noted as outage-only (OO) approach. This sizing approach treats the
forced outage imbalance driver dynamically, as described above, while
it treats the forecast and market error risk statically. Additionally, two
fully dynamic methods are considered in order to predict the risk of a
system imbalance for each time step of the next day. Each time step is
treated separately, i.e. as an isolated problem, without explicit inter-
temporal relations. Nevertheless, consecutive periods are indirectly
correlated as the input features of the algorithm (e.g. wind or solar
production) are themselves correlated. Both dynamic methods treat
forecast and market errors, as well as forced outage risks dynamically.
Their differences are related to the machine learning approach used for
determining the interrelation between the system conditions and the
distribution of the forecast and market error risk. Several machine
learning approaches have been proposed in the recent literature to
tackle this problem. These are included in our methodology and com-
pared on the case study of Belgium:

• The first machine learning method applied is the “k-means” algo-
rithm, which is a popular machine learning clustering method. The
idea of applying k-means to the problem of dynamic sizing is to
divide the space of system conditions into different scenarios, and to
associate a different distribution of forecast and market error risk to
each scenario. The objective of k-means clustering is to split n ob-
servations into k clusters such that each observation belongs to the
cluster with the nearest mean. Mathematically, this means that the
sum of squares of the distances of the observations from the corre-
sponding cluster centres is minimized, i.e. the objective is to mini-
mize, where x x x( , ,..., )n1 2 is the set of observations and S S S( , ,..., )k1 2 is
the set of the clusters, with µi indicating the center of cluster Si. For
each of the cluster centres, the distribution of imbalances is obtained
using a non-parametric probabilistic estimator, namely kernel den-
sity estimation (Bucksteeg et al., 2016).
• The second machine learning method applied is the so-called “knn”
(k nearest neighbours) algorithm. The idea of applying the k-
nearest-neighbours method to dynamic sizing is to predict system
imbalances as a function of features, and to use the k-nearest-
neighbour algorithm in order to detect the k past observations which
are nearest to the one characterizing the present operating interval.
The reserve capacity is then sized as the weighted sum of these k
observations. Mathematically, this amounts to of finding the k ob-
servations =S x x x( *, *,..., *)n1 2 among n observations =D x x x( , ,..., )N1 2
such that x y x y x S x D S* * , /i j i j

2 2 , where y is the
forecast system condition for tomorrow.
• Neural networks are another popular family of machine learning
algorithms that have been considered for this study. A neural net-
work can be used in order to derive non-linear regression functions.
These functions, in turn, can be used in order to predict a certain
quantity, for instance the system imbalance. The backpropagation
function of a neural network can be tuned so as to estimate a
quantile of this quantity, for instance the 99.9% quantile of the
system imbalance. In that case, the neural network would directly
estimate the FRR needs by predicting the 99.9% reliability percen-
tile of the imbalance. In contrast to the encouraging findings that

have been reported in the literature for the German power system
(Jost et al., 2015), the approach is less appropriate for the Belgian
system because the role of outages risk is dominant in Belgium. It is
therefore crucial to convolute forecast and market risk with outage
risk in order to obtain a precise sizing method. This convolution
requires computing the complete distribution of the “forecast and
market risk”, and not only a quantile. For this reason, the approach
of neural networks is less appropriate to the methodology of this
study. Furthermore, some further tests have been conducted, iso-
lating the forecast and market risk to avoid the convolution step and
to test the neural network performances. These tests did not reveal
superiority of the approach for the case study of Belgium which is
considered in this paper. In contrast, it is a promising method for
larger systems, such as Germany, where individual unit outages
have a less dominant role on imbalance risk. In such systems, where
forced outages do not need to be considered separately, neural
networks have been considered as a promising dynamic sizing ap-
proach (Jost et al., 2015).

3. Proof of concept in Belgium: scenarios and assumptions

The dynamic FRR sizing methods are compared to the benchmark
static FRR sizing method in a proof of concept representing four sce-
narios for Belgium for 2020 (before the phase-out of nuclear capacity in
Belgium2) and 2027 (after the phase-out of nuclear capacity). In order
to train, test and implement the algorithms described in Sections 2.2
and 2.3, a database is developed for 2015, 2016 and 2017, which re-
presents historically observed system imbalances, as well as the corre-
sponding day-ahead predicted system conditions (predicted before day-
ahead market closure). These system conditions include the offshore
and onshore wind power generation, the solar photovoltaic generation,
the total demand and several weather parameters such as irradiation,
wind speed and temperature for every quarter-hour. In order for the
results to represent the FRR needs in 2020 and 2027 as accurately as
possible, the historic system imbalances are extrapolated by means of
the same method as presented in the static approach discussed in
Section 2.2, i.e. using the forecast errors of the incremental capacity of
renewable generation which is presented in Table 1. The dynamic sizing
methods are trained on the data of 2015 and the first half of 2016, and
are then tested against the data of the second half of 2016 and the first
half of 2017 (where the data from these years has been extrapolated to
represent the conditions of 2020 and 2027, as explained in Section 2.2).

The Reference scenario represents Belgium in 2020. It is assumed
that in 2020 BRPs exhibit a similar ability to anticipate system im-
balances as observed in the past. An analysis of historical data shows
that the ability of BRPs to mitigate system imbalances improves by
4.5% every year. A sensitivity is conducted on this factor by also con-
sidering 0% and 7% annual improvement rates. These are referred to as
a Low and High Market Balancing scenario, and they correspond to the
assumed capability of BRPs to anticipate system imbalances to a lesser
or greater extent, respectively. It is noted that for the actual deployment
of a dynamic sizing method these extrapolations become less relevant,
since the dynamic sizing is conducted close to real-time, and not mul-
tiple years in advance. Instead, these assumptions are used for the
comparison of the performance of the alternative sizing methods in the
proof of concept.

Finally, a Post-Nuclear scenario corresponding to 2027 is in-
vestigated. In this scenario it is assumed that the nuclear units of
Belgium have been replaced by conventional gas-fired power plants,

2 The current legal framework foresees a phase-out of nuclear capacity in
Belgium between 2022 and 2025, however 2 GW of the total 5.8 GW are
planned to be decommissioned in 2022 and 2023. At the time of writing, a
political agreement is being drafted concerning the scenarios, costs and re-
quired mechanisms to replace this capacity.
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and additional renewable generation capacity has been added to the
system, as indicated in Table 1. In this post-nuclear scenario, the annual
improvement factor of BRPs is assumed to evolve by 4.5% until 2020,
and by 1% after 2020. The post-nuclear scenario analyses the behaviour
of a dynamic sizing method after all nuclear units are replaced by six
400MW CCGT units. The objective is to verify the effect of this tran-
sition and not to make an appraisal regarding the required capacity to
replace the nuclear units, which subject to policy discussion.

Looking forward to the conditions of the Belgian power system in
2020 and 2027, a new imbalance driver is accounted for in the study,
which contributes to the forced outage risk. This driver is the HVDC-
interconnector between Belgium and the United Kingdom (referred to
as NEMO-link), planned to be commissioned in 2019. This transmission
asset results in a shortage or excess of power if a forced outage occurs
during periods when the interconnector is importing or exporting
power, respectively. It is accounted for in the Monte Carlo analysis of
the forced outages. A representative schedule for 2020 and 2027 is
used, based on historic price differences between Belgium and the
United Kingdom. The schedule is then extrapolated to 2020 and 2027.
The forecasting scheduled flow on the NEMO-link utilizes price fore-
casts. This forecasting is required because in actual operations the
NEMO-link schedule will only be known after the sizing of the FRR
needs has already taken place, since the flow over the interconnector is
determined by the day-ahead market, which clears after reserve has
been sized.

The proof of concept is conducted by running the proposed sizing
methods against data over a full year. The chosen dynamic sizing
methods are implemented on a rolling basis. The evaluation accounts
for practical considerations, including (1) the frequency by which the
algorithms are re-trained with updated historical data, and the fre-
quency by which the optimal set of parameters is re-computed; (2) the
sizing resolution of the dynamic needs, which is related to the FRR
product length; and (3) the lead time which determines how much time
in advance the sizing is conducted. An overview of the assumptions
made for each method is given in Table 2.3

4. Results and discussion

This section presents the results of the proof of concept for 2020,
and compares the three dynamic sizing methods with the current static
sizing approach. The section discusses two main advantages of dynamic
sizing relative to static sizing: (1) an average reduction of the reserve
needs while (2) ensuring a better reliability management. Furthermore,
this section discusses the relation between the profile of reserve needs
and the corresponding system conditions. Finally, the robustness of the
results is investigated with respect to scenarios with low and high re-
serve needs for 2020, and with respect to a post-nuclear scenario in
2027.

4.1. Reliability

Table 3 presents the average reliability level of each of the two full
dynamic methods for 2020. The average reliability criterion expresses
the amount of periods during which the determined reserve capacity
covers the system imbalance during the test period. It is found that
static sizing results in a 99.93% reliability, which meets the predefined
reliability criteria of 99.90%. The three dynamic sizing methods exhibit
similar reliability levels, which renders them acceptable in terms of
meeting the reliability targets of Elia. Since this is the paramount per-
formance criterion of any sizing method, it is necessary that any sizing
method that would be considered for implementation meet the target
reliability level set by the system operator.

In order to better illustrate the adaptiveness of the dynamic sizing
methods, indicator “reliability in high risk” and “reliability in low risk”
is presented in Table 4, which compares the average reliability in the
20% periods with the highest reserve needs with the 20% periods with
the lowest reserve needs.4 This comparison indicates whether a sizing
the method is capable of adapting the reserve sizing to the corre-
sponding risk of the system under varying system conditions.

Note that this indicator makes especially sense for the fully dynamic
methods. Indeed, similar reliability levels in high or low risk of the
semi-dynamic method (Outage-Only, abbreviated OO) and the static
method are expected. This is due to the fact that the outage-only
method is only aiming to reduce the reserve needs during periods when
a maintenance of one or more large assets in the scale of a Gigawatt
(e.g. the nuclear generating units or the NEMO link) is taking place, or
to reduce the reserve needs in accordance to the import / export
schedule of the NEMO link. Consequently, this has no impact on
managing better the reliability in high or low risk.

The results demonstrate that the dynamic sizing methods are able to
identify the risk level and increase the reliability of the system during
high-risk periods by foreseeing more reserves compared to the static
approach. On the other hand, dynamic sizing reduces the reserve needs
during the low-risk periods, lowering the reliability to the pre-defined
level while avoiding to oversize during these periods, in contrast to
static reserve. For the kmeans method, dynamic sizing results in a
constant reliability of 99.89% and 99.91% for upward reserve needs

Table 1
Historic and projected installed capacity of renewable energy sources in
Belgium.

2012a 2016a 2020a 2027b

Onshore wind [MW] 1005 1580 2663 3542
Offshore wind [MW] 380 713 2205 2312
Photovoltaics [MW] 2051 3101 4966 4966

a Elia (2017b).
b Elia (2016).

Table 2
Overview of assumptions regarding training frequency, resolution and lead
time in the Proof of Concept.

Training Frequency Resolution Lead Time

OO Yearly 4-h Day-Ahead
KMEANS Monthly
KNN Daily

3 A more regular training interval ensures that the algorithm is acting using
the most recent information, while it requires more effort in terms of compu-
tational time as well as validation of the results by the utility that employs the
algorithm. Therefore, the choice has been made to compare the two machine
learning algorithms on different training frequencies. In contrast, the resolution
is fixed in each method at 4 h. This is motivated by the fact that reserve capacity
products in Belgium is likely to evolve towards 4-h products. The lead time for

(footnote continued)
training the algorithm is fixed in each method to one day ahead, which is
dictated by the fact that reserve procurement is currently conducted before the
closure of the day-ahead market in Belgium.
4 As the reserve needs determined by the KMEANS and the KNN methods are

not the same, the sets of “high-risk” and “low-risk” periods identified by these
methods do not exactly coincide. Therefore, Table 4 makes a distinction be-
tween the reliability during high-risk and low-risk periods between static sizing
and KMEANS, where high and low risk is determined according to the FRR
needs determined by the KMEANS method. This corresponds to the second and
third column of the table. Table 4 also compares the reliability of static sizing
and KNN in high-risk and low-risk periods, where high and low risk are defined
according to the FRR needs of the KNN method. These numbers are reported in
fourth and fifth column of the table.
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during high and low-risk periods, respectively, and results in 99.90%
and 99.89% for downward reserve needs during high and low-risk
periods. In contrast, static sizing oversizes in low-risk periods with
99.96% and 99.97% reliability for up- and downward reserve needs,
respectively, while it under-sizes in the high-risk periods with 99.86%
and 99.87% in up- and downward reserve needs. As can be observed in
Table 4, the knn method exhibits a similar adaptive behaviour and
achieves a stable reliability over time by adapting the sizing of reserves
to the predicted level of risk in the system.

These results demonstrate that dynamic sizing methods achieve the
target reliability level of 99.9% by adjusting the sizing so that this
target reliability level is met instantaneously, meaning that the relia-
bility of the system is 99.9% at any given moment in time. By contrast,
the static sizing method achieves an average reliability level of 99.9%,
by oversizing reserves in periods of low risk, and under-sizing reserves
in periods of high risk. Therefore, although the average reliability is
indeed consistent with the requirements of the system operator, this is
not necessarily the case at any given moment in time.

The results of Table 4 show the reliability in high risk for a target
average reliability level of 99.9%. In order to demonstrate that differ-
ences in reliability levels among the different sizing methods are sta-
tistically meaningful, the different sizing methods are tested for dif-
ferent levels of target reliability. Concretely, Fig. 5 presents the
reliability and its confidence interval - achieved on the test set - of the
dynamic approach and the static approach for different levels of target
reliability. In this analysis, the forced outages are removed in order to
test for the effectiveness of adapting to “forecast and market errors”. It
is found that the difference in reliability increases substantially when
reducing the target reliability levels, e.g. 99.0%. The results demon-
strate that the benefits of the dynamic treatment of the “forecast and
market errors” increase with lower reliability levels. Fig. 5 shows that
this effect is more pronounced for upward reservation than for down-
ward reservation, This analysis supports the fact that the reliability
differences achieved by the machine learning methods are statistically
relevant.

4.2. Reserve capacity needs

4.2.1. Full dynamic methods in the reference scenario 2020
Table 5 compares the average, minimum and maximum reserve

requirements of dynamic sizing methods to the requirements of static
sizing for the “reference scenario 2020”. The table further presents the
difference between the average requirements of the dynamic and static
methods, referred to as dynamic potential and indicated in the table as

Table 3
Average reliability of the three methods for the 2020 reference scenario.

STATIC OO KMEANS KNN

AVERAGE 99.93% 99.91% 99.90% 99.89%

Table 4
Comparison of the KMEANS, KNN and static methods on their reliability level and corresponding FRR needs for the high and low risk periods.

KMEANS KNN

Static (Reliability, FRRneed) KMEANS (Reliability, FRRneed) Static (Reliability FRRneed) KNN (Reliability, FRRneed)

UPWARD FRR NEEDS High Risk 99.86%; 1417 MW 99.89%; 1457 MW 99.84%; 1417 MW 99.84%; 1463 MW
Low Risk 99.96%; 1417 MW 99.91%; 1304 MW 99.96%; 1417 MW 99.91%; 1271 MW

DOWNWARD FRR NEEDS High Risk 99.87%; 1251 MW 99.90%; 1362 MW 99.96%; 1251 MW 99.98%; 1384 MW
Low Risk 99.97%; 1251 MW 99.89%; 1053 MW 99.97%; 1251 MW 99.92%; 1025 MW

Fig. 5. Reliability in high risk for KMEANS vs static sizing, with a 95% confidence interval (UB and LB are the upper and lower bounds of the 95% confidence interval
of the reliability achieved by the model in high risk). Note that a classical confidence interval is the normal interval. However, the normal interval behaves badly
when p is close to 0 or 1, which is the case here (p is between 99% and 99.9%). Therefore, the Jeffreys interval has been used instead (Brown et al., 2001).
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. Finally, the table presents the spread, which is the difference be-
tween the maximum and minimum reserve requirements over the si-
mulation period.

The delta between both averages, which represents the potential for
dynamic methods to reduce reserve requirements, demonstrates that
the full dynamic sizing methods reduce average reserve needs by
52–64MW for upward reserve, and by 46–47MW for downward re-
serve needs.

Nevertheless, the spread between the minimum and maximum re-
serve needs and the duration curves in Fig. 6 demonstrate that there are
large differences between the requirements in periods with high and
low risks. This spread can amount up to 346–407MW for upward, and
799–995MW for downward reserve needs. The larger spread for
downward reserves is due to the fact that the downward reserve re-
quirement varies strongly as a function of the import or export state of
the NEMO cable, which can swing by +1GW or −1GW depending on
whether the cable is in import or export mode. By contrast, upward
reserve requirements are driven by the capacity of the nuclear units,
which amounts to 1 GW for the largest units. Since at least one nuclear
unit is always scheduled in any given day, the upward requirement
exhibits variations of lower magnitude throughout the year.

The duration curves of the FRR requirements (Fig. 6) demonstrate
that the FRR requirements determined by the dynamic sizing methods
are more commonly lower than those of static sizing. Concretely, up to
85% of the time, the upward reserve requirements of dynamic methods
are lower than those of static methods, and 80% of the time the
downward reserve requirements are lower for dynamic methods. Ob-
viously, this also results in periods where the FRR needs increase above
the static sizing benchmark. Regarding downward FRR requirements, it
can be seen that FRR requirements below 1 GW occur only rarely, i.e.
2.6% of the time for KNN and 2.3% of the time for KMEANS. This is
explained by the fact that the NEMO interconnector is only rarely
scheduled in import, and exceptionally high renewable production
conditions are required for achieving downward reserve levels below

1 GW.
The duration curves show that the two full dynamic methods

(kmeans and knn) exhibit a similar behaviour. However, differences are
observed in terms of extreme high or low FRR requirements, especially
on the downward side. Indeed, Table 5 demonstrates that the minimum
downward FRR requirements for kmeans amount to 794MW, while the
requirements of knn may be as low as 698MW. Similarly, the maximum
downward FRR requirements for kmeans amount up to 1593MW, while
the requirements of knn reach up to 1693MW. This is a result of their
parametrization and an interesting area of future research is to develop
a hybrid method combining the features of each model.

4.2.2. Semi-dynamic methods in the reference scenario 2020
The outage-only method exhibits a lower potential for reducing FRR

needs, up to 30MW on the upward direction, and 14MW on the
downward direction. The moderate potential compared to the full dy-
namic methods is confirmed by observing the spread between the
minimum and maximum reserve requirements, which is limited to
53MW. Concretely, the minimum upward requirement amounts to
1364MW, while the maximum upward requirement amounts to
1418MW. This is due to the fact that upward reserve in Belgium is
mainly driven by renewables and by the nuclear power plants. Since the
outage-only method does not manage the imbalance resulting from
renewable resources dynamically (i.e. the forecast and market errors
are not treated dynamically), and since nuclear capacity in Belgium
serves base load and therefore does not exhibit a notably dynamic
schedule, there are very few opportunities for the outage-only method
to reduce upward requirements.

By contrast, insofar as downward reserve requirements are con-
cerned, the outage-only method exhibits a larger spread of 112MW,
since FRR requirements are mainly driven by renewable forecast errors
and the NEMO interconnector schedule. The NEMO interconnector is
expected to be scheduled in export mode 85% of the time, and in import
mode 15% of the time. This provides opportunities for the outage-only
approach. Indeed, when the NEMO interconnector is scheduled in im-
port, the downward FRR requirements are reduced to 1140MW (this
corresponds to the minimum value in the last row of Table 5), com-
pared to 1252MW (this corresponds to the maximum value in the last
row Table 5). By contrast, static sizing requirements remains constantly
at a value of 1251MW. These results demonstrate that a dynamic
method based on the outage risk may have its merits, at least when
large contingencies with respect to the demand and the installed re-
newable capacity are present.

Although the potential of the outage-only method in reducing up-
ward requirements remains limited, some additional reduction in re-
serve requirements are possible when rare but scheduled events are
accounted for. Such event include the planned maintenances of large

Table 5
Average, minimum, maximum reserve requirements, dynamic potential (Δ) and
dynamic spread (expressed in MW).

Upward Downward

Avg Max Min Δ Spread Avg Max Min Δ Spread

STAT 1417 – – 1251 – –
KMEANS 1365 1616 1270 52 346 1204 1593 794 47 799
KNN 1353 1616 1208 64 407 1205 1693 698 46 995
OO 1387 1418 1364 30 53 1237 1252 1140 14 112

Fig. 6. Duration curve of upward (left) and downward (right) FRR requirements for the 2020 reference scenario.

K. De Vos et al. Energy Policy 124 (2019) 272–285

280



power plants, or the maintenance of the NEMO interconnector. These
events permit temporary reductions in reserve requirements using the
outage-only method. A separate analysis of the outage risk demon-
strates that the reserve requirements are mainly impacted when at least
one or two nuclear units with capacity level in the order of 1 GW are
simultaneously in maintenance (for instance following unexpected
events). Following the decreasing importance of outage risk in the fu-
ture evolution of the Belgian electric power system, the outage-only
method will not be suitable for a stand-alone implementation in the
long term. However, despite its lower potential for achieving volume
reductions, due to its lower complexity relative to fully dynamic
methods, it is considered favourably by Elia as an easily implementable
first step towards dynamic sizing in Belgium, which would serve as a
potential first step for a TSO wishing to move smoothly from static to
dynamic sizing.

4.3. Reserve capacity profile

In order to demonstrate the intuitiveness of the results, an example
of the dynamic reserve sizing decisions is provided in Fig. 7, where
reserve requirements are illustrated for a typical week. The figure de-
monstrates how the method increases the upward reserve needs during
high wind production forecasts (perceiving a high risk for a forecast
error resulting in a potential shortage), and reducing the upward re-
serve needs during low wind conditions and night (perceived as less
risky). Another trend is presented in the downward profile, where FRR
requirements are increased when facing low wind generation and vice
versa. Such analysis of the system parameters provides an intuitive
explanation of the evolution of FRR requirements under the dynamic
methods.

The consistency of the dynamic methods can be further validated by
studying the correlation between the historic FRR needs and the system
conditions. Fig. 8 provides an overview of these correlations for the up-
and downward FRR needs during the testing period for the kmeans

method (correlations are similar to knn method):

• Renewables. It is shown that FRR requirements are strongly corre-
lated with the expected renewable generation. Higher predicted
renewable generation results in higher upward FRR needs, while
downward FRR needs decrease. High renewable forecasts increase
the risk of over-forecasting wind power and vice versa for under-
forecasting. Further analysis demonstrates that this trend is mainly
driven by offshore wind generation following its regionally con-
centrated nature.
• Time of the day and demand. It can be observed that the highest
upward FRR requirements occur during day time (expressed by the
percentage of day-hours). This is related to the expected demand: a
high demand generally results in higher upward FRR requirements
while a low demand results in greater downward FRR requirements.
This is likley related to the schedules of flexible power plants (high
demand results in high output schedules of power plant which may
result in less remaining upward flexibility for market players to
balance their portfolio which in its turn can result in higher shortage
imbalance risk and higher upward FRR requirements; and vice versa
for downward FRR requirements). Furthermore, analysis demon-
strates that the ramping rate of the demand increases the downward
impacts FRR requirements which can be explained by an effect of
higher demand variability on the ability of market players to
maintain their portfolio in balance, while this is not the case for the
upward FRR requirements. Such correlations will be subject to fur-
ther investigation when gaining further experience with the model
• NEMO-link. It is observed that the minimum downward FRR re-
quirements only occur when the NEMO-link is predicted to be in
import (where the outage risk does not need to be covered).
Similarly, the minimum upward FRR requirements occur only when
the NEMO-link is predicted to be in export. However, for moderate
to high up- and downward FRR needs, the impact of the NEMO-link
is less clear.

Fig. 7. Example of dynamic sizing on a given typical week for the kmeans method.
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4.4. Robustness

4.4.1. 2020 study cases
In order to account for the uncertainty surrounding the precise

conditions of the Belgian system in 2020, three study cases were de-
veloped which represent the low, high or average capability of market
players to deal with the additional imbalances with respect to the in-
creasing share of renewables. Table 6 demonstrates that the potential
for dynamic sizing methods to reduce the volume of reserve require-
ments persists, regardless of the plausible evolution of the system to-
wards 2020. Of course, in the high scenario where the impact of re-
newable uncertainty is mitigated, the potential for dynamic sizing to
reduce FRR requirements is slightly reduced. Correspondingly, in the
low scenario, the potential increases.

It is therefore shown that, although the ability of the market to
cover imbalances has large impact on the reserve needs, the dynamic
methods maintain their potential. This potential is increased in case of
higher balancing needs which would result from a reduced ability of
BRPs to ensure balanced portfolios in real time.

4.4.2. 2027 post-nuclear case study
Removing the larger 1-GW nuclear units from the system results in

reduced outage risk, which in turn results in lower average upward
reserve requirements for all methods. Thus, upward reserve

requirements decrease, despite the additional forecast risk of newly
added renewable capacity in 2027. In the case of the static sizing
method, this reduction leads to a need of 1284MW (which implies a
reduction of 133MW in upward requirements relative to the 2020 re-
ference case).

For the fully dynamic methods, the reduction of upward FRR re-
quirements is even greater, and results in FRR needs of 1186MW for
kmeans and 1160MW for knn (Table 7). Thus, the potential of dynamic
methods to reduce upward FRR requirements increases from 52 to
64MW to 98–124MW for kmeans and knn respectively. This is ex-
plained as the outage risk of the nuclear units will no longer be the main
driver for upward FRR requirements. Since nuclear unit scheduled as
base load are largely static, they prevent dynamic sizing from reaching
its full potential. In particular, the upward FRR requirements in 2027
dimensioned with the fully dynamic methods decrease below 1000MW
during periods when NEMO-link is predicted to be exporting. Table 7
shows the increase in the spread of the dynamic methods, from 346 to
407MW to 629–739MW. Downward FRR requirements are not affected
by the nuclear outage risk, therefore there is no compensation for the
increase in prediction risk resulting from additional renewable gen-
eration. Thus, the downward FRR requirements increase to 1340MW in
the static sizing method, and to 1286MW in the fully dynamic methods.
Table 7 shows that although the dynamic potential and spread in-
creases, this effect is fairly limited.

Fig. 8. Graphical representation of the FRR needs (kmeans). The x-axis represents the different levels of sizing, split in ranges of 50MW for upward and 100MW for
downward, in increasing order. The y-axis represents the average system condition in each group of sizing. The status of the NEMO link, the percentage of day hours
as well the normalized demand are expressed in %, rated on the right y-axis. The renewable generation, as well as the offshore generation, is rated in MW on the left
y-axis.

Table 6
Average, minimum, maximum reserve needs, dynamic potential (Δ) and dynamic spread (expressed in MW) for the high and low 2020 scenarios.

Upward Downward

Avg Max Min Δ Spread Avg Max Min Δ Spread

High scenario STAT 1364 – – 1180 – –
KMEANS 1325 1473 1243 39 230 1141 1390 715 38 675
KNN 1318 1491 1190 46 301 1145 1527 628 35 899
OO 1339 1364 1320 25 45 1160 1181 1027 20 154

Low scenario STAT 1564 – – 1426 – –
KMEANS 1471 1971 1325 93 647 1356 1710 960 70 750
KNN 1436 1977 1245 128 731 1362 2031 844 64 1187
OO 1546 1565 1532 18 33 1420 1427 1377 6 50
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In conclusion, the dynamic sizing method remains functional in a
post-nuclear context. The potential for reductions in upward FRR re-
quirements is significantly increased. In contrast, results show that the
outage-only potential is further reduced.

4.5. Financial impact of reductions in FRR needs

In this section, the reductions in hourly FRR needs are used in order
to estimate the impact of dynamic reserve sizing on procurement costs.
For this purpose, the potential hourly price variations of reserving FRR
capacity are estimated, which are expressed in €/MW-h (Fig. 9). A
piece-wise linear model is developed based on estimated up- and
downward FRR reservation prices when facing low, moderate or high
FRR needs resulting from the kmeans method. Since there are no his-
torical hourly price observations available, the following assumptions
are adopted:

• The prices for upward FRR needs relate to historical monthly price
observations for mFRR in Belgium during the last years. These his-
torical observations are published by Elia on its website, with prices
varying between 2.5 and 5.5 €/MW-hour.
• Belgium does not currently support a downward FRR market. In the
absence of data for Belgium, we estimate prices for downward FRR
based on historical data of German mFRR prices.

Nevertheless, as this approach may underestimate price increases
when facing high FRR needs, a second more conservative approach
assumes an inelastic price which increases to 11.5 and 12.0 €/MW-h for
up- and downward FRR needs respectively.

Table 8 demonstrates the financial gains in the reference scenario
for 2020 (defined in Section 3). Results in Table 8 show that the fi-
nancial gains are positive, even when facing high price spikes. Ac-
cording to these results, yearly savings can be obtained that range be-
tween M€2.51 and M€2.97 for machine learning methods. For the
outage only method, these savings are limited between M€1.48 and M
€1.71. The implementation cost of a dynamic sizing tool is estimated by

Elia to range between €850,000 and €1,100,000 per year. This esti-
mated cost includes the project development and yearly recurrent cost
of operating a dynamic sizing method. Dynamic sizing therefore results
in a positive business case.

5. Conclusions and policy implications

This article compares a range of methods for the dynamic sizing of
operating reserves. The investigated methods are compliant with the
European legislative and regulatory framework. These methods are
presented as an alternative to the current static sizing method generally
applied by system operators, whereby the required reserve capacity is
fixed for a longer period, generally an entire year. With increasing re-
newable generation, for which the risk of system imbalances depend on
the generation forecasts, such a static sizing approach is expected to
result in an oversizing of operating reserves contracted by system op-
erators, at least during some periods. This oversizing results in an un-
necessary cost for the system and its users.

The results of a proof of concept for Belgium towards 2020 confirm
that dynamic sizing methods based on machine learning result in a
better management of reliability, in the sense of exposing the system to
less risk during high-risk periods, and avoiding to over-protect the
system during low-risk periods. The results further confirm that all
three dynamic sizing methods which are presented in the study can
potentially reduce average FRR requirements. However, it is also found
that this potential is higher for the machine learning methods (up to
64MW and 46MW potential reductions in up- and downward FRR
requirements respectively) compared to a simplified method based on
dynamic adjustments to forced outage (up to 31MW and 15MW po-
tential reductions in up- and downward requirements respectively). The
outage-only method is nevertheless considered by the Belgian system
operator as an option for gradual implementation in 2019, due to its
appealing simplicity in terms of operational implementation. Finally,
the dynamic sizing methods presented in the paper were tested against
two alternative scenarios in terms of the ability of market players to
balance their portfolio, as well as one scenario for 2027. The results

Table 7
Average, minimum, maximum reserve needs, dynamic potential (Δ) and dynamic spread (expressed in MW) for the post-nuclear 2027scenario.

[MW] Upward Downward

Avg Max Min Δ Spread Avg Max Min Δ Spread

STAT 1284 – – 1340 – –
KMEANS 1186 1534 905 98 629 1286 1700 866 54 834
KNN 1160 1532 793 124 739 1286 1778 841 54 937
OO 1253 1284 1205 31 78 1327 1340 1272 13 67

Fig. 9. Representation of the generic reserve price in function of the FRR needs [MW] for two scenarios in 2020.
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further confirm the robustness of the dynamic sizing methods in terms
of reducing average reserve requirements.

The implementation of dynamic dimensioning methods has policy,
regulatory and market operation consequences. Firstly, the im-
plementation of dynamic sizing requires important modifications in the
procurement of reserve capacity. Indeed, dynamic sizing requires a
daily procurement of FRR, as opposed to weekly or monthly. In parti-
cular, the allocation of the overall FRR capacity requirements derived
from dynamic sizing towards contracted reserves, non-contracted re-
serves and reserve sharing is an important design consideration moving
forward. The determination of this allocation procedure will need to
account for the implications of daily procurement and product design,
and will need to be conducted in close collaboration with all balancing
service providers. Nevertheless, these evolutions are expected to further
open the market, although it is not clear which effect varying reserve
needs will have on the prices.

Secondly, as the dynamic sizing computes the expected system im-
balance distributions closer to real-time, it avoids the required “extra-
polations” of historic system imbalances in a static framework. The
latter resulted in over- or underestimations resulting in area control
errors, monitored by ENTSO-e and used to assess the dimensioning
methodology. A dynamic sizing approach allows to reactively adapt the
calculation method and its parameters.

Finally, the introduction of dynamic sizing requires a modified
regulatory framework to be embedded in the LFC block Operational
Agreement. This regulatory framework will be subject to public con-
sultation by the TSO, and further subject to approval by the regulator.
However, whereas in the past the regulator approved the reserve sizing
methodology and results in a yearly recurrent report, a dynamic ap-
proach requires the approval of the methodology alone, according to
which the sizing results will be determined in the day-ahead time
frame. This also requires a modification of the federal grid code, which
delineates the authority of the regulator over the dimensioning of re-
serve capacity in Belgium. The regulatory framework should ensure
transparency and intuitiveness of the method and the corresponding
results.

The goal of Elia is to implement the dynamic dimensioning for the
procurement of operating reserves in Belgian reserve capacity auctions
during 2019 and 2020. This will include an extensive training period.
Due to their greater complexity, the machine learning methods will
require a testing period of at least one year. An important factor for Elia
to approve the deployment of dynamic sizing methods is the expecta-
tion that the dynamic sizing methods will be subject to further im-
provements, both in terms of design (e.g. in the identification of new
imbalance drivers) as well as algorithms (e.g. in the improvement of the
adopted statistical methods). An important consideration in the im-
plementation of dynamic sizing is the ability of the method to cope with
extraordinary system and network conditions (for instance a solar
eclipse). Indeed, the analysis of the imbalance drivers has shown that
predicting imbalance risk is not straightforward, and that a significant
part of the system imbalance remains unexplained by day-ahead system
conditions. The question remains regarding the extent to which this
predictive ability can be further improved. This effort of explaining the
residual uncertainty associated to system imbalance will require

continuous efforts following the conclusion of the present study, and
will be the subject of future research by the authors and within Elia.
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